WorldWideScience

Sample records for adherens junctions connect

  1. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions.

    Science.gov (United States)

    Grawe, F; Wodarz, A; Lee, B; Knust, E; Skaer, H

    1996-03-01

    Morphogenetic movements of epithelia during development underlie the normal elaboration of the final body plan. The tissue integrity critical for these movements is conferred by anchorage of the cytoskeleton by adherens junctions, initially spot and later belt-like, zonular structures, which encircle the apical side of the cell. Loss-of-function mutations in the Drosophila genes crumbs and stardust lead to the loss of cell polarity in most ectodermally derived epithelia, followed in some, such as the epidermis, by extensive apoptosis. Here we show that both mutants fail to establish proper zonulae adherentes in the epidermis. Our results suggest that the two genes are involved in different aspects of this process. Further, they are compatible with the hypothesis that crumbs delimits the apical border, where the zonula adherens usually forms and where Crumbs protein is normally most abundant. In contrast, stardust seems to be required at an earlier stage for the assembly of the spot adherence junctions. In both mutants, the defect observed at the ultrastructural level are preceded by a misdistribution of Armadillo and DE-cadherin, the homologues of beta-catenin and E-cadherin, respectively, which are two constituents of the vertebrate adherens junctions. Strikingly, expansion of the apical membrane domain in epidermal cells by overexpression of crumbs also abolishes the formation of adherens junctions and results in the disruption of tissue integrity, but without loss of membrane polarity. This result supports the view that membrane polarity is independent of the formation of adherens junctions in epidermal cells.

  2. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available BACKGROUND: The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. METHODS AND FINDINGS: In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. CONCLUSIONS: These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  3. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Popov, Lauren M; Marceau, Caleb D; Starkl, Philipp M; Lumb, Jennifer H; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L; Merakou, Christina; Bouley, Donna M; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E; Amieva, Manuel R

    2015-11-17

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.

  4. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

    Science.gov (United States)

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-04-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).

  5. An introduction to adherens junctions: from molecular mechanisms to tissue development and disease.

    Science.gov (United States)

    Harris, Tony J C

    2012-01-01

    Adherens junctions (AJs) are fundamental for the development of animal tissues and organs. The core complex is formed from transmembrane cell-cell adhesion molecules, cadherins, and adaptor molecules, the catenins, that link to cytoskeletal and regulatory networks within the cell. This complex can be considered over a wide range of biological organization, from atoms to molecules, protein complexes, molecular networks, cells, tissues, and overall animal development. AJs have also been an integral part of animal evolution, and play central roles in cancer development and pathogen infection. This book addresses major questions encompassing these aspects of AJ biology. How did AJs evolve? How do the cadherins and catenins interact to assemble AJs and mediate adhesion? How do AJs interface with other cellular machinery to couple adhesion with the whole cell? How do AJs affect cell behaviour and multicellular development? How can abnormal AJ activity lead to disease?

  6. Endothelial Cell Permeability and Adherens Junction Disruption Induced by Junín Virus Infection

    Science.gov (United States)

    Lander, Heather M.; Grant, Ashley M.; Albrecht, Thomas; Hill, Terence; Peters, Clarence J.

    2014-01-01

    Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers. PMID:24710609

  7. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  8. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Science.gov (United States)

    Sufiawati, Irna; Tugizov, Sharof M

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  9. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Gabrielle Goldenberg

    Full Text Available During Drosophila gastrulation, amnioserosa (AS cells flatten and spread as an epithelial sheet. We used AS morphogenesis as a model to investigate how adherens junctions (AJs distribute along elongating cell-cell contacts in vivo. As the contacts elongated, total AJ protein levels increased along their length. However, genetically blocking this AJ addition indicated that it was not essential for maintaining AJ continuity. Implicating other remodeling mechanisms, AJ photobleaching revealed non-directional lateral mobility of AJs along the elongating contacts, as well as local AJ removal from the membranes. Actin stabilization with jasplakinolide reduced AJ redistribution, and live imaging of myosin II along elongating contacts revealed fragmented, expanding and contracting actomyosin networks, suggesting a mechanism for lateral AJ mobility. Actin stabilization also increased total AJ levels, suggesting an inhibition of AJ removal. Implicating AJ removal by endocytosis, clathrin endocytic machinery accumulated at AJs. However, dynamin disruption had no apparent effect on AJs, suggesting the involvement of redundant or dynamin-independent mechanisms. Overall, we propose that new synthesis, lateral diffusion, and endocytosis play overlapping roles to populate elongating cell-cell contacts with evenly distributed AJs in this in vivo system.

  10. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules.

    Science.gov (United States)

    Yang, Chih-Chao; Graves, Hillary K; Moya, Ivan M; Tao, Chunyao; Hamaratoglu, Fisun; Gladden, Andrew B; Halder, Georg

    2015-02-10

    Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

  11. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    Directory of Open Access Journals (Sweden)

    Hideaki Yamamoto

    Full Text Available Adherens junctions (AJs play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  12. Alteration of Tight and Adherens Junctions on 50-Hz Magnetic Field Exposure in Madin Darby Canine Kidney (MDCK Cells

    Directory of Open Access Journals (Sweden)

    Zoltán Somosy

    2004-01-01

    Full Text Available Adherens (AJ and tight junctions (TJ, as integrated parts of the junctional complex, are multifunctional specialized regions of the cell membrane in epithelial cells. They are responsible for cell-to-cell interactions and also have great importance in cellular signaling processes including Wnt protein-mediated signals. As electromagnetic field (EMF exposure is known to cause alterations in the function as well as supramolecular organization of different cell contacts, our goal was to investigate the effect of 50-Hz magnetic field (MF exposures on the subcellular distribution of some representative structural proteins (occludin, β-catenin, and cadherin found in AJ and TJ. Additionally, cellular β-catenin content was also quantified by Western blot analysis. 50-Hz MF exposures seemed to increase the staining intensity (amount of occludin, cadherins, and β-catenin in the junctional area of MDCK cells, while Western blot data indicated the quantity of b-catenin was found significantly decreased at both time points after EM exposures. Our results demonstrate that MF are able to modify the distribution of TJ and AJ structural proteins, tending to stabilize these cell contacts. The quantitative changes of β-catenin suggest a causative relationship between MF effects on the cell junctional complex and the Wnt signaling pathway.

  13. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  14. PLEKHA7 is an adherens junction protein with a tissue distribution and subcellular localization distinct from ZO-1 and E-cadherin.

    Directory of Open Access Journals (Sweden)

    Pamela Pulimeno

    Full Text Available The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of M(r approximately 135 kDa and approximately 145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts ( approximately 5.5 kb and approximately 6.5 kb are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, beta-catenin and alpha-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues.

  15. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    Science.gov (United States)

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  16. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    Science.gov (United States)

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  17. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  18. Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus.

    Science.gov (United States)

    Jung, Kwonil; Eyerly, Bryan; Annamalai, Thavamathi; Lu, Zhongyan; Saif, Linda J

    2015-06-12

    Integrity of the intestinal epithelium is critical for proper functioning of the barrier that regulates absorption of water and restricts uptake of luminal bacteria. It is maintained mainly by tight junctions (TJs) and adherens junctions (AJs). We conducted immunofluorescence (IF) staining for in situ identification of zonula occludin (ZO)-1 proteins for TJ and E-Cadherin proteins for AJ in the small and large intestinal villous and crypt epithelium of nursing pigs infected with porcine epidemic diarrhea virus (PEDV). Twenty 9-day-old piglets [PEDV-infected (n=9) and Mock (n=11)] from PEDV seronegative sows, were orally inoculated [8.9 log₁₀ genomic equivalents/pig] with PEDV PC21A strain or mock. At post-inoculation days (PIDs) 1-5, infected pigs showed severe watery diarrhea and/or vomiting and severe atrophic enteritis. By immunohistochemistry, PEDV antigens were evident in enterocytes lining the villous epithelium. At PIDs 1-5, PEDV-infected pigs exhibited mildly to extensively disorganized, irregular distribution and reduced expression of ZO-1 or E-Cadherin in villous, but not crypt epithelial cells of the jejunum and ileum, but not in the large intestine, when compared to the negative controls. The structural destruction and disorganization of TJ and AJ were extensive in PEDV-infected pigs at PIDs 1-3, but then appeared to reversibly recover at PID 5, as evident by increased numbers of ZO-1-positive epithelial cells and markedly improved appearance of E-Cadherin-positive villous epithelium. Our results suggest a possible involvement of structurally impaired TJ and AJ in the pathogenesis of PEDV, potentially leading to secondary bacterial infections.

  19. Basic properties of an rf SQUID involving two Josephson junctions connected in series

    Institute of Scientific and Technical Information of China (English)

    Mao Bo; Tan Zhong-Kui; Meng Shu-Chao; Dai Yuan-Dong; Wang Fu-Ren

    2004-01-01

    We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1- α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.

  20. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells.

    Science.gov (United States)

    Wang, Sijia; Yan, Xin; Zhang, Xia; Li, Junshuai; Ren, Xiaomin

    2015-01-01

    A composite nanostructure for high-efficiency solar cells that axially connects nanowire core-shell p-n junctions is proposed. By axially connecting the p-n junctions in one nanowire, the solar spectrum is separated and absorbed in the top and bottom cells with respect to the wavelength. The unique structure of nanowire p-n junctions enables substantial light absorption along the nanowire and efficient radial carrier separation and collection. A coupled three-dimensional optoelectronic simulation is used to evaluate the performance of the structure. With an excellent current matching, a promising efficiency of 19.9% can be achieved at a low filling ratio of 0.283 (the density of the nanowire array), which is much higher than the tandem axial p-n junctions.

  1. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  2. Testicular cell junction: a novel target for male contraception.

    Science.gov (United States)

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan

    2009-01-01

    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  3. Focal junctions retard lateral movement and disrupt fluid phase connectivity in the plasma membrane

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Wojewodzka, U.; Gniadecki, R.

    2008-01-01

    ,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C-18:0), which specifically partitions to the liquid-disordered (L-d), non-raft phase, was also enriched in focal junctions and its mobility was slightly retarded. Cross-linking of GM(1) by CTB or raft aggregation by methyl...

  4. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding

    Science.gov (United States)

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Jakobs, Oliver; Roski, Christian; Caspers, Svenja; Laird, Angela R.; Fox, Peter T.; Zilles, Karl; Eickhoff, Simon B.

    2016-01-01

    The right temporo-parietal junction (RTPJ) is consistently implicated in two cognitive domains, attention and social cognitions. We conducted multi-modal connectivity-based parcellation to investigate potentially separate functional modules within RTPJ implementing this cognitive dualism. Both task-constrained meta-analytic coactivation mapping and task-free resting-state connectivity analysis independently identified two distinct clusters within RTPJ, subsequently characterized by network mapping and functional forward/reverse inference. Coactivation mapping and resting-state correlations revealed that the anterior cluster increased neural activity concomitantly with a midcingulate–motor–insular network, functionally associated with attention, and decreased neural activity concomitantly with a parietal network, functionally associated with social cognition and memory retrieval. The posterior cluster showed the exact opposite association pattern. Our data thus suggest that RTPJ links two antagonistic brain networks processing external versus internal information. PMID:23689016

  5. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Directory of Open Access Journals (Sweden)

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  6. Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development.

    Science.gov (United States)

    Dianati, Elham; Poiraud, Jérémy; Weber-Ouellette, Anne; Plante, Isabelle

    2016-08-01

    Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.

  7. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper;

    1994-01-01

    The high frequency properties of the one-dimensional transmission line consisting of a parallel array of resistively shunted Josephson tunnel junctions have been studied in the limit of relatively low damping where this nonlinear system exhibits new and interesting phenomena. Here we report...

  8. THE CELULAR JUNCTIONS AND THE EMERGENCE OF ANIMALS

    Directory of Open Access Journals (Sweden)

    Urquiza-Bardone, Sergio

    2013-07-01

    Full Text Available The emergence of multicellularity and epithelia in relation to the appearance of cellular junctions, in order to illustrate the first steps of animal evolution, is discussed. We analyzed the structure and roles of adherens and occludins, considered to be the oldest. Also treated are some aspects of the main proteins that constitute them, the cadherins and claudins, as well as the related structures observed in sponges and choanoflagellates, the most ancient animals and the ancestors of these, respectively. It was concluded that the animal ancestor probably possessed some kind of adherens and possibly occludins, appearing as the first of major importance. These junctions increased in complexity through until the complexity observed in modern times.

  9. Applications of the Junction Conditions Connecting the Robertson-Walker Metric and the Metric of a Local System on Our Universe

    Institute of Scientific and Technical Information of China (English)

    QIN Yi-Ping

    2006-01-01

    @@ We investigate how the local and global metrics are connected in an ideal model of spacetime where the local system is assumed to be highly symmetric and the cosmological matter is kept away from the local system and does not disturbed by the local system. A boundary condition arising from the junction conditions is obtained and its implication in our universe is studied. We know that the total mass of a sufficiently large system must be that of the cosmological matter within the region of that size. This requirement is satisfied since it is just a consequence of the boundary condition. The analysis shows that at the very late epoch of the universe, there exists a particular time when the largest symmetric local systems stop growing and the observation of this time can be used to check the cosmological parameters. Adopting the popular values (ΩM, ΩΛ) = (0.28, 0.72), we find that particular time would be associated with z = 0.726, the effect of dark matter on the clustering of objects would be insignificant, and the Virgo cluster would be gravitationally bound even if dark matter is ignored.

  10. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution.

    Science.gov (United States)

    Alberti, C

    2012-02-01

    The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions

  11. Tight junction disruption induced by type 3 secretion system effectors injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Paul Ugalde-Silva

    2016-08-01

    Full Text Available The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions and tight junctions (TJs, and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.

  12. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    Science.gov (United States)

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.

  13. Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia.

    Science.gov (United States)

    Li, Jifen; Goossens, Steven; van Hengel, Jolanda; Gao, Erhe; Cheng, Lan; Tyberghein, Koen; Shang, Xiying; De Rycke, Riet; van Roy, Frans; Radice, Glenn L

    2012-02-15

    It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a 'hybrid adhering junction' or 'area composita'. The α-catenin family member αT-catenin, part of the N-cadherin-catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy.

  14. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila.

    Science.gov (United States)

    Müller, H A; Wieschaus, E

    1996-07-01

    Cellularization of the Drosophila embryo results in the formation of a cell monolayer with many characteristics of a polarized epithelium. We have used antibodies specific to cellular junctions and nascent plasma membranes to study the formation of the zonula adherens (ZA) in relation to the establishment of basolateral membrane polarity. The same approach was then used as a test system to identify X-linked zygotically active genes required for ZA formation. We show that ZA formation begins during cellularization and that the basolateral membrane domain is established at mid-gastrulation. By creating deficiencies for defined regions of the X chromosome, we have identified genes that are required for the formation of the ZA and the generation of basolateral membrane polarity. We show that embryos mutant for both stardust (sdt) and bazooka (baz) fail to form a ZA. In addition to the failure to establish the ZA, the formation of the monolayered epithelium is disrupted after cellularization, resulting in formation of a multilayered cell sheet by mid-gastrulation. SEM analysis of mutant embryos revealed a conversion of cells exhibiting epithelial characteristics into cells exhibiting mesenchymal characteristics. To investigate how mutations that affect an integral component of the ZA itself influence ZA formation, we examined embryos with reduced maternal and zygotic supply of wild-type Arm protein. These embryos, like embryos mutant for both sdt and baz, exhibit an early disruption of ZA formation. These results suggest that early stages in the assembly of the ZA are critical for the stability of the polarized blastoderm epithelium.

  15. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Kanako Noritake

    Full Text Available Direct exposure of cardiomyocytes to ethanol causes cardiac damage such as cardiac arrythmias and apoptotic cell death. Cardiomyocytes are connected to each other through intercalated disks (ID, which are composed of a gap junction (GJ, adherens junction, and desmosome. Changes in the content as well as the subcellular localization of connexin43 (Cx43, the main component of the cardiac GJ, are reportedly involved in cardiac arrythmias and subsequent damage. Recently, the hippo-YAP signaling pathway, which links cellular physical status to cell proliferation, differentiation, and apoptosis, has been implicated in cardiac homeostasis under physiological as well as pathological conditions. This study was conducted to explore the possible involvement of junctional intercellular communication, mechanotransduction through cytoskeletal organization, and the hippo-YAP pathway in cardiac damage caused by direct exposure to ethanol. HL-1 murine atrial cardiac cells were used since these cells retain cardiac phenotypes through ID formation and subsequent synchronous contraction. Cells were exposed to 0.5-2% ethanol; significant apoptotic cell death was observed after exposure to 2% ethanol for 48 hours. A decrease in Cx43 levels was already observed after 3 hours exposure to 2% ethanol, suggesting a rapid degradation of this protein. Upon exposure to ethanol, Cx43 translocated into lysosomes. Cellular cytoskeletal organization was also dysregulated by ethanol, as demonstrated by the disruption of myofibrils and intermediate filaments. Coinciding with the loss of cell-cell adherence, decreased phosphorylation of YAP, a hippo pathway effector, was also observed in ethanol-treated cells. Taken together, the results provide evidence that cells exposed directly to ethanol show 1 impaired cell-cell adherence/communication, 2 decreased cellular mechanotransduction by the cytoskeleton, and 3 a suppressed hippo-YAP pathway. Suppression of hippo-YAP pathway

  16. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    Science.gov (United States)

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.

  17. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  18. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Directory of Open Access Journals (Sweden)

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  19. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  20. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

  1. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation.

    Science.gov (United States)

    Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S

    2007-02-01

    Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.

  2. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    Science.gov (United States)

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could work as a protective compensatory mechanism, helping tomaintain the dilated heart.We can hypothesize that inappropriate intercellular mechanical and electrical coupling associated with necrosis and/or apoptosis are important factors contributing to the transition to HF.

  3. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  4. Josephson junctions in high-T/sub c/ superconductors

    Science.gov (United States)

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  5. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability.

    Science.gov (United States)

    Laksitorini, Marlyn D; Kiptoo, Paul K; On, Ngoc H; Thliveris, James A; Miller, Donald W; Siahaan, Teruna J

    2015-03-01

    It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.

  6. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gendronneau

    Full Text Available The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo.We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury.The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis.These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  7. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus;

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...

  8. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  9. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  10. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip.

    Science.gov (United States)

    Cai, Hong; Poon, Andrew W

    2012-10-01

    We study optical trapping of microparticles on an optofluidic chip using silicon nitride waveguide junctions and tapered-waveguide junctions. We demonstrate the trapping of single 1 μm-sized polystyrene particles using the evanescent field of waveguide junctions connecting a submicrometer-sized input-waveguide and a micrometer-sized output-waveguide. Particle trapping is localized in the vicinity of the junction. We also demonstrate trapping of one and two 1μm-sized polystyrene particles using tapered-waveguide junctions connecting a submicrometer-sized singlemode input-waveguide and a micrometer-sized multimode output-waveguide. Particle trapping occurs near the taper output end, the taper center and the taper input end, depending on the taper aspect ratio.

  11. PHASE-LOCKED 2-D JOSEPHSON JUNCTION ARRAYS AS SUBMILLIMETER OSCILLATORS

    Institute of Scientific and Technical Information of China (English)

    Gao Bin; Guan Boran

    2002-01-01

    This letter presents the results of numerical simulations for phase-locked 2-D Josephson junction array oscillator. The simulation result shows that the junctions of 2-D array can mutually phase-locked in a considerable area if the parameters can be carefully selected. The oscillators are formed with up to 33 identical Nb/AlOx/Nb junctions, and the junctions are connected with Nb microstrip resonators. Optimum structure parameters for oscillator circuit design can be obtained with these simulation results.

  12. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  13. Stacked Josephson Junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2010-01-01

    Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...

  14. Scattering form factors for self-assembled network junctions

    Science.gov (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  15. Gap junctions in developing thalamic and neocortical neuronal networks.

    Science.gov (United States)

    Niculescu, Dragos; Lohmann, Christian

    2014-12-01

    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.

  16. Junction connectors permit strategic placement of television cameras

    Science.gov (United States)

    Kempson, A., Jr.

    1966-01-01

    Cable run circuit with switching junction connectors at strategic locations enables television cameras to be plugged in with minimum effort wherever needed. Crimp-type contacts for mating connections reduce installation time and require a lesser level of technician skill than do soldered and potted connections.

  17. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  18. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension.

    Science.gov (United States)

    Beckers, Cora M L; Knezevic, Nebojsa; Valent, Erik T; Tauseef, Mohammad; Krishnan, Ramaswamy; Rajendran, Kavitha; Hardin, C Corey; Aman, Jurjan; van Bezu, Jan; Sweetnam, Paul; van Hinsbergh, Victor W M; Mehta, Dolly; van Nieuw Amerongen, Geerten P

    2015-07-01

    Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response.

  19. Equivalent Josephson junctions

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.

  20. The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds.

    Science.gov (United States)

    Barth, Mareike; Rickelt, Steffen; Noffz, Edeltraut; Winter-Simanowski, Stefanie; Niemann, Heiner; Akhyari, Payam; Lichtenberg, Artur; Franke, Werner Wilhelm

    2012-05-01

    The interstitial cells of cardiac valves represent one of the most frequent cell types in the mammalian heart. In order to provide a cell and molecular biological basis for the growth of isolated valvular interstitial cells (VICs) in cell culture and for the use in re-implantation surgery we have examined VICs in situ and in culture, in fetal, postnatal and adult hearts, in re-associations with scaffolds of extracellular matrix (ECM) material and decellularized heart valves. In all four mammalian species examined (human, bovine, porcine and ovine), the typical mesenchymal-type cell-cell adherens junctions (AJs) connecting VICs appear as normal N-cadherin based puncta adhaerentia. Their molecular ensemble, however, changes under various growth conditions insofar as plakophilin-2 (Pkp2), known as a major cytoplasmic plaque component of epithelial desmosomes, is recruited to and integrated in the plaques of VIC-AJs as a major component under growth conditions characterized by enhanced proliferation, i.e., in fetal heart valves and in cell cultures. Upon re-seeding onto decellularized heart valves or in stages of growth in association with artificial scaffolds, Pkp2 is - for the most part - lost from the AJs. As Pkp2 has recently also been detected in AJs of cardiac myxomata and diverse other mesenchymal tumors, the demonstrated return to the normal Pkp2-negative state upon re-association with ECM scaffolds and decellularized heart valves may now provide a safe basis for the use of cultured VICs in valve replacement surgery. Even more surprising, this type of transient acquisition of Pkp2 has also been observed in distinct groups of endothelial cells of the endocardium, where it seems to correspond to the cell type ready for endothelial-mesenchymal transition (EMT).

  1. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  2. Junction conditions of cosmological perturbations

    CERN Document Server

    Tomita, K

    2004-01-01

    The behavior of perturbations is studied in cosmological models which consist of two different homogeneous regions connected in a spherical shell boundary. The junction conditions for the metric perturbations and the displacements of the shell boundary are analyzed and the surface densities of the perturbed energy and momentum in the shell are derived, using Mukohyama's gauge-invariant formalism and the Israel discontinuity condition. In both homogeneous regions the perturbations of scalar, vector and tensor types are expanded using the 3-dimensional harmonic functions, but the model coupling among them is caused in the shell by the inhomogeneity. By treating the perturbations with odd and even parities separately, it is found, however, that we can have consistent displacements and surface densities for given metric parturbations

  3. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1.

    Science.gov (United States)

    Chen, Yang; Pitzer, Ashley L; Li, Xiang; Li, Pin-Lan; Wang, Lei; Zhang, Yang

    2015-12-01

    Recent studies have indicated that the inflammasome plays a critical role in the pathogenesis of vascular diseases. However, the pathological relevance of this inflammasome activation, particularly in vascular cells, remains largely unknown. Here, we investigated the role of endothelial (Nucleotide-binding Oligomerization Domain) NOD-like receptor family pyrin domain containing three (Nlrp3) inflammasomes in modulating inter-endothelial junction proteins, which are associated with endothelial barrier dysfunction, an early onset of obesity-associated endothelial injury. Our findings demonstrate that the activation of Nlrp3 inflammasome by visfatin markedly decreased the expression of inter-endothelial junction proteins including tight junction proteins ZO-1, ZO-2 and occludin, and adherens junction protein VE-cadherin in cultured mouse vascular endothelial (VE) cell monolayers. Such visfatin-induced down-regulation of junction proteins in endothelial cells was attributed to high mobility group box protein 1 (HMGB1) release derived from endothelial inflammasome-dependent caspase-1 activity. Similarly, in the coronary arteries of wild-type mice, high-fat diet (HFD) treatment caused a down-regulation of inter-endothelial junction proteins ZO-1, ZO-2, occludin and VE-cadherin, which was accompanied with enhanced inflammasome activation and HMGB1 expression in the endothelium as well as transmigration of CD43(+) T cells into the coronary arterial wall. In contrast, all these HFD-induced alterations in coronary arteries were prevented in mice with Nlrp3 gene deletion. Taken together, these data strongly suggest that the activation of endothelial Nlrp3 inflammasomes as a result of the increased actions of injurious adipokines such as visfatin produces HMGB1, which act in paracrine or autocrine fashion to disrupt inter-endothelial junctions and increase paracellular permeability of the endothelium contributing to the early onset of endothelial injury during metabolic

  4. Switching and Rectification in Carbon-Nanotube Junctions

    Science.gov (United States)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  5. Transmembrane potentials of canine AV junctional tissues.

