WorldWideScience

Sample records for adenosine triphosphatase activity

  1. Hydrogen potassium adenosine triphosphatase activity inhibition and downregulation of its expression by bioactive fraction DLBS2411 from Cinnamomum burmannii in gastric parietal cells

    OpenAIRE

    Tjandrawinata RR; Nailufar F; Arifin PF

    2013-01-01

    Raymond R Tjandrawinata1,2, Florensia Nailufar2, Poppy F Arifin11Section of Molecular Pharmacology, 2Section of Animal Pharmacology, Dexa Medica, Cikarang, IndonesiaAbstract: This study assessed the gastric acid antisecretory effect of DLBS2411 fractionated from Cinnamomum burmannii. Hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) activity and its gene expression were observed, and the antioxidant activity of DLBS2411 was also investigated. Treatment of DLBS2411 decreased the level...

  2. Ultracytochemical localization of H+—adenosine triphosphatase activity in autophagic vacuoles induced by vinblastine in rat liver

    Institute of Scientific and Technical Information of China (English)

    LUOSHENQIU; MASAHIROSAKAI; 等

    1990-01-01

    H-adenosine triphosphatase (H+-ATPase) activity was demonstrated cytochemically in autophagic vacuoles(AVs) of rat hepatocytes using a modification of the method for the demonstration of neutral p-nitrophenyl phosphatase(p-NPPase) activity[1].When an inhibitor of H+-ATPase,N-ethylmaleimide (NEM) or 4,4'-diisothiocyanostilbene-2,2'disulfonic acid,disodium salt (DIDS) was included in the incubation medium the enyzme activity was abolished indicating that p-NPPase demonstrated in this study represents H+-ATPase.Autophagy was induced by a single intraperitoneal injection of vinblastine sulfate(VBL).The number of AVs increased remarkably in hepatocytes from 40 min after VBL treatment.H+-ATPase activity was observed mainly on the membranes of lysosomes and AVs.However,early forms of AVs containing only incompletely digested material showed no H+-ATPase activity.Most AVs revealing a positive reaction seemed to be in advanced stages of development.Acid phosphatase acticity was demonstrable in mature but not in early forms of AVs.The present investigation showed that membranes of advanced stage AVs possess an H+-ATPase which may be derived from lysosomal membranes.

  3. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Institute of Scientific and Technical Information of China (English)

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  4. [Ultrastructural localization of adenosine triphosphatase activity in the proximal kidney tubules of white rats].

    Science.gov (United States)

    Panasiuk, E N; Birov, V V; Nazar, P S; Saĭ, V G; Kavalishin, V I

    1977-10-01

    In white rats, the ferment topography of Mg+2 and (Na+ + K+)-activated ATPh-ses in proximal canaliculi was studied with the aid of the ultrastructural cytochemistry. The final product of the fermentative reaction (PhHPO4) in the form of small dense granuli is positioned on the duplicate folds of epithelial cells, the cells limiting the brush border micropiles, and on invaginations of the apical plasmalemme at the micropiles base. For (Na+ %K+)-activated ATPh-ses a localisation of the reaction product was determined in the canaliculi vessels.

  5. Oxidative stress parameters and erythrocyte membrane adenosine triphosphatase activities in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe Pinnata leaves

    Directory of Open Access Journals (Sweden)

    Nikhil Menon

    2016-01-01

    Full Text Available Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC membrane adenosine triphosphatase (ATPase activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg. Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05 increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05 increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism

  6. Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity.

    OpenAIRE

    Davis, F B; Smith, T. J.; Deziel, M R; Davis, P J; Blas, S D

    1990-01-01

    Ca2(+)-ATPase activity in human red cell membranes is dependent on the presence of calmodulin. All trans-retinoic acid inhibited human red cell membrane Ca2(+)-ATPase activity in vitro in a concentration-dependent manner (10(-8) to 10(-4) M). In contrast, retinol, retinal, 13-cis-retinoic acid and the benzene ring analogue of retinoic acid did not alter enzyme activity. Purified calmodulin (up to 500 ng/ml, 3 X 10(-8) M) added to red cell membranes, in the presence of inhibitory concentration...

  7. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein.

    Science.gov (United States)

    Gross, C H; Shuman, S

    1998-12-01

    Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5'-triphosphatase that hydrolyzes the gamma phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 microM ATP; Vmax = 30 s-1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases. PMID:9811740

  8. Reduction of nitrates in Cucumis sativus L. seedlings II. Influence of tungsten and vanadium on nitrate reductase and adenosine triphosphatase activities

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-02-01

    Full Text Available ATPases isolated from the roots of cucumber seedlings activated by Mg+2 ions in experiments in vitro, were fairly distinctly inhibited by Ca-2 ions, very slightly inhibited by fluorides and molybdenum ions while NO3- anions had no effect on the level of ATPase activity studied. Introduction into the nutrient of 10-4 M Na2WO4 or 10-3 M Na VO3 (inhibitors of nitrate reductase NR distinctly inhibited activity of the ATPase under study especially of fractions IIa and III, and inhibited NR activity and lowered uptake of NO3-. WO4-2 and VO3 inhibited to the same extent absorption and reduction of NO3- in the initial phase of NR induction, whereas at a later stage both inhibitors checked reduction to a greater degree than uptake of NO3-. The results indicate the possibility of certain ATPase participation in assimilating nitrates, and suggest that in the initial stage of biosynthesis of the NR enzyme system, activity of the enzyme is distinctly dependent upon NO3- transport and the level of NR activity limited by the amount of nitrate taken up. At a later an additional mechanism of NO3- transport probably functions, not connected with simultaneous reduction of nitrates. On the basis of results the Butz and Jackson (1977 hypothesis concerning a model for the absorption and reduction of NO3- by plant tissues is discussed.

  9. Tegumental Ca-stimulated adenosine triphosphatase activity in adult Schistosoma mansoni worms Atividade da adenosina trifosfatase estimulada pelo Ca no tegumento de vermes adultos de Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Italo M. Cesari

    1989-09-01

    Full Text Available A Ca-stimulated ATPase activity (pH 9.5 associated with the tegumental membrane enriched (TME fraction of Schistosoma mansoni adults was partially inhibited by NAP-taurine or by increasing concentrations of chlorpromazine; endogenous calmodulin was found associated with the TME fraction. A similar activity (pH 8.6 was histochemically visualized whithin the tegument of fixed worms on the cytoplasmic leaflet of both the doubel surface membrane and the basement membrane; this reaction was inhibited by 1 µM chloropromazine and it was also observed on the inner side of double membrane vesicles present in the TME fraction. No ATPase activity could be seen at alkaline pH with added Mg or Na/K ions. Without ATP, the addition of external Ca to the fixed worms induced the appearance of lead precipitates on the tegumental discoid bodies; this reaction was inhibited by molybdate and not by chlorpromazine. The intrategumentary regulation of calcium by the systems described and the possible use of phenothiazines against schistosimes are discussed.A atividade ATPse (pH 9.5 estimulada por ions de Ca associados a uma fração enriquecida de membranas do tegumento (fração EMT de vermes adultos de Schistosoma mansoni, foi inibida pro NAP-taurina ou por concentrações crescentes de clorpromacina. Foi encontrada calmodulina enfogena associada principlamente a esta fração. Em vermes adultos fixados com glutaraldeido se detectou histoquimicamente uma atividade ATPase similar (pH 8.6 na face citoplasmática da dupla membrana de superfície e da membrana por 1 µM de clorpromacina e foi também observada na face interna de vesículas de dupla membrana presentes na fração EMT. Não se pôde detectar atividade ATpase em pH alcalino na presença de ions de Mg ou Na/K. A adição externa de Ca, sem ATP, aos vermes fixados induz ao aparecimento de precipitados nos corpos discóides do tegumento; esta reação foi inibida. Os resultados são discutidos em relação a

  10. Mapping the active site of vaccinia virus RNA triphosphatase

    International Nuclear Information System (INIS)

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  11. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.

    Science.gov (United States)

    Lindenmayer, G E; Schwartz, A; Thompson, H K

    1974-01-01

    1. Dissociation constants for sodium and potassium of a site that modulates the rate of ouabain-(Na(+)+K(+))-ATPase interaction were applied to models for potassium activation of (Na(+)+K(+))-ATPase. The constants for potassium (0.213 mM) and for sodium (13.7 mM) were defined, respectively, as activation constant, K(a) and inhibitory constant, K(i).2. Tests of the one- and the two-equivalent site models, that describe sodium and potassium competition, revealed that neither model adequately predicts the activation effects of potassium in the presence of 100 or 200 mM sodium.3. The potassium-activation data, obtained at low potassium and high sodium, were explained by a two-nonequivalent site model where the dissociation constants of the first site are 0.213 mM for potassium and 13.7 mM for sodium. The second site was characterized by dissociation constants of 0.091 mM for potassium and 74.1 mM for sodium.4. The two-nonequivalent site model adequately predicted the responses to concentrations of potassium between 0.25 and 5 mM in the presence of 100-500 mM sodium. At lower sodium concentrations the predicted responses formed an upper limit for the function of observed activities. This limit was reached at lower concentrations of potassium and higher concentrations of sodium, which inferred saturation of the sodium-activation sites with sodium.5. Sodium-activation data were corrected for sodium interaction with potassium-activation sites by use of the two-nonequivalent site model for potassium activation. Tests of equivalent site models suggested that the corrected data for sodium activation may be most consistent with a model that has three-equivalent sites. Other multiequivalent site models (n = 2, 4, 5 or 6), however, cannot be statistically eliminated as possibilities. The three-equivalent site activation model was characterized by dissociation constants of 1.39 mM for sodium and 11.7 mM for potassium. The system theoretically would be half-maximally activated by

  12. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    Science.gov (United States)

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.

  13. Membrane bound pyrophosphatase and P-type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: similarities and differences in inhibitor sensitivities.

    Science.gov (United States)

    Sen, S S; Bhuyan, N R; Lakshman, K; Roy, A K; Chakraborty, B; Bera, T

    2009-12-01

    The activities of inorganic pyrophosphatase (PPase) and adenosine triphosphatase (ATPase) were studied in the plasma membrane of Leishmania donovani promastigotes and amastigotes. It was shown that the specific activity of PPase was greater than that of ATPase in the promastigote plasma membrane. We characterized H+-PPase present in the plasma membrane of L. donovani and investigated its possible role in the survival of promastigote and amastigote. PPase activity was stimulated by K+ and sodium orthovanadate and inhibited by pyrophosphate analogs (imidodiphosphate and alendronate), KF, N,N'-dicyclohexylcarbodiimide (DCCD), thiol reagents (p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), and phenylarsine oxide (PAO)), the ABC superfamily transport modulator verapamil, and also by the F(1)F(o)-ATPase inhibitor quercetin. ATPase activity was stimulated by K+ and verapamil, inhibited by DCCD, PCMBS, NEM, sodium azide, sodium orthovanadate, and quercetin, and was unaffected by PAO. We conclude that there are significant differences within promastigote, amastigote, and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase transporter as a putative target for rational drug design. PMID:19961421

  14. Effects of basic fibroblast growth factor on adenosine triphosphatase activity and antioxidation of alcoholism rat models%碱性成纤维细胞生长因子对乙醇中毒大鼠ATP酶及抗氧化作用的影响

    Institute of Scientific and Technical Information of China (English)

    黄俊杰; 王彩冰; 何显教; 黄丽娟; 黄彦峰; 梁祚仁; 阳秀英; 黎昀; 赵善民

    2012-01-01

    BACKGROUND: Basic fibroblast growth factor(bFGF) has multiple biological activities, and has positive effect on the recovery oftissue trauma. But the effect of bFGF against alcoholism has not been reported.OBJECTIVE: To study the effect of bFGF on the activities of adenosine triphosphatase (ATPase) and superoxide dismutase(SOD) and malondialdehyde (MDA)in cerebral cortex and liver tissue of alcoholism rat model.METHODS: The alcoholism rat models were established by perfusing stomach with alcohol. Thirty Wistar rats were randomlydivided into three groups. Normal saline group and bFGF treatment group were injected with normal saline and bFGF,respectively, at 60 days after modeling; Alcoholism model group was treated with no intervention. Another 10 rats without alcoholserved as control group.RESULTS AND CONCLUSION: The activities of ATPase and SOD in the cerebral cortex and livertissue of alcoholism modelgroup were significantly decreased than those in the control group, but the content of M DA was significantly higher than that inthe control group (P<0.05). After bFGF intervention, the activities of ATPase and SOD in the cerebral cortex and livertissuewere significantly increased compared with the normal saline group and alcoholism model group, but the content of MDA wassignificantly decreased (P<0.05-0.01). bFGF can increase the activities of ATPase and the antioxidative ability of brain tissue inalcoholism model rats. The bFGF can protect the brain and liver of rats against alcoholism.%背景:碱性成纤维细胞生长因子具有多种生物活性,对组织创伤具有修复作用,但其对乙醇中毒的保护作用至今未见报道.目的:观察碱性成纤维细胞生长因子对乙醇中毒大鼠脑和肝组织中ATP 酶、超氧化物歧化酶活力和丙二醛水平的影响.方法:选择成年Wistar 雄性大鼠,采用白酒灌胃建立乙醇中毒模型,30 只造模成功的大鼠分为3 组,生理盐水组和碱性成纤维细胞生长

  15. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphatase and ATPase activities.

    Science.gov (United States)

    Jin, J; Dong, W; Guarino, L A

    1998-12-01

    The baculovirus Autographa californica nuclear polyhedrosis virus encodes a DNA-dependent RNA polymerase that is required for transcription of viral late genes. This polymerase is composed of four equimolar subunits, LEF-8, LEF-4, LEF-9, and p47. The LEF-4 subunit has guanylyltransferase activity, suggesting that baculoviruses may encode a full complement of capping enzymes. Here we show that LEF-4 is a bifunctional enzyme that hydrolyzes the gamma phosphates of triphosphate-terminated RNA and also hydrolyzes ATP and GTP to the respective diphosphate forms. Alanine substitution of five residues previously shown to be essential for vaccinia virus RNA triphosphatase activity inactivated the triphosphatase component of LEF-4 but not the guanylyltransferase domain. Conversely, mutation of the invariant lysine in the guanylyltransferase domain abolished the guanylyltransferase activity without affecting triphosphatase function. We also investigated the effects of substituting phenylalanine for leucine at position 105, a mutation that results in a virus that is temperature sensitive for late gene expression. We found that this mutation had no significant effect on the ATPase or guanylyltransferase activity of LEF-4 but resulted in a modest decrease in RNA triphosphatase activity. PMID:9811739

  16. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities.

    Science.gov (United States)

    Takagi, T; Taylor, G S; Kusakabe, T; Charbonneau, H; Buratowski, S

    1998-08-18

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  17. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M;

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras...... as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl....... Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair...

  18. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  19. New member of the guanosine triphosphatase activating protein family in the human epididymis

    Institute of Scientific and Technical Information of China (English)

    Xiangqi Li; Qiang Liu; Shigui Liu; Jinsong Zhang; Yonglian Zhang

    2008-01-01

    The effect of the guanosine triphosphatase activating proteins (GAPs) on spermatogenesis has been studied for years,though no GAPs have been explored in epididymis, an essential organ for sperm maturation. In this study, a new GAP member, designated as MacGAP, was cloned in human epididymis. The MacGAP gene encodes a protein of 618 amino acids with a putative size of 70 kDa and harbors the conservedRhoGAPdomain. The N-terminal and C-terminal peptides of MacGAP were expressed and their corresponding antiserawere prepared. The antisera against N-terminal peptide could detect antigen as low as 0.3 ng, and its specificity was alsoconfirmed. However, the antisera against C-terminal peptide failed to detect its antigen because of its low sensitivity.Immunohistochemistry showed that the MacGAP protein was dependent on epididymis and had a region-specific expression pattern, with high expression in the epithelial cells' basal section in the caput region. The results have created a foundation for further interpretation of the biological effects of GAPs in sperm maturation.

  20. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3.

    Science.gov (United States)

    Zhong, W; Ingravallo, P; Wright-Minogue, J; Skelton, A; Uss, A S; Chase, R; Yao, N; Lau, J Y; Hong, Z

    1999-09-01

    GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed. PMID:10497107

  1. Neurofibromatosis: The role of guanosine triphosphatase activating proteins in sensory neuron function

    Institute of Scientific and Technical Information of China (English)

    Cynthia M. Hingtgen

    2008-01-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibromin, the protein product of the Nfl gene, is a gnanosine triphosphatase activating protein (GAP) for p21Ras (Ras). Loss of Nfl results in an increase in activity of the Ras transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the Ras transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), from primary sensory neurons of mice with a mutation of the Nfl gene (NfI+1-). Measuring the levels of SP and CGRP by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropep-tides is 3-5 folds higher in spinal cord slices from Nfl+1-mice than that from wildtype mouse tissue. In addition, the potassium- and capsaicin-stimulated release of CGRP from the culture of sensory neurons isolated from Nfl+1- mice was more than double that from the culture of wildtype neurons. Using patch-clamp electrophysiological techniques, we also examined the excitability of capsaicin-sensitive sensory neurons. It was found that the number of action potentials generated by the neurons from Nfl+1- mice, responsing to a ramp of depolarizing current, was more than three times of that generated by wildtype neurons. Consistent with that observation, neurons from Nfl+1- mice had lower firing thresholds, lower rheobase currents and shorter firing latencies compared with wildtype neurons. These data clearly demonstrate that GAPs, such as neurofihromin, can alter the excitability of nociceptive sensory neurons. The augmented response of sensory neurons with altered Ras signaling may explain the abnormal pain sensations experienced by people with NFI and suggests an important

  2. Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleotides are required for inhibition of NIFA activity by NIFL.

    Science.gov (United States)

    Eydmann, T; Söderbäck, E; Jones, T; Hill, S; Austin, S; Dixon, R

    1995-03-01

    The enhancer-binding protein NIFA is required for transcriptional activation of nif promoters by the alternative holoenzyme form of RNA polymerase, which contains the sigma factor sigma 54 (sigma N). NIFA hydrolyzes nucleoside triphosphates to catalyze the isomerization of closed promoter complexes to transcriptionally competent open complexes. The activity of NIFA is antagonized by the regulatory protein NIFL in response to oxygen and fixed nitrogen in vivo. We have investigated the requirement for nucleotides in the formation and stability of open promoter complexes by NIFA and inhibition of its activity by NIFL at the Klebsiella pneumoniae nifH promoter. Open complexes formed by sigma 54-containing RNA polymerase are considerably more stable to heparin challenge in the presence of GTP than in the presence of ATP. This differential stability is most probably a consequence of GTP being the initiating nucleotide at this promoter. Adenosine nucleosides are specifically required for Azotobacter vinelandii NIFL to inhibit open complex formation by native NIFA, and the nucleoside triphosphatase activity of NIFA is strongly inhibited by NIFL under these conditions. We propose a model in which NIFL modulates the activity of NIFA via an adenosine nucleotide switch. PMID:7868590

  3. miR-495 enhances the sensitivity of non-small cell lung cancer cells to platinum by modulation of copper-transporting P-type adenosine triphosphatase A (ATP7A).