    Science.gov (United States)

    Tse, W W

    1986-06-01

    The atrioventricular (AV) junction comprises the AV node, His bundle (HB), and specialized tissues proximal to the node called paranodal fibers (PNF). In the present study, an in vitro, dissection-exposed canine right atrial (RA), transitional fiber (TF), AV junctional preparation was used. The TF and PNF formed a pathway running along the base of the septal cusp of the tricuspid valve (SCTV). In the first experiment, impulses elicited at the RA were monitored to propagate sequentially through the TF, PNF, AV node, and then the HB. This functional evidence supports the concept that a conduction pathway connecting the RA and the AV node exists along the base of the SCTV. This internodal pathway is referred to as the septal cusp pathway. In another experiment, transmembrane potentials and Vmax were determined on each of the AV junctional tissues. Results showed that PNF had the lowest Vmax (2.5 V/sec), followed by AV node (7.0 V/sec) and HB (33 V/sec). This finding showed that PNF, and not the AV node, has the lowest Vmax, suggesting that the PNF has the lowest conductivity among the AV junctional tissues, and this study advances our understanding on the mechanism of AV conduction delay in dog hearts.

  6. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization.

    Science.gov (United States)

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E; Jiang, Wen G; Harding, Keith G; Adams, Ralf H; Nobes, Catherine D; Martin, Paul

    2015-11-17

    For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.

  7. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    the in vitro culture of arachnoidal cells grown from human AG tissue. We demonstrated that these cells in vitro continue to express some of the cytoskeletal and junctional proteins characterized previously in human AG tissue, such as proteins involved in the formation of gap junctions, desmosomes, epithelial specific adherens junctions, as well as tight junctions. These junctional proteins in particular may be important in allowing these arachnoidal cells to regulate CSF outflow.

  8. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  9. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip

    OpenAIRE

    Tellez-Gabriel, M.; Charrier, C.; Brounais-Le Royer, B; Mullard, M.; Brown, H K; F. Verrecchia(-ASI ASDC;); Heymann, D

    2017-01-01

    International audience; Please cite this article in press as: Tellez-Gabriel, M., et al., Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours – such as bone tumours – is related to gap junction intercellular communications (GJIC). Several methodologi...

  10. Junction trees of general graphs

    Institute of Scientific and Technical Information of China (English)

    Xiaofei WANG; Jianhua GUO

    2008-01-01

    In this paper,we study the maximal prime subgraphs and their corresponding structure for any undirected graph.We introduce the notion of junction trees and investigate their structural characteristics,including junction properties,induced-subtree properties,running-intersection properties and maximum-weight spanning tree properties.Furthermore,the characters of leaves and edges on junction trees are discussed.

  11. Mechanical tugging force regulates the size of cell–cell junctions

    Science.gov (United States)

    Liu, Zhijun; Tan, John L.; Cohen, Daniel M.; Yang, Michael T.; Sniadecki, Nathan J.; Ruiz, Sami Alom; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell–matrix and cell–cell contact. While increased mechanical loading at cell–matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell–cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell–cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell–cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (S1P, thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell–cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces. PMID:20463286

  12. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules.

    Science.gov (United States)

    Greene, Chris; Campbell, Matthew

    2016-01-01

    The blood brain barrier (BBB) represents a major obstacle for targeted drug delivery to the brain for the treatment of central nervous system (CNS) disorders. Significant advances in barrier research over the past decade has led to the discovery of an increasing number of structural and regulatory proteins in tight junctions (TJ) and adherens junctions (AJ). These discoveries are providing the framework for the development of novel TJ modulators which can act specifically and temporarily to alter BBB function and regulate paracellular uptake of molecules. TJ modulators that have shown therapeutic potential in preclinical models include claudin-5 and occludin siRNAs, peptides derived from zonula occludens toxin as well as synthetic peptides targeting the extracellular loops of TJs. Adding to the array of modulating agents are novel mechanisms of BBB regulation such as focused ultrasound (FUS). This review will give a succinct overview of BBB biology and TJ modulation in general. Novel insights into BBB regulation in health and disease will also be summarized.

  13. Close the Gap : a study on the regulation of Connexin43 gap junctional communication

    NARCIS (Netherlands)

    Zeijl, Leonie van

    2009-01-01

    Gap junctions are groups of transmembrane channels that connect the cytoplasms of adjacent cells to mediate the diffusion of small molecules, such as ions, metabolites, second messengers and small peptides. The building blocks of gap junctions are connexin proteins. The most ubiquitous and best stu

  14. An Evaluation of Test and Physical Uncertainty of Measuring Vibration in Wooden Junctions

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2012-01-01

    In the present paper a study of test and material uncertainty in modal analysis of certain wooden junctions is presented. The main structure considered here is a T-junction made from a particleboard plate connected to a spruce beam of rectangular cross section. The size of the plate is 1.2 m by 0...

  15. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions.

    Science.gov (United States)

    Bohl, Joanna; Brimer, Nicole; Lyons, Charles; Vande Pol, Scott B

    2007-03-30

    MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.

  16. Ruling of 15 April 1999 regarding the technical conditions of junction of the autonomous electric energy production installations to the HTA and BT public networks not connected to a large interconnected network; Arrete du 15 avril 1999 relatif aux conditions techniques de raccordement des installations de production autonome d'energie electrique aux reseaux publics HTA et BT non relies a un grand reseau interconnecte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-15

    The document issued by the State Secretariat for Industry, concerning the technical conditions of junction of the autonomous electric energy production installations to the HTA and BT public networks not connected to a large interconnected network, takes into account the directive no.98/34/CE of European Parliament and Council of 22 June 1998, the notification no.98/0477/F, as well as a number of laws, decrees and rulings concerning the energy distribution and supply. The present ruling contains five articles stipulating the conditions of junction to the public networks. An appendix is given, regarding the junction to HTA and BT networks. It contains the following seven sections: 1. Field of application; 2. Administration in case of normal and perturbed regime; 3. Functioning of the signal transmission (175 Hz or another close frequency); 4. Decoupling protections; 5. Network management and control; 6. Participation in primary frequency tuning; 7. Participation in the local voltage setting. Also two informative appendices are given. The first one presents the characteristics of insular networks in Guadeloupe and the neighbouring islands, Martinique, Reunion, Guiana and Corsica. The second informative appendix gives the information necessary to be provided in the frame of network management and control. A table presents the information to be supplied to the power station and the control center, respectively, according to the section five of the first appendix.

  17. 注意缺陷多动障碍儿童的右侧颞顶叶联合部全脑功能连接特征%Abnormal patterns of functional connectivity between right temporal parietal junction and whole brain in children with attention deficit hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    王苏文; 邢伟; 陈杰; 王娜; 王苏弘

    2015-01-01

    目的 通过静息态功能连接磁共振成像(functional magnetic resonance imaging, fMRI)来研究注意缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)儿童右侧颞顶叶联合部(right temporal parietal junction,rTPJ)与全脑的功能连接特征,从功能网络角度分析ADHD儿童临床症状与神经网络之间的联系.方法 采集30名混合型ADHD儿童及33名正常对照(normal control,NC)儿童静息态下血氧依赖水平(blood oxygenation level dependent,BOLD) fMRI数据,选取rTPJ为感兴趣区,进行功能连接分析比较组内、组间差异及连接强度与注意缺陷评分和多动评分间的关系.结果 rTPJ与全脑功能连接显著区在两组儿童分布相似.与NC组比较,ADHD组rTPJ与全脑功能连接增高区域包括:左侧颞上回(MNI坐标:-33,6,-48)、右侧前扣带回(MNI坐标:6,39,-3)、右侧顶下小叶(MNI坐标:42,-33,30)、左额内侧回(MNI坐标:-3,63,-18);减低区域包括:右侧颞中回(MNI坐标:57,-33,-12)、右侧扣带回(MNI坐标:18,-21,36).相关性分析显示,ADHD组中,rTPJ与全脑功能连接强度的平均值与注意缺陷评分及多动评分呈正相关,而在NC组中,则呈负相关.rTPJ与上述6个脑区间功能连接强度与注意缺陷评分及多动评分存在相关性,但相关性无统计学意义.结论 rTPJ与全脑的异常功能连接可能与ADHD儿童注意力不集中这一临床症状有关.%Objective To investigate the pathophysiological distinction of the functional connectivity between right temporal parietal junction(rTPJ) and whole brain in children with attention-deficit/hyperactivity disorder(ADHD) on resting-state functional magnetic resonance imaging(fMRI) and explore the neurological mechanisms of ADHD at the point of functional connectivity.Methods Resting-state functional magnetic resonance imaging scans were obtained in 30 children with ADHD from The Third Affiliated Hospital of Soochow Univcrsity and another 33 with age and gender

  18. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  19. Bistable hysteresis and resistance switching in hydrogen-gold junctions

    NARCIS (Netherlands)

    Trouwborst, M. L.; Huisman, E. H.; van der Molen, S. J.; van Wees, B. J.

    2009-01-01

    Current-voltage characteristics of H(2)-Au molecular junctions exhibit intriguing steps around a characteristic voltage of V(s)approximate to 40 mV. Surprisingly, we find that a hysteresis is connected to these steps with a typical time scale >10 ms. This time constant scales linearly with the power

  20. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  1. An induced junction photovoltaic cell

    Science.gov (United States)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  2. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... and the thermoelectric response of five representative π-stacked systems. We find that the transmission and power factor are both enhanced by increasing the conjugation length or adding substituent groups. The local transmission shows that several extra paths are added by cyano groups, which increases the total...

  3. Quantitatively accurate calculations of conductance and thermopower of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Jin, Chengjun; Thygesen, Kristian Sommer

    2013-01-01

    ) connected to gold electrodes using first‐principles calculations. We find excellent agreement with experiments for both molecules when exchange–correlation effects are described by the many‐body GW approximation. In contrast, results from standard density functional theory (DFT) deviate from experiments......‐interaction errors and image charge effects. Finally, we show that the conductance and thermopower of the considered junctions are relatively insensitive to the metal–molecule bonding geometry. Our results demonstrate that electronic and thermoelectric properties of molecular junctions can be predicted from first‐principles...... calculations when exchange–correlation effects are taken properly into account....

  4. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...

  5. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  6. Long Josephson tunnel junctions with doubly connected electrodes

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-01-01

    In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one...

  7. Evolution and cell physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells?

    Science.gov (United States)

    Le Bivic, André

    2013-12-15

    The formation of the first epithelium was an essential step for animal evolution, since it has allowed coordination of the behavior of a cell layer and creation of a selective barrier between the internal medium and the outside world. The possibility of coupling the cells in a single layer has allowed morphogenetic events, such as tube formation, or gastrulation, to form more complex animal morphologies. The invention of sealed junctions between cells has allowed, on the other hand, creation of an asymmetry of nutrients or salts between the apical and the basal side of the epithelial layer. Creation of an internal medium has led to homeostasis, allowing the evolution of more complex physiological functions and the emergence of sophisticated animal shapes. During evolution, the origins of the first animals coincided with the invention of several protein complexes, including true cadherins and the polarity protein complexes. How these complexes regulate formation of the apicolateral border and the adherens junctions is still not fully understood. This review focuses on the role of these apical polarity complexes and, in particular, the Crumbs complex, which is essential for proper organization of epithelial layers from Drosophila to humans.

  8. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10 is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ, and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR, supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development.

  9. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses.

    Science.gov (United States)

    Meng, Jing; Mostaghel, Elahe A; Vakar-Lopez, Funda; Montgomery, Bruce; True, Larry; Nelson, Peter S

    2011-06-01

    Testosterone and inflammation have been linked to the development of common age-associated diseases affecting the prostate gland including prostate cancer, prostatitis, and benign prostatic hypertrophy. We hypothesized that testosterone regulates components of prostate tight junctions which serve as a barrier to inflammation, thus providing a connection between age- and treatment-associated testosterone declines and prostatic pathology. We examined the expression and distribution of tight junction proteins in prostate biospecimens from mouse models and a clinical study of chemical castration, using transcript profiling, immunohistochemistry, and electron microscopy. We determined that low serum testosterone is associated with reduced transcript and protein levels of Claudin 4 and Claudin 8, resulting in defective tight junction ultrastructure in benign prostate glands. Expression of Claudin 4 and Claudin 8 was negatively correlated with the mononuclear inflammatory infiltrate caused by testosterone deprivation. Testosterone suppression also induced an autoimmune humoral response directed toward prostatic proteins. Testosterone supplementation in castrate mice resulted in re-expression of tight junction components in prostate epithelium and significantly reduced prostate inflammatory cell numbers. These data demonstrate that tight junction architecture in the prostate is related to changes in serum testosterone levels, and identify an androgen-regulated mechanism that potentially contributes to the development of prostate inflammation and consequent pathology.

  10. Imaging of cervicothoracic junction trauma

    Directory of Open Access Journals (Sweden)

    Wongwaisayawan S

    2013-01-01

    Full Text Available Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a method of choice for diagnosing cervicothoracic junction trauma, in which the pattern of injuries often suggests possible mechanisms and potential injuries. In this article, the authors describe and illustrate common and uncommon injuries that can occur in the cervicothoracic junction.Keywords: cervicothoracic junction, cervical spine, trauma, imaging, radiology

  11. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  12. Demonstrated Anomalous Pancreaticobiliary Ductal Junction

    OpenAIRE

    Koçkar, Cem; ?ENOL, Altu?; BA?TÜRK, Abdulkadir; AYDIN, Bünyamin; Cüre, Erkan

    2015-01-01

    Anomalies of the pancreaticobiliary junction are rare. Clinically anomalies of the pancreaticobiliary junction are uncommonly symptomatic but may present themselves with associated conditions ranging from benign acute abdominal pain to carcinomas. A 52 years old man was admitted to gastroenterology service with complaints of fever, nausea, vomiting and recurrent epigastric pain. He was diagnosed with biliary pancreatitis. Endoscopic retrograde cholangiopancreato-graphy was performed. Papilla ...

  13. Photoelectric polarization-sensitive broadband photoresponse from interface junction states in graphene

    Science.gov (United States)

    Kalugin, Nikolai G.; Jing, Lei; Suarez Morell, Eric; Dyer, Gregory C.; Wickey, Lee; Ovezmyradov, Mekan; Grine, Albert D.; Wanke, Michael C.; Shaner, Eric A.; Lau, Chun Ning; Foa Torres, Luis E. F.; Fistul, Mikhail V.; Efetov, Konstantin B.

    2017-03-01

    Graphene has established itself as a promising optoelectronic material. Many details of the photoresponse (PR) mechanisms in graphene in the THz-to-visible range have been revealed, however, new intricacies continue to emerge. Interface junctions, formed at the boundaries between parts of graphene with different number of layers or different stacking orders, and making connection between electrical contacts, provide another peculiar setup to establish PR. Here, we experimentally demonstrate an enhanced polarization sensitive photoelectric PR in graphene sheets containing interface junctions as compared to homogenous graphene sheets in the visible, infrared, and THz spectral regions. Our numerical simulations show that highly localized electronic states are created at the interface junctions, and these states exhibit a unique energy spectrum and enhanced probabilities for optical transitions. The interaction of electrons from interface junction states with electromagnetic fields generates a polarization-sensitive PR that is maximal for the polarization direction perpendicular to the junction interface.

  14. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  15. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  16. Gap junctions in the nervous system.

    Science.gov (United States)

    Rozental, R; Giaume, C; Spray, D C

    2000-04-01

    Synapses are classically defined as close connections between two nerve cells or between a neuronal cell and a muscle or gland cell across which a chemical signal (i.e., a neurotransmitter) and/or an electrical signal (i.e., current-carrying ions) can pass. The definition of synapse was developed by Charles Sherrington and by Ramon y Cajal at the beginning of this century and refined by John Eccles and Bernard Katz 50 years later; in this collection of papers, the definition of synapses is discussed further in the chapter by Mike Bennett. who provided the first functional demonstration of electrical transmission via gap junction channels between vertebrate neurons. As is evidenced by the range of topics covered in this issue, research dealing with gap junctions in the nervous system has expanded enormously in the past decade, major findings being that specific cell types in the brain expresses specific types of connexins and that expression patterns coincide with tissue compartmentalization and function and that these compartments change during development.

  17. DC SQUID based on the mesoscopic multiterminal Josephson junction

    OpenAIRE

    Amin, M. H. S.; Omelyanchouk, A. N.; Zagoskin, A. M.

    2001-01-01

    A theory is offered for a novel device, mesoscopic four-terminal SQUID. The studied system consists of a mesoscopic four-terminal junction, one pair of terminals of which is incorporated in a superconducting ring and the other one is connected with a transport circuit. The nonlocal weak coupling between the terminals leads to effects of phase dragging and magnetic flux transfer. The behaviour of a four-terminal SQUID, controlled by the external parameters, the applied magnetic flux and the tr...

  18. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R.; Fletcher, P.; Vercaemer, C.

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  19. ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    2016-04-01

    Full Text Available The Rho-associated coiled-coil-containing protein serine/threonine kinases 1 and 2 (ROCK1 and ROCK2 are Rho subfamily GTPase downstream effectors that regulate cell migration, intercellular adhesion, cell polarity, and cell proliferation by stimulating actin cytoskeleton reorganization. Inhibition of ROCK proteins affects specification of the trophectoderm (TE and inner cell mass (ICM lineages, compaction, and blastocyst cavitation. However, the molecules involved in blastocyst formation are not known. Here, we examined developmental competence and levels of adherens/tight junction (AJ/TJ constituent proteins, such as CXADR, OCLN, TJP1, and CDH1, as well as expression of their respective mRNAs, after treating porcine parthenogenetic four-cell embryos with Y-27632, a specific inhibitor of ROCK, at concentrations of 0, 10, 20, 100 µM for 24 h. Following this treatment, the blastocyst development rates were 39.1, 20.7, 10.0, and 0% respectively. In embryos treated with 20 µM treatment, expression levels of CXADR, OCLN, TJP1, and CDH1 mRNA and protein molecules were significantly reduced (P < 0.05. FITC-dextran uptake assay revealed that the treatment caused an increase in TE TJ permeability. Interestingly, the majority of the four-cell and morula embryos treated with 20 µM Y-27643 for 24 h showed defective compaction and cavitation. Taken together, our results indicate that ROCK activity may differentially affect assembly of AJ/TJs as well as regulate expression of genes encoding junctional proteins.

  20. Octagonal Defects at Carbon Nanotube Junctions

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  1. Simultaneous description of conductance and thermopower in single-molecule junctions from many-body ab initio calculations

    DEFF Research Database (Denmark)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...... approximation. To simulate recent break junction experiments, we calculate the transport properties of the junction as it is pulled apart. For all junction configurations, DFT with a standard semilocal functional overestimates the conductance by almost an order of magnitude, while the thermopower...

  2. Width of the $0-\\pi$ phase transition in diffusive magnetic Josephson junctions

    OpenAIRE

    Shomali, Zahra; Zareyan, Malek; Belzig, Wolfgang

    2008-01-01

    We investigate the Josephson current between two superconductors (S) which are connected through a diffusive magnetic junction with a complex structure (F$_{c}$). Using the quantum circuit theory, we obtain the phase diagram of 0 and $\\pi$ Josephson couplings for F$_{c}$ being a IFI (insulator-ferromagnet-insulator) double barrier junction or a IFNFI structure (where N indicates a normal metal layer). Compared to a simple SFS structure, we find that the width of the transition, defined by the...

  3. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  4. Electromagnetic environment and Peltier effect in normal-metal/insulator/superconductor junction

    Science.gov (United States)

    Bardas, Athanassios

    1997-07-01

    The influence of external environment on the heat transport through a tunnel junction connecting a normal-metal and a superconductor is analyzed theoretically. It is demonstrated that at finite temperatures finite impedance of the junction electrodes, limits the maximum amount of heat that can be extracted from the normal-metal via the electric current and thus reduces the efficiency of the thermoelectric electron refrigeration. This behaviour is more pronounced for charging energies Ec of the junction, larger than the superconducting gap Δ and persists for a wide range of values of the impedance.

  5. PHASE-LOCKED 2-D JOSEPHSON JUNCTION ARRAYS AS SUBMILLIMETER OSCILLATORS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This letter presents the results of numerical simulations for phase-locked 2-D Josephson junction array oscillator.The simulation result shows that the junctioons of 2-D array can mutually phase-locked in a considerable area if the parameters can be carefully selected.The oscillators are formed with up to 33 identical Nb/AlOx/Nb junctions,and the junctions are connected with Nb microstrip resonators.Optimum structure parameters for ocsillator circuit design can be obtained with these simulation results.

  6. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form...... of connectivity might endure, as Capetonian politics assumes a post-apartheid structure....

  7. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    Science.gov (United States)

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  8. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  9. Learning theories reveal loss of pancreatic electrical connectivity in diabetes as an adaptive response

    CERN Document Server

    Goel, Pranay

    2013-01-01

    Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions ...

  10. Perfect spin filtering by symmetry in molecular junctions

    Science.gov (United States)

    Li, Dongzhe; Dappe, Yannick J.; Smogunov, Alexander

    2016-05-01

    Obtaining highly spin-polarized currents in molecular junctions is crucial and important for nanoscale spintronics devices. Motivated by our recent symmetry-based theoretical argument for complete blocking of one spin conductance channel in model molecular junctions [A. Smogunov and Y. J. Dappe, Nano Lett. 15, 3552 (2015), 10.1021/acs.nanolett.5b01004], we explore the generality of the proposed mechanism and the degree of achieved spin-polarized current for realistic molecular junctions made of various ferromagnetic electrodes (Ni, Co, Fe) connected by different molecules (quaterthiophene or p -quaterphenyl). A simple analysis of the spin-resolved local density of states of a free electrode allowed us to identify the Fe(110) as the most optimal electrode, providing perfect spin filtering and high conductance at the same time. These results are confirmed by ab initio quantum transport calculations and are similar to those reported previously for model junctions. It is found, moreover, that the distortion of the p -quaterphenyl molecule plays an important role, reducing significantly the overall conductance.

  11. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  12. Regulating cell-cell junctions from A to Z.

    Science.gov (United States)

    Hardin, Jeff

    2016-04-25

    Epithelial sheets often present a "cobblestone" appearance, but the mechanisms underlying the dynamics of this arrangement are unclear. In this issue, Choi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506115) show that afadin and ZO-1 regulate tension and maintain zonula adherens architecture in response to changes in contractility.

  13. Frame junction vibration transmission with a modified frame deformation model.

    Science.gov (United States)

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  14. Learning Connections

    Science.gov (United States)

    Royer, Regina D.; Richards, Patricia O.

    2005-01-01

    In this edition of Learning Connections, the authors show how technology can enhance study of weather patterns, reading comprehension, real-world training, critical thinking, health education, and art criticism. The following sections are included: (1) Social Studies; (2) Language Arts; (3) Computer Science and ICT; (4) Art; and (5) Health.…

  15. Getting Connected

    Science.gov (United States)

    Larkin, Patrick

    2011-01-01

    That the world outside schools is changing faster than ever is old news. Unfortunately, that the world "inside" schools is changing at a glacial pace is even older news. As school leaders, principals have an important choice to make as they move into the second decade of the 21st century. School leaders have a moral obligation to connect and…

  16. Nano-Molecular Junctions on STM Tips

    Institute of Scientific and Technical Information of China (English)

    Chun Huang∗; Jianshu Yang

    2011-01-01

    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions. The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Current-voltage characteristics of a Tour wire and a new molecular rectifier are presented.

  17. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  18. Order-theoretical connectivity

    Directory of Open Access Journals (Sweden)

    T. A. Richmond

    1990-01-01

    Full Text Available Order-theoretically connected posets are introduced and applied to create the notion of T-connectivity in ordered topological spaces. As special cases T-connectivity contains classical connectivity, order-connectivity, and link-connectivity.

  19. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.;

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  20. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  1. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans

    Science.gov (United States)

    Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.

    2017-01-01

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932

  2. First-principles methodology for quantum transport in multiterminal junctions.

    Science.gov (United States)

    Saha, Kamal K; Lu, Wenchang; Bernholc, J; Meunier, Vincent

    2009-10-28

    We present a generalized approach for computing electron conductance and I-V characteristics in multiterminal junctions from first-principles. Within the framework of Keldysh theory, electron transmission is evaluated employing an O(N) method for electronic-structure calculations. The nonequilibrium Green function for the nonequilibrium electron density of the multiterminal junction is computed self-consistently by solving Poisson equation after applying a realistic bias. We illustrate the suitability of the method on two examples of four-terminal systems, a radialene molecule connected to carbon chains and two crossed-carbon chains brought together closer and closer. We describe charge density, potential profile, and transmission of electrons between any two terminals. Finally, we discuss the applicability of this technique to study complex electronic devices.

  3. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  4. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  5. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

    CERN Document Server

    Bruce, Doug; Whiteley, Jonathan P

    2012-01-01

    When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete cell-level equations are used to maintain computational tractability. One of the most commonly used models is represented by the bidomain equations, the derivation of which relies on a homogenisation technique to construct a suitable approximation to the discrete model. This derivation does not explicitly account for the presence of gap junctions connecting one cell to another. It has been seen experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the propagation of the action potential, specifically as the upstroke of the wave passes through the gap junction. In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac electrophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these models we compare the results of simulations using both continuum and discrete systems. We see that the form of the action potent...

  6. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions.

    Science.gov (United States)

    Tada, Tomofumi; Yoshizawa, Kazunari

    2015-12-28

    In this study, we report our viewpoint of single molecular conductance in terms of frontier orbitals. The orbital rule derived from orbital phase and amplitude is a powerful guideline for the qualitative understanding of molecular conductance in both theoretical and experimental studies. The essence of the orbital rule is the phase-related quantum interference, and on the basis of this rule a constructive or destructive pathway for electron transport is easily predicted. We have worked on the construction of the orbital rule for more than ten years and recently found from its application that π-stacked molecular junctions fabricated experimentally are in line with the concept for conductance-decay free junctions. We explain the orbital rule using benzene molecular junctions with the para-, meta- and ortho-connections and discuss linear π-conjugated chains and π-stacked molecular junctions with respect to their small decay factors in this manuscript.