    Science.gov (United States)

    Song, Liqiang; Li, Yan; Li, Weina; Wu, Shouzhen; Li, Zhikui

    2014-07-01

    Copper-transporting P-type adenosine triphosphatase A (ATP7A) is associated with platinum drug resistance in non-small cell lung cancer (NSCLC). microRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. In this study, the aim is to explore which miRNAs might participate in the platinum resistance by targeting ATP7A in NSCLC. Using real-time PCR-based miRNA expression profiling and bioinformatics, we selected miR-495 as a candidate miRNA. EGFP reporter assay, real-time PCR, and Western blot validated that ATP7A was a direct target for miR-495. The drug sensitivity assay indicated that miR-495 enhanced the cell response to cisplatin (CDDP) in NSCLC cells, while inhibition of miR-495 led to the opposite effects. Importantly, either overexpression or knockdown of ATP7A could override the effect of miR-495 on chemosensitivity. We also demonstrated that miR-495 increased the intracellular CDDP accumulation and overexpression of ATP7A can reduce the increased drug concentration induced by miR-495. Finally, we discovered that there was a converse relationship between miR-495 and ATP7A levels in NSCLC tissues sensitive or resistant to CDDP. In conclusion, our data demonstrate that miR-495 regulates the multi-drug resistance by modulation of ATP7A expression in NSCLC and suggest that miR-495 may serve as a potential biomarker for the treatment of multi-drug resistant NSCLC patients with high ATP7A levels. PMID:24038379

  4. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    Science.gov (United States)

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-09-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed.

  5. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  6. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    Science.gov (United States)

    Agutter, P S; Harris, J R; Stevenson, I

    1977-03-15

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope.

  7. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  8. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    Science.gov (United States)

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  9. The expression of copper-transporting P-type adenosine triphosphatase in ovarian cancer and its correlation with chemotherapy resistance%P型铜转运ATP酶在卵巢癌中的表达及其与化疗耐药的关系

    Institute of Scientific and Technical Information of China (English)

    李侠; 吴绪峰; 陈惠祯

    2008-01-01

    目的:探讨P型铜转运ATP酶(copper-transporting P-type adenosine triphosphatase,ATP 7B)在卵巢癌组织中的表达及其与临床病理参数、化疗耐药的关系.方法:用半定量RT-PCR技术检测ATP 7B在36例卵巢癌组织,10例良性卵巢肿瘤组织,10例正常卵巢组织中的表达水平.结果:ATP7B在卵巢癌组织中的阳性表达率为38.9%,显著高于在良性卵巢肿瘤(0%)及正常卵巢组织中(0%)的表达(P<0.01).ATP7B的表达与肿瘤分化程度有关,ATP7B在低分化组织中的表达明显高于高、中分化组(P<0.05).ATP7B在术前化疗组中的表达高于术前未化疗组,差异有统计学意义(P<0.05).ATP7B表达阳性的卵巢癌患者对化疗的反应率(28.6%)明显低于表达为阴性的患者(72.7%)(P<0.05).结论:ATP 7B可能在卵巢癌对铂类抗肿瘤药的耐药过程中发挥了重要作用.

  10. Adenosine Deaminase Activity in Chronic Lymphocytic Leukemia and Healthy Subjects

    Science.gov (United States)

    Ghaderi, Bayazid; Amini, Sabrieh; Maroofi, Farzad; Jalali, Chiya; Javanmardi, Mitra; Roshani, Daem; Abdi, Mohammad

    2016-01-01

    Background B cell chronic lymphocytic leukemia is one of the most frequent hematologic malignancies in the world. Cellular surface CD markers and serum Beta-2-microglobulin may be used as a prognostic tool in CLL patients. Objectives In the present study we introduce serum adenosine deaminase as a diagnostic marker in CLL. Materials and Methods Blood samples were collected from B-CLL and healthy subjects. White blood cell, red blood cell and platelet count and blood Erythrocyte sedimentation rate was recorded and serum Beta-2-microglobulin, Lactate dehydrogenase and total ADA enzyme activity were determined. Results Serum ADA activity was significantly higher in patients group than that of controls. ADA had a significant and direct correlation with B2M, WBC, LDH and ESR. However, there was not any relation between ADA and the stages of disease. Diagnostic cut-off, sensitivity and specificity of the serum ADA test were 27.97 U/L, 91% and 94%, respectively. Conclusions A higher ADA activity in patients group and its correlation with CLL markers were seen in our study. High diagnostic value of serum ADA in our study suggests that it might be considered as a useful screening tool among the other markers in CLL.

  11. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    Directory of Open Access Journals (Sweden)

    Moss Bernard

    2008-12-01

    Full Text Available Abstract Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV, the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more

  12. The role of carotid chemoreceptors in the sympathetic activation by adenosine in humans.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Rongen, G.A.P.J.M.; Karemaker, J.M.; Wieling, W.; Marres, H.A.M.; Lenders, J.W.M.

    2004-01-01

    The direct vasodilatory and negative chronotropic effects of adenosine in humans are counterbalanced by a reflex increase in sympathetic nerve traffic. A suggested mechanism for this reflex includes peripheral chemoreceptor activation. We, therefore, assessed the contribution of carotid chemorecepto

  13. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    Science.gov (United States)

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  14. CSF ADENOSINE DEAMINASE (ADA ACTIVITY IN PATIENTS WITH MENINGITIS

    Directory of Open Access Journals (Sweden)

    Justin

    2016-05-01

    Full Text Available Meningitis is inflammation of the meninges (pia, arachnoid and dura mater covering the brain and the spinal cord. ADA is an enzyme in the purine salvage pathway which is found in abundance in active T-lymphocytes. Hence, an attempt was made to estimate the CSF ADA level in patients with suspected meningitis and throw light on its use in differentiating the various types of meningitis. AIMS AND OBJECTIVES To estimate the level of CSF adenosine deaminase level in different types of meningitis. To assess its usefulness in differentiating the various types (bacterial, viral and tuberculous of meningitis. MATERIALS AND METHODS The study was conducted at the medical wards of Govt. Rajaji Hospital, Madurai, a prospective analytical study from a period of April 2012 to September 2012. OBSERVATION AND RESULTS Tuberculous meningitis occurred more in the age group of 21–40 years. Bacterial meningitis was seen mainly in patients < 20 years of age. Viral meningitis was seen in all age groups. CSF ADA level was highest in tuberculous meningitis, the mean value being 24.5 U/L. The mean value of ADA in bacterial meningitis was 4.54 U/L and viral meningitis patients had lowest mean ADA value of 2.65 U/L. CONCLUSION In our study, 50 patients with meningitis admitted in Government Rajaji Hospital from April 2012 to September 2012 were evaluated. Meningitis predominantly affected people in the age group of 20-40 years in our study with a male: female ratio of 1.9:1. Cases of tuberculous meningitis constituted 48% of the study group and bacterial and viral meningitis were 26% each. CSF protein values were higher and sugar values lower in patients with tuberculous and bacterial meningitis. CSF cell counts were higher in patients with bacterial meningitis.

  15. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the “adenosine hypothesis”

    OpenAIRE

    Aliagas, Elisabet; Villar-Menéndez, Izaskun; Sévigny, Jean; Roca, Mercedes; Romeu, Miriam; Ferrer, Isidre; Martín-Satué, Mireia; Barrachina, Marta

    2013-01-01

    Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5′-nucleotidase, and alkaline phosphatase) in the postmortem putame...

  16. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  17. Alteration in the expression of Na+-K+-adenosine triphosphatase in denervated rat skeletal muscle%去除神经支配大鼠骨骼肌中钠钾三磷酸腺苷酶表达的变化

    Institute of Scientific and Technical Information of China (English)

    赵海燕; Hundal HS

    2006-01-01

    苷酶亚基的表达机制被破坏.%BACKGROUND: Insulin-induced alteration in ion transport has impact on metabolic regulation and reduced Na+-K+-adenosine triphosphatase(ATPase) activity in insulin resistauce results in hypertension and decrease in glycolysis, glucose oxidation and production of ATP.OBJECTIVE: To investigate the regulation of expression of Na+-K+-AT-Pase in insulin resistance model system.DESIGN: Controlled experiment.SETTING: Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, UK.MATERIALS: The study was performed from October 1999 to February2000,in which, 15 adult male Sprague Dawley rats (200-250 g) of clean grade were employed. The experiment was performed with 5 rats each time and repeated for 3 times.METHODS:Unilateral hindlimbs innervation of rats were severed. Four days later, skeletal muscle was dissected from denervated and contralateral control hindlimbs. Grude muscle membranes were prepared from red muscle (soleus and red gastrocnemius) and white gastrocnemius. Western Blotting and Northern Blotting analysis were employed to examine protein and mRNA expression of Na+-K+-ATPase subunit isoforms respectively.The intensity of protein and mRNA signals was quantitated with a BioRad GS-670 imaging densitometer.MAIN OUTCOME MEASURES: Levels of protein and mRNA of Na+-K+-ATPase subunit isoforms in control and denervated hindlimb skeletal muscles.RESULTS: Fifteen rats all entered the stage of results analysis. Compared with control, in denervated hindlimb ① the protein levels of α2-and β1-subunit in red muscle were reduced markedly by 46% and 77% respectively. The abundance of α1 protein was increased in red and white muscle by 20% and 15% respectively. There was no significant change in protein expression of β2-subunit in red and white gastrocnemius (WG). ② The mRNA level of α2-subunit decreased by 29% and 39% in red gastrocnemius (RG) and soleus, respectively, and that of β1-subunit decreased 80%and

  18. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  19. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    Science.gov (United States)

    Agutter, P S

    1980-04-15

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.

  20. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.

    Science.gov (United States)

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2012-09-01

    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  1. Chemoelectrical energy conversion of adenosine triphosphate

    Science.gov (United States)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  2. REPRODUCTIVE CONDITION, GLOMERULAR ADENOSINE DIPHOSPHATASE ACTIVITY, AND PLATELET-AGGREGATION IN THE RAT - EFFECT OF ENDOTOXIN

    NARCIS (Netherlands)

    VISSCHER, CA; FAAS, MM; BAKKER, WW; SCHUILING, GA

    1993-01-01

    In experiment A, the activity of the glomerular antithrombotic enzyme adenosine diphosphatase (ADPase) and the sensitivity of this enzyme for endotoxin (1.0 mug/kg BW) in various reproductive conditions of female rats were studied through use of enzyme histochemical methods. In experiment B, the eff

  3. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  4. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar;

    2014-01-01

    Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  5. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong

    2011-01-01

    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  6. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  7. GIRK channel activation via adenosine or muscarinic receptors has similar effects on rat atrial electrophysiology

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Liang, Bo; Skibsbye, Lasse;

    2013-01-01

    and compare the electrophysiological effects of acetylcholine (ACh) and adenosine on GIRK channels in rat atria. Action potential duration at 90% repolarization (APD90), effective refractory period (ERP), and resting membrane potential (RMP) were investigated in isolated rat atria by intracellular recordings....... Both the adenosine analog N6-cyclopentyladenosine (CPA) and ACh profoundly shortened APD90 and ERP and hyperpolarized the RMP. No additive or synergistic effect of CPA and ACh coapplication was observed. To antagonize GIRK channel activation, the specific inhibitor rTertiapin Q (TTQ) was applied....... The coapplication of TTQ reversed the CPA and ACh-induced effects. When TTQ was applied without exogenous receptor activator, both APD90 and ERP were prolonged and RMP was depolarized, confirming a basal activity of the GIRK current. The results reveal that activation of A1 and M2 receptors has a profound and equal...