  7. 2D SQIF arrays using 20 000 YBCO high R n Josephson junctions

    Science.gov (United States)

    Mitchell, E. E.; Hannam, K. E.; Lazar, J.; Leslie, K. E.; Lewis, C. J.; Grancea, A.; Keenan, S. T.; Lam, S. K. H.; Foley, C. P.

    2016-06-01

    Superconducting quantum interference filters (SQIFs) have been created using two dimensional arrays of YBCO step-edge Josephson junctions connected together in series and parallel configurations via superconducting loops with a range of loop areas and loop inductances. A SQIF response, as evidenced by a single large anti-peak at zero applied flux, is reported at 77 K for step-edge junction arrays with the junction number N = 1 000 up to 20 000. The SQIF sensitivity (slope of peak) increased linearly with N up to a maximum of 1530 V T-1. Array parameters related to geometry and average junction characteristics are investigated in order to understand and improve the SQIF performance in high temperature superconducting arrays. Initial investigations also focus on the effect of the SQUID inductance factor on the SQIF sensitivity by varying both the mean critical current and the mean inductance of the loops in the array. The RF response to a 30 MHz signal is demonstrated.

  8. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  9. Fabrication of high quality ferromagnetic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)

    2006-05-15

    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.

  10. Octagonal Defects at Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    W. Jaskólski

    2013-01-01

    Full Text Available We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF. The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system.

  11. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization

    Directory of Open Access Journals (Sweden)

    Robert Nunan

    2015-11-01

    Full Text Available For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.

  12. Self-aligning subatmospheric hybrid liquid junction electrospray interface for capillary electrophoresis.

    Science.gov (United States)

    Krenkova, Jana; Kleparnik, Karel; Grym, Jakub; Luksch, Jaroslav; Foret, Frantisek

    2016-02-01

    We report a construction of a self-aligning subatmospheric hybrid liquid junction electrospray interface for CE eliminating the need for manual adjustment by guiding the capillaries in a microfabricated liquid junction glass chip at a defined angle. Both the ESI and separation capillaries are inserted into the microfabricated part until their ends touch. The distance between the capillary openings is defined by the angle between the capillaries. The microfabricated part contains channels for placement of the capillaries and connection of the external electrode reservoirs. It was fabricated using standard photolithographic/wet chemical etching techniques followed by thermal bonding. The liquid junction is connected to a subatmospheric electrospray chamber inducing the flow inside the ESI needle and helping the ion transport via aerodynamic focusing.

  13. How coherent are Josephson junctions?

    CERN Document Server

    Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J

    2011-01-01

    Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.

  14. Seebeck effect in molecular junctions

    Science.gov (United States)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  15. Thermoelectric efficiency of molecular junctions

    Science.gov (United States)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  16. Experiments on non-equilibrium superconductor-normal metal-superconductor Josephson junctions

    Science.gov (United States)

    Crosser, Michael S.

    By controlling the distribution function within the normal metal of a superconductor/normal metal/superconductor (SNS) Josephson junction, one can reverse the supercurrent-phase relation in the normal wire, creating a pi-junction. This manipulation is done by injecting normal quasiparticle current into the wire, via one or more leads attached at the middle of the junction. Two experiments evolve from this concept. First, in a sample of four reservoirs, two normal and two superconducting, all connected by a wire cross of normal metal, one may inject current either antisymmetrically (AS) or symmetrically (S). In the AS case, current is injected into one normal lead and extracted from the other, creating normal current flow that does not interact with the supercurrent except at the junction. In the S case, current is injected into both normal leads and extracted from the superconductors. Theory predicts that, in the absence of electron energy relaxation in the normal part of the junction, these two situations should result in identical behavior of the Josephson junction. However, due to Joule heating, the S case shows a slightly larger maximum pi-current than the AS case. The second experiment considers a more subtle effect resulting from normal current being injected symmetrically into a SNS Josephson junction. One side of the SNS junction has both normal current and supercurrent flowing in the same direction while the other side has opposing current flows. This situation creates an effective energy gradient across the SNS junction that can appear in the distribution function of the normal wire. Using superconductor/insulator/normal metal tunnelling spectroscopy, it is possible to extract these changes to the distribution function.

  17. Characterization and Modeling of Superconducting Josephson Junction Arrays at Low Voltage and Liquid Helium Temperatures

    Science.gov (United States)

    2016-09-01

    protect the chip from any external electromagnetic radiation . A Keithley™ Instruments 4200- SCS Semiconductor System is connected to the probe to measure...Commanding Officer C. A. Keeney Executive Director ADMINISTRATIVE INFORMATION The work described in this report was performed by the Advanced ...Anu Sahu and HYPRES for answering our questions regarding these Josesphson Junction arrays. Released by K. Simonsen, Head Advanced Concepts

  18. High-Q cavity-induced fluxon bunching in inductively coupled Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, S.; Grønbech-Jensen, Niels; Pedersen, Niels Falsig;

    2008-01-01

    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analyses, the possibility for the cavity to induce a transition from the energetically...

  19. Involvement of YAP, TAZ and HSP90 in contact guidance and intercellular junction formation in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vijay Krishna Raghunathan

    Full Text Available The extracellular environment possesses a rich milieu of biophysical and biochemical signaling cues that are simultaneously integrated by cells and influence cellular phenotype. Yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (WWTR1; TAZ, two important signaling molecules of the Hippo pathway, have been recently implicated as nuclear relays of cytoskeletal changes mediated by substratum rigidity and topography. These proteins intersect with other important intracellular signaling pathways (e.g. Wnt and TGFβ. In the cornea, epithelial cells adhere to the stroma through a 3-dimensional topography-rich basement membrane, with features in the nano-submicron size-scale that are capable of profoundly modulating a wide range of fundamental cell behaviors. The influences of substratum-topography, YAP/TAZ knockdown, and HSP90 inhibition on cell morphology, YAP/TAZ localization, and the expression of TGFβ2 and CTGF, were investigated. The results demonstrate (a that knockdown of TAZ enhances contact guidance in a YAP dependent manner, (b that CTGF is predominantly regulated by YAP and not TAZ, and (c that TGFβ2 is regulated by both YAP and TAZ in these cells. Additionally, inhibition of HSP90 resulted in nuclear localization and subsequent transcriptional-activation of YAP, formation of cell-cell junctions and co-localization of E-cadherin and β-catenin at adherens junctions. Results presented in this study reflect the complexities underlying the molecular relationships between the cytoskeleton, growth factors, heat shock proteins, and co-activators of transcription that impact mechanotransduction. The data reveal the importance of YAP/TAZ on the cell behaviors, and gene and protein expression.

  20. Chaos induced by coupling between Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.

    2015-02-01

    It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.

  1. Phase dynamics modeling of parallel stacks of Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.

    2014-11-01

    The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.

  2. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    Science.gov (United States)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    -branch junction formation and evolution by using high-resolution 3D numerical mechanical experiments that take into account realistic thermo-rheological structure and rheology of the lithosphere. We find that two major types of quadruple and triple junctions are formed under bi-directional or multidirectional far-field stress field: (i) plate rifting junctions are formed by the initial plate fragmentation and can be subsequently re-arranged into (ii) oceanic spreading junctions controlled by the new oceanic crust accretion. In particular, we document initial formation and destabilization of quadruple R-R-R-R junctions as initial plate rifting structures under bi-directional extension. In most cases, quadruple plate rifting junctions rapidly (typically within 1-2 Myr) evolve towards formation of two diverging triple oceanic spreading junctions connected by a linear spreading center lengthening with time. This configuration remains stable over long time scales. However, under certain conditions, quadruple junctions may also remain relatively stable. Asymmetric stretching results in various configurations, for example formation of "T-junctions" with trans-extensional components and combination of fast and slow spreading ridges. Combined with plume impingement, this scenario evolves in realistic patterns closely resembling observed plate dynamics. In particular, opening of the Red Sea and of the Afar rift system find a logical explanation within a single model. Numerical experiments also suggest that several existing oceanic spreading junctions form as the result of plate motions rearrangements after which only one of two plates spreading along the ridge become subjected to bi-directional spreading.

  3. Connecting dots

    DEFF Research Database (Denmark)

    Murakami, Kyoko; Jacobs, Rachel L.

    2017-01-01

    of connecting the dots of recalled moments of individual family members lives and is geared towards building a family’s shared future for posterity. Lastly, we consider a wider implication of family reminiscence in terms of human development. http://www.infoagepub.com/products/Memory-Practices-and-Learning...... and Middleton, 1995). A reminiscence conversation is a dynamic talk-in-interaction, which can produce valuable learning experience for the participants involved. Reminiscence talk contains rich, personal, historic data that can reveal and inform family members of an unknown past. In this seminar/chapter, we...... shall present a discursive approach, a methodology that captures the dynamics of reminiscence. We analyse collected conversational data of British family members reminiscing on their past as a joint family activity. Through such talk-in-interaction, the family members develop continuity within...

  4. Gold-gold junction electrodes:the disconnection method.

    Science.gov (United States)

    Dale, Sara E C; Vuorema, Anne; Ashmore, Ellen M Y; Kasprzyk-Horden, Barbara; Sillanpää, Mika; Denuault, Guy; Marken, Frank

    2012-02-01

    The formation of gold-gold junction electrodes for application in electroanalysis is described here based on electro-deposition from a non-cyanide gold plating bath. Converging growth of two hemispherical gold deposits on two adjacent platinum microelectrodes (both 100 µm diameter in glass, ca. 45 µm gap) followed by careful etching in aqueous chloride solution was employed. During growth both gold hemispheres "connect" and during etching "disconnection" is evident in a drop in current. Gold-gold junctions with sub-micron gaps are formed and applied for the electroanalytical detection of sub-micromolar concentrations of hydroquinone in 0.1 M phosphate buffer pH 7 (E(rev) = 0.04 V vs. SCE) and sub-micromolar concentration of dopamine in 0.1 M phosphate buffer pH 7 (E(rev) = 0.14 V vs. SCE). The potential future uses in analysis and limitations of gold-gold junction electrodes are discussed.

  5. Fluxon dynamics in three stacked Josephson junctions

    DEFF Research Database (Denmark)

    Gorria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich;

    2002-01-01

    /sub -/, the coupling between junctions leads to a repulsion of the fluxons with the same polarity. Above this critical velocity a fluxon will induce radiation in the neighboring junctions, leading to a bunching of the fluxons in the stacked junctions. Using the Sakai-Bodin-Pedersen model, three coupled perturbed sine......The motion of fluxons of the same polarity in three vertically stacked Josephson junctions is studied. In this configuration the difference between exterior and interior junctions plays a more important role than in other configurations with several interior junctions. Below the Swihart velocity c......-Gordon equations are numerically studied for different values of coupling, damping, and bias parameters. In a narrow range of velocities bunching occurs. Outside this interval the fluxons split and new fluxons may be created. I-V characteristics are presented...

  6. Algorithms for Junctions in Directed Acyclic Graphs

    CERN Document Server

    Ferreira, Carlos Eduardo

    2012-01-01

    Given a pair of distinct vertices u, v in a graph G, we say that s is a junction of u, v if there are in G internally vertex disjoint directed paths from s to u and from s to v. We show how to characterize junctions in directed acyclic graphs. We also consider the two problems in the following and derive efficient algorithms to solve them. Given a directed acyclic graph G and a vertex s in G, how can we find all pairs of vertices of G such that s is a junction of them? And given a directed acyclic graph G and k pairs of vertices of G, how can we preprocess G such that all junctions of k given pairs of vertices could be listed quickly? All junctions of k pairs problem arises in an application in Anthropology and we apply our algorithm to find such junctions on kinship networks of some brazilian indian ethnic groups.

  7. Physics and Applications of NIS Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  8. Long Range Magnetic Interaction between Josephson Junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    A new model for magnetic coupling between long Josephson junctions is proposed. The coupling mechanism is a result of the magnetic fields outside the junctions and is consequently effective over long distances between junctions. We give specific expressions for the form and magnitude of the inter...... of the interaction, and we study a few dynamical examples of experimental relevance. It is found that this new coupling manifests itself much like Volkov's coupling through thin superconductors....

  9. Molecular junctions: can pulling influence optical controllability?

    Science.gov (United States)

    Parker, Shane M; Smeu, Manuel; Franco, Ignacio; Ratner, Mark A; Seideman, Tamar

    2014-08-13

    We suggest the combination of single molecule pulling and optical control as a way to enhance control over the electron transport characteristics of a molecular junction. We demonstrate using a model junction consisting of biphenyl-dithiol coupled to gold contacts. The junction is pulled while optically manipulating the dihedral angle between the two rings. Quantum dynamics simulations show that molecular pulling enhances the degree of control over the dihedral angle and hence over the transport properties.

  10. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  11. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    Science.gov (United States)

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  12. AlGaAs/GaAs tunnel junctions in a 4-J tandem solar cell

    Institute of Scientific and Technical Information of China (English)

    Lü Siyu; Qu Xiaosheng

    2011-01-01

    The Ⅲ-Ⅴ compound tandem solar cell is a third-generation new style solar cell with ultra-high efficiency.The energy band gaps of the sub-cells in a GaInP/GaAs/InGaAs/Ge 4-J tandem solar cell are 1.8,1.4,1.0and 0.7 eV,respectively.In order to match the currents between sub-cells,tunnel junctions are used to connect the sub-cells.The characteristics of the tunnel junction,the material used in the tunnel junction,the compensation of the tunnel junction to the overall cell's characteristics,the tunnel junction's influence on the current density of sub-cells and the efficiency increase are discussed in the paper.An A1GaAs/GaAs tunnel junction is selected to simulate the cell's overall characteristics by PC 1 D,current densities of 16.02,17.12,17.75 and 17.45 mA/cm2 are observed,with a Voc of 3.246 V,the energy conversion efficiency under AM0 is 33.9%.

  13. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tran Nguyen, E-mail: lantran@ims.ac.jp

    2014-01-15

    Highlights: • Transport properties of molecular junction having direct binding of aromatic ring to electrode have been investigated. • The conductance of junction with sp-type electrode is higher than that of junction with sd-type electrode. • The rectifying mechanism critically depends on the nature of benzene–electrode coupling. • The p–n junction-like can be obtained even without heteroatom doping. • The negative differential resistance effect was observed for the case of sp-type electrode. - Abstract: We have used the non-equilibrium Green’s function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene–electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p–n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  14. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.;

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...

  15. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  16. Magnetic tunnel junction based spintronic logic devices

    Science.gov (United States)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of

  17. Shear zone junctions: Of zippers and freeways

    Science.gov (United States)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  18. The connection of hydronephrosis and microcirculation deterioration

    Directory of Open Access Journals (Sweden)

    Vorobets Dmytro

    2016-09-01

    Full Text Available In this study, we have analyzed the influence of hydronephrosis upon the microcirculation system, in situations of pyeloureteral junction obstruction. Herein, bulbar conjunctiva has been chosen as the object of this biomicroscopic study because of its simplicity and the method availability in clinic practice. In fulfilling this work, we ascertained the connections between extravascular, intravascular, vascular and general conjunctival indices of the patients before radical and paliatic correction of the pyeloureteral junction obstruction (i.e. by open and laparoscopic pyeloplasty, endopyelotomy, laser resection and balloon dilatation. We concluded that, apart from the proved deterioration of kidney function, systemic deteriorations of microcirculation may be observed in situations of clinically marked hydronephrosis, according to the results of radioisotope renography and excretory urography.

  19. Connectivity of communication networks

    CERN Document Server

    Mao, Guoqiang

    2017-01-01

    This book introduces a number of recent developments on connectivity of communication networks, ranging from connectivity of large static networks and connectivity of highly dynamic networks to connectivity of small to medium sized networks. This book also introduces some applications of connectivity studies in network optimization, in network localization, and in estimating distances between nodes. The book starts with an overview of the fundamental concepts, models, tools, and methodologies used for connectivity studies. The rest of the chapters are divided into four parts: connectivity of large static networks, connectivity of highly dynamic networks, connectivity of small to medium sized networks, and applications of connectivity studies.

  20. Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit

    Science.gov (United States)

    Pop, I. M.; Douçot, B.; Ioffe, L.; Protopopov, I.; Lecocq, F.; Matei, I.; Buisson, O.; Guichard, W.

    2012-03-01

    A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum-mechanical phase (Aharonov-Casher effect). In superconducting electronics, the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here, we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multijunction circuit, the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays.

  1. Regulation of gap junction channels by infectious agents and inflammation in the CNS

    Directory of Open Access Journals (Sweden)

    Paul eCastellano

    2014-05-01

    Full Text Available Gap junctions are conglomerates of intercellular channels that connect the cytoplasm of two or more cells, and facilitate the transfer of second messengers, small peptides and RNA resulting in metabolic and electrical coordination. In general, loss of gap junctional communication (GJC has been associated with cellular damage and inflammation resulting in compromise of physiological functions. Recently, it has become evident that gap junction channels also play a critical role in the pathogenesis of infectious diseases and associated inflammation. Several pathogens use the transfer of intracellular signals through GJ channels to spread infection and toxic signals that amplify inflammation to neighboring cells. Thus, identification of the mechanisms by which several infectious agents alter GJC could result in new potential therapeutic approaches to reduce inflammation and their pathogenesis.

  2. Synchronization dynamics on the picosecond timescale in coupled Josephson junction neurons

    CERN Document Server

    Segall, Ken; Kaplan, Steven; Svitelskiy, Oleksiy; Khadka, Shreeya; Crotty, Patrick; Schult, Daniel

    2016-01-01

    Conventional digital computation is rapidly approaching physical limits for speed and energy dissipation. Here we fabricate and test a simple neuromorphic circuit that models neuronal somas, axons and synapses with superconducting Josephson junctions. Similar to biological neurons, two mutually-coupled Josephson junction neurons synchronize in one of two states, symmetric (in-phase) or anti-symmetric (anti-phase). The experimental alteration of the delay and strength of the connecting synapses can toggle the system back and forth in a collective behavior known as a phase-flip bifurcation. Firing synchronization states are calculated >70,000 times faster than conventional digital approaches. With their speed and very low energy dissipation (10-17 Joules/spike), Josephson junction neurons are now established as a viable approach for vast improvements in neuronal computation as well as applications in neuromorphic computing.

  3. Coordinate transformation in the model of long Josephson junctions: geometrically equivalent Josephson junctions

    Science.gov (United States)

    Semerdzhieva, E. G.; Boyadzhiev, T. L.; Shukrinov, Yu. M.

    2005-10-01

    The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasi-one-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view.

  4. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness.

    Science.gov (United States)

    Kikuchi, T; Adams, J C; Miyabe, Y; So, E; Kobayashi, T

    2000-01-01

    In the mammalian cochlea, there are two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. Thus far, four different connexin molecules, including connexin 26, 30, 31, and 43, have been reported in the cochlea. The two networks of gap junctions form the route by which K+ ions that pass through the sensory cells during mechanosensory transduction can be recycled back to the endolymphatic space, from which they reenter the sensory cells. Activation of hair cells by acoustic stimuli induces influx of K+ ions from the endolymph to sensory hair cells. These K+ ions are released basolaterally to the extracellular space of the organ of Corti, from which they enter the cochlear supporting cells. Once inside the supporting cells they move via the epithelial cell gap junction system laterally to the lower part of the spiral ligament. The K+ ions are released into the extracellular space of the spiral ligament by root cells and taken up by type II fibrocytes. This uptake incorporates K+ into the connective tissue gap junction system. Within this system, the K+ ions pass through the tight junctional barrier of the stria vascularis and are released within the intrastrial extracellular space. The marginal cells of the stria vascularis then take up K+ and return it to the endolymphatic space, where it can be used again in sensory transduction. It is highly probable that mutations of connexin genes that result in human nonsyndromic deafness cause dysfunction of cochlear gap junctions and thereby interrupt K+ ion recirculation pathways. In addition to connexin mutations, other conditions may disrupt gap junctions within the ear. For example, mice with a functionally significant mutation of Brain-4, which is expressed in the connective tissue cells within the cochlea, show marked depression of the endolymphatic potential and profound sensorineural hearing loss. It seems likely that disruption of connective

  5. Connection Strings Property on ADO Connection Object

    Institute of Scientific and Technical Information of China (English)

    Girigi Deogratias; Wu Min; Cao Weihua

    2002-01-01

    The connection string property on ADO connection object contains the information used to establish a connection to the data source. The syntax, the keyword of that information must be in specific format. Depending on the type of data you are connecting to, you need either specify an OLEDB provider or use on ODBC driver. The biggest problem, the industries face is the proliferation of data access interfaces, and the complexity of creating,maintaining and programming against them, and the network problem when communicating over the Intranet or the Internet. This paper first provides an in-depth look of the standard arguments supported by ADO connection string; then gives the easier way for understanding the meaning, the utility and the syntax of the connection strings property on ADO connection object, and finally proposes solution to work around the problems due to the connection strings errors.

  6. Phase qubits fabricated with trilayer junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M; Bialczak, R C; Lenander, M; Lucero, E; Mariantoni, Matteo; Neeley, M; O' Connell, A D; Sank, D; Wang, H; Wenner, J; Yamamoto, T; Yin, Y; Cleland, A N; Martinis, J, E-mail: martin.weides@nist.gov, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-05-15

    We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T{sub 1{approx}}400 ns is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric.

  7. Full range of proximity effect probed with superconductor/graphene/superconductor junctions

    Science.gov (United States)

    Li, Chuan; Guéron, S.; Chepelianskii, A.; Bouchiat, H.

    2016-09-01

    The high tunability of the density of states of graphene makes it an ideal probe of quantum transport in different regimes. In particular, the supercurrent that can flow through a nonsuperconducting (N) material connected to two superconducting (S) electrodes, crucially depends on the length of the N relative to the superconducting coherence length. Using graphene as the N material we have investigated the full range of the superconducting proximity effect, from short to long diffusive junctions. By combining several S/graphene/S samples with different contacts and lengths, and measuring their gate-dependent critical currents (Ic) and normal state resistance RN, we compare the product e RNIc to the relevant energies, the Thouless energy in long junctions and the superconducting gap of the contacts in short junctions, over three orders of magnitude of Thouless energy. The experimental variations strikingly follow a universal law, close to the predictions of the proximity effect both in the long and short junction regime, as well as in the crossover region, thereby revealing the interplay of the different energy scales. Differences in the numerical coefficients reveal the crucial role played by the interfacial barrier between graphene and the superconducting electrodes, which reduces the supercurrent in both short and long junctions. Surprisingly, the reduction of supercurrent is independent of the gate voltage and of the nature of the electrodes. A reduced induced gap and Thouless energy are extracted, revealing the role played by the dwell time in the barrier in the short junction, and an effective increased diffusion time in the long junction. We compare our results to the theoretical predictions of Usadel equations and numerical simulations, which better reproduce experiments with imperfect NS interfaces.

  8. From four- to two-channel Kondo effect in junctions of XY spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano02@gmail.com [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Física Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Tagliacozzo, Arturo, E-mail: arturo.tagliacozzo@na.infn.it [INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); Trombettoni, Andrea, E-mail: andreatr@sissa.it [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)

    2016-08-15

    We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  9. From four- to two-channel Kondo effect in junctions of XY spin chains

    Directory of Open Access Journals (Sweden)

    Domenico Giuliano

    2016-08-01

    Full Text Available We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  10. Attribute-space connectivity and connected filters

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2007-01-01

    In this paper connected operators from mathematical morphology are extended to a wider class of operators, which are based on connectivities in higher dimensional spaces, similar to scale spaces, which will be called attribute-spaces. Though some properties of connected filters are lost, granulometr

  11. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.

    Science.gov (United States)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin; Kjølbye, Anne-Louise; Hennan, James K; Holstein-Rathlou, Niels-Henrik; Petersen, Jørgen Søberg; Nielsen, Morten Schak

    2007-03-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.

  12. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  13. Connective Tissue Disorders

    Science.gov (United States)

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  14. Presynaptic spike broadening reduces junctional potential amplitude.

    Science.gov (United States)

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  15. Tight Junctions in Salivary Epithelium

    Directory of Open Access Journals (Sweden)

    Olga J. Baker

    2010-01-01

    Full Text Available Epithelial cell tight junctions (TJs consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.

  16. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    . We use three axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well as all...... connection costs; and, (3) the central planner selects a cost minimizing network satisfying reported connection demands based on estimated connection costs and allocates true connection costs of the selected network....

  17. Junction Plasmon-Induced Molecular Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

    2013-10-17

    Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4’-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

  18. Predictive modelling of ferroelectric tunnel junctions

    Science.gov (United States)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  19. Cell culture model predicts human disease: Altered expression of junction proteins and matrix metalloproteinases in cervical dysplasia

    Directory of Open Access Journals (Sweden)

    Kivi Niina

    2012-08-01

    Full Text Available Abstract Background Cervical cancer is necessarily caused by human papillomaviruses, which encode three oncogenes manifesting their functions by interfering with a number of cellular proteins and pathways: the E5, E6, and E7 proteins. We have earlier found in our microarray studies that the E5 oncogene crucially affects the expression of cellular genes involved in adhesion and motility of epithelial cells. Methods In order to biologically validate our previous experimental findings we performed immunohistochemical staining of a representative set of tissue samples from different grades of high-risk human papillomavirus associated cervical disease as well as normal squamous and columnar cervical epithelium. Three-dimensional collagen raft cultures established from E5-expressing and control epithelial cells were also examined. The expression of p16, matrix metalloproteinase (MMP -7, MMP-16, cytokeratin (CK 8/18, laminin, E-cadherin and beta-catenin was studied. Results In agreement with our previous microarray studies, we found intense staining for E-cadherin and beta-catenin in adherens junctions even in high-grade cervical lesions. Staining for MMP-16 was increased in severe disease as well. No significant change in staining for MMP-7 and cytokeratin 8/18 along with the grade of cervical squamous epithelial disease was observed. Conclusions Here we have confirmed, using tissue material from human papillomavirus associated lesions, some of the cellular gene expression modifications that we earlier reported in an experimental system studying specifically the E5 oncogene of papillomaviruses. These findings were partially surprising in the context of cervical carcinogenesis and emphasize that the complexity of carcinogenesis is not yet fully understood. Microarray approaches provide a wide overwiev of gene expression in experimental settings, which may yield biologically valid biomarkers for disease diagnostics, prognosis, and follow-up.

  20. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    Directory of Open Access Journals (Sweden)

    Kristin Elfers

    Full Text Available Diets fed to ruminants should contain nitrogen (N as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ and adherens junction (AJ proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  1. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    Science.gov (United States)

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  2. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall.

    Science.gov (United States)

    Blank, Fabian; Wehrli, Marc; Lehmann, Andrea; Baum, Oliver; Gehr, Peter; von Garnier, Christophe; Rothen-Rutishauser, Barbara M

    2011-01-01

    The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.

  3. Role of mitochondria and network connectivity in intercellular calcium oscillations

    CERN Document Server

    Dokukina, I V; Grachev, E A; Gunton, J D; Dokukina, Irina V.; Gracheva, Maria E.; Grachev, Eugene A.; Gunton, James D.

    2005-01-01

    Mitochondria are large-scale regulators of cytosolic calcium under normal cellular conditions. In this paper we model the complex behavior of mitochondrial calcium during the action of inositol 1,4,5-trisphosphate on a single cell and find results that are in good agreement with recent experimental studies. We also study the influence of the cellular network connectivity on intercellular signalling via gap junction diffusion. We include in our model the dependence of the junctional conductivity on the cytosolic calcium concentrations in adjacent cells. We consider three different mechanisms of calcium wave propagation through gap junctions: via calcium diffusion, inositol 1,4,5-trisphosphate diffusion, and both calcium and inositol 1,4,5-trisphosphate diffusion. We show that inositol 1,4,5-trisphosphate diffusion is the mechanism of calcium wave propagation and that calcium diffusion is the mechanism of synchronization of cytosolic calcium oscillations in adjacent cells. We also study the role of different to...

  4. Local dynamics of gap-junction-coupled interneuron networks

    Science.gov (United States)

    Lau, Troy; Gage, Gregory J.; Berke, Joshua D.; Zochowski, Michal

    2010-03-01

    Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.

  5. Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Eduardo C. Girão

    2014-08-01

    Full Text Available We propose a graphene nanoribbon-based heterojunction, where a defect-free interface separates two zigzag graphene nanoribbons prepared in opposite antiferromagnetic spin configurations. This heterospin junction is found to allow the redirecting of low-energy electrons from one edge to the other. The basic scattering mechanisms and their relation to the system’s geometry are investigated through a combination of Landauer–Green’s function and the S-matrix and eigen-channel methods within a tight-binding + Hubbard model validated with density functional theory. The findings demonstrate the possibility of using zigzag-edged graphene nanoribbons (zGNRs in complex networks where current can be transmitted across the entire system, instead of following the shortest paths along connected edges belonging to the same sub-lattice.

  6. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus.

    Science.gov (United States)

    Fukuda, T; Kosaka, T

    2000-02-15

    The network of GABAergic interneurons connected by chemical synapses is a candidate for the generator of synchronized oscillations in the hippocampus. We present evidence that parvalbumin (PV)-containing GABAergic neurons in the rat hippocampal CA1 region, known to form a network by mutual synaptic contacts, also form another network connected by dendrodendritic gap junctions. Distal dendrites of PV neurons run parallel to the alveus (hippocampal white matter) and establish multiple contacts with one another at the border between the stratum oriens and the alveus. In electron microscopic serial section analysis, gap junctions could be identified clearly at 24% of these contact sites. A dendrodendritic chemical synapse and a mixed synapse also were found between PV-immunoreactive dendrites. Three-dimensional reconstruction of the dendritic arborization revealed that both PV neurons of the well known vertical type (presumptive basket cells and axoaxonic cells) and those of another horizontal type constitute the dendritic network at the light microscopic level. The extent of dendritic fields of single PV neurons in the lateral direction was 538 +/- 201 micrometer (n = 5) in the vertical type and 838 +/- 159 micrometer (n = 6) in the horizontal type. Our previous and present observations indicate that PV-containing GABAergic neurons in the hippocampus form the dual networks connected by chemical and electrical synapses located at axosomatic and dendrodendritic contact sites, respectively. Gap junctions linking the dendritic network may mediate coherent synaptic inputs to distant interneurons and thereby facilitate the synchronization of oscillatory activities generated in the interneuron network.

  7. Charge transport in nanoscale junctions.

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  8. Propagation Behaviors of an Acid Wavefront Through a Microchannel Junction.

    Science.gov (United States)

    Nabika, Hideki; Hasegawa, Takahiko; Unoura, Kei

    2015-07-30

    Waves in reaction-diffusion systems yield a wealth of dynamic self-assembling phenomena in nature. Recent studies have been devoted to utilizing these active waves in conjunction with microscale technology. To provide a compass for controlling reaction-diffusion waves in microspaces, we have investigated the propagation behavior of one specific variety of the reaction-diffusion wave: an acid wave that utilizes an autocatalytic proton-production reaction. Furthermore, the acid wave that we have investigated occurs in a microchannel with a junction connecting circular and straight regions. The obtained results were compared with a neutralization wave that involves only a neutralization reaction. The acid wave was ignited by the addition of the appropriate amount of H2SO4 into the circular region that was filled with a substrate solution, where proton-consuming and proton-producing reactions followed a rapid neutralization reaction. At this stage, the wave penetrated and propagated into the channel region. Comparison between the acid and the neutralization waves clarified that the acid wave required a minimum threshold of H2SO4 concentration in order to be ignited and that the propagation of the acid wave was temporarily delayed because of the presence of intermediate chemical reaction steps. Furthermore, the propagation dynamics was found to be tuned through the configuration of the microchannel. The importance of microchannel configuration, especially for systems with a junction connecting different shapes, is discussed in terms of Fick's law and in terms of the proton flux from the circular to the straight regions.

  9. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  10. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    Science.gov (United States)

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  11. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin;

    2007-01-01

    . In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing......Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  12. Dislocation Multi-junctions and Strain Hardening

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  13. Created-by-current states in long Josephson junctions

    Science.gov (United States)

    Boyadjiev, T. L.; Andreeva, O. Yu.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-08-01

    Critical curves "critical current-external magnetic field" of long Josephson junctions with inhomogeneity and variable width are studied. We demonstrate the existence of regions of magnetic field where some fluxon states are stable only if the external current through the junction is different from zero. Position and size of such regions depend on the length of the junction, its geometry, parameters of inhomogeneity and form of the junction. The noncentral (left and right) pure fluxon states appear in the inhomogeneous Josephson junction with the increase in the junction length. We demonstrate new bifurcation points with change in width of the inhomogeneity and amplitude of the Josephson current through the inhomogeneity.

  14. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  15. Vortex structures in exponentially shaped Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.

    2005-04-01

    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  16. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...... on square tunnel junction pads with varying sizes and analyze the measured data using both the original and the modified CIPT model. Thus, we determine in which sample size range the modified CIPT model is needed to ensure validity of the extracted sample parameters, RA and TMR. In addition, measurements...... as a function of position on a square tunnel junction pad are used to investigate the sensitivity of the measurement results to probe misalignment....

  17. Holographic Josephson Junction from Massive Gravity

    CERN Document Server

    Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing

    2015-01-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  18. Silicon fiber with p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 312 Holden Hall, Blacksburg, Virginia 24060 (United States)

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  19. Overdamped Josephson junctions for digital applications

    Energy Technology Data Exchange (ETDEWEB)

    Febvre, P., E-mail: Pascal.Febvre@univ-savoie.fr [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); De Leo, N.; Fretto, M.; Sosso, A. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M. [Donetsk Institute for Physics and Engineering, 72 R. Luxemburg str., 83114 Donetsk (Ukraine); Collot, R. [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); Lacquaniti, V. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)

    2013-01-15

    Highlights: ► Properties of self-shunted sub-micron Nb/Al–AlO{sub x}/Nb SNIS junctions are studied. ► 1–100 kA/cm{sup 2} current densities and 0.1–0.7 mV critical voltages are obtained. ► The critical voltage-vs-temperature behavior of SNIS junctions is discussed. ► Numerical results showing an effect of the aluminum film thickness are presented. ► A Josephson balanced comparator is studied for different temperatures of operation. -- Abstract: An interesting feature of Superconductor–Normal metal–Superconductor Josephson junctions for digital applications is due to their non-hysteretic current–voltage characteristics in a broad temperature range below T{sub c}. This allows to design Single-Flux-Quantum (SFQ) cells without the need of external shunts. Two advantages can be drawn from this property: first the SFQ cells can be more compact which leads to a more integrated solution towards nano-devices and more complex circuits; second the absence of electrical parasitic elements associated with the wiring of resistors external to the Josephson junctions increases the performance of SFQ circuits, in particular regarding the ultimate speed of operation. For this purpose Superconductor–Normal metal–Insulator–Superconductor Nb/Al–AlO{sub x}/Nb Josephson junctions have been recently developed at INRiM with aluminum layer thicknesses between 30 and 100 nm. They exhibit non-hysteretic current–voltage characteristics with I{sub c}R{sub n} values higher than 0.5 mV in a broad temperature range and optimal Stewart McCumber parameters at 4.2 K for RSFQ applications. The main features of obtained SNIS junctions regarding digital applications are presented.

  20. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  1. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values...... in any of the transistors. The implication is that the electron and hole ionization rates did not change as a result of the addition of extra scattering centers. This result is in direct contradiction to observations of Lee et al. The most likely explanation for the discrepancy is erroneous determination...

  2. Fast transient response of novel Peltier junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, G.E.; Rao, K.R.; Jerger, D.

    1977-01-01

    The fast transient response of a thermoelectric (TE) cooler with novel geometry is discussed. This geometry involves conical semiconductor legs whose hot to cold junction cross-sectional area ratios can be varied. The novel TE junctions are fabricated such that the thermal capacitance and electrical conductance are decreased while simultaneously increasing the thermal resistance. The experimental apparatus which includes the vacuum system, power supplies, pulse and control circuitry, sensing and measuring instrumentation etc. is described. With narrow pulse width and large amplitudes, additional cooling of the order of 45/sup 0/C below the steady-state maximum with recovery times in the range of 1 to 3 sec is obtained.

  3. The Geometric Field at a Josephson Junction

    CERN Document Server

    Atanasov, Victor

    2016-01-01

    A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  4. Rectangular-to-circular groove waveguide junction

    Institute of Scientific and Technical Information of China (English)

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)

    2003-01-01

    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  5. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves “critical current-magnetic field” are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  6. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Semerdjieva, E.G. [Plovdiv University, 24 Tzar Asen Str., Plovdiv 4000 (Bulgaria); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  7. The energy barrier at noble metal/TiO{sub 2} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hossein-Babaei, F., E-mail: fhbabaei@kntu.ac.ir, E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M., E-mail: mm.lajvardi@gmail.com; Alaei-Sheini, Navid, E-mail: navid-alaei@yahoo.com [Electronic Materials Laboratory, Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191 (Iran, Islamic Republic of)

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  8. Low frequency critical current noise and two level system defects in Josephson junctions

    Science.gov (United States)

    Nugroho, Christopher Daniel

    The critical current in a Josephson junction is known to exhibit a 1/falpha low frequency noise. Implemented as a superconducting qubit, this low frequency noise can lead to decoherence. While the 1/f noise has been known to arise from an ensemble of two level systems connected to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery. In this thesis we will present measurements of the 1/f alpha low frequency noise in the critical current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide range of resistively shunted and unshunted junctions confirm the equality of critical current and tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the fractional power spectral density scales linearly with temperature. We confirmed that the 1/falpha power spectrum is the result of a large number of two level systems modulating the tunneling resistance. At small junction areas and low temperatures, the number of thermally active TLSs is insufficient to integrate out a featureless 1/ f spectral shape. By analyzing the spectral variance in small junction areas, we have been able to deduce the TLS defect density, n ≈ 2.53 per micrometer squared per Kelvin spread in the TLS energy per factor e in the TLS lifetimes. This density is consistent with the density of tunneling TLSs found in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit frequencies. The deduced TLS density combined with the magnitude of the 1/f power spectral density in large area junctions, gives an average TLS effective area, A ˜ 0.3 nanometer squared. In ultra small tunnel junctions, we have studied the time-domain dynamics of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling between the two localized wells, and a one-phonon absorption

  9. Transport through hybrid superconducting/ferromagnetic double-path junction

    Science.gov (United States)

    Facio, T. J. S.; Orellana, P. A.; Jurelo, A. R.; Figueira, M. S.; Cabrera, G. G.; Siqueira, E. C.

    2017-02-01

    In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov-Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures.

  10. Craniocervical junction venous anatomy around the suboccipital cavernous sinus: evaluation by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoshi; Sakuma, Ikuo; Omachi, Koichi; Otani, Takahiro; Tomura, Noriaki; Watarai, Jiro [Akita University School of Medicine, Department of Radiology, Akita (Japan); Mizoi, Kazuo [Akita University School of Medicine, Department of Neurosurgery, Akita (Japan)

    2005-08-01

    The present study evaluated the venous anatomy of the craniocervical junction, focusing on the suboccipital cavernous sinus (SCS), a vertebral venous plexus surrounding the horizontal portion of the vertebral artery at the skull base. MR imaging was reviewed to clarify the venous anatomy of the SCS in 33 patients. Multiplanar reconstruction MR images were obtained using contrast-enhanced three-dimensional fast spoiled gradient-recalled acquisition in the steady state (3-D fast SPGR) with fat suppression. Connections with the SCS were evaluated for the following venous structures: anterior condylar vein (ACV); posterior condylar vein (PCV); lateral condylar vein (LCV); vertebral artery venous plexus (VAVP); and anterior internal vertebral venous plexus (AVVP). The SCS connected with the ACV superomedially, with the VAVP inferolaterally, and with the AVVP medially. The LCV connected with the external orifice of the ACV and superoanterior aspect of the SCS. The PCV connected with the posteromedial aspect of the jugular bulb and superoposterior aspect of the SCS. The findings of craniocervical junction venography performed in eight patients corresponded with those on MR imaging, other than with regard to the PCV. Contrast-enhanced 3-D fast SPGR allows visualization of the detailed anatomy of these venous structures, and this technique facilitates interventions and description of pathologies occurring in this area. (orig.)

  11. Intercellular junctions in nerve-free hydra

    DEFF Research Database (Denmark)

    McDowall, A W; Grimmelikhuijzen, C J

    1980-01-01

    with particles in an "enplaque conformation appearing as a raised plateau on the E-face or as a depression on the P-face; (ii) structures morphologically similar to gap junctions in rat liver, containing particles on the P-face and corresponding pits on the E-face, both having hexagonal packing with a lattice...

  12. Lateral junction dynamics lead the way out.

    Science.gov (United States)

    Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-02-01

    Epithelial cell layers need to be tightly regulated to maintain their integrity and correct function. Cell integration into epithelial sheets is now shown to depend on the N-WASP-regulated stabilization of cortical F-actin, which generates distinct patterns of apical-lateral contractility at E-cadherin-based cell-cell junctions.

  13. Polyphosphonium-based ion bipolar junction transistors.

    Science.gov (United States)

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  14. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  15. Gap junction diseases of the skin.

    NARCIS (Netherlands)

    Steensel, M.A.M. van

    2004-01-01

    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by muta

  16. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  17. Fluxon Dynamics in Elliptic Annular Josephson Junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper

    2016-01-01

    We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tu...

  18. Fluxon density waves in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  19. Cooling of suspended nanostructures with tunnel junctions

    OpenAIRE

    Koppinen, P. J.; Maasilta, I. J.

    2009-01-01

    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow ($\\sim$ 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design.

  20. Flux interactions on stacked Josephson junctions

    DEFF Research Database (Denmark)

    Scott, Alwyn C.; A., Petraglia

    1996-01-01

    Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange betwe...

  1. Defect formation in long Josephson junctions

    DEFF Research Database (Denmark)

    Gordeeva, Anna; Pankratov, Andrey

    2010-01-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...

  2. All-carbon molecular tunnel junctions.

    Science.gov (United States)

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L

    2011-11-30

    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  3. Mesh Currents and Josephson Junction Arrays

    OpenAIRE

    1995-01-01

    A simple but accurate mesh current analysis is performed on a XY model and on a SIMF model to derive the equations for a Josephson junction array. The equations obtained here turn out to be different from other equations already existing in the literature. Moreover, it is shown that the two models come from an unique hidden structure

  4. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...

  5. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanti...

  6. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  7. Zero-voltage nondegenerate parametric mode in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1976-01-01

    A new parametric mode in a Josephson tunnel junction biased in the zero-voltage mode is suggested. It is a nondegenerate parametric excitation where the junction plasma resonance represents the input circuit, and a junction geometrical resonance represents the idler circuit. This nondegenerate mo...... for such a coupling. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  8. Vacuum Tight Threaded Junctions (VTTJ): A new solution for reliable heterogeneous junctions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Palma, M. Dalla; Agostini, F. Degli; Marcuzzi, D.; Rizzolo, A.; Rossetto, F.; Sonato, P.; Zaccaria, P.

    2015-10-15

    Highlights: • Heterogeneous junctions represent a critical issue in Nuclear Fusion experiments. • We have developed a new technique for heterogeneous junctions, called VTTJ, whose main advantages are low cost, high reliability and easiness of construction. • The VTTJ junctions have passed all the tests required by ITER for the heterogeneous junctions of the divertor. • Further tests have demonstrated wide margins for operation (up to 700 °C and 500 bar). - Abstract: A new technique, called Vacuum Tight Threaded Junction (VTTJ), has been developed and patented by Consorzio RFX, permitting to obtain low-cost and reliable non-welded junctions, able to maintain vacuum tightness also in heavy loading conditions (high temperature and high mechanical loads). The technique can be applied also if the materials to be joint are not weldable and for heterogeneous junctions (for example, between steel and copper) and has been tested up to 500 bar internal pressure and up to 700 °C, showing excellent leak tightness in vacuum conditions and high mechanical resistance. The main advantages with respect to existing technologies (for example, friction welding and electron beam welding) are an easy construction, a low cost, a precise positioning of the junction and a high repeatability of the process. Due to these advantages, the new technique has been adopted for several components of the SPIDER experiment and it is proposed for ITER, in particular for the ITER Heat and Current Drive Neutral Beam Injector and for its prototype, the MITICA experiment, to be tested at Consorzio RFX. This paper gives a detailed description of the VTTJ technique, of the samples manufactured and of the qualification tests that have been carried out so far.

  9. Graphene junction field-effect transistor

    Science.gov (United States)

    Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart

    2014-03-01

    We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.

  10. Asymptotically hyperbolic connections

    CERN Document Server

    Fine, Joel; Krasnov, Kirill; Scarinci, Carlos

    2015-01-01

    General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...

  11. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  12. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  13. Effect of unequal injection rates on asymmetric exclusion processes with junction

    Institute of Scientific and Technical Information of China (English)

    Xiao Song; Liu Ming-Zhe; Wang Jian-Jun; Wang Hua

    2011-01-01

    In this paper, we investigate the effect of unequal injection rates on totally asymmetric simple exclusion processes (TASEPs) with a 2-input 1-output junction and parallel update. A mean-field approach is developed to deal with the junction that connects two sub-chains and the single main chain. We obtain the stationary particle currents, density profiles and phase diagrams. Interestingly, we find that the number of stationary-state phases is changeable depending on the value of α1 (α1 is the injection rate on the first sub-chain). When α1 > 1/3, there are seven stationary-state phases in the system, however when α1 < 1/3, only six stationary-state phases exist in the system. The theoretical calculations are shown to be in agreement with Monte Carlo simulations.

  14. Characterization of Josephson and quasi-particle currents in MgB{sub 2}/MgB{sub 2} and Pb/Pb contact junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y; Singh, R K; Sanghavi, S; Rowell, J M; Newman, N [Materials Program, School of Mechanical, Aerospace, Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-8706 (United States); Wei, Y; Chamberlin, R V [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Moeckly, B H, E-mail: Nathan.Newman@asu.ed [Superconductor Technologies Incorporated, Santa Barbara, CA 93111-2358 (United States)

    2010-07-15

    The electrical properties of Josephson junctions formed by pressing two oxidized MgB{sub 2} thin films together were measured. This fabrication method allowed us to characterize the properties of MgB{sub 2} junctions with native or thermal oxide barriers without exposing the barrier and bottom electrode to the high temperature deposition process required to synthesize the top MgB{sub 2} electrode in the conventional trilayer junctions. These junctions, with electrode T{sub c}s of {approx} 32 K, have critical currents up to {approx} 25 K, broadened energy gaps at over 30 K, subharmonic gap structures at moderate voltages ({approx}0.6-2.0 mV) and Fiske modes at low voltage (<0.6 mV). We show that this method can be used to quantify the barrier properties and the extent of suppression of the superconductor order parameter at the surface. Our results suggest that the near interface superconducting order parameter is reduced at both native and thermal oxide surfaces, with a greater reduction at the thermal oxide surface. For comparison, the same experimental equipment and protocol were used to investigate Pb contact junctions. The junctions containing a thermal oxide barrier were found to have electrical properties similar to those of multiply connected junctions modulated by their self-field, as initially observed by Clarke and Fulton in a SLUG (superconducting low inductance undulatory galvanometer) (Clarke and Fulton 1969 J. Appl. Phys. 40 4470).

  15. Controls on modern tributary-junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco

    Science.gov (United States)

    Stokes, Martin; Mather, Anne E.

    2015-11-01

    highlights the spatial and temporal variability of tributary-junction fan building and illustrates the connectivity/coupling importance of such features in dryland mountainous terrains.

  16. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...

  17. The computation of first order moments on junction trees

    CERN Document Server

    Djuric, Milos B; Stankovic, Miomir S

    2012-01-01

    We review some existing methods for the computation of first order moments on junction trees using Shafer-Shenoy algorithm. First, we consider the problem of first order moments computation as vertices problem in junction trees. In this way, the problem is solved using the memory space of an order of the junction tree edge-set cardinality. After that, we consider two algorithms, Lauritzen-Nilsson algorithm, and Mau\\'a et al. algorithm, which computes the first order moments as the normalization problem in junction tree, using the memory space of an order of the junction tree leaf-set cardinality.

  18. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Energy Technology Data Exchange (ETDEWEB)

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  19. Eccentric connectivity index

    CERN Document Server

    Ilić, Aleksandar

    2011-01-01

    The eccentric connectivity index $\\xi^c$ is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as $\\xi^c (G) = \\sum_{v \\in V (G)} deg (v) \\cdot \\epsilon (v)$\\,, where $deg (v)$ and $\\epsilon (v)$ denote the vertex degree and eccentricity of $v$\\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity in...

  20. On eccentric connectivity index

    CERN Document Server

    Zhou, Bo

    2010-01-01

    The eccentric connectivity index, proposed by Sharma, Goswami and Madan, has been employed successfully for the development of numerous mathematical models for the prediction of biological activities of diverse nature. We now report mathematical properties of the eccentric connectivity index. We establish various lower and upper bounds for the eccentric connectivity index in terms of other graph invariants including the number of vertices, the number of edges, the degree distance and the first Zagreb index. We determine the n-vertex trees of diameter with the minimum eccentric connectivity index, and the n-vertex trees of pendent vertices, with the maximum eccentric connectivity index. We also determine the n-vertex trees with respectively the minimum, second-minimum and third-minimum, and the maximum, second-maximum and third-maximum eccentric connectivity indices for

  1. Solution structure of proinsulin: connecting domain flexibility and prohormone processing.

    Science.gov (United States)

    Yang, Yanwu; Hua, Qing-Xin; Liu, Jin; Shimizu, Eri H; Choquette, Meredith H; Mackin, Robert B; Weiss, Michael A

    2010-03-12

    The folding of proinsulin, the single-chain precursor of insulin, ensures native disulfide pairing in pancreatic beta-cells. Mutations that impair folding cause neonatal diabetes mellitus. Although the classical structure of insulin is well established, proinsulin is refractory to crystallization. Here, we employ heteronuclear NMR spectroscopy to characterize a monomeric analogue. Proinsulin contains a native-like insulin moiety (A- and B-domains); the tethered connecting (C) domain (as probed by {(1)H}-(15)N nuclear Overhauser enhancements) is progressively less ordered. Although the BC junction is flexible, residues near the CA junction exhibit alpha-helical-like features. Relative to canonical alpha-helices, however, segmental (13)C(alpha/beta) chemical shifts are attenuated, suggesting that this junction and contiguous A-chain residues are molten. We propose that flexibility at each C-domain junction facilitates prohormone processing. Studies of protease SPC3 (PC1/3) suggest that C-domain sequences contribute to cleavage site selection. The structure of proinsulin provides a foundation for studies of insulin biosynthesis and its impairment in monogenic forms of diabetes mellitus.