  8. GIRK channel activation via adenosine or muscarinic receptors has similar effects on rat atrial electrophysiology.

    Science.gov (United States)

    Wang, Xiaodong; Liang, Bo; Skibsbye, Lasse; Olesen, Søren-Peter; Grunnet, Morten; Jespersen, Thomas

    2013-08-01

    G protein-coupled inwardly rectifying K⁺ channels (GIRK) are important in the regulation of heart rate and atrial electrophysiology. GIRK channels are activated by G protein-coupled receptors, including muscarinic M₂ receptors and adenosine A₁ receptors. The aim of this study was to characterize and compare the electrophysiological effects of acetylcholine (ACh) and adenosine on GIRK channels in rat atria. Action potential duration at 90% repolarization (APD₉₀), effective refractory period (ERP), and resting membrane potential (RMP) were investigated in isolated rat atria by intracellular recordings. Both the adenosine analog N6-cyclopentyladenosine (CPA) and ACh profoundly shortened APD₉₀ and ERP and hyperpolarized the RMP. No additive or synergistic effect of CPA and ACh coapplication was observed. To antagonize GIRK channel activation, the specific inhibitor rTertiapin Q (TTQ) was applied. The coapplication of TTQ reversed the CPA and ACh-induced effects. When TTQ was applied without exogenous receptor activator, both APD₉₀ and ERP were prolonged and RMP was depolarized, confirming a basal activity of the GIRK current. The results reveal that activation of A₁ and M₂ receptors has a profound and equal effect on the electrophysiology in rat atrium. This effect is to a major extent mediated through GIRK channels. Furthermore, these results support the notion that atrial GIRK currents from healthy hearts have a basal component and additional activation can be mediated via at least 2 different receptor mechanisms. PMID:23609329

  9. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    Science.gov (United States)

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27273565

  10. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    Directory of Open Access Journals (Sweden)

    Paul Smith

    2016-02-01

    Full Text Available Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1 is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s. We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae. Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition.

  11. Respiratory activity in medulla oblongata and its modulation by adenosine and opioids

    OpenAIRE

    Herlenius, Eric

    1998-01-01

    From the moment of birth the complex neuronal networks generating breathing has to function continuously and adapt to the new postnatal environmental demands. This thesis aims at studying the perinatal development of respiratory control and its modulation by adenosine and opioids. Respiratory activity was studied in vitro using brainstem spinal cord preparations and in vivo with a barometric plethysmograph. In vitro whole-cell patch clamp recordings of respiratory related ne...

  12. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    OpenAIRE

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.; Apodaca, Gerard

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed ...

  13. Characterization of a baculovirus-encoded RNA 5'-triphosphatase.

    Science.gov (United States)

    Gross, C H; Shuman, S

    1998-09-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) encodes a 168-amino-acid polypeptide that contains the signature motif of the superfamily of protein phosphatases that act via a covalent cysteinyl phosphate intermediate. The sequence of the AcNPV phosphatase is similar to that of the RNA triphosphatase domain of the metazoan cellular mRNA capping enzyme. Here, we show that the purified recombinant AcNPV protein is an RNA 5'-triphosphatase that hydrolyzes the gamma-phosphate of triphosphate-terminated poly(A); it also hydrolyzes ATP to ADP and GTP to GDP. The phosphatase sediments as two discrete components in a glycerol gradient: a 9.5S oligomer and 2.5S putative monomer. The 2.5S form of the enzyme releases 32Pi from 1 microM gamma-32P-labeled triphosphate-terminated poly(A) with a turnover number of 52 min-1 and converts ATP to ADP with Vmax of 8 min-1 and Km of 25 microM ATP. The 9.5S oligomeric form of the enzyme displays an initial pre-steady-state burst of ADP and Pi formation, which is proportional to and stoichiometric with the enzyme, followed by a slower steady-state rate of product formation (approximately 1/10 of the steady-state rate of the 2.5S enzyme). We surmise that the oligomeric enzyme is subject to a rate-limiting step other than reaction chemistry and that this step is either distinct from or slower than the rate-limiting step for the 2.5S enzyme. Replacing the presumptive active site nucleophile Cys-119 by alanine abrogates RNA triphosphatase and ATPase activity. Our findings raise the possibility that baculoviruses encode enzymes that cap the 5' ends of viral transcripts synthesized at late times postinfection by a virus-encoded RNA polymerase. PMID:9696798

  14. Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Human PMS2 (hPMS2 homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X(2E(X(4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. METHODOLOGIES/PRINCIPAL FINDINGS: We examined the effect ATP had on the Mn(++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5 s(-1 and 4.2+/-0.3x10(-5 s(-1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X(2E(X(4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. CONCLUSIONS: ATP stimulated the Mn(++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X(2E(X(4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++ induced nicking activity.

  15. Activation of adenosine receptors and inhibition of cyclooxygenases: two recent pharmacological approaches to modulation of radiation suppressed hematopoiesis

    International Nuclear Information System (INIS)

    Searching for drugs conforming to requirements for protection and/or treatment of radiation-induced damage belongs to the most important tasks of current radiobiology. In the Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic, two original approaches for stimulation of radiation-suppressed hematopoiesis have been tested in recent years, namely activation of adenosine receptors and inhibition of cyclooxygenases. Non-selective activation of adenosine receptors, induced by combined administration of dipyridamole, a drug preventing adenosine uptake and supporting thus its extracellular receptor-mediated action, and adenosine monophosphate, an adenosine prodrug, has been found to stimulate hematopoiesis when the drugs were given either pre- or post-irradiation. When synthetic adenosine receptor agonists selective for individual adenosine receptor subtypes were tested, stimulatory effects in myelosuppressed mice have been found after administration of IB-MECA, a selective adenosine A3 receptor agonist. Non-selective cyclooxygenase inhibitors, inhibiting both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), indomethacin, diclofenac, or flurbiprofen, have been observed to act positively on radiation-perturbed hematopoiesis in sublethally irradiated mice. However, their undesirable gastrointestinal side effects have been found to negatively influence survival of lethally irradiated animals. Recently tested selective COX-2 inhibitor meloxicam, preserving protective action of COX-1-synthesized prostaglandins in the gastrointestinal tissues, has been observed to retain the hematopoiesis-stimulating effects of non-selective cyclooxygenase inhibitors and to improve the survival of animals exposed to lethal radiation doses. These findings bear evidence for the possibility to use selective adenosine A3 receptor agonists and selective COX-2 inhibitors in human practice for treatment of

  16. Adenosine Triphosphate Stimulates Aquifex aeolicus MutL Endonuclease Activity

    OpenAIRE

    Jerome Mauris; Thomas C Evans

    2009-01-01

    BACKGROUND: Human PMS2 (hPMS2) homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++) was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)(2)E(X)(4)E motif pre...

  17. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    Science.gov (United States)

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  18. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S

    2009-01-01

    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  19. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan

    2011-01-01

    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  20. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  1. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    Science.gov (United States)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  2. Activation of NTS A1 adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex

    OpenAIRE

    Ichinose, Tomoko K.; Minic, Zeljka; Li, Cailian; O'Leary, Donal S.; Scislo, Tadeusz J.

    2012-01-01

    Previously we have shown that adenosine operating via the A1 receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it i...

  3. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    Science.gov (United States)

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  4. Serum adenosine deaminase activity and its isoenzyme in patients treated for tuberculosis

    International Nuclear Information System (INIS)

    Objective: Increased serum adenosine deaminase (ADA) activity, mainly associated with tuberculosis can also occur in a number of other diseases thus negatively affecting the diagnostic utility of ADA measurements in tuberculosis. The aim of the study was to determine whether or not the combined use of the activity of ADA, its isoenzymes and differential cell counts would provide a more efficient means of diagnosing tuberculosis than the use of ADA levels alone. Results: Data suggested significant (p0.75) of ADA/sub 2/ADA was found to be better indicator of tuberculosis. Lymphocyte neutrophil ratio (L/N)> 0.69 gave additional benefit to increase the sensitivity and specificity for the use of ADA as marker in diagnosing tuberculosis. Conclusion: The combined use of activity of ADA, its isoenzymes and total and differential cell counts is a better indicator and gives better understanding to diagnose and evaluate tuberculosis and response to therapy. (author)

  5. Cerebrospinal fluid adenosine deaminase activity: A complimentary tool in the early diagnosis of tuberculous meningitis

    Directory of Open Access Journals (Sweden)

    Taori Girdhar M

    2006-03-01

    Full Text Available Abstract Background Tuberculous meningitis (TBM is the commonest form of neurotuberculosis caused by Mycobacterium tuberculosis bacilli (MTB. The diagnosis of TBM is often difficult. A reliable, cost-effective and rapid diagnostic test, which can be performed in any standard pathology laboratory, could be of help in the diagnosis of TBM. In the present study we measured the adenosine deaminase (ADA activity in cerebrospinal fluid (CSF of TBM and non-TBM patients. Method ADA activity in CSF was determined according to a method based on the Berthlot reaction, which is the formation of a colored indophenol complex from ammonia liberated from adenosine, and quantified spectrophotometrically. Results The CSF ADA activity from TBM patients was compared with CSF ADA from non-TBM infectious meningitis patients, and from patients with non-infectious neurological disorders. The mean CSF ADA activity was found to be significantly higher in CSF of TBM patients, 14.31 ± 3.87 (2.99–26.94, mean ± SD with range, than in the CSF from non-TBM infectious meningitis, 9.25 ± 2.14 (4.99–13.96 and from the non-infectious neurological disorders group, 2.71 ± 1.96 (0.00–7.68, P Conclusion This study demonstrated that ADA activity in the CSF of TBM patients, using a cut-off value 11.39 U/L/min, can be useful for the early differential diagnosis of TBM. This test can be performed in any pathology laboratory where more sophisticated methods are not available.