  2. Anatomy of the junction of the inferior petrosal sinus and the internal jugular vein. Evaluation with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoshi; Tomura, Noriaki; Kato, Koki; Hirano, Yosinori; Izumi, Jun-ichi; Watarai, Jiro [Akita Univ. (Japan). School of Medicine

    2000-07-01

    To evaluate the anatomy of the junction of the inferior petrosal sinus (IPS) and the internal jugular vein (IJV), magnetic resonance (MR) images of the jugular bulbs in 50 patients (age range, 15 to 83 years; mean age, 59.6 years) were retrospectively reviewed. Both MR imaging and intra-arterial digital subtraction angiography (IADSA) were performed in the 50 patients, and IPS venography was performed in 7 patients. Multiplanar reconstruction of the MR images was obtained using three-dimensional fast spoiled gradient-recalled acquisition in the steady state (3-D fast SPGR) with gadopentate dimegulmin (Gd-DTPA). IPS and other venous structures were identified around the jugular bulbs both on the MR images and by IPS venography. The diameters of the junctions of the IPS and IJV were measured on the MR images. IN 97 side (97%) of the 50 patients, a petrosal confluence was found on the medial side of the jugular bulb, connecting with the anterior condylar vein, inferior petroclival vein, basilar plexus and the IPS. Extracranial extension of the IPS was seen on 3 sides of 3 patients (right: 1, left: 2) (3%). All 3 patients showed the IPS connecting with the internal jugular vein below the anterior condylar vein. The minimum diameter of IPS-IJV junction was 1 mm or greater in all cases. In conclusion, the junction of the IPS and the IJV is easily identified by contrast-enhanced 3-D fast SPGR sequences, which is helpful for IPS catheterization in endovascular treatment. (author)

  3. Institutions for Asian Connectivity

    OpenAIRE

    Bhattacharyay, Biswa

    2010-01-01

    To make Asia more economically sustainable and resilient against external shocks, regional economies need to be rebalanced toward regional demand- and trade-driven growth through increased regional connectivity. The effectiveness of connectivity depends on the quality of hard and soft infrastructure. Of particular importance in terms of soft infrastructure which makes hard infrastructure work are the facilitating institutions that support connectivity through appropriate policies, reforms, sy...

  4. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  5. 78 FR 55684 - ConnectED Workshop

    Science.gov (United States)

    2013-09-11

    ... content into the curriculum; and as classroom management software tools move everything from homework... consider promising strategies for achieving the President's goal of connecting virtually all K-12 students... policies and consider the most promising strategies for equipping K-12 schools for digital learning....

  6. Inverse Degree and Connectivity

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ling; TIAN Ying-zhi

    2013-01-01

    Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) < 1 + 2/δ + n-2δ+1/(n-1)(n-3).

  7. Asymptotically hyperbolic connections

    Science.gov (United States)

    Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2016-09-01

    General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.

  8. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  9. Junction between surfaces of two topological insulators

    Science.gov (United States)

    Sen, Diptiman; Deb, Oindrila

    2012-02-01

    We study scattering from a line junction which separates the surfaces of two three-dimensional topological insulators; some aspects of this problem were recently studied in Takahashi and Murakami, Phys. Rev. Lett. 107, 166805 (2011). The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs; in the latter case, we find that the electrons must, in general, go into the two-dimensional interface separating the two topological insulators. We also study what happens if the two surfaces are at an angle φ with respect to each other. We find in this case that there are bound states which propagate along the line junction with a velocity and direction of spin which depend on the bending angle φ.

  10. Current distributions in stripe Majorana junctions

    Science.gov (United States)

    Osca, Javier; Llorenç, Serra

    2017-02-01

    We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite ( y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

  11. Vibrational Heat Transport in Molecular Junctions

    Science.gov (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  12. Boson Josephson Junction with Trapped Atoms

    Science.gov (United States)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates at T=0 in a double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. Analytic elliptic function solutions are obtained for the time evolution of the inter-well fractional population imbalance z(t) (related to the condensate phase difference) of the Boson Josephson junction (BJJ). Surprisingly, the neutral-atom BJJ shows (non-sinusoidal generalizations of) effects seen in charged-electron superconductor Josephson junctions (SJJ). The BJJ elliptic-function behavior has a singular dependence on a GPE parameter ratio Λ at a critical ratio Λ=Λc, beyond which a novel 'macroscopic quantum self-trapping' effect sets in with a non-zero time-averaged imbalance ≠0.

  13. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  14. Non-Lagrangian theories from brane junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)

    2013-10-15

    In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.

  15. String networks with junctions in competition models

    CERN Document Server

    Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F

    2016-01-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  16. String networks with junctions in competition models

    Science.gov (United States)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2017-03-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  17. RADIOLOGICAL EVALUATION OF CRANIOVERTEBRAL JUNCTION ANOMALIES

    Directory of Open Access Journals (Sweden)

    Joji Reddy

    2015-08-01

    Full Text Available INTRODUCTION: Detailed discussions of the CVJ are conspicuously absent in many standard textbooks and chapters addressing the skull or cervical spine, since it lies in between these regions . CVJ anomalies are common in India subcontinent. OBJECTIVES : To outline the normal anatomy and various abnormalities of craniovertebral junction. To evaluate the most common developmental and acquired craniovertebral junction abnormalities . CRANIOMETRY AND DIAGNOSIS: Radiological evaluation of CVJ requir es identification of only a few anatomic structures. Over the years multiple lines , planes and angles have been described for assessment of CVJ relationship , initially with radiography and later with polytomography. Two lines have remained particularly use ful for evaluation of CVJ relationship with virtually any imaging modality: the chamberlain`s line and weckenheim ’ s clivus base line . Two angles also continue to be useful: the welcher basal angle and atlanto occipital joint axis angle. PATIENTS AND METHOD S: The prospective study of craniovertebral junction anomalies was carried out at Kurnool medical college , Governament general hospital Kurnool from NOV 2012 to AUG 2014. The patients are subjected to clinical evaluation and radiological evaluation. OBSERV ATIONS AND RESULTS : In our study there is male predominance with male to female ratio of 2:1 . Majority of patients are in the age group of 11 - 40 (73.26%. The commonest symptom seen is weakness of extremities ( 70% with associated numbness (50%. On clinica l examination pyramidal tract involvement noticed in 70% of cases. Basilar invagination is the most common followed by Atlantoocoipital assimilation (40% and AAD (30% . CONCLUSION : Computed tomography and magnetic resonance imaging are invalvable adjuncts to the plain radiographs in the evaluation of the craniovertebral junction anomalies. Chamberlain’s line and McGregor line are the most commonly applied craniometric measurements

  18. Brownian refrigeration by hybrid tunnel junctions

    OpenAIRE

    Peltonen, J. T.; Helle, M.; Timofeev, A. V.; Solinas, P.; Hekking, F. W. J.; Pekola, Jukka P.

    2011-01-01

    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in Phys. Rev. Lett. 98, 210604 (2007) of this heat rectifying system, bearing resemblance to a Maxwell’s demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single-electron transistor configuration with two ...

  19. Peltier Junction heats and cools car seat

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, M.A.

    1994-10-10

    Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

  20. Josephson junction microwave modulators for qubit control

    Science.gov (United States)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  1. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.;

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  2. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    Science.gov (United States)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  3. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  4. Tokens of Connection

    Science.gov (United States)

    Crowley, Theresa

    2016-01-01

    When teachers make the effort to build a solid relationship with each student, built on trust, they often engender a life-long connection, one that's life-changing for the student. But how can teachers grow such long-lasting relationships with all students, especially disenfranchised learners and those who make it hard to connect? Crowley, a…

  5. Making Connections with Estimation.

    Science.gov (United States)

    Lobato, Joanne E.

    1993-01-01

    Describes four methods to structure estimation activities that enable students to make connections between their understanding of numbers and extensions of those concepts to estimating. Presents activities that connect estimation with other curricular areas, other mathematical topics, and real-world applications. (MDH)

  6. Stress-energy distribution for a cylindrical artificial gravity field via the Darmois-Israel junction conditions of general relativity

    Science.gov (United States)

    Istrate, Nicolae; Lindner, John

    2014-03-01

    We design an Earth-like artificial gravity field using the Darmois-Israel junction conditions of general relativity to connect the flat spacetime outside an infinitesimally thin cylinder to the curved spacetime inside. In the calculation of extrinsic curvature, our construction exploits Earth's weak gravity, which implies similar inside and outside curvatures, to approximate the unit normal inside by the negative unit normal outside. The stress-energy distribution on the cylinder's sides includes negative energy density.

  7. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  8. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  9. Stathmin is required for stability of the Drosophila neuromuscular junction.

    Science.gov (United States)

    Graf, Ethan R; Heerssen, Heather M; Wright, Christina M; Davis, Graeme W; DiAntonio, Aaron

    2011-10-19

    Synaptic connections can be stably maintained for prolonged periods, yet can be rapidly disassembled during the developmental refinement of neural circuitry and following cytological insults that lead to neurodegeneration. To date, the molecular mechanisms that determine whether a synapse will persist versus being remodeled or eliminated remain poorly understood. Mutations in Drosophila stathmin were isolated in two independent genetic screens that sought mutations leading to impaired synapse stability at the Drosophila neuromuscular junction (NMJ). Here we demonstrate that Stathmin, a protein that associates with microtubules and can function as a point of signaling integration, is necessary to maintain the stability of the Drosophila NMJ. We show that Stathmin protein is widely distributed within motoneurons and that loss of Stathmin causes impaired NMJ growth and stability. In addition, we show that stathmin mutants display evidence of defective axonal transport, a common feature associated with neuronal degeneration and altered synapse stability. The disassembly of the NMJ in stathmin includes a predictable sequence of cytological events, suggesting that a common program of synapse disassembly is induced following the loss of Stathmin protein. These data define a required function for Stathmin during synapse maintenance in a model system in which there is only a single stathmin gene, enabling future genetic investigation of Stathmin function with potential relevance to the cause and progression of neuromuscular degenerative disease.

  10. Quantifying bicycle network connectivity.

    Science.gov (United States)

    Lowry, Michael; Loh, Tracy Hadden

    2017-02-01

    The intent of this study was to compare bicycle network connectivity for different types of bicyclists and different neighborhoods. Connectivity was defined as the ability to reach important destinations, such as grocery stores, banks, and elementary schools, via pathways or roads with low vehicle volumes and low speed limits. The analysis was conducted for 28 neighborhoods in Seattle, Washington under existing conditions and for a proposed bicycle master plan, which when complete will provide over 700 new bicycle facilities, including protected bike lanes, neighborhood greenways, and multi-use trails. The results showed different levels of connectivity across neighborhoods and for different types of bicyclists. Certain projects were shown to improve connectivity differently for confident and non-confident bicyclists. The analysis showed a positive correlation between connectivity and observed utilitarian bicycle trips. To improve connectivity for the majority of bicyclists, planners and policy-makers should provide bicycle facilities that allow immediate, low-stress access to the street network, such as neighborhood greenways. The analysis also suggests that policies and programs that build confidence for bicycling could greatly increase connectivity.

  11. Numerical investigation on the influence of atomic defects on the tensile and torsional behavior of hetero-junction carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ghavamian, Ali, E-mail: alighavamian@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur (Malaysia); Andriyana, Andri, E-mail: andri.andriyana@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur (Malaysia); Chin, Ang Bee, E-mail: amelynang@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur (Malaysia); Öchsner, Andreas, E-mail: andreas.oechsner@gmail.com [Griffith School of Engineering, Griffith University, Gold Coast Campus, Southport, 4222 (Australia)

    2015-08-15

    The finite element method was employed for the numerical simulation of hetero-junction carbon nanotubes with all possible connection types and their corresponding fundamental homogeneous tubes. Then, atomically defective hetero-junction carbon nanotubes were modeled by introducing silicon impurities and vacant sites into their structures. Finally, the elastic and shear moduli of all the models were evaluated under tensile and torsional loads, based on the assumption of linear-elastic deformation of these nanomaterials. The results showed that armchair and zigzag carbon nanotubes have the highest Young's and shear moduli respectively, among homogeneous carbon nanotubes. The mechanical tests on the hetero-junction carbon nanotubes revealed that these nanotube types have lower moduli when compared to their fundamental tubes. It was clearly observed that armchair–armchair and zigzag–zigzag hetero-junction carbon nanotubes have the highest Young's modulus among the hetero-junction carbon nanotubes while the shear modulus peaks were seen in zigzag-zigzag models. On the other hand, the lowest values for the Young's and shear moduli of hetero-junction carbon nanotubes were obtained for the models with armchair-zigzag kinks. It was also discovered that the atomic defects in the structure of hetero-junction carbon nanotubes lead to a decrease in their Young's and shear moduli which seems to follow a linear trend and could be expressed by a mathematical relation in terms of the amount of the atomic defect in their structures which could be used for the prediction of the tensile and torsional strength of the atomically defective hetero-junction carbon nanotubes for their proper selection and applications in nanoindustry. - Graphical abstract: Display Omitted - Highlights: • Hetero-junction and homogeneous carbon nanotubes are numerically simulated. • Two atomic defects i.e. Si-doping and carbon vacancy are introduced to the models. • Influence of

  12. Electron Transport through Porphyrin Molecular Junctions

    Science.gov (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  13. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  14. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Energy Technology Data Exchange (ETDEWEB)

    Buzhynskyy, Nikolay; Scheuring, Simon [Institut Curie, Equipe Inserm Avenir, UMR168-CNRS, 26 Rue d' Ulm, 75248 Paris Cedex 05 (France); Sens, Pierre [ESPCI, CNRS-UMR 7083, 75231 Paris (France); Behar-Cohen, Francine, E-mail: simon.scheuring@curie.fr [UMRS Inserm 872, Universite Paris Descartes, Centre de Recherches des Cordeliers, 15 rue de l' Ecole de Medecine, 75270 Paris Cedex 06 (France)

    2011-08-15

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  15. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Science.gov (United States)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  16. Simulation of the Efficiency of CdS/CdTe Tandem Multi-Junction Solar Cells

    CERN Document Server

    Mirkamali, Ashrafalsadat S

    2016-01-01

    In this paper we study CdS/CdTe solar cells by means of AMPS-1D software. First we study the effect of thickness of semiconductor layers on the output parameters of the CdS/CdTe solar cell, such as density of short-circuit current, open circuit voltage, fill factor and efficiency. Numerical simulation shows that the highest efficiency of single-junction CdS/CdTe solar cell equal to 18.3% is achieved when the CdTe layer thickness is 1000 nm and a CdS layer is 60 nm. Then, in order to obtain the maximal value of the efficiency, new tandem multi-junction structure consisting of layers of two solar cells connected with each other back to back are designed and engineered taking into account the results obtained for the single-junction solar cells. Numerical simulations show that its highest efficiency in 31.8% can be obtained when the thickness of CdS p-layer is equal to 50 nm, and the thickness of the CdS n-layer is equal to 200 nm, while thicknesses of the CdTe n-layer and CdTe p-layer are kept fixed and equal t...

  17. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  18. Electron optics with p-n junctions in ballistic graphene

    Science.gov (United States)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  19. The critical power to maintain thermally stable molecular junctions

    Science.gov (United States)

    Wang, Yanlei; Xu, Zhiping

    2014-07-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  20. Structure, regulation and function of gap junctions in liver

    Science.gov (United States)

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  1. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  2. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  3. Singularities of invariant connections

    Energy Technology Data Exchange (ETDEWEB)

    Amores, A.M. (Universidad Complutense, Madrid (Spain)); Gutierrez, M. (Universidad Politecnica, Madrid (Spain))

    1992-12-01

    A reductive homogeneous space M = P/G is considered, endowed with an invariant connection, i.e., such that all left translations of M induced by members of P preserve it. The authors study the set of singularities of such connections giving sufficient conditions for it to be empty, or, in other cases, familities of b-incomplete curves converging to singularities. A full description of the b-completion of a connection with M = R[sup m] (or a quotient of it) is given with information on its topology. 5 refs.

  4. Turbulence-induced magnetic flux asymmetry at nanoscale junctions

    OpenAIRE

    2007-01-01

    It was recently predicted [J. Phys.: Condens. Matter 18, 11059 (2006)] that turbulence of the electron flow may develop at nonadiabatic nanoscale junctions under appropriate conditions. Here we show that such an effect leads to an asymmetric current-induced magnetic field on the two sides of an otherwise symmetric junction. We propose that by measuring the fluxes ensuing from these fields across two surfaces placed at the two sides of the junction would provide direct and noninvasive evidence...

  5. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  6. Geometrical theory of triple junctions of CSL boundaries.

    Science.gov (United States)

    Gertsman, V Y

    2001-07-01

    When three grain boundaries having misorientations generating coincidence site lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is formed. A theory is developed as a set of theorems establishing the relationships between the geometrical parameters of the grain-boundary and triple-junction CSLs. Application of the theory is demonstrated in detail for the case of the cubic crystal system. It is also shown how the theory can be extended to an arbitrary crystal lattice.

  7. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  8. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  9. Assemble four-arm DNA junctions into nanoweb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    DNA is of structural polymorphism, which is useful in nanoarchitecture; especially, four-arm DNA junc tions can be used to assemble nanowebs. The static four-arm DNA junctions were designed and synthesized. One-arm DNA and two-arm DNA came out simultaneously with the four-arm DNA junction's formation. A new method, termed the two-step method, was proposed and the productivity of four-arm DNA junctions was increased. A nanoweb was assembled successfully, but it showed irregularity itself. It was not the same as we expected. We consider that it is aresult from the flexibility of four-arm DNA junction.

  10. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)

    YANGFu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in lib into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  11. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Fu-Zhong

    2003-01-01

    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in IIB into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  12. Some chaotic features of intrinsically coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kolahchi, M.R., E-mail: kolahchi@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany); Hamdipour, M. [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Botha, A.E. [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa); Suzuki, M. [Photonics and Electronics Science and Engineering Center and Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan)

    2013-08-15

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T{sub c} superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T{sub c} resonators which require coherence amongst the junctions.

  13. Imaging snake orbits at graphene n -p junctions

    Science.gov (United States)

    Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.

    2017-01-01

    We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.

  14. Superconducting Tunnel Junction Arrays for UV Photon Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  15. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions

    Science.gov (United States)

    Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; Del Barco, Enrique; Nijhuis, Christian A.

    2016-05-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.

  16. Connective Tissue Naevus

    Directory of Open Access Journals (Sweden)

    Bhat Ramesh M

    1999-01-01

    Full Text Available A young adult female patient of connective tissue naevus presented with papules and indurated plaques on both les and left arm. Histopathology showed increased amount of collagen in the dermis. Osteopoikilosis was absent.

  17. Improving transition voltage spectroscopy of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian Sommer

    2011-01-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin...... is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln...

  18. Anatomy and biomechanics of the craniovertebral junction.

    Science.gov (United States)

    Lopez, Alejandro J; Scheer, Justin K; Leibl, Kayla E; Smith, Zachary A; Dlouhy, Brian J; Dahdaleh, Nader S

    2015-04-01

    The craniovertebral junction (CVJ) has unique anatomical structures that separate it from the subaxial cervical spine. In addition to housing vital neural and vascular structures, the majority of cranial flexion, extension, and axial rotation is accomplished at the CVJ. A complex combination of osseous and ligamentous supports allow for stability despite a large degree of motion. An understanding of anatomy and biomechanics is essential to effectively evaluate and address the various pathological processes that may affect this region. Therefore, the authors present an up-to-date narrative review of CVJ anatomy, normal and pathological biomechanics, and fixation techniques.

  19. Magnetic resonance imaging in craniovertebral junction anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Shimpei; Hata, Yuichi; Miyamoto, Yukio

    1985-03-01

    Materials consisted of 6 cases with occipitalization of the atlas, (4 of them complicated by basilar impression), 7 with basilar impression, one with hypoplasia of the atlas and C2-3 fusion, and one with os odontoideum. Basal angles after Welcker were all more than 130 in contrast to 118-138 (127 an average) in control group. Basal angle more than 140 denoted platybasia. Syringomyelia was seen in 7 of all 15 cases and 4 of 5 cases with platybasia. Chiari malformation was seen in 9 of all 15 cases and 4 of 5 with platybasia. Basal angles were closely related to craniovertebral junction bone anomaly, syringomyelia, and Chiari malformation. (author).

  20. Magic-T Junction using Microstrip/Slotline Transitions

    Science.gov (United States)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence

    2008-01-01

    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  1. Connective Tissue Disorder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008349 A clinical analysis of 32 patients with diffuse alveolar hemorrhage in diffuse connective tissue diseases. CHEN Guangxing(陈光星), et al. Dept Rheumatol, PUMC & CAMS Beijing 100730. Chin J Intern Med 2008;47(5):362-365.Objective To provide clues to diagnosis and treatment for diffuse alveolar hemorrhage(DAH)in patients with diffuse connective tissue diseases(CTD).Method To analyze restropectively the data of clinical features,

  2. Reliability of power connections

    Institute of Scientific and Technical Information of China (English)

    BRAUNOVIC Milenko

    2007-01-01

    Despite the use of various preventive maintenance measures, there are still a number of problem areas that can adversely affect system reliability. Also, economical constraints have pushed the designs of power connections closer to the limits allowed by the existing standards. The major parameters influencing the reliability and life of Al-Al and Al-Cu connections are identified. The effectiveness of various palliative measures is determined and the misconceptions about their effectiveness are dealt in detail.

  3. NEACP Onboard Connectivity Study

    Science.gov (United States)

    1990-03-30

    Methodology Framework .............................. 6-3 6.2.2 Sources of ME Cost Savings with NOCH ............... 6-5 6.2.3 Additional Benefits of 1OCU...processing system (MPS) installation connects all record and data communications equipment to a common MIL -STD-1553B bus and automates many of the manual...Local Area Network Concepts A NOCH developed around a generic bus would provide connectivity throughout the aircraft, thereby reducing or eliminating

  4. Connections between Frontier Markets

    Directory of Open Access Journals (Sweden)

    Eliza-Olivia Lungu

    2013-06-01

    Full Text Available The global financial system presents a high degree of connectivity and the network theory provides the natural framework for visualizing the structure of it connections. I analyse the financial links established between the frontier markets and how these links evolve over a 10 years period (2001 - 2011. I identify patterns in the network looking both at the node specific statistics (degree, strength and clustering coefficient and at the aggregated network statistics (network density and network asymmetry index.

  5. Grades 1-8, Apache Junction Unified School District 43, Apache Junction, Arizona. PLATO Evaluation Series.

    Science.gov (United States)

    Quinn, David W.; Quinn, Nancy W.

    Apache Junction Unified School District, Arizona, has embarked on a 5-year program of instructional improvement using technology. PLATO Elementary reading and mathematics products were installed in the district's elementary and middle schools at the beginning of the 1999-2000 school year. This evaluation studied the use and preliminary student…

  6. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  7. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  8. THE MOLECULAR ALGORITHM OF CONNECTIVITY BASED ON THREE DIMENSIONAL DNA STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Fang Gang; Zhang Shemin; Zheng Anping; Xu Jin

    2007-01-01

    Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3 or 4) branched junction DNA molecules to explore the possibility of solving some intractable problems. In the proposed procedure,vertex building blocks consisting of 3, 4-armed branched junction molecules are selectively used to form different graph structures. After separating these graph structures by gel electrophoresis, the connectivity of this graph can be determined. Furthermore, the amount of potential solutions can be reduced by a theorem of graph theory.

  9. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer

    Science.gov (United States)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of

  10. Development of superconducting tunnel junction radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Kishimoto, Maki; Ukibe, Masahiro; Nakamura, Tatsuya; Nakazawa, Masaharu [Japan Atomic Energy Research Inst., Tokyo (Japan); Kurakado, Masahiko; Ishibashi, Kenji; Maehata, Keisuke

    1998-07-01

    Study on development of high energy resolution X-ray detector using superconducting tunnel junction (STJ) for radiation detection was conducted for 5 years under cooperation of University of Tokyo group and Kyushu University group by Quantum measurement research group of Advanced fundamental research center of JAERI. As the energy resolution of STJ could be obtained better results than that of Si semiconductor detector told to be actually best at present, this study aimed to actualize an X-ray detector usable for the experimental field and to elucidate radiation detection mechanism due to STJ. The STJ element used for this study was the one developed by Kurakado group of Nippon Steel Corp. As a results, some technical problems were almost resolved, which made some trouble when using the STJ element to detection element of X-ray spectrometer. In order to make the X-ray detector better, it is essential to manufacture a STJ element and develop serial junction type STJ element on the base of optimization of the element structure and selection and single crystallization of new superconducting materials such as Ta and others, activating the research results. (G.K.)

  11. Improving transition voltage spectroscopy of molecular junctions

    Science.gov (United States)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian S.

    2011-04-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln(I/Vα) with α<2. On the basis of a simple Lorentzian transmission model we analyze theoretical ab initio as well as experimental I-V curves and show that the voltage required to determine the molecular levels can be reduced by ~30% as compared to conventional TVS. As for conventional TVS, the symmetry/asymmetry of the molecular junction needs to be taken into account in order to gain quantitative information. We show that the degree of asymmetry may be estimated from a plot of Vmin(α) vs α.

  12. Junction like behavior in polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Shivakumar, E-mail: sbhaskar@mail.uh.edu [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Charlson, Earl Joe; Litvinov, Dmitri [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Makarenko, Boris [Department of Chemistry, University of Houston, TX 77004 (United States)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer The result that we obtained are compared with single crystalline diamond devices. Black-Right-Pointing-Pointer The barrier height of 4.4 eV matches the ideal pn-junction barrier height of diamond thin film. - Abstract: We have successfully fabricated polycrystalline diamond rectifying junction devices on n-type (1 0 0) silicon substrates by Hot Filament Chemical Vapor Deposition (HFCVD) using methane/hydrogen process gas and trimethyl borate and trimethyl phosphite dissolved in acetone as p- and n-type dopants, respectively. Impedance spectroscopy and current-voltage analysis indicates that the conduction is vertical down the grains and facets and not due to surface effects. Electrical characteristics were analyzed with In and Ti/Au top metal contacts with Al as the substrate contact. Current-voltage characteristics as a function of temperature showed barrier potentials of 1.1 eV and 0.77 eV for the In and Ti/Au contacts, respectively. Barrier heights of 4.8 eV (In) and 4.4 eV (Ti/Au) were obtained from capacitance-voltage measurements.

  13. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  14. Annealing free magnetic tunnel junction sensors

    Science.gov (United States)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  15. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  16. Heritable Disorders of Connective Tissue

    Science.gov (United States)

    ... Connective Tissue Find a Clinical Trial Journal Articles Connective Tissue August 2016 Questions and Answers about Heritable Disorders of Connective Tissue This publication contains general information about heritable (genetic) ...

  17. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  18. Linear connections on matrix geometries

    CERN Document Server

    Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.

  19. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  20. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Jinmi Koo

    2015-09-01

    Full Text Available BackgroundIn mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN. Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.MethodsWe examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2 gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC knock-in mice using a real-time bioluminescence measurement system.ResultsAdministration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms.ConclusionThese findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.

  1. MgB2 tunnel junctions and SQUIDs

    NARCIS (Netherlands)

    Brinkman, A.; Rowell, J.M.

    2007-01-01

    Recent advances in the realization and understanding of MgB2 tunnel junctions and SQUIDs are surveyed. High quality MgB2 junctions with suitable tunnel barriers have been realized based on both oriented and epitaxial thin MgB2 films. Multiband transport properties, such as the existence of two energ

  2. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Science.gov (United States)

    2010-12-08

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction,...

  3. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  4. Vortex dynamics in Josephson ladders with II-junctions

    DEFF Research Database (Denmark)

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.;

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  5. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.;

    1990-01-01

    -dimensional functional map. Phase-locked states correspond to fixed points of the map. For junctions of in-line geometry, the existence and stability of such fixed points can be studied analytically. Study of overlap-geometry junctions requires the numerical inversion of a functional equation, but the results...

  6. Shapiro and parametric resonances in coupled Josephson junctions

    Science.gov (United States)

    Gaafar, Ma A.; Shukrinov, Yu M.; Foda, A.

    2012-11-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  7. Septal Junctions in Filamentous Heterocyst-Forming Cyanobacteria.

    Science.gov (United States)

    Flores, Enrique; Herrero, Antonia; Forchhammer, Karl; Maldener, Iris

    2016-02-01

    In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.

  8. Conditions for synchronization in Josephson-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)

    1995-12-31

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  9. Craniovertebral Junction Instability in the Setting of Chiari I Malformation.

    Science.gov (United States)

    Goldstein, Hannah E; Anderson, Richard C E

    2015-10-01

    This article addresses the key features, clinical presentation, and radiographic findings associated with craniovertebral junction instability in the setting of Chiari I malformation. It further discusses surgical technique for treating patients with Chiari I malformation with concomitant craniovertebral junction instability, focusing on modern posterior rigid instrumentation and fusion techniques.

  10. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig

    1975-01-01

    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  11. Determination of Relaxation Time of a Josephson Tunnel Junction

    Institute of Scientific and Technical Information of China (English)

    WEN Xue-Da; YU Yang

    2008-01-01

    We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.

  12. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance...

  13. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor.

    Science.gov (United States)

    Cherian, Priscilla P; Cheng, Benxu; Gu, Sumin; Sprague, Eugene; Bonewald, Lynda F; Jiang, Jean X

    2003-10-31

    Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells functions in an autocrine manner to regulate gap junction function and connexin 43 (Cx43) expression. Here we show that fluid flow regulates gap junctions through the PGE2 receptor EP2 activation of cAMP-dependent protein kinase A (PKA) signaling. The expression of the EP2 receptor, but not the subtypes EP1,EP3, and EP4, increased in response to fluid flow. Application of PGE2 or conditioned medium from fluid flow-treated cells to non-stressed MLO-Y4 cells increased expression of the EP2 receptor. The EP2 receptor antagonist, AH6809, suppressed the stimulatory effects of PGE2 and fluid flow-conditioned medium on the expression of the EP2 receptor, on Cx43 protein expression, and on gap junction-mediated intercellular coupling. In contrast, the EP2 receptor agonist butaprost, not the E1/E3 receptor agonist sulprostone, stimulated the expression of Cx43 and gap junction function. Fluid flow conditioned medium and PGE2 stimulated cAMP production and PKA activity suggesting that PGE2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE2 on gap junctions. These studies suggest that the EP2 receptor mediates the effects of autocrine PGE2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP2 receptor, cAMP, and PKA are critical components

  14. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    Directory of Open Access Journals (Sweden)

    Wageha A. Awad

    2017-02-01

    Full Text Available Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis

  15. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    Science.gov (United States)

    Awad, Wageha A.; Hess, Claudia; Hess, Michael

    2017-01-01

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens

  16. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K

    2013-01-01

    diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium......In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using...... tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal...

  17. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...

  18. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  19. The current-phase relation in HTS Josephson junctions

    Science.gov (United States)

    Il'ichev, E.; Zakosarenko, V.; Ijsselsteijn, R. P. J.; Schultze, V.; Meyer, H.-G.; Hoenig, H. E.

    The current-phase relation of YBa2Cu3O7-x step-edge as well as 24° and 45° grain boundary Josephson junctions has been investigated experimentally. The junctions were incorporated into a washer-shaped superconducting ring with inductance L≈80-300 pH. The ring was inductively coupled to a tank circuit with a resonance frequency 9…40 MHz. The current-phase relation was obtained from the measurement of the impedance of the phase-biased junction. It is shown, that experimentally observed deviations from harmonic behavior of the apparent current-phase relation for step-edge and 24° grain boundary junctions can be explained by the influence of thermal noise. The current-phase relation of 45° grain boundary junctions was found to be extremely non-harmonic. The reasons of this unusual behavior are discussed.

  20. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  1. Parametric resonance in the system of long Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Irie, A.

    2014-08-01

    The phase dynamics of the system of long Josephson junctions whose length exceeds the Josephson penetration depth has been studied. The possibility of the appearance of a longitudinal plasma wave and parametric resonance has been demonstrated. Both inductive and capacitive couplings between Josephson junctions have been taken into account in the calculations. The current-voltage characteristics, as well as time evolution of the spatial distribution of the electric charge in superconducting layers and the magnetic field, have been calculated in all Josephson junctions of the system. The coexistence of the longitudinal plasma wave and fluxon states has been observed in the region of parametric resonance beginning with a certain length of the Josephson junction. This indicates the appearance of a new unique collective excitation in the system of coupled Josephson junctions, namely, a composite state of the Josephson current, electric field, and vortex magnetic field.

  2. Design of Steerable Wavelets to Detect Multifold Junctions.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  3. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonan...... into account the interaction between the resonance in the sub-junction and the magnetic flux density waves excited in the whole junction is given....... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  4. Best connected rectangular arrangements

    Directory of Open Access Journals (Sweden)

    Krishnendra Shekhawat

    2016-03-01

    Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.

  5. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Mina Moradi

    2015-11-01

    Full Text Available The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS in carbon nanotube (CNT-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new crack nucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with crack nucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

  6. Influence of Coupling between Junctions on Breakpoint Current in Intrinsic Josephson Junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-04-01

    We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling α and dissipation β parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage characteristics for the stacks with a different number of junctions. A method to determine the wave number of longitudinal plasma waves from α and β dependence of the breakpoint current is suggested. We model the α and β dependence of the breakpoint current and obtain good agreement with the results of the simulation.

  7. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-07-01

    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  8. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Science.gov (United States)

    Krasnov, V M

    2009-11-27

    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  9. Permanent junctional reciprocating tachycardia in a dog.

    Science.gov (United States)

    Santilli, Roberto A; Santos, Luis F N; Perego, Manuela

    2013-09-01

    A 5-year-old male English Bulldog was presented with a 1-year history of paroxysmal supraventricular tachycardia (SVT) partially responsive to amiodarone. At admission the surface ECG showed sustained runs of a narrow QRS complex tachycardia, with a ventricular cycle length (R-R interval) of 260 ms, alternating with periods of sinus rhythm. Endocardial mapping identified the electrogenic mechanism of the SVT as a circus movement tachycardia with retrograde and decremental conduction along a concealed postero-septal atrioventricular pathway (AP) and anterograde conduction along the atrioventricular node. These characteristics were indicative of a permanent junctional reciprocating tachycardia (PJRT). Radiofrequency catheter ablation of the AP successfully terminated the PJRT, with no recurrence of tachycardia on Holter monitoring at 12 months follow-up.

  10. Controlling local currents in molecular junctions

    CERN Document Server

    Yadalam, Hari Kumar

    2016-01-01

    The effect of non-equilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  11. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  12. Exotic Brane Junctions from F-theory

    CERN Document Server

    Kimura, Tetsuji

    2016-01-01

    Applying string dualities to F-theory, we obtain various $[p,q]$-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single $5^2_2$-brane. We also find the objects which are sensitive to the branch cut of the $5^2_2$-brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for $SU(2)$ gauge theories with $n$ flavors and their superconformal limit with enhanced $E_{n+1}$ symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  13. Fully magnetic manganite spin filter tunnel junctions

    Science.gov (United States)

    Prasad, Bhagwati; Blamire, Mark G.

    2016-09-01

    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  14. Ruptured venous aneurysm of cervicomedullary junction

    Directory of Open Access Journals (Sweden)

    Ashish Aggarwal

    2014-01-01

    Full Text Available Background: Ruptured venous aneurysm is often seen with arterio-venous malformation (AVM or developmental venous anomaly (DVA. However, isolated venous aneurysm is unusual. Case Description: We present a case of ruptured venous aneurysm that presented with subarachnoid hemorrhage (SAH and intraventricular hemorrhage (IVH. Digital substraction angiography (DSA revealed a saccular contrast filling pouch in the left lateral aspect of cervicomedullary junction (CMJ. Endovascular intervention was not a viable option. During surgery, a saccular pliable structure approx. 1.5 Χ 1 cm was found in the subarachnoid space that was clipped and excised. There were no arterial feeders, no evidence of surrounding AVM, and no dilated perimedullary vein. Conclusion: This is perhaps the first reported case of ruptured venous aneurysm (without associated AVM of CMJ, which was successfully managed surgically. The possible etiologies remain an unnoticed head trauma or a congenital vessel wall abnormality. Surgically clipping and excision remains the treatment of choice for such lesion.

  15. Studies of silicon pn junction solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  16. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  17. Functional oesophago-gastric junction imaging

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Asbj(φ)rn M Drewes; Hans Gregersen

    2006-01-01

    Despite its role in disease there is still no definitive method to assess oesophago-gastric junction competence (OGJ). Traditionally the OGJ has been assessed using manometry with lower oesophageal sphincter pressure as the indicator. More recently this has been shown not to be a very reliable marker of sphincter function and competence against reflux.Disorders such as gastro-oesophageal reflux disease and to a lesser extend achalasia still effects a significant number of patients. This review looks at using a new technique known as impedance planimetry to profile the geometry and pressure in the OGJ during distension of a bag. The data gathered can be reconstructed into a dynamic representation of OGJ action. This has been shown to provide a useful representation of the OGJ and to show changes to the competence of the OGJ in terms of compliance and distensibility as a result of endoluminal therapy.

  18. Electronic transport properties of phenylacetylene molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Liu Wen; Cheng Jie; Yah Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound- (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism.The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V.The rectification effect is attributed to the asymmetry of the interface contacts.Moreover,at a bias voltage larger than 2.0 V,which is not referred to in a relevant experiment [Fang L,Park J Y,Ma H,Jan A K Y and Salmeron M 2007 Langmuir 23 11522],we find a negative differential resistance phenomenon.The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitais induced by the bias.

  19. Computation of flow through the oesophagogastric junction

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Karl D Odie; Kenneth W Moloney; Hans Gregersen

    2007-01-01

    Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing,they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophagogastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow.A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD).CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ.In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms-1 that occurs where the OGJ is at its narrowest. This simple prediction of acid 'squirting' into the oesophagus illustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.

  20. Influence of coupling between junctions on breakpoint current in intrinsic Josephson junctions

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2006-01-01

    We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-$T_c$ superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling $\\alpha$ and dissipation $\\beta$ parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage ch...

  1. Strengthening connections: functional connectivity and brain plasticity.

    Science.gov (United States)

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  2. 18.CONNECTIVE TISSUE DISORDER

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930734 Measurement of serum soluble interleukin—2 receptor in connective tissue diseases.CAI Houronget al.Dept Intern Med,Affili Gulou Hosp,Med School,Nanjing Univ,Nanjing,210008,ShanghaiJ Immunol 1993;13(4):216—218December 1993 Vol 10 No 4

  3. Connecting Competing Memories

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Research Expert Meeting: Connecting Competing Memories of War in Contemporary Europe5 March 2014NIAS hosts, 6 - 7 March, the expert meeting of the Consortium for 'The Cultural Heritage of War in Contemporary Europe'. The aim is to draft main themes and discuss financial and research structures regar

  4. The Anansi Connection.

    Science.gov (United States)

    Carger, Chris Liska

    1998-01-01

    Describes a teacher educator's efforts to connect children's literature, sponsored by a partnership between Northern Illinois University and Chicago Public Schools. In one project, student teachers used award-winning picture books to inspire African-American eighth graders to create pastels on black paper. In another, regional folk tales inspired…

  5. Technology and Internet Connections.

    Science.gov (United States)

    Allen, Denise; Lindroth, Linda

    1996-01-01

    Suggests that teachers can use computer software and Internet connections to enhance curriculum and capitalize student's natural interest in sports and sports figures. Provides a list of activities that students can do in relation to the Olympic games and gives information on how technology can assist in such activities. Appropriate Internet…

  6. Wireless Connectivity and Capacity

    CERN Document Server

    Halldorsson, Magnus M

    2011-01-01

    Given $n$ wireless transceivers located in a plane, a fundamental problem in wireless communications is to construct a strongly connected digraph on them such that the constituent links can be scheduled in fewest possible time slots, assuming the SINR model of interference. In this paper, we provide an algorithm that connects an arbitrary point set in $O(\\log n)$ slots, improving on the previous best bound of $O(\\log^2 n)$ due to Moscibroda. This is complemented with a super-constant lower bound on our approach to connectivity. An important feature is that the algorithms allow for bi-directional (half-duplex) communication. One implication of this result is an improved bound of $\\Omega(1/\\log n)$ on the worst-case capacity of wireless networks, matching the best bound known for the extensively studied average-case. We explore the utility of oblivious power assignments, and show that essentially all such assignments result in a worst case bound of $\\Omega(n)$ slots for connectivity. This rules out a recent cla...

  7. Connecting with Your Audience.

    Science.gov (United States)

    Mamchur, Carolyn

    1989-01-01

    A workshop model on presentation skills for teachers in the classroom is presented. The goals and techniques would apply to many teaching situations in the college classroom, as well as lectures and symposium presentations. Making a personal connection, focusing on audience, and empowering the audience are discussed. (MLW)

  8. Clip, connect, clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...

  9. The connected brain

    NARCIS (Netherlands)

    van den Heuvel, M.P.

    2009-01-01

    The connected brain Martijn van den Heuvel, 2009 Our brain is a network. It is a network of different brain regions that are all functionally and structurally linked to each other. In the past decades, neuroimaging studies have provided a lot of information about the specific functions of each separ

  10. Preschool Connected Speech Inventory.

    Science.gov (United States)

    DiJohnson, Albert; And Others

    This speech inventory developed for a study of aurally handicapped preschool children (see TM 001 129) provides information on intonation patterns in connected speech. The inventory consists of a list of phrases and simple sentences accompanied by pictorial clues. The test is individually administered by a teacher-examiner who presents the spoken…

  11. Revisiting city connectivity

    NARCIS (Netherlands)

    Mans, U.

    2014-01-01

    This article introduces a new perspective on city connectivity in order to analyze non-hub cities and their position in the world economy. The author revisits the different approaches discussed in the Global Commodity Chains (GCC), Global Production Networks (GPN) and World City Network (WCN) discou

  12. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of the Coast Range Ophiolite

    Science.gov (United States)

    Watt, J. T.; Ponce, D. A.; Graymer, R. W.; Jachens, R. C.; Simpson, R. W.

    2013-12-01

    indicate that the southwestern edge of this magnetic body is defined by a northeast-dipping structure that we interpret as part of the Calaveras fault. The base of this magnetic slab, which is folded up along the Calaveras fault, may represent a roof thrust formed by an eastward-migrating wedge of Franciscan Complex. Fragments of Coast Range Ophiolite caught up within the San Andreas-Calaveras junction may facilitate creep and slip transfer between structures that have no apparent connection at the surface. Combined geological and geophysical results suggest that during development of the junction, the Calaveras fault preferentially followed a zone of weakness represented by the roof thrust and associated Coast Range Ophiolite. The Hayward fault occupies a similar position with respect to the Coast Range Ophiolite near San Leandro to the north.

  13. Natural connections given by general linear and classical connections

    OpenAIRE

    Janyška, Josef

    2004-01-01

    We assume a vector bundle $p: E\\to M$ with a general linear connection $K$ and a classical linear connection $\\Lam$ on $M$. We prove that all classical linear connections on the total space $E$ naturally given by $(\\Lam, K)$ form a 15-parameter family. Further we prove that all connections on $J^1 E$ naturally given by $(\\Lam, K)$ form a 14-parameter family. Both families of connections are described geometrically.

  14. On contravariant product conjugate connections

    Directory of Open Access Journals (Sweden)

    A. M. Blaga

    2012-02-01

    Full Text Available Invariance properties for the covariant and contravariant connections on a Riemannian manifold with respect to an almost product structure are stated. Restricting to a distribution of the contravariant connections is also discussed. The particular case of the conjugate connection is investigated and properties of the extended structural and virtual tensors for the contravariant connections are given.

  15. Electrical Reliability of a Film-Type Connection during Bending

    Directory of Open Access Journals (Sweden)

    Ryosuke Mitsui

    2015-10-01

    Full Text Available With the escalating demands for downsizing and functionalizing mobile electronics, flexible electronics have become an important aspect of future technologies. To address limitations concerning junction deformation, we developed a new connection method using a film-type connector that is less than 0.1 mm thick. The film-type connector is composed of an organic film substrate, a UV-curable adhesive that deforms elastically under pressure, and electrodes that are arranged on the adhesive. The film-type connection relies on a plate-to-plate contact, which ensures a sufficient contact area. The electrical reliability of the film-type connection was investigated based on changes in the resistance during bending at curvature radii of 70, 50, 25, 10, 5, and 2.5 mm. The connection was bent 1000 times to investigate the reproducibility of the connector’s bending properties. The tests showed that no disconnections occurred due to bending in the vertical direction of the electrode, but disconnections were observed due to bending in the parallel direction at curvature radii of 10, 5, and 2.5 mm. In addition, the maximum average change in resistance was less than 70 milliohms unless a disconnection was generated. These results support the application of the new film-type connection in future flexible devices.

  16. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  17. Mechanical deformations of boron nitride nanotubes in crossed junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Park, Cheol [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Fay, Catharine C. [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Stupkiewicz, Stanislaw [Institute of Fundamental Technological Research, Warsaw (Poland)

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  18. High electronic couplings of single mesitylene molecular junctions.

    Science.gov (United States)

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  19. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  20. Flicker (1/f) noise in tunnel junction DC SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-04-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10/sup 4/ ..mu..m/sup 2/, but significantly overestimates the noise for junctions with areas of about 6 ..mu..m/sup 2/. DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10/sup -10//f)phi/sup 2//sub 0/Hz/sup -1/. It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies.

  1. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  2. Josephson radiation from InSb-nanowire junction

    Science.gov (United States)

    van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila

    Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.

  3. An improved molecular connectivity index

    Institute of Scientific and Technical Information of China (English)

    李新华; 俞庆森; 朱龙观

    2000-01-01

    Through modification of the delta values of the molecular connectivity indexes, and connecting the quantum chemistry with topology method effectively, the molecular connectivity indexes are converted into quantum-topology indexes. The modified indexes not only keep all information obtained from the original molecular connectivity method but also have their own virtue in application, and at the same time make up some disadvantages of the quantum and molecular connectivity methods.

  4. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  5. Soft nanostructuring of YBCO Josephson junctions by phase separation.

    Science.gov (United States)

    Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F

    2010-12-08

    We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.

  6. Nonequilibrium and proximity effects in superconductor-normal metal junctions

    Science.gov (United States)

    Kauppila, V. J.; Nguyen, H. Q.; Heikkilä, T. T.

    2013-08-01

    We study the consequences of nonequilibrium heating and inverse proximity effect in normal metal-insulator-superconductor-insulator-normal metal (NISIN) junctions with a simple quasi-one-dimensional model. We especially focus on observables and parameter regions that are of interest in the design of SINIS coolers with quasiparticle traps. We present numerical results calculated by solving the Usadel equation and also present analytical approximations in two limiting cases: a short junction with a non-negligible resistance in both ends and a long junction with a transparent contact at one end.

  7. Bloch inductance in small-capacitance Josephson junctions.

    Science.gov (United States)

    Zorin, A B

    2006-04-28

    We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/(omega)CB, an inductive term i(omega)LB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(phi) at fixed phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.

  8. Vortex structure in a long Josephson junction with two inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, O.Yu. [Tumen Thermal Networks OAO ' TRGK' , Tobolsk 626150 (Russian Federation); Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2007-09-01

    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence 'critical current-magnetic field'.

  9. Vortex structure in a long Josephson junction with two inhomogeneities

    Science.gov (United States)

    Andreeva, O. Yu.; Boyadjiev, T. L.; Shukrinov, Yu. M.

    2007-09-01

    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence “critical current-magnetic field”.

  10. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    DEFF Research Database (Denmark)

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;

    1980-01-01

    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d......B) were obtained at 35 GHz in the singly degenerate mode. On the basis of the theory and experiments, a general procedure for optimizing junction parameters is discussed and illustrated by the specific design of a 100-GHz amplifier....

  11. Turbulence-induced magnetic flux asymmetry at nanoscale junctions.

    Science.gov (United States)

    Bushong, Neil; Pershin, Yuriy; Di Ventra, Massimiliano

    2007-11-30

    It was recently predicted [J. Phys. Condens. Matter 18, 11059 (2006)] that turbulence of electron flow may develop at nonadiabatic nanoscale junctions under appropriate conditions. Here we show that such an effect leads to an asymmetric current-induced magnetic field on the two sides of an otherwise symmetric junction. We propose that measuring the fluxes ensuing from these fields across two surfaces placed at the two sides of the junction would provide direct and noninvasive evidence of the transition from laminar to turbulent electron flow. The flux asymmetry is predicted to first increase, reach a maximum, and then decrease with increasing current, i.e., with increasing amount of turbulence.

  12. Negative differential resistance in Josephson junctions coupled to a cavity

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.

    2014-01-01

    or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find......Regions with negative differential resistance can arise in the IV curve of Josephson junctions and this phenomenon plays an essential role for applications, in particular for THz radiation emission. For the measurement of high frequency radiation from Josephson junctions, a cavity – either internal...

  13. Two new septate junctions in the phylum Coelenterata.

    Science.gov (United States)

    Green, C R; Flower, N E

    1980-04-01

    Freeze-fracture of fixed and unfixed tissue, lanthanum tracer and conventional thin-section studies have revealed 2 new types of septate junction in the class Anthozoa, phylum Coelenterata. These new junctions have the 15-18-nm intercellular spacing of all other described septate junctions and are found around the apical circumference of cells lining a lumen or outside edge. However, in freeze-fracture replicas and tangential views of lanthanum-impregnated tissue, they are seen to be quite different from other known septate junction types. One of the new junctions is found in endothelial tissue such as that lining the gut or the inside of the tentacles. In tangential view it is seen to consist of relatively short, straight, double septa, again with lateral projections. In feeeze-fracture of unfixed tissue, the junction consists of double rows of particles on the P face, the particles of one row being rounded, those of the other being elongated at right angles to the line of the septum. This dichotomy in particle size is unexpected, as the 2 halves of the septa as seen in tangential view are symmetrical. In freeze-fracture of fixed material the particle arrays remain on the P face and appear similar to those of unfixed material, but never as clear. In fixed tissue, some distortion had occurred and in extreme cases septa appear as a single broad jumbled row of particles. In this double septa junction, the rows of particles seen in freeze-fracture are occasionally seen to anastomose with a septum dividing into 2 and a third row of particles aligning with the 2 new septa to form their double particle rows. In both fixed and unfixed tissues, the E face of the junction consists of wide, shallow grooves. The second of the new junctions occurs in epithelial tissue, such as around the outer edge of sea-anemone tentacles, and consists of long wavy septa with lateral projections. In views where these projections appear longest, they arise predominantly from one side of the

  14. Dependence of transport properties in tunnel junction on boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Shi, M.J.; Zeng, X.B.; Liu, S.Y.; Peng, W.B; Xiao, H.B; Liao, X.B.; Wang, Z.G.; Kong, G.L. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-04-15

    Boron-doped hydrogenated silicon films with different gaseous doping ratio (B{sub 2}H{sub 6}/SiH{sub 4}) were fabricated as recombination p layers in tunnel junctions. The measurements of I-V characteristics of the junctions and transparency spectra of p layer indicated that the best gaseous doping ratio of the recombination layer is 0.04, which is correlated to the degradation of short range order (SRO) in the inserted p thin film. The junction with such recombination layer has small resistance, near ohmic contact. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Connecting to Everyday Practices

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Smith, Rachel Charlotte

    2012-01-01

    construction and reproduction of cultural heritage creating novel connections between self and others and between past, present and future. We present experiences from a current research project, the Digital Natives exhibition, in which social media was designed as an integral part of the exhibition to connect...... issues of digital heritage with audiences’ everyday practices in a museum. We point to the fact the use of social media in museums not only challenge us to rethink the design of technology for museum experiences. Social media also challenge us to rethink conceptions of museums and cultural heritage......We suggest that social media can contribute to reconnecting audiences’ everyday practices to issues of cultural heritage in museum institutions. Social media can support the creation of dialogical spaces in the museum, both playful and reflective, that allow audiences to engage in the ongoing...