  6. Serum Adenosine deaminase activity and C-reactive protein levels in unstable angina

    Directory of Open Access Journals (Sweden)

    Rani Surekha

    2003-01-01

    Full Text Available In unstable angina (USA patients, immunological responses contributing to inflammation play a vital role in plaque rupture and thrombosis causing stroke. In the present study an attempt is made to estimate the levels of adenosine deaminase activity, an immunoenzyme marker and C-reactive protein, a marker of inflammation in USA patients. 45 patients presenting USA and 50 age and sex matched healthy controls were included in the study. Serum ADA activity was measured spectrophotometrically at 630nm and serum C-reactive protein was detected using Avitex CRP kit, which is a rapid latex agglutination test. The Mean ADA levels were 41.15 ± 11.04 in patients and 20.71±5.63 in controls and 66.6% of patients and none of the controls were positive to CRP. The present study observed the importance of ADA as a serum marker in addition to CRP for assessing the immune response in USA patients.

  7. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    Science.gov (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-01

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  8. The investigation of Adenosine Deaminase activity in patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Yılmaz Ulaş

    2013-12-01

    Full Text Available Aim: Mycosis fungoides (MF is a cutaneous T cell lymphoma. The clinical and histophological diagnosis of early mycosis fungoides is usually diffucult. There is no special laboratory method for the diagnosis of MF disease and this is the most important problem in diagnosis and also follow up the effectiveness of treatment. Adenosine deaminase (ADA activity is a non-specific marker of T cell activation. In the present study, we aimed to investigate the levels of plasma and tissue ADA in patients with mycosis fungoides and to determine if ADA is an activation criteria for this disease. Materials and Medhods: The levels of ADA activities in both plasma and tissues were spectrophotometrically measured in 40 patients with MF and compared to those of 33 healthy subjects. Moreover, a subgroup analysis regarding ADA activities was performed in 17 patients who achieved complete remission after different kinds of treatments. Results: Patients with MF had more significantly elevated plasma and tissue ADA activity levels than those of control groups (respectively p0.05; MF patients in remission were found to have higher plasma levels of ADA activities than those of controls (p<0.001. Conclusion: These findings of the current study may provide an important clinical support for showing the roles of plasma and tissue ADA activity levels to predict disease activity in MF patients. In addition, levels of ADA activity measurements might be a marker to follow up in MF patients.

  9. Comparative study of adenosine deaminase activity, insulin resistance and lipoprotein(a among smokers and healthy non-smokers

    Directory of Open Access Journals (Sweden)

    Ramesh Ramasamy

    2016-06-01

    Conclusions: Adenosine deaminase activity was increased in patients in response to nicotine which is the key component of cigarette smoke. These findings indicate that nicotine and carbon monoxide can alter lipoprotein synthesis and also modify LDL to oxidized form which can lead to ischemic heart disease. [Int J Res Med Sci 2016; 4(6.000: 1950-1953

  10. Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse

    DEFF Research Database (Denmark)

    Al-Mashhadi, Rozh H; Skøtt, Ole; Vanhoutte, Paul M;

    2009-01-01

    that the adenosine-induced vasodilatation was inhibited by the A(2)-specific receptor blocker 3,7-dimethyl-1-propargylxanthine. In the presence of this inhibitor, adenosine failed to alter the basal vessel diameter of quiescent efferent arterioles. Using primer-specific polymerase chain reaction we found...

  11. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action.

    Science.gov (United States)

    Jagadeesh, Govindan Sangaran; Nagoor Meeran, Mohamed Fizur; Selvaraj, Palanisamy

    2016-04-15

    Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin. PMID:26930228

  12. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    Science.gov (United States)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. PMID:27653477

  13. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    Science.gov (United States)

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  14. Detergent inhibited, heat labile nucleoside triphosphatase in cores of avian myeloblastosis virus

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Endogenous DNA synthesis was studied in isolated core particles of avian myeloblastosis virus. It was found that cores contained an enzymatic activity which rapidly converted the added nucleoside triphosphates to diphosphates (but not further) at 0 degrees C, thus inhibiting DNA synthesis. This t...... triphosphatase probably originates from the viral membranes. In the cores the enzyme is completely inactivated by low concentrations (0.02%) of Nonident P-40. Also, the enzyme is very thermolabile and denatures rapidly at 38 degrees C....

  15. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus

    OpenAIRE

    de Mendonça, Alexandre; Ribeiro, J. A.

    1997-01-01

    Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of ...

  16. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    Science.gov (United States)

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-09-15

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.

  17. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    International Nuclear Information System (INIS)

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.)

  18. Increased orbitofrontal brain activation after administration of a selective adenosine A2A antagonist in cocaine dependent subjects

    Directory of Open Access Journals (Sweden)

    F. Gerard eMoeller

    2012-05-01

    Full Text Available Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115 while performing a working memory task with 3 levels of difficulty (3, 5, and 7 digits. fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use.

  19. Increased Orbitofrontal Brain Activation after Administration of a Selective Adenosine A2A Antagonist in Cocaine Dependent Subjects

    Science.gov (United States)

    Moeller, F. Gerard; Steinberg, Joel L.; Lane, Scott D.; Kjome, Kimberly L.; Ma, Liangsuo; Ferre, Sergi; Schmitz, Joy M.; Green, Charles E.; Bandak, Stephen I.; Renshaw, Perry F.; Kramer, Larry A.; Narayana, Ponnada A.

    2012-01-01

    Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115) while performing a working memory task with three levels of difficulty (3, 5, and 7 digits). fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L) lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use. PMID:22654774

  20. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    Directory of Open Access Journals (Sweden)

    Iván Darío BRAVO-TOBAR

    2015-10-01

    Full Text Available SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA and C-reactive protein serum levels (CRP in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35, II (n = 29, and III (n = 18. A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.

  1. Purine metabolic enzymes in lymphocytes. III. Effects of immunosuppressants on adenosine deaminase and purine nucleoside phosphorylase activities

    OpenAIRE

    Kurashige, Satonori; Akuzawa, Yuki; Yoshida, Toshiharu; Kodama, Kazue

    1983-01-01

    Mice were treated with a single injection of 6-mercaptopurine riboside (6MP-R), predonine or cyclophosphamide (CY), and the effects of these immunosuppressants on blastogenic responses to phytohemagglutinin P (PHA-P) or bacterial lipopoly saccharide (LPS) and on adenosine deaminase (ADA) or purine nucleoside phosphorylase (PNP) activities were studied with spleen lymphocytes. The retardation of blastogenic responses to both PHA-P and LPS were associated with the retardation of both intracellu...

  2. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity.

    Science.gov (United States)

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2011-03-01

    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.

  3. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    Science.gov (United States)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  4. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  5. Syzygium cumini extract decrease adenosine deaminase, 5'nucleotidase activities and oxidative damage in platelets of diabetic patients.

    Science.gov (United States)

    De Bona, Karine S; Bellé, Luziane P; Sari, Marcel H; Thomé, Gustavo; Schetinger, Maria R C; Morsch, Vera M; Boligon, Aline; Athayde, Margareth L; Pigatto, Aline S; Moretto, Maria B

    2010-01-01

    Diabetes mellitus, a chronic metabolic disorder, has assumed epidemic proportions and its long-term complications can have devastating consequences. The oxidative stress in diabetes was greatly increased due to prolonged exposure to hyperglycemia and impairment of oxidant/antioxidant equilibrium. Syzygium cumini is being widely used to treat diabetes by the traditional practitioners over many centuries. Adenosine deaminase (ADA) and 5'-Nucleotidase (5'NT) are enzymes of purine nucleoside metabolism that play an important role in the regulation of adenosine (Ado) levels. In this study, we investigated the effect of Syzygium cumini aqueous leaves extract (ASc) on ADA and 5'NT activities and on parameters of oxidative stress under in vitro conditions, using platelets of patients with Type 2 diabetes mellitus. Platelet-Rich Plasma (PRP) was assayed by ADA, 5'NT, Catalase (CAT), Superoxide Dismutase (SOD) activities and Thiobarbituric acid reactive substances (TBARS) levels. We observed that ADA, 5'NT activities and TBARS levels were significantly higher when compared to the control group, and ASc (100 and 200 μg/mL) prevented these effects. Our study demonstrates that ASc was able to remove oxidant species generated in diabetic conditions and modulates in the Ado levels. Then, ASc may promote a compensatory response in platelet function, improving the susceptibility-induced by the diabetes mellitus. PMID:21063110

  6. Trypanocidal activity of 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]-(methylamino)}adenosine (Genz-644131), an adenosylmethionine decarboxylase inhibitor.

    Science.gov (United States)

    Bacchi, Cyrus J; Barker, Robert H; Rodriguez, Aixa; Hirth, Bradford; Rattendi, Donna; Yarlett, Nigel; Hendrick, Clifford L; Sybertz, Edmund

    2009-08-01

    Genzyme 644131, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine, is an analog of the enzyme activated S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor and the trypanocidal agent MDL-7381, 5-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine. The analog differs from the parent in having an 8-methyl group on the purine ring that bestows favorable pharmacokinetic, biochemical, and trypanocidal activities. The compound was curative in acute Trypanosoma brucei brucei and drug-resistant Trypanosoma brucei rhodesiense model infections, with single-dose activity in the 1- to 5-mg/kg/day daily dose range for 4 days against T. brucei brucei and 25- to 50-mg/kg twice-daily dosing against T. brucei rhodesiense infections. The compound was not curative in the TREU 667 central nervous system model infection but cleared blood parasitemia and extended time to recrudescence in several groups. This study shows that AdoMetDC remains an attractive chemotherapeutic target in African trypanosomes and that chemical changes in AdoMetDC inhibitors can produce more favorable drug characteristics than the lead compound.

  7. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis.

    Directory of Open Access Journals (Sweden)

    Theodore J Kalogeris

    Full Text Available We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO donor, a guanylate cyclase (GC activator, or a cell-permeant cyclic GMP (cGMP analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS, or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.

  8. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria;

    2006-01-01

    either 1.25 mg/kg DPCPX dissolved in 2 ml/kg dimethyl sulfoxide (DMSO) or the same volume of DMSO alone, 15 min before the third ischemic episode. Time to electrocortical suppression was estimated based on the decay of the root mean square of two-channel electrocorticographic recordings. During the first...... two ischemic episodes, electrocortical suppression appeared after approximately 12 s in both groups. After DMSO administration, ischemic suppression remained unchanged. After DPCPX administration, the time to electrocortical suppression was increased by approximately 10 s, and bursts of activity were...

  9. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  10. Comparative study of adenosine deaminase activity, insulin resistance and lipoprotein(a) among smokers and healthy non-smokers

    OpenAIRE

    Ramesh Ramasamy; Sathish Babu Murugaiyan; Arulkumaran U.; Sathiya R.; Kuzhandai Velu V.; Niranjan Gopal

    2016-01-01

    Background: Adenosine deaminase also known as adenosine aminohydrolase involved in purine metabolism. Its primary function is development and maintenance of immune system. The main objective of the study was to estimate adenosine deaminase (ADA) enzyme and find its correlation with lipoprotein(a) and insulin resistance among smokers and healthy non-smokers. Methods: Fifty smokers and fifty healthy non-smokers were selected based on WHO definition. ADA, lipid profile and glucose was estimat...

  11. Activation of adenosine receptor potentiates the anticonvulsant effect of phenytoin against amygdala kindled seizures.

    Science.gov (United States)

    Sun, Zhen; Zhong, Xiao-Ling; Zong, Yu; Wu, Zhong-Chen; Zhang, Qun; Yu, Jin-Tai; Tan, Lan

    2015-01-01

    Drug resistance in epilepsy is considered as a complicated and multifactorial problem. Poor penetration of antiepileptic drugs (AEDs) across blood-brain barrier (BBB) into the brain, which results in insufficient level of the drugs at the targeted brain region, has been discussed as one mechanism contributing to pharmacoresistance of epilepsies. Therefore, modulating permeability of BBB is the effective treatment strategy since it facilitates the entry of AEDs into the central nervous system (CNS). Recently, signaling through receptors for the adenosine has been identified as a potent modulator of BBB permeability. This paper aimed to investigate the effects of auxiliary application of adenosine receptor (AR) agonist on amygdala-kindled seizures in adult male Wistar rats. When fully kindled seizures were achieved by daily electrical stimulation of the amygdala, rats were randomly divided into three groups: control, phenytoin, and phenytoin (PHT)+5'-N-ethylcarboxamidoadenosine (NECA) groups. NECA (0.08 mg/kg, i.v.) was applied to the PHT+NECA group after the administration of PHT (75 mg/kg, i.p. on the first day; 50mg/kg, i.p. on the following 9 days). Intravenous infusion of NECA resulted in a significant increase in brain PHT levels as compared with the PHT treatment alone. On the other hand, the auxiliary application of NECA dramatically decreased the frequency of generalized seizures and seizure stage, shortened duration of afterdischarge and generalized seizures, as well as the elevated the afterdischarge threshold and generalized seizures threshold. Our study demonstrated that auxiliary application of AR agonist enhanced brain antiepileptic drug levels and strengthened the anticonvulsant properties of PHT against amygdala kindled seizures.

  12. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  13. 钙离子ATP酶2a基因修饰骨髓间充质干细胞移植改善慢性心力衰竭大鼠的心功能%Enhancement of cardiac function of chronic heart failure rats by marrow stromal cell-based sarcoplasmic reticulum Ca2+ adenosine triphosphatase gene therapy

    Institute of Scientific and Technical Information of China (English)

    郭豫涛; 李小鹰; 鲁小春; 吴迪; 姚克群; 陈平; 马康涛; 周春燕

    2008-01-01

    were given the interventions of SERCA2a gene, MSC transplantation, MSC+Ad/SERCa2a and empty adenoviral vector, respectively. MSCs were separated and cultured, and then Ad-SERCA2a-GFP was used to transfer MSC in the 3rd and 8th generations.MAIN OUTCOME MEASURES: Ad-SERCA2a-GFP transfection rate of MSC was measured by using flow cytometer. Before and at 14 and 21 days after treatment, cardiac function was evaluated by ultrasonic echocardiogram. Expression of cytokine Ⅷ was tested by immunohistochemical staining. SERCA2a gene and protein expression were evaluated by RT-PCR and Western blot respectively, as well as SERCA2a enzyme activity. RESULTS: ① Transfection rate: The infection efficiency of adenovirus-medicated gene into different passages of MSC was over 80%, and there was no difference between passage three (P3) MSC and P8 MSC (P > 0.05). ② Heart function: Left ventricle wall was thickened obviously in group MSC and group MSC+Ad/SERCa2a on the 21st day after treatment, while volume was shortened and gradually rounded. Compared to control group, ejection fraction (EF) and shortening fraction (FS) of group Ad-SERCa2a, group MSC and group MSC+Ad/SERCa2a were elevated significantly on the 14th day after therapy (P 0.05).②大鼠心功能:治疗后14 d,与腺病毒空载体对照组相比,其余3组左室射血分数均明显升高(P < 0.01).治疗后 21 d,与腺病毒空载体对照组相比,干细胞移植治疗组和基因修饰的干细胞移植组大鼠室壁增厚;干细胞移植治疗组和基因修饰的干细胞移植组左室射血分数和左室短轴缩短率改善率持续升高(P < 0.01),基因治疗组两指标改善率较治疗14 d时下降.与腺病毒空载体对照组相比,基因修饰的干细胞移植组左室前壁和室间隔收缩期纵向峰值速度显著升高(P < 0.01),左室前壁和室间隔舒张期纵向峰值速度亦呈现相同改善(P < 0.01).③心肌SERCA2a的基因、蛋白水平表达和功能活性,

  14. Adenosine and Sleep

    OpenAIRE

    Bjorness, Theresa E.; Greene, Robert W.

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity t...

  15. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T;

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... and lack of EPS in rodents could also be observed in non-human primates. We investigated the effects of CGS 21680 on behaviours induced by D-amphetamine and (-)-apomorphine in EPS-sensitized Cebus apella monkeys. CGS 21680 was administered s.c. in doses of 0.01, 0.025 and 0.05 mg/kg, alone......-induced behaviours (unrest, stereotypies, arousal) were unaffected. EPS were not observed at any dose. At 0.05 mg/kg CGS 21680 produced vomiting. The two lower doses did not produce observable side-effects. Though the differential effect on amphetamine- and apomorphine-induced behaviours is intriguing, CGS 21680...

  16. Allosteric modulation and constitutive activity of fusion proteins between the adenosine A1 receptor and different 351Cys-mutated Gi α-subunits

    NARCIS (Netherlands)

    Klaasse, E.; Ligt, R.A.F.de; Roerink, S.F.; Lorenzen, A.; Milligan, G.; Leurs, R.; IJzerman, A.P.

    2004-01-01

    We studied fusion proteins between the human adenosine A1 receptor and different 351Cys-mutated Gi1 α-subunits (A1-Giα) with respect to two important concepts in receptor pharmacology, i.e. allosteric modulation and constitutive activity/inverse agonism. The aim of our study was twofold. We first an

  17. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration.

    Science.gov (United States)

    Björklund, Olga; Kahlström, Johan; Salmi, Peter; Ogren, Sven Ove; Vahter, Marie; Chen, Jiang-Fan; Fredholm, Bertil B; Daré, Elisabetta

    2007-11-30

    Adenosine and its receptors are, as part of the brain stress response, potential targets for neuroprotective drugs. We have investigated if the adenosine receptor system affects the developmental neurotoxicity caused by the fish pollutant methylmercury (MeHg). Behavioral outcomes of low dose perinatal MeHg exposure were studied in mice where the A(1) and A(2A) adenosine receptors were either partially blocked by caffeine treatment or eliminated by genetic modification (A(1)R and A(2A)R knock-out mice). From gestational day 7 to day 7 of lactation dams were administered doses that mimic human intake via normal diet, i.e. 1microM MeHg and/or 0.3g/l caffeine in the drinking water. This exposure to MeHg resulted in a doubling of brain Hg levels in wild type females and males at postnatal day 21 (PND21). Open field analysis was performed at PND21 and 2 months of age. MeHg caused time-dependent behavioral alterations preferentially in male mice. A decreased response to amphetamine in 2-month-old males pointed to disturbances in dopaminergic functions. Maternal caffeine intake induced long-lasting changes in the offspring evidenced by an increased motor activity and a modified response to psychostimulants in adult age, irrespectively of sex. Similar alterations were observed in A(1)R knock-out mice, suggesting that adenosine A(1) receptors are involved in the alterations triggered by caffeine exposure during development. Perinatal caffeine treatment and, to some extent, genetic elimination of adenosine A(1) receptors, attenuated the behavioral consequences of MeHg in males. Importantly, also deletion of the A(2A) adenosine receptor reduced the vulnerability to MeHg, consistent with the neuroprotective effects of adenosine A(2A) receptor inactivation observed in hypoxia and Parkinson's disease. Thus, the consequences of MeHg toxicity during gestation and lactation can be reduced by adenosine A(1) and A(2A) receptor inactivation, either via their genetic deletion or by

  18. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  19. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats

    Science.gov (United States)

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P

    2003-01-01

    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  20. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus.

    Science.gov (United States)

    de Mendonça, A; Ribeiro, J A

    1997-08-01

    1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12-14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe. p.s.p.) recorded extracellularly from the stratum radiatum in the CAI area. 2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2-50 nM), on the fe.p.s.p. slope (EC50 = 12.5 (9.2-17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 microM) (EC50 = 27.2 (21.4-34.5) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 microM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). DHPG (10 microM) itself had an inhibitory effect of 20.1 +/- 1.9% (n = 4) on the fe.p.s.p. slope. 3. The concentration-response curves for the inhibitory effects of CPA (2-20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I; 1 microM), or in the presence of

  1. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151061

  2. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    Science.gov (United States)

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  3. Plasmalemma- and tonoplast-ATPase activity in mesophyll protoplasts, vacuoles and microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Balsamo, R A; Uribe, E G

    1988-02-01

    Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H(+)-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces. PMID:24226399

  4. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    Science.gov (United States)

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  5. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2.

    Science.gov (United States)

    Peng, Shuang; Gerasimenko, Julia V; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Petersen, Ole H; Gerasimenko, Oleg V

    2016-08-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca(2+) signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca(2+) elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca(2+) signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5-10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca(2+) release followed by Ca(2+) entry and also substantially reduced Ca(2+) extrusion because of decreased intracellular ATP levels. The toxic Ca(2+) signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca(2+) signals and necrosis. We tested the effects of inhibiting the Ca(2+) release-activated Ca(2+) entry by the Ca(2+) channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca(2+) entry and also protected effectively against the development of necrosis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377732

  6. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    Science.gov (United States)

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  7. Triiodothyronine causes rapid reversal of alpha 1/cyclic adenosine monophosphate synergism on brown adipocyte respiration and type II deiodinase activity.

    Science.gov (United States)

    Noronha, M; Raasmaja, A; Moolten, N; Larsen, P R

    1991-12-01

    Previous studies have shown that thyroid status affects the response of brown adipose tissue (BAT) to the sympathetic nervous system. For example, hypothyroidism is associated with the development of a marked synergism between alpha 1- and beta-adrenergic pathways to stimulate type II iodothyronine 5'-deiodinase activity. Hypothyroidism also attenuates the respiratory response (thermogenesis) of isolated brown adipocytes to norepinephrine. To explore the interactions of the sympathetic nervous system and thyroid status in these cells, we compared the thermogenic and 5'-deiodinase responses to adrenergic agonists in isolated brown adipocytes from hypothyroid rats during treatment with 3,5,3'-triiodothyronine (T3). The fivefold synergism of alpha 1- and beta-adrenergic catecholamines to increase the deiodinase activity was progressively reduced, reaching a control euthyroid value of unity after 5 days of T3 treatment. Hypothyroidism reduced both the O2max (twofold to threefold) and increased the concentration of agonist required for 50% stimulation (10-fold) for both norepinephrine and forskolin. In hypothyroid cells, there was a twofold synergism between the alpha 1-agonist cirazoline and forskolin to increase respiration, which was blocked by prazosin and reproduced by the calcium ionophore, A23187. This synergistic effect of the alpha 1-agonist was lost within 2 days of T3 administration. These studies identify a second Ca(2+)-dependent intra-adrenergic synergism, which functions to ameliorate the reduced cyclic adenosine monophosphate (cAMP) responsiveness of the hypothyroid brown adipocyte. PMID:1683679

  8. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    Science.gov (United States)

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  9. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats

    International Nuclear Information System (INIS)

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5'nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5'nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author)

  10. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.

    Science.gov (United States)

    Mittelstädt, Gerd; Moggré, Gert-Jan; Panjikar, Santosh; Nazmi, Ali Reza; Parker, Emily J

    2016-08-01

    Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. PMID:27191057

  11. Impact of aspirin dose on adenosine diphosphate-mediated platelet activities. Results of an in vitro pilot investigation.

    Science.gov (United States)

    Tello-Montoliu, Antonio; Thano, Estela; Rollini, Fabiana; Patel, Ronakkumar; Wilson, Ryan E; Muñiz-Lozano, Ana; Franchi, Francesco; Darlington, Andrew; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2013-10-01

    Different aspirin dosing regimens have been suggested to impact outcomes when used in combination with adenosine diphosphate (ADP) P2Y12 receptor antagonists. Prior investigations have shown that not only aspirin, but also potent ADP P2Y12 receptor blockade can inhibit thromboxane A2-mediated platelet activation. The impact of aspirin dosing on ADP mediated platelet activities is unknown and represents the aim of this in vitro pilot pharmacodynamic (PD) investigation. Twenty-six patients with stable coronary artery disease on aspirin 81 mg/day and P2Y12 naïve were enrolled. PD assessments were performed at baseline, while patients were on 81 mg/day aspirin and after switching to 325 mg/day for 7 ± 2 days with and without escalating concentrations (vehicle, 1, 3, and 10 μM) of prasugrel's active metabolite (P-AM). PD assays included flow cytometric assessment of VASP to define the platelet reactivity index (PRI) and the Multiplate Analyzer (MEA) using multiple agonists [ADP, ADP + prostaglandin (PGE1), arachidonic acid (AA), and collagen]. Escalating P-AM concentrations showed incremental platelet P2Y12 inhibition measured by VASP-PRI (paspirin dosing regimen at any P-AM concentration (vehicle: p=0.899; 1 μM: p=0.888; 3 μM: p=0.524; 10 μM: p=0.548). Similar findings were observed in purinergic markers assessed by MEA (ADP and ADP+PGE1). P-AM addition significantly reduced AA and collagen induced platelet aggregation (paspirin dose. In conclusion, aspirin dosing does not appear to affect PD measures of ADP-mediated platelet reactivity irrespective of the degree of P2Y12 receptor blockade. P2Y12 receptor blockade modulates platelet reactivity mediated by alternative activators. PMID:23884248

  12. Comparison of the Effects of Adenosine A1 Receptors Activity in CA1 Region of the Hippocampus on Entorhinal Cortex and Amygdala Kindled Seizures in Rats

    Directory of Open Access Journals (Sweden)

    A. Heidarianpour

    2008-10-01

    Full Text Available Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppression results from a general depression of brain excitability or through action on particular sites critical for the control of after discharge generation and/or seizure development and propagation. In this regard, comparison of the effects of adenosine A1 receptors of CA1 (region of the ‎hippocampus on entorhinal cortex and amygdala kindled seizures was ‎investigated in this study. Materials & Methods: In this experimental study, Animals were kindled by daily electrical stimulation of amygdale (group A or entorhinal cortex (group B. In the fully kindled animals, N6-‎cyclohexyladenosine (CHA;1 and 10 M; a selective adenosine A1 receptor ‎agonist and 1,3-dimethyl-8-cyclohexylxanthine(CPT;1 ‎µ‎M; a selective ‎adenosine A1 receptors antagonist were microinfused bilaterally into the CA1 ‎region of hippocampus (1l/2min and animals were stimulated at 5 and 15 minutes after drug ‎injection. All animals were received artificial cerebrospinal fluid, 24 h before ‎each drug injection and this result were used as control. Results: The seizure parameters were measured at 5 and 15min post injection. Obtained data showed that CHA at concentrations of 10 ‎µ‎M reduced ‎entorhinal cortex and amygdala after discharge and stage5 seizure durations and ‎increased stage4 latency. CHA at concentration 1‎µ‎M significantly alters ‎seizure parameters of group A but not effect on group B. Intrahippocampal (CA1 region pretreatment of CPT (1 ‎µ‎M before CHA abolished the effects of CHA on seizure parameters.Conclusion: It ‎may be

  13. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    Science.gov (United States)

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  14. Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment

    Directory of Open Access Journals (Sweden)

    Li Yuesheng

    2012-12-01

    Full Text Available Abstract Background Activation of the A2A adenosine receptor (A2AAR decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463 infection (CDI. Methods C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection. Results Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs. Conclusion In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease.

  15. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    DEFF Research Database (Denmark)

    Ilie, A; Ciocan, D; Constantinescu, A O;

    2009-01-01

    -vessel occlusion" model under chloral hydrate anesthesia. Quantification of BS recovery was carried out using BS ratio. During GCI full electrocortical suppression was attained (BS ratio reached 100%). During the following reperfusion the BS ratio returned to 0. The time course of the decay was exponential after 1...... and 5-min GCI and bi-exponential after 10-min GCI. The BS recovery was progressively delayed with the duration of ischemia. Administration of the A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 1.25 mg/kg i.p.) accelerated the post-ischemic BS recovery for all GCI durations. Following the 10...... of post-ischemic BS patterns following brief ischemic episodes. It is likely that synaptic depression by post-ischemic A1R activation functionally disrupts the connectivity within the cortical networks to an extent that promotes BS patterns....

  16. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    Science.gov (United States)

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  17. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  18. Adenosine: An immune modulator of inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  19. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters.

    Science.gov (United States)

    Monteiro, M Cândida; De Lucas, J Ramón

    2010-01-01

    The identification of essential genes represents a critical step in the discovery of novel therapeutic targets in Aspergillus fumigatus. Structural analyses of the Saccharomyces cerevisiae RNA triphosphatase pointed out this enzyme as an attractive therapeutic target for fungal infections. In addition, demonstration of the essentiality of the S. cerevisiae RNA triphosphatase encoding gene enhanced the value of this potential therapeutic target. Nevertheless, consideration of a fungal RNA triphosphatase as an ideal therapeutic target needs confirmation of the essentiality of the respective gene in a fungal pathogen. In this work, we analyzed the essentiality of the A. fumigatus triA gene, encoding RNA triphosphatase, by conditional gene expression and heterokaryon deletion. Using the conditional gene expression driven by the alcA promoter (alcA(P)), we found that TriA depletion causes morphological abnormalities that result in a very strong growth inhibition. Nevertheless, since a strict terminal phenotype was not observed, the essentiality of the triA gene could not be ensured. Accordingly, the essentiality of this gene was analyzed by the heterokaryon rescue technique. Results obtained unequivocally demonstrated the essentiality of the A. fumigatus triA gene, indicating the suitability of the RNA triphosphatase as an ideal therapeutic target to treat A. fumigatus infections. Besides, a second conditional gene expression system, based on the niiA promoter (niiA(P)), was utilized in this work. Although the niiA(P)-mediated repression of triA was less severe than that driven by the alcA(P), a strong growth inhibition was also found in niiA(P)-triA strains. Finally, E-tests performed to determine whether triA down-regulated cells became more sensitive to antifungals suggest a synergic effect between amphotericin B and another antifungal inhibiting the A. fumigatus RNA triphosphatase activity.