  16. Connecting Science with Society

    DEFF Research Database (Denmark)

    awareness of the important questions of our society reflected in scientific research and of the answers produced by these research activities. The CRIS2010 conference, entitled “Bringing Science to Society”, therefore seeks to highlight the role of Current Research Information Systems for communicating......CRIS2010, the 10th conference in the bi-annual series organized by euroCRIS, focuses on the connecting role of Current Research Information Systems (CRIS). Aalborg, Denmark where CRIS2010 is held, is located near the intersection of the Northern Sea and Kattegat, a place were not only the waters...... of two seas are exchanged, but also goods and culture. In a similar way, Current Research Information Systems are at the intersection between (publicly funded) research and society. They do not only connect actors, activities and results within the research domain but also play a crucial role in raising...

  17. Weldless Flange Connections

    OpenAIRE

    Andersson, Mattias; Jonsson, Henrik; Löfqvist, Stefan; Maigne, Remi; Bravo, Unai

    2004-01-01

    This development project is a bachelor’s degree thesis work that will conclude the education program ”Development Technology” at Blekinge Institute of Technology. The development project has been done in cooperation with Faurecia Exhaust Systems AB in Torsås that constructs and manufactures manifolds, catalytic converters, mufflers and whole exhaust systems. The task with this project was to find a new solution concept for the connection of pipes into flanges in manifolds. The concept that Fa...

  18. Connecting with Citizens

    DEFF Research Database (Denmark)

    Jørgensen, Poul Erik Flyvholm; Isaksson, Maria

    2017-01-01

    /2007. If Norway, like Denmark, significantly reduces its number of municipalities, the majority of municipalities will undergo significant change and experience loss of identity. Each new municipality will need to create meaningful new identities attractive to publics fearful of alienation inside a community...... they have no relationship to. The study examines how municipalities reach out to connect with their publics, and whether they employ emotional and engaging discourse. Our data consists of 20 Norwegian and 20 Danish municipal websites....

  19. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  20. Connective tissue ulcers.

    Science.gov (United States)

    Dabiri, Ganary; Falanga, Vincent

    2013-11-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren's syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers.

  1. Measurements of the linearity of an STJ and position resolution of series-connected STJs

    CERN Document Server

    Yamasaki, N Y; Rokutanda, E; Kikuchi, K; Ohashi, T; Kurakado, M

    1999-01-01

    Superconducting tunnel junctions (STJ) have been developed mainly at high-resolution spectrometers for use in X-ray astronomy. A FWHM energy resolution of 112 eV at 5.9 keV is obtained using an STJ developed at Nippon Steel Corporation connected with a cooled FET (approx 100 K). The pulse height of the signal is represented by a logarithmic function of energy based on consideration of the recombination of the quasi-particles in the junction. Experiments using series-connected STJs for an imaging radiation detector are performed. Both the pulse height and the rise time of signals from sup 2 sup 4 sup 1 Am alpha-particles indicate good position sensitivity with resolution less than 0.5 mm.

  2. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  3. Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions.

    Science.gov (United States)

    Högl, Petra; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav

    2015-09-11

    Andreev reflection spectroscopy of ferromagnet-superconductor (FS) junctions [corrected] is an important probe of spin polarization. We theoretically investigate spin-polarized transport in FS junctions in the presence of Rashba and Dresselhaus interfacial spin-orbit fields and show that Andreev reflection can be controlled by changing the magnetization orientation. We predict a giant in- and out-of-plane magnetoanisotropy of the junction conductance. If the ferromagnet is highly spin polarized-in the half-metal limit-the magnetoanisotropic Andreev reflection depends universally on the spin-orbit fields only. Our results show that Andreev reflection spectroscopy can be used for sensitive probing of interfacial spin-orbit fields in a FS junction.

  4. Evidence for nonlocal electrodynamics in planar Josephson junctions.

    Science.gov (United States)

    Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M

    2013-09-13

    We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  5. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  6. Memory cell operation based on small Josephson junctions arrays

    Science.gov (United States)

    Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.

    2016-12-01

    In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.

  7. Coherent Magnetic Switching in a Permalloy Submicron Junction

    CERN Document Server

    Wang, Junlin; Lu, Xianyang; Zhang, Jason; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2016-01-01

    This work provides a numerical micromagnetic study of the magnetic switching of a submicron magnetic junction in a Permalloy (Ni80Fe20) cross structure. The simulation results demonstrate that the magnetic domain at the junction can be controlled to switch coherently by the applied magnetic field. This coherent magnetic switching in the cross structure has been found to be reversible and the 2-bit information can be written in the magnetic junction. For information storage, this kind of device can also realize the function of a quaternary arithmetic unit. By varying the direction of the applied magnetic field, we have demonstrated that this magnetic junction could be the building block for a magnetoresistive random access memory (MRAM) or a quaternary magnetic arithmetic unit.

  8. Static vortices in long Josephson junctions of exponentially varying width

    Science.gov (United States)

    Semerdjieva, E. G.; Boyadjiev, T. L.; Shukrinov, Yu. M.

    2004-06-01

    A numerical simulation is carried out for static vortices in a long Josephson junction with an exponentially varying width. At specified values of the parameters the corresponding boundary-value problem admits more than one solution. Each solution (distribution of the magnetic flux in the junction) is associated to a Sturm-Liouville problem, the smallest eigenvalue of which can be used, in a first approximation, to assess the stability of the vortex against relatively small spatiotemporal perturbations. The change in width of the junction leads to a renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. The influence of the model parameters on the stability of the states of the magnetic flux is investigated in detail, particularly that of the shape parameter. The critical curve of the junction is constructed from pieces of the critical curves for the different magnetic flux distributions having the highest critical currents for the given magnetic field.

  9. Manipulating Josephson junctions in thin-films by nearby vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V G; Mints, R G

    2014-07-01

    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  10. Effect of surface losses on soliton propagation in Josephson junctions

    DEFF Research Database (Denmark)

    Davidson, A.; Pedersen, Niels Falsig; Pagano, S.

    1986-01-01

    We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term pla...... the dominant role in determining the shape and stability of the soliton at high velocity. Applied Physics Letters is copyrighted by The American Institute of Physics.......We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term plays...

  11. Studies of silicon p-n junction solar cells

    Science.gov (United States)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  12. High-temperature superconductor vertically-stacked Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Y; Kito, T; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H [Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2002-12-01

    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO{sub 3} (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  13. High-temperature superconductor vertically-stacked Josephson junctions

    CERN Document Server

    Yoshinaga, Y; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H

    2002-01-01

    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO sub 3 (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  14. Low-Cost Multi-Junction Photovoltaic Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed SBIR project will provide a pathway to dramatically reduce the cost of multi-junction solar cells. The project leverages a TRL6 micropackaging process...

  15. Formation of bubbles in a multisection flow-focusing junction.

    Science.gov (United States)

    Hashimoto, Michinao; Whitesides, George M

    2010-05-01

    The formation of bubbles in a flow-focusing (FF) junction comprising multiple rectangular sections is described. The simplest junctions comprise two sections (throat and orifice). Systematic investigation of the influence on the formation of bubbles of the flow of liquid and the geometry of the junction identifies regimes that generate monodisperse, bidisperse, and tridisperse trains of bubbles. The mechanisms by which these junctions form monodisperse and bidisperse bubbles are inferred from the shapes of the gas thread during breakup: these mechanisms differ primarily by the process in which the gas thread collapses in the throat and/or orifice. The dynamic self-assembly of bidisperse bubbles leads to unexpected groupings of bubbles during their flow along the outlet channel.

  16. Gamma Radiation Tolerance of Magnetic Tunnel Junctions

    Science.gov (United States)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy

    2011-10-01

    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  17. Photoinduced carrier annihilation in silicon pn junction

    Science.gov (United States)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  18. Seebeck effect in magnetic tunnel junctions.

    Science.gov (United States)

    Walter, Marvin; Walowski, Jakob; Zbarsky, Vladyslav; Münzenberg, Markus; Schäfers, Markus; Ebke, Daniel; Reiss, Günter; Thomas, Andy; Peretzki, Patrick; Seibt, Michael; Moodera, Jagadeesh S; Czerner, Michael; Bachmann, Michael; Heiliger, Christian

    2011-10-01

    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 μV K⁻¹ from the antiparallel to the parallel direction close to the predicted value of -12.1 μV K⁻¹. In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.

  19. Niobium nitride technology for Josephson junction devices

    Energy Technology Data Exchange (ETDEWEB)

    Meckbach, Johannes Maximilian; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany); Haeffelin, Andreas [Institut fuer Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut fuer Technologie(KIT), Adenauerring 20b, 76131 Karlsruhe (Germany)

    2013-07-01

    Over the last decades Nb/Al-AlO{sub x}/Nb multi-layers have been the primary choice for Josephson junction (JJ) devices such as SIS mixers, SQUIDs and RSFQ. Various applications require high critical-current densities j{sub c} and low sub-gap leakage. Additionally, a large gap-voltage benefits the performance of most devices. Nb/Al-AlO{sub x}/Nb technology is limited in j{sub c} due to an increasing transparency of the barrier with increasing j{sub c}, and the energy-gap of the Nb electrodes poses an upper frequency limit for SIS mixers. NbN/AlN/NbN multi-layer technology has emerged as an alternative to Nb/Al-AlO{sub x}/Nb. The upper frequency limit of NbN-based SIS mixing element significantly exceeds that of Nb, and AlN-barriers result in higher j{sub c}'s at identical thicknesses as compared to AlO{sub x}. We have developed an in-situ fabrication technology for NbN/AlN/NbN multi-layers. We found a clear influence of the sputter parameters on the surface morphology of the NbN electrodes, which directly impacts on the quality of the JJs. Transport properties of JJs on different substrates are presented.

  20. Parallel Quantum Circuit in a Tunnel Junction

    Science.gov (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  1. Parallel Quantum Circuit in a Tunnel Junction.

    Science.gov (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  2. Spin-crossover molecule based thermoelectric junction

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dibyajyoti [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Parida, Prakash [Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg (Germany); Pati, Swapan K. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  3. Craniovertebral junction stenosis in Lenz-Majewski syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mizuguchi, Koichi; Ishigro, Akira [National Center for Child Health and Development, Department of General Pediatrics and Interdisciplinary Medicine, Setagaya-ku, Tokyo (Japan); Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Tokyo (Japan)

    2015-09-15

    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome. (orig.)

  4. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules

    OpenAIRE

    Barros, Stephanie A.; Chenoweth, David M.

    2014-01-01

    Nucleic acid modulation by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way...

  5. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  6. Evidence for a minigap in YBCO grain boundary Josephson junctions.

    Science.gov (United States)

    Lucignano, P; Stornaiuolo, D; Tafuri, F; Altshuler, B L; Tagliacozzo, A

    2010-10-01

    Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.

  7. High Density Planar High Temperature Superconducting Josephson Junctions Arrays

    Science.gov (United States)

    2006-09-01

    TIT,) 3 dependance . At lower temperatures it follows a (1 - T/T,)2 depen- dance ........ ................................... 57 4.7 Shapiro steps in...70 4.23 Dependance of the critical current for a ten junction array on mi- crowave power ..................................... 71 4.24 Resistance vs...GHz microwave radiation. (b) Microwave power dependance of the critical current and 1st-order Shapiro step. 76 5.2 (a) Single junction critical current

  8. Resonance features of coupled Josephson junctions: radiation and shunting

    Science.gov (United States)

    Shukrinov, Yu M.; Seidel, P.; Il'ichev, E.; Nawrocki, W.; Grajcar, M.; Plecenik, P. A.; Rahmonov, I. R.; Kulikov, K.

    2012-11-01

    We study the phase dynamics and the resonance features of coupled Josephson junctions in layered superconductors and their manifestations in the current- voltage characteristics and temporal dependence of the electric charge in the superconducting layers. Results on the effect of the external radiation and shunting of the stack of Josephson junctions by LC-elements are presented. We discuss the ideas concerning the experimental observation of these resonances.

  9. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    Science.gov (United States)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  10. A rare presentation of lipoma on mandibular mucogingival junction

    Science.gov (United States)

    Sharma, Gaurav; Jain, Kanu; Nagpal, Archna; Baiju, Chandrababu Sudha

    2016-01-01

    Lipoma is the most common tumor of mesenchymal tissues of body, but its occurrence in oral cavity is infrequent. Buccal mucosa is the most common intraoral site of lipoma followed by tongue, floor of the mouth, and buccal vestibule. The involvement of mucogingival junction is rare. We present a unique case report of oral lipoma occurring on mandibular mucogingival junction with review of literature which has emphasis on differential diagnosis. PMID:27143835

  11. Craniovertebral junction stenosis in Lenz-Majewski syndrome.

    Science.gov (United States)

    Mizuguchi, Koichi; Miyazaki, Osamu; Nishimura, Gen; Ishigro, Akira

    2015-09-01

    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome.

  12. Development of Junction Elements from Study of the Bionics

    Institute of Scientific and Technical Information of China (English)

    Wilson Kindlein Junior; Luis Henrique Alves C(a)ndido; André Canal Marques; Sandra Souza dos Santos; Maurício da Silva Viegas

    2007-01-01

    The applications of bionic methodology developed by the Laboratory of Design and Material Selection as basis in the creation of junction elements were demonstrated.These elements favor the application of Ecodesign in reference to the effectiveness of product dismount aiming the reduction of ambient impact in all its phases of use.The creation,the development and the confection of new junction elements were described,and case studies of new products developed specificallv with this purpose were presented.

  13. Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

    2013-04-10

    Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4’-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

  14. Paracellular drug absorption enhancement through tight junction modulation

    OpenAIRE

    Lemmer, Hendrik Jacobus Righard; Josias H. Hamman

    2013-01-01

    Introduction: Inclusion of absorption-enhancing agents in dosage forms is one approach to improve the bioavailability of active pharmaceutical ingredients with low membrane permeability. Tight junctions are dynamic protein structures that form a regulated barrier for movement of molecules through the intercellular spaces across the intestinal epithelium. Some drug absorption enhancers are capable of loosening tight junctions and thereby facilitate paracellular absorption of drug molecules. ...

  15. Supraspinatus rupture at the musculotendinous junction in a young woman

    OpenAIRE

    Benazzo, Francesco; MARULLO, MATTEO; Pietrobono, Luigi

    2013-01-01

    The vast majority of rotator cuff tears occur within the tendon or as an avulsion from the greater tuberosity. Supraspinatus injury at the musculotendinous junction is a very uncommon event. We describe a case of supraspinatus rupture at the musculotendinous junction, with successful conservative treatment. It occurred in a 23-year-old woman, the youngest patient with this uncommon type of injury. To our knowledge, this is the first case of rupture of the supraspinatus muscle at the musculote...

  16. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    was implementing sales and operations planning (S&OP) process to foster integration on its demand chain. Although actors wanted to see what it is to produce, that is to say, the object Production, as a singular object that could be diffused across time and space, Production became more multiple because the S...... in opposite directions. They are all part of the fluid object. There is no single chain of circulating references that makes the object a matter of fact. Accounting fluidity means that references drift back and forth and enact new realities also connected to the chain. In this setting future research may...

  17. Transcultural Tectonic Connections

    DEFF Research Database (Denmark)

    Carter, Adrian

    2014-01-01

    This paper presents an understanding of Jørn Utzon, as one of the most profound exponents of a transcultural and tectonic approach to modern architecture in the late twentieth century. The paper will examine the sources of inspiration, intersections and connections in Utzon’s architecture; which...... ruins in Mexico. The Sydney Opera House’s signature sail-like roof shells derive from knowledge of boat building in his youth and ancient Chinese and Japanese temple roofs floating above a stone base. With the choice of ceramic tiles to accentuate the sculptural character of the shells, owing its...

  18. Naturally Connecting the World

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ During China International Trade Fair for Home Textiles and Accessories held in Shanghai 2010(on Aug.25th the second day of the fair),Cotton Council International(CCI)hosted an exchange meeting targeted the COTTON USATM home textile licenses,taking"Naturally Connecting the World-Opportunities for Sourcing and Collaboration with Cotton-Made Home Textiles"as the theme of the meeting.CCI's representative institution in China invited the domestic famous home textile brands,enterprises and their customers to participate in the exchange which aims to introduce the current development trend of the global cotton textile industry through CCI,the powerful platform of communication.

  19. Practicing (Dis)connections

    DEFF Research Database (Denmark)

    day-to-day character of the work practices entailed, tracing their at once embedded, yet, distributed and disparate – (dis)connected – configurations. In the course of an MRI exam, from the screening of the patient to the scanning itself, and onto the subsequent processing and analysis of the images...... and redistribution of knowledge-practices in and through sociotechnical change, particularly in the light of the advent of film-less radiology, and how MRI comes to be particularly implicated in the transition/development in radiology toward practices entailing picture archive and communication systems (PACS...

  20. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  1. Renal trauma in occult ureteropelvic junction obstruction: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Sebastia, M.C.; Rodriguez-Dobao, M.; Quiroga, S.; Pallisa, E.; Martinez-Rodriguez, M.; Alvarez-Castells, A. [Dept. of Radiology, Hospital General Universitari Vall d`Hebron, Barcelona (Spain)

    1999-05-01

    The aim of this study was to present CT findings of occult ureteropelvic junction obstruction in patients with renal trauma and to describe the clinical signs and singular CT features that are characteristically observed with trauma and are relevant to management of these patients. We retrospectively reviewed 82 helical CT studies in patients with renal trauma referred to our institution. We found 13 cases of occult preexisting renal pathology, six of which were occult ureteropelvic junction obstructions. The clinical presentation, radiologic findings of trauma according to the Federle classification, and CT findings of obstructed ureteropelvic junction are presented. We found three category-I lesions (one in a horseshoe kidney), two of them treated with nephrostomy because of increased ureteropelvic junction obstruction due to pelvic clots; two category-II lesions (parenchymal and renal pelvis lacerations) that had presented only with microhematuria; and one category-IV lesion (pelvic laceration alone). Pelvic extension was demonstrated in all the cases with perirenal collections. The CT studies in all the cases with suspected ureteropelvic junction obstruction showed decreased parenchymal thickness and enhancement, and dilatation of the renal pelvis and calyx, with a normal ureter. Computed tomography can provide information to confidently diagnose underlying ureteropelvic junction obstruction in renal trauma, categorize the traumatic injury (at times clinically silent) and facilitate proper management according to the singularities observed, such us rupture of the renal pelvis alone (Federle category IV) and increasing ureteropelvic obstruction due to clots which can be decompressed by nephrostomy. (orig.) With 6 figs., 3 tabs., 13 refs.

  2. Engineering design of artificial vascular junctions for 3D printing.

    Science.gov (United States)

    Han, Xiaoxiao; Bibb, Richard; Harris, Russell

    2016-06-20

    Vascular vessels, including arteries, veins and capillaries, are being printed using additive manufacturing technologies, also known as 3D printing. This paper demonstrates that it is important to follow the vascular design by nature as close as possible when 3D printing artificial vascular branches. In previous work, the authors developed an algorithm of computational geometry for constructing smooth junctions for 3D printing. In this work, computational fluid dynamics (CFDs) is used to compare the wall shear stress and blood velocity field for the junctions of different designs. The CFD model can reproduce the expected wall shear stress at locations remote from the junction. For large vessels such as veins, it is shown that ensuring the smoothness of the junction and using smaller joining angles as observed in nature is very important to avoid high wall shear stress and recirculation. The issue is however less significant for capillaries. Large joining angles make no difference to the hemodynamic behavior, which is also consistent with the fact that most capillary junctions have large joining angles. The combination of the CFD analysis and the junction construction method form a complete design method for artificial vascular vessels that can be 3D printed using additive manufacturing technologies.

  3. The string-junction picture of multiquark states: an update

    Science.gov (United States)

    Rossi, G. C.; Veneziano, G.

    2016-06-01

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction overline{J} . For the junction-free sector (ordinary qoverline{q} mesons and glueballs) the picture is supported by large- N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or overline{J} constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J-overline{J} annihilation diagrams. Such a rule implies that hadrons with junctions are "mesophobic" and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  4. Defining functional interactions during biogenesis of epithelial junctions

    Science.gov (United States)

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.

    2016-01-01

    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  5. Characteristics of the Surface-Intrinsic Josephson Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XU Wei-wei; YE Su-li; GUO Da-yuan; YOU Li-xing; WU Pei-heng

    2006-01-01

    During the fabrication of intrinsic Josephson junctions (IJJs) with Bi2Sr2CaCu2O8+δ(BSCCO) single crystals,the superconductivity of the surface Cu-O layer is degraded because of a deposited metal film on top of the stack.Thus,the characteristics of the surface junction consisting of the surface Cu-O double layers remarkably differ from those of the junctions deep in the stack,which will be referred to as ordinary IJJs.The electrical transport characteristics of the surface junction,such as I-V,I'c-T,and R-T,show that the critical temperature T'c of the surface junction is always lower than that of ordinary IJJs,and that the change of its critical current I'c with temperature is different from that of ordinary IIJs.Furthermore,by shunting! the surface junction resistively,we are able to observe the AC Josephson effect at 3-mm waveband.

  6. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  7. SAGE2Splice: unmapped SAGE tags reveal novel splice junctions.

    Directory of Open Access Journals (Sweden)

    Byron Yu-Lin Kuo

    2006-04-01

    Full Text Available Serial analysis of gene expression (SAGE not only is a method for profiling the global expression of genes, but also offers the opportunity for the discovery of novel transcripts. SAGE tags are mapped to known transcripts to determine the gene of origin. Tags that map neither to a known transcript nor to the genome were hypothesized to span a splice junction, for which the exon combination or exon(s are unknown. To test this hypothesis, we have developed an algorithm, SAGE2Splice, to efficiently map SAGE tags to potential splice junctions in a genome. The algorithm consists of three search levels. A scoring scheme was designed based on position weight matrices to assess the quality of candidates. Using optimized parameters for SAGE2Splice analysis and two sets of SAGE data, candidate junctions were discovered for 5%-6% of unmapped tags. Candidates were classified into three categories, reflecting the previous annotations of the putative splice junctions. Analysis of predicted tags extracted from EST sequences demonstrated that candidate junctions having the splice junction located closer to the center of the tags are more reliable. Nine of these 12 candidates were validated by RT-PCR and sequencing, and among these, four revealed previously uncharacterized exons. Thus, SAGE2Splice provides a new functionality for the identification of novel transcripts and exons. SAGE2Splice is available online at http://www.cisreg.ca.

  8. Electronic Transport in Molecular Junction Based on C20 Cages

    Institute of Scientific and Technical Information of China (English)

    OUYANG Fang-Ping; XU Hui

    2007-01-01

    Choosing closed-ended armchair(5,5)single-wall carbon nanotubes(CCNTs)as electrodes,we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes.It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CFl and double-bonded models:the conductances of C20 dimers are markedly smaller than those of monomers.The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions.Moreover,we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally.The bonding property of the molecular junction with configuration CFl has been analysed by calculating the Mulliken atomic charges.Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones,leading to the fact that N-doped junctions have relatively large conductance.

  9. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  10. Nonequilibrium and relaxation effects in tunnel superconducting junctions

    Science.gov (United States)

    Bezuglyi, E. V.; Vasenko, A. S.; Bratus', E. N.

    2017-02-01

    The specific property of a planar tunnel junction with thin-film diffusive plates and long enough leads is an essential enhancement of its transmission coefficient compared to the bare transparency of the tunnel barrier [1, 2]. In voltage-biased junctions, this creates favorable conditions for strong nonequilibrium of quasiparticles in the junction plates and leads, produced by multiparticle tunneling. We study theoretically the interplay between the nonequilibrium and relaxation processes in such junctions and found that nonequilibrium in the leads noticeably modifies the current-voltage characteristic at {eV}> 2{{Δ }}, especially the excess current, whereas strong diffusive relaxation restores the result of the classical tunnel model. At {eV}≤slant 2{{Δ }}, the diffusive relaxation decreases the peaks of the multiparticle currents. The inelastic relaxation in the junction plates essentially suppresses the n-particle currents (n> 2) by the factor n for odd and n/2 for even n. The results may be important for the problem of decoherence in Josephson-junction based superconducting qubits.

  11. Breakdown of the escape dynamics in Josephson junctions

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Galletti, L.; Born, D.; Rotoli, G.; Lombardi, F.; Longobardi, L.; Tagliacozzo, A.; Tafuri, F.

    2015-08-01

    We have identified anomalous behavior of the escape rate out of the zero-voltage state in Josephson junctions with a high critical current density Jc. For this study we have employed YBa2Cu3O7 -x grain boundary junctions, which span a wide range of Jc and have appropriate electrodynamical parameters. Such high Jc junctions, when hysteretic, do not switch from the superconducting to the normal state following the expected stochastic Josephson distribution, despite having standard Josephson properties such as a Fraunhofer magnetic field pattern. The switching current distributions (SCDs) are consistent with nonequilibrium dynamics taking place on a local rather than a global scale. This means that macroscopic quantum phenomena seem to be practically unattainable for high Jc junctions. We argue that SCDs are an accurate means to measure nonequilibrium effects. This transition from global to local dynamics is of relevance for all kinds of weak links, including the emergent family of nanohybrid Josephson junctions. Therefore caution should be applied in the use of such junctions in, for instance, the search for Majorana fermions.