  20. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats; Estudo da atividade enzimatica em tecidos de granulacao de ratos submetidos a baixas doses de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Tosoni, Guilherme Monteiro [UNESP, Araraquara, SP (Brazil). Faculdade de Odontologia. Dept. de Diagnostico e Cirurgia; Boscolo, Frab Norberto; Cury, Jaime Aparecido [Universidade Estadual de Campinas, Piracicaba, SP (Brazil). Faculdade de Odontologia; Watanabe, Plauto Christopher Aranha [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Odontologia. Dept. de Estomatologia

    1994-12-31

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5`nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5`nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author) 28 refs., 3 tabs.

  1. Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5'-nucleotidase activity in rat cerebral cortex.

    Science.gov (United States)

    León-Navarro, David Agustín; Albasanz, José L; Martín, Mairena

    2015-08-01

    Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia-induced seizures on adenosine A1 and A2A receptors and 5'-nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real-time PCR, and 5'-nucleotidase activity assays. Hyperthermic seizures were induced in 13-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [(3) H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [(3) H]ZM241385 as radioligand, 48 h after hyperthermia-evoked convulsions. These short-term changes in A1 and A2A receptors were also accompanied by a loss of 5'-nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5'-nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5'-nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures. Febrile seizure is one of the most common convulsive disorders in children. The consequences of hyperthermia-induced seizures (animal model of febrile seizures) on adenosine A1 and A2A receptors and 5'-nucleotidase activity have been studied at different periods in cerebral cortical area. A significant increase in A1 receptor density and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density and 5'-nucleotidase activity was detected 48 h after convulsions evoked by hyperthermia

  2. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  3. Effect of the growth stage and cultivar on policosanol profiles of barley sprouts and their adenosine 5'-monophosphate-activated protein kinase activation.

    Science.gov (United States)

    Seo, Woo Duck; Yuk, Heung Joo; Curtis-Long, Marcus J; Jang, Ki Chang; Lee, Jin Hwan; Han, Sang-Ik; Kang, Hang Won; Nam, Min Hee; Lee, Sung-Joon; Lee, Ji Hae; Park, Ki Hun

    2013-02-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an intracellular sensor that can regulate glucose levels within the cell. For this reason, it is well-known to be a target for drugs against diabetes and obesity. AMPK was activated significantly by the hexane extract of barley sprouts. This AMPK activation emerges across the growth stages of the sprout, becoming most significant (3 times above the initial stages) 10 days after sprouting. After this time, the activation decreased between 13 and 20 days post-sprouting. Analysis of the hexane extracts by gas chromatography-mass spectrometry showed that the amounts of policosanols (PCs, which are linear, primary aliphatic alcohols with 20-30 carbons) in the plant dramatically increased between 5 days (109.7 mg/100 g) and 10 days (343.7 mg/100 g) post-sprouting and then levels fell back down, reaching 76.4 mg/100 g at 20 days post-sprouting. This trend is consistent with PCs being the active ingredient in the barley plants. We validate this by showing that hexacosanol is an activator of AMPK. The richest cultivar for PCs was found to be the Daejin cultivar. Cultivars had a significant effect on the total PC content (113.2-183.5 mg/100 g) within the plant up to 5 days post-sprouting. However this dependence upon the cultivar was not so apparent at peak stages of PC production (10 days post-sprouting). The most abundant PC in barley sprout, hexacosanol, contributed 62-80% of the total PC content at every stage. These results are valuable to determine the optimal times of harvest to obtain the highest yield of PCs. PMID:23301834

  4. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    Science.gov (United States)

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  5. Adenosine Receptors and Asthma

    OpenAIRE

    Wilson, Constance N; Nadeem, Ahmed; Spina, Domenico; Brown, Rachel; Page, Clive P.; Jamal Mustafa, S.

    2009-01-01

    The pathophysiological processes underlying respiratory diseases like asthma are complex, resulting in an overwhelming choice of potential targets for the novel treatment of this disease. Despite this complexity, asthmatic subjects are uniquely sensitive to a range of substances like adenosine, thought to act indirectly to evoke changes in respiratory mechanics and in the underlying pathology, and thereby to offer novel insights into the pathophysiology of this disease. Adenosine is of partic...

  6. Determination of adenosine effects and adenosine receptors in murine corpus cavernosum.

    Science.gov (United States)

    Tostes, Rita C; Giachini, Fernanda R C; Carneiro, Fernando S; Leite, Romulo; Inscho, Edward W; Webb, R Clinton

    2007-08-01

    This study tested the hypothesis that adenosine, in murine corpora cavernosa, produces direct relaxation of smooth muscle cells and inhibition of contractile responses mediated by sympathetic nerve stimulation. Penes were excised from anesthetized male C57BL/6 mice, dissected, and cavernosal strips were mounted to record isometric force. Adenosine, 2-chloroadenosine (stable analog of adenosine), and 2-phenylaminoadenosine (CV1808) (A2(A)/A2(B) agonist) produced concentration-dependent relaxations of phenylephrine-contracted tissues. Relaxation to 2-chloroadenosine was inhibited, in a concentration-dependent manner, by 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261; A2(A) antagonist; 10(-9)-10(-6) M) and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamida (MRS1706; A2(B) antagonist; 10(-8)-10(-6) M). The combination of both antagonists abrogated 2-chloroadenosine-induced relaxation. Electrical field stimulation (EFS; 1-32 Hz) of adrenergic nerves produced frequency-dependent contractions that were inhibited by compounds that increase adenosine levels, such as 5'-iodotubercidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor), and dipyridamole (inhibitor of adenosine transport). The adenosine A1 receptor agonist N(6)-cyclopentyladenosine (C8031) right-shifted contractile responses to EFS, with a significant inhibitory effect at 10(-6) M. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine (C101) (10(-7) M) enhanced contractile responses to EFS and eliminated the inhibitory effects of 5'-iodotubercidin. Dipyridamole and 5'-iodotubercidin had no effect on adenosine-mediated relaxation. In summary, adenosine directly relaxes cavernosal smooth muscle cells, by the activation of A2(A)/A2(B) receptor subtypes. In addition, adenosine negatively modulates sympathetic neurotransmission, by A1 receptor

  7. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels.

    Science.gov (United States)

    Proks, Peter; Puljung, Michael C; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M

    2016-08-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues-mainly intracellular adenine nucleotide concentrations-to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377720

  8. Attenuation of gastric mucosal inflammation induced by aspirin through activation of A2A adenosine receptor in rats

    Institute of Scientific and Technical Information of China (English)

    Masaru Odashima; Reina Ohba; Sumio Watanabe; Joel Linden; Michiro Otaka; Mario Jin; Koga Komatsu; Isao Wada; Youhei Horikawa; Tamotsu Matsuhashi; Natsumi Hatakeyama; Jinko Oyake

    2006-01-01

    AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory cytokines.METHODS: Gastric lesions were produced by oral gavage of aspirin (200 mg/kg) and HCl (0.15 mol/L,8.0 mL/kg). 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL-146e,2.5-5 μg/kg, IP) was injected 30 min before the administration of aspirin. Tissue myeloperoxidase (MPO) concentration in gastric mucosa was measured as an index of neutrophil infiltration. Gastric mucosal concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by ELISA. Also, we examined the effect of ATL-146e on tissue prostaglandin E2 (PGE2) production and gastric secretion.RESULTS: Intragastric administration of aspirin induced multiple hemorrhagic erosions in rat gastric mucosa. The total length of gastric erosions (ulcer index) in control rats was 29.8±7.75 mm and was reduced to 3.8±1.42 mm after pretreatment with 5.0 g/kg ATL-146e (P< 0.01).The gastric contents of MPO and pro-inflammatory cytokines were all increased after the administration of aspirin and reduced to nearly normal levels by ATL-146e.Gastric mucosal PGE2 concentration was not affected by intraperitoneal injection of ATL-146e.CONCLUSION: The specific adenosine A2A receptor agohist, ATL-146e, has potent anti-ulcer effects presumably mediated by its anti-inflammatory properties.

  9. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Yanling Sui; Zichun Zhao; Rong Liu; Bin Cai; Dongsheng Fan

    2014-01-01

    Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis-mutase 1 mutant (SOD1G93A) and wild-type (SOD1WT) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by lfow cytometry. Moreover, we evaluated the expression of the adenos-ine monophosphate-activated protein kinase (AMPK)α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1WT cells, SOD1G93A embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKαin SOD1G93A cells was higher than that in SOD1WT cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKαphosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1G93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.

  10. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  11. A metabolic immune checkpoint: adenosine in tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Akio eOhta

    2016-03-01

    Full Text Available Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage anti-tumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy.

  12. Adenosine stress protocols for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  13. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    Science.gov (United States)

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  14. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  15. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    Science.gov (United States)

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling. PMID:22798209

  16. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    Science.gov (United States)

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  17. Adenosine and sleep

    International Nuclear Information System (INIS)

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A1 receptors, 3H-L-PIA binding was measured. The Bmax values for 3H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in 3H-L-PIA binding resulted from REM sleep deprivation and not from stress

  18. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  19. Ectonucleotidases and adenosine deaminase activity in laying hens naturally infected by Salmonella Gallinarum and their effects on the pathogenesis of the disease.

    Science.gov (United States)

    Boiago