  12. Junctions and spiral patterns in Rock-Paper-Scissors type models

    CERN Document Server

    Avelino, P P; Losano, L; Menezes, J; Oliveira, B F

    2012-01-01

    We investigate the population dynamics in Rock-Paper-Scissors type models with an arbitrary number of species $N$. We show, for the first time, that spiral patterns with $N$-arms may develop both for odd and even $N$, in particular in models where a bidirectional predation interaction of equal strength between all species is modified to include one N-cyclic predator-prey rule. While the former case gives rise to an interface network with Y-type junctions obeying the scaling law $L \\propto t^{1/2}$, where $L$ is the characteristic length of the network and $t$ is the time, the later can lead to a population network with $N$-armed spiral patterns, having a roughly constant characteristic length scale. We explicitly demonstrate the connection between interface junctions and spiral patters in these models and compute the corresponding scaling laws. This work significantly extends the results of previous studies of population dynamics and could have profound implications for the understanding of biological complex...

  13. Urea biosensor based on an extended-base bipolar junction transistor.

    Science.gov (United States)

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  14. Nano-cross-junction effect on phonon transport in silicon nanowire cages

    Science.gov (United States)

    Ma, Dengke; Ding, Hongru; Meng, Han; Feng, Lei; Wu, Yue; Shiomi, Junichiro; Yang, Nuo

    2016-10-01

    Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of thermal conductivity of SiNWC, 0.173 W m-1K-1 , which is one order lower than that of SiNWs. By further modal analysis and atomistic Green's function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW network.

  15. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions.

    Science.gov (United States)

    Lewis, T J; Rinzel, J

    2000-11-01

    Recent evidence suggests that electrical coupling plays a role in generating oscillatory behaviour in networks of neurons; however, the underlying mechanisms have not been identified. Using a cellular automata model proposed by Traub et al (Traub R D, Schmitz D, Jefferys J G and Draguhn A 1999 High-frequency population oscillations are predicted to occur in hippocampal pyramidal neural networks interconnected by axo-axonal gap junctions Neuroscience 92 407-26), we describe a novel mechanism for self-organized oscillations in networks that have strong, sparse random electrical coupling via gap junctions. The network activity is generated by random spontaneous activity that is moulded into regular population oscillations by the propagation of activity through the network. We explain how this activity gives rise to particular dependences of mean oscillation frequency on network connectivity parameters and on the rate of spontaneous activity, and we derive analytical expressions to approximate the mean frequency and variance of the oscillations. In doing so, we provide insight into possible mechanisms for frequency control and modulation in networks of neurons.

  16. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.

    2012-02-05

    Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale. © 2012 Macmillan Publishers Limited. All rights reserved.

  17. LHCb connects its pipes

    CERN Multimedia

    2006-01-01

    Two weeks ago the first beryllium section of the LHCb beam vacuum chamber was installed. This three-day operation, after requiring lengthy preparation work, demanded patience and precision as the first of four sections of the beampipe was connected to the vertex locator (VeLo) vacuum vessel. The AT-VAC Group with the collaboration of PH/LBD, including Gloria Corti, Tatsuya Nakada, Patrice Mermet, Delios Ramos, Frans Mul, Bruno Versollato, Bernard Corajod, and Raymond Veness. (Not pictured: Adriana Rossi and Laurent Bouvet) This first installed section is composed of a nearly two-metre long conical tube of one-millimetre thick beryllium and of a thin spherical-shaped window, 800 millimeter diameter, made of an aluminum alloy, and has the appearance of a mushroom lying on its side. The window is connected to the conical part of the beampipe through an aluminum alloy bellow, which is needed to allow for mechanical alignment once the assembly is installed. Beryllium was chosen as the material for 12 m of the 19...

  18. Quaternary Evolution of Karliova Triple Junction

    Science.gov (United States)

    Sançar, Taylan; Zabcı, Cengiz; Akyüz, H. Serdar

    2013-04-01

    The arguments to explain Quaternary evolution of Karlıova Triple Junction (KTJ) depends upon two different analogue models. The compressional type of Prandtl Cell Model (PCM) and 60 km wide shear zone with concomitant counter clockwise block rotation used to modelled for west and east of the KTJ respectively. The data for the model of west of the KTJ acquired by extensive field studies, and quantified geomorphic features. Compressional PCM put forward that behavior of slip lines controlled by boundary faults. But the model is not enough to explain slip distribution, age relation of them. At west of the KTJ boundary faults presented by eastern most segments of the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). Slip lines, however, presented by Bahçeli and Toklular faults. Both field studies and morphometric analyses undisputedly set forth that there are two different fault types between the NAFZ and EAFZ. The most strain loaded fault type, which are positioned near the NAFZ, start as a strike-slip fault and when it turn to SE its sense of motion change to oblique normal due to changing orientation of principal stress axes. The new orientation of stress axes exposed in the field as a special kind of caprock -cuesta-. The younger slip lines formed very close to junction point and accommodate less slip. Even though slip trajectories started from the boundary faults in compressional PCM, at the west of KTJ, right lateral trajectories more clearly formed close the NAFZ and left lateral trajectories, relatively less strain loaded fault type, are poorly formed close the EAFZ . We think that, this differences between KTJ and compressional PCM result from the distinction of velocity of boundary faults. East of the KTJ governed by completely different mechanism. The region controlled two main fault systems. The Varto Fault Zone (VFZ), the eastern branch of the KTJ, and Murat Fault (MF) delimited the region from north and south respectively. The

  19. Reduction of Gap Junctional Conductance by Microinjection of Antibodies against the 27-kDa Liver Gap Junction Polypeptide

    Science.gov (United States)

    Hertzberg, E. L.; Spray, D. C.; Bennett, M. V. L.

    1985-04-01

    Antibody raised against isolated rat liver gap junctions was microinjected into coupled cells in culture to assess its influence on gap junctional conductance. A rapid inhibition of fluorescent dye transfer and electrical coupling was produced in pairs of freshly dissociated adult rat hepatocytes and myocardial cells as well as in pairs of superior cervical ganglion neurons from neonatal rats cultured under conditions in which electrotonic synapses form. The antibodies have been shown by indirect immunofluorescence to bind to punctate regions of the plasma membrane in liver. By immunoreplica analysis of rat liver homogenates, plasma membranes, and isolated gap junctions resolved on NaDodSO4/polyacrylamide gels, binding was shown to be specific for the 27-kDa major polypeptide of gap junctions. This and similar antibodies should provide a tool for further investigation of the role of cell-cell communication mediated by gap junctions and indicate that immunologically similar polypeptides comprise gap junctions in adult mammalian cells derived from all three germ layers.

  20. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides.

    Science.gov (United States)

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2016-02-01

    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers.

  1. Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Chen, Mingyan; Ye, Xiang; Xie, Yi-qun, E-mail: yqxie@shnu.edu.cn [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200232 (China); Ke, San-huang, E-mail: shke@tongji.edu.cn [MOE Key Laboratory of Advanced Microstructured Materials, School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2015-02-14

    We study theoretically the structural and electronic origins of the smaller conductances (one conductance quantum, G{sub 0}, and smaller) of Rh, Pb, and Co metal atomic junctions (MAJs) in a hydrogen environment, as were measured in recent experiments. For the Rh MAJs, the 1G{sub 0} conductance is attributed to a stable contact bridged by a single hydrogen molecule whose antibonding state provides a single transport channel. For the Pb and Co MAJs the 1G{sub 0} conductance is, however, ascribed to a linear atomic chain adsorbing two dissociated H atoms, which largely reduces the density of states at the Fermi energy with respect to the pure ones. On the other hand, the small conductances of 0.3G{sub 0} (Rh) and 0.2G{sub 0} (Co) are due to H-decorated atomic chains connected to electrodes by a H atom.

  2. Creating complex molecular topologies by configuring DNA four-way junctions

    Science.gov (United States)

    Liu, Di; Chen, Gang; Akhter, Usman; Cronin, Timothy M.; Weizmann, Yossi

    2016-10-01

    The realization of complex topologies at the molecular level represents a grand challenge in chemistry. This necessitates the manipulation of molecular interactions with high precision. Here we show that single-stranded DNA (ssDNA) knots and links can be created by utilizing the inherent topological properties that pertain to the DNA four-way junction, at which the two helical strands form a node and can be configured conveniently and connected for complex topological construction. Using this strategy, we produced series of ssDNA topoisomers with the same sequences. By finely designing the curvature and torsion, double-stranded DNA knots were accessed by hybridizing and ligating the complementary strands with the knotted ssDNA templates. Furthermore, we demonstrate the use of a constructed ssDNA knot both to probe the topological conversion catalysed by DNA topoisomerase and to study the DNA replication under topological constraint.

  3. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-12-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature.

  4. Preface: Charge transport in nanoscale junctions

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  5. Behavior of wet precast beam column connections under progressive collapse scenario: an experimental study

    Science.gov (United States)

    Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.

    2014-12-01

    Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.

  6. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  7. Transnational Connections and Multiple Belongings

    DEFF Research Database (Denmark)

    Galal, Lise Paulsen; Sparre, Sara Cathrine Lei

    With the purpose of presenting DIMECCE key findings, we in this paper present different aspects, potentials and challenges related to the Middle Eastern Christians transnational connections and multiple belonging. We distinguish between individual transnational connections and practices, such as ......, such as family relations, churches as transnational – or global – institutions, and other organisations and associations established to support politically, socially or culturally connections and development in the country or region of origin.......With the purpose of presenting DIMECCE key findings, we in this paper present different aspects, potentials and challenges related to the Middle Eastern Christians transnational connections and multiple belonging. We distinguish between individual transnational connections and practices...

  8. Low-frequency noise in high-{Tc} superconductor Josephson junctions, SQUIDs, and magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Miklich, A.H.

    1994-05-01

    Design and performance of high-T{sub c} dc superconducting quantum interference devices (SQUEDs), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDS; this suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5{times}10{sup {minus}30} J Hz{sup {minus}1} at 1 Hz is reported. Magnetometers in which a (9 mm){sup 2} pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz{sup {minus}1/2} down to frequencies below I Hz, improving to 39 fT Hz{sup {minus}1/2} at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz{sup {minus}1/2} in the white noise region is reported with a (10 mm){sup 2} pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz{sup {minus}1/2}. High-T{sub c} SQUIDs exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10--20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV.Hz{sup {minus}1/2} at 10 Hz (24 pV Hz{sup {minus}1/2} at 1 Hz) is described.

  9. Transitions of protein traffic from cardiac ER to junctional SR.

    Science.gov (United States)

    Sleiman, Naama H; McFarland, Timothy P; Jones, Larry R; Cala, Steven E

    2015-04-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic.

  10. Transitions of protein traffic from cardiac ER to junctional SR

    Science.gov (United States)

    Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.

    2015-01-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca2+ release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24 h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48 h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQD-sRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed (delTRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and del TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic. PMID:25640161

  11. Connect the future

    Institute of Scientific and Technical Information of China (English)

    李柯翰

    2015-01-01

    <正>China has been developed so rapidly that it economic strength grows fast like a rocket.It leads China to become the World’s second-largest economy.Because the change of our life conditions,more and more people are wiling to go abroad,in order to feel the fresh air,civilized language,advanced science,and harmony atmosphere,all of these things like baptism which shocked people’s heart.The pursuit of better life quality requires more and more important elements such as beautiful landscape,clean lake,elegant buildings,rigorous law and kind people,since the beauty of landscape depends on it’s quality,the prosperity of a country rely on it’s power.I’ve been dreaming to become a messenger who can establish connect between different countries and various people.

  12. Intrinsic functional connectivity predicts individual differences in distractibility.

    Science.gov (United States)

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability.

  13. Role of Sertoli Cell Junctions in Spermatogenesis%睾丸支持细胞连接结构在精子发生过程的作用

    Institute of Scientific and Technical Information of China (English)

    黄瑞; 朱伟杰

    2013-01-01

    睾丸支持细胞(Sertoli cell)是曲细精管内唯一与生精细胞直接接触的体细胞,在生精过程中起免疫屏障、支持、营养和调节作用.相邻支持细胞、支持细胞与生精细胞之间的连接类型包括紧密连接、锚定连接和缝隙连接.这些连接结构与精子发生过程紧密联系,连接结构紊乱或异常,会干扰精子发生过程中的信号通路、生精细胞迁移、精子形态形成和精子极性维持等,引起生精功能障碍,导致男性生育力下降,甚至不育.%Sertoli cells are the only somatic cells which contact with the germ cells directly in the seminiferous tubules. They play an important role in forming immunological barrier, supporting and nourishing the germ cells as well as regulating spermatogenesis. The junction types between adjacent Sertoli cells and Sertoli-germ cells include tight junction, anchoring connection and gap junction. These junctions are involved in spermatogenesis. The destructive effect on these junctions may cause anomalies of signaling pathway, germ cell migration, spermatic morphology and polarity during spermatogenesis, which can induce spermatogenesis dysfunction, decrease male fertility and even lead to infertility. This review mainly summarizes the structure of Sertoli cell junctions and their influence on spermatogenesis.

  14. Generators of the auxiliary signals based on the Josephson junctions

    Directory of Open Access Journals (Sweden)

    V. M. Kychak

    2014-06-01

    Full Text Available Introduction and problem statement. Generators based on the Josephson junctions are advisable to use to ensure the generation of signals in the wavelength range from infrared to millimeter. It is necessary to build a dependence of the phase difference of the wave functions superconductor Josephson junctions from the parameters of the equivalent circuit of the resistive shunted tunnel junction. Solution of the problem. An analytical expression for calculating the dependence of the instantaneous voltage values from the parameters of the equivalent circuit resistive shunted Josephson junction is obtained. The dependence of the oscillation period from the parameters of the equivalent circuit elements is researched and a comparison of its values with the period of the output voltage of the generator based on three Josephson junctions is carried out. Conclusions. It is shown that the synchronization leads to decrement in the line width generation and increment the output voltage. Comparison of theoretical calculations and computer modeling shows that the differences do not exceed 25% and therefore they can be used for approximate calculations.

  15. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  16. Oxygen adsorption at noble metal/TiO2 junctions

    Science.gov (United States)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.

    2016-03-01

    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  17. Controllable 0-π Josephson junctions containing a ferromagnetic spin valve

    Science.gov (United States)

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, W. P., Jr.; Birge, Norman O.

    2016-06-01

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such `π-junctions' were first realized experimentally in 2001 (refs ,), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and π by changing the relative orientation of the two magnetizations. These controllable 0-π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting `programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.

  18. The Connectivity Analysis of Intermittent Connected Wireless Network

    Institute of Scientific and Technical Information of China (English)

    Li Yun; Zhou Yahui; Liu Qilie; Wang Xiaoying

    2009-01-01

    The connectivity is a basic and important characteristic to the network, it expresses the situation of link connectivity directly, and provides important reference for the entire network plan. Using statistics and probability Theory, this article emphasizes the probability between any two nodes in the network which nodes are equally distributed and the connectivity of whole network. At last, this article has made verification through simulation and has made out a conclusion, the simulation result agrees with theoretical analysis.

  19. Cell junction proteins within the cochlea:A review of recent research

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Bohua Hu; Shiming Yang

    2015-01-01

    Cell—cell junctions in the cochlea are highly complex and well organized. The role of these junctions is to maintain structural and functional integrity of the cochlea. In this review, we describe classification of cell junction-associated proteins identified within the cochlea and provide a brief overview of the function of these proteins in adherent junctions, gap junctions and tight junctions. Copyright © 2016, PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  20. The Chitin Connection

    Science.gov (United States)

    Goldman, David L.; Vicencio, Alfin G.

    2012-01-01

    ABSTRACT Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma. PMID:22448043

  1. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    attention on symplectic manifolds equipped with a family of star products, indexed by a parameter space. In this situation we can define a connection in the trivial bundle over the parameter space with fibres the formal smooth functions on the manifold, which relates the star products in the family...... and is called a formal connection. We study the question of classifying such formal connections. To each star product we can associate a certain cohomology class called the characteristic class. It turns out that a formal connection exists if and only if all the star products in the family have the same...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  2. Charge Transport across DNA-Based Three-Way Junctions.

    Science.gov (United States)

    Young, Ryan M; Singh, Arunoday P N; Thazhathveetil, Arun K; Cho, Vincent Y; Zhang, Yuqi; Renaud, Nicolas; Grozema, Ferdinand C; Beratan, David N; Ratner, Mark A; Schatz, George C; Berlin, Yuri A; Lewis, Frederick D; Wasielewski, Michael R

    2015-04-22

    DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence.

  3. HTS step-edge Josephson junction terahertz harmonic mixer

    Science.gov (United States)

    Du, Jia; Weily, Andrew R.; Gao, Xiang; Zhang, Ting; Foley, Cathy P.; Guo, Yingjie Jay

    2017-02-01

    A high-temperature superconducting (HTS) terahertz (THz) frequency down-converter or mixer based on a thin-film ring-slot antenna coupled YBa2Cu3O7-x (YBCO)/MgO step-edge Josephson junction is reported. The frequency down-conversion was achieved using higher order harmonics of an applied lower frequency (19-40 GHz) local oscillator signal in the Josephson junction mixing with a THz signal of over 600 GHz, producing a 1-3 GHz intermediate frequency signal. Up to 31st order of harmonic mixing was obtained and the mixer operated stably at temperatures up to 77 K. The design details of the antenna, HTS Josephson junction mixer, the matching and isolation circuits, and the DC and RF performance evaluation are described in this paper.

  4. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  5. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  6. Tunnel junctions for InP-on-Si solar cells

    Science.gov (United States)

    Keavney, C.; Vernon, S.; Haven, V.

    1991-01-01

    Growing, by metalorganic chemical vapor deposition, a tunnel junction is described, which makes possible and ohmic back contact in an n-on-p InP solar cell on a silicon substrate. The junction between heavily doped layers of p-type InGaAs and n-type InP shows resistance low enough not to affect the performance of these cells. InP solar cells made on n-type Si substrates with this structure were measured with an efficiency of 9.9 percent. Controls using p-type GaAs substrates showed no significant difference in cell performance, indicating that the resistance associated with the tunnel junction is less than about 0.1 ohm/sq cm.

  7. Fabry–Perot filters with tunable Josephson junction defects

    Energy Technology Data Exchange (ETDEWEB)

    Pierro, Vincenzo, E-mail: pierro@unisannio.it [Dept. of Engineering, University of Sannio, Corso Garibaldi, 107, I-82100 Benevento (Italy); Filatrella, Giovanni, E-mail: filatrella@unisannio.it [Dept. of Sciences and Technologies, University of Sannio, Via Port’Arsa, 11, I-82100 Benevento (Italy)

    2015-10-15

    Highlights: • We propose a tunable filter exploiting Josephson junctions nonlinear inductance. • The resonance center frequency is tuned by the external current. • The long Josephson junctions features are within fabrication feasibility. • The full wave analysis of the defect agrees with the linearized approximation. - Abstract: We propose to take advantage of the properties of long Josephson junctions to realize a frequency variable Fabry–Perot filter that operates in the range 100–500 GHz with a bandwidth below 1 GHz. In fact, we show that it is possible to exploit the tunability of the effective impedance of the Josephson component, that is controlled by a dc bias, to tune, up to 10% of the central frequency, the resonance of the system. An analysis of the linearized system indicates the range of operation and the main characteristic parameters. Numerical simulations of the full nonlinear Josephson element confirm the behavior expected from the linear approximation.

  8. Symmetry analysis of transport properties in helical superconductor junctions

    Science.gov (United States)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  9. Collective Dynamics of Intrinsic Josephson Junctions in HTSC

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-06-01

    The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-T{sub c} superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.

  10. Collective Dynamics of Intrinsic Josephson Junctions in HTSC

    Science.gov (United States)

    Shukrinov, Yu M.; Mahfouzi, F.

    2006-06-01

    The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.

  11. GaInN-based tunnel junctions with graded layers

    Science.gov (United States)

    Takasuka, Daiki; Akatsuka, Yasuto; Ino, Masataka; Koide, Norikatsu; Takeuchi, Tetsuya; Iwaya, Motoaki; Kamiyama, Satoshi; Akasaki, Isamu

    2016-08-01

    We demonstrated low-resistivity GaInN-based tunnel junctions using graded GaInN layers. A systematic investigation of the samples grown by metalorganic vapor phase epitaxy revealed that a tunnel junction consisting of a 4 nm both-sides graded GaInN layer (Mg: 1 × 1020 cm-3) and a 2 nm GaN layer (Si: 7 × 1020 cm-3) showed the lowest specific series resistance of 2.3 × 10-4 Ω cm2 at 3 kA/cm2 in our experiment. The InN mole fraction in the 4 nm both-sides graded GaInN layer was changed from 0 through 0.4 to 0. The obtained resistance is comparable to those of standard p-contacts with Ni/Au and MBE-grown tunnel junctions.

  12. The distribution of work performed on a NIS junction

    DEFF Research Database (Denmark)

    Santos, Jaime Eduardo Vieira da Silva Moutinho; Ribeiro, Pedro; Kirchner, Stefan

    2016-01-01

    results are based on an equivalence between the dynamics of the NIS junction and that of an assembly of two-level systems subjected to a circularly polarised field, for which we can determine the work-characteristic function exactly. The average work dissipated by the NIS junction, as well as its...... fluctuations, are determined. From the work characteristic function, we also compute the work probability-distribution and show that it does not have a Gaussian character. Our results allow for a direct experimental test of the Crooks–Tasaki fluctuation relation.......We propose an experimental setup to measure the work performed in a normal-metal/insulator/superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated heat release can be measured experimentally. Our...

  13. Adiabatic quantum pump in a zigzag graphene nanoribbon junction

    Institute of Scientific and Technical Information of China (English)

    张林

    2015-01-01

    The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.

  14. Fluxons in long and annular intrinsic Josephson junction stacks

    Science.gov (United States)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.

    2002-12-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  15. Fabrication of High-Quality Niobium Superconducting Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    XU Qin-Yin; CAO Chun-Hai; LI Meng-Yue; JIANG Yi; ZHA Shi-Tong; KANG Lin; XU Wei-Wei; CHEN Jian; WU Pei-Heng

    2011-01-01

    @@ For high-quality superconducting tunnel junctions(STJS), it is necessary to reduce leakage current as much as possible.We describe the fabrication of niobium STJs using the selective niobium(Nb) etching process and various ways to minimize the leakage current.The experiment shows that the leakage current mainly comes from shorts in the tunnel barrier layer rather than those around the junction edges.Through systematic analysis of the thin film stress, surface morphology and modified junction structures, we fabricate high-quality Nb STJs with a gap voltage of 2.8 mV and a leakage current at 1 m V as low as 8.1 % and 0.023% at 4.2K and 0.3 K, respectively.

  16. Spatial dependence of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holst, Thorsten; Hansen, Jørn Bindslev

    1991-01-01

    We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference (the Josephson phase) on the dynamics of the junction was investigated by application of a static magnetic...... field threading the tunneling barrier. We compare measurements where the plasma frequency was tuned either by applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behavior of the functional dependence of the plasma oscillations was observed in the case...... of an applied magnetic field. Numerical simulations of the governing partial-differential sine-Gordon equation were performed and compared to the experimental results and a perturbation analysis. The theoretical results support the experiments and allow us to interpret the observed crossover as due...

  17. Escape Time of Josephson Junctions for Signal Detection

    CERN Document Server

    Addesso, P; Pierro, V

    2014-01-01

    In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...

  18. Traumatic Tear of the Latissimus Dorsi Myotendinous Junction

    Science.gov (United States)

    Friedman, Michael V.; Stensby, J. Derek; Hillen, Travis J.; Demertzis, Jennifer L.; Keener, Jay D.

    2015-01-01

    A case of a latissimus dorsi myotendinous junction strain in an avid CrossFit athlete is presented. The patient developed acute onset right axillary burning and swelling and subsequent palpable pop with weakness while performing a “muscle up.” Magnetic resonance imaging examination demonstrated a high-grade tear of the right latissimus dorsi myotendinous junction approximately 9 cm proximal to its intact humeral insertion. There were no other injuries to the adjacent shoulder girdle structures. Isolated strain of the latissimus dorsi myotendinous junction is a very rare injury with a scarcity of information available regarding its imaging appearance and preferred treatment. This patient was treated conservatively and was able to resume active CrossFit training within 3 months. At 6 months postinjury, he had only a mild residual functional deficit compared with his preinjury level. PMID:26502450

  19. Superpoissonian shot noise in organic magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es [Dpto. Fisica Materia Condensada C3, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049 (Spain); Hong, Jhen-Yong; Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Szczepański, Tomasz; Dugaev, Vitalii K. [Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów (Poland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland and Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2014-12-08

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

  20. Junction size dependence of ferroelectric properties in e-beam patterned BaTiO{sub 3} ferroelectric tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. V.; Gupta, A. [Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Althammer, M. [Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Walther-Meissner-Institut, Bayerische Akdademie der Wissenschaften, Garching 85748 (Germany); Rott, K.; Reiss, G. [Thin Films and Physics of Nanostructures, Department of Physics and Center for Spinelectronic Materials and Devices, Bielefeld University, Bielefeld 33615 (Germany)

    2015-09-21

    We investigate the switching characteristics in BaTiO{sub 3}-based ferroelectric tunnel junctions patterned in a capacitive geometry with circular Ru top electrode with diameters ranging from ∼430 to 2300 nm. Two different patterning schemes, viz., lift-off and ion-milling, have been employed to examine the variations in the ferroelectric polarization, switching, and tunnel electro-resistance resulting from differences in the pattering processes. The values of polarization switching field are measured and compared for junctions of different diameter in the samples fabricated using both patterning schemes. We do not find any specific dependence of polarization switching bias on the size of junctions in both sample stacks. The junctions in the ion-milled sample show up to three orders of resistance change by polarization switching and the polarization retention is found to improve with increasing junction diameter. However, similar switching is absent in the lift-off sample, highlighting the effect of patterning scheme on the polarization retention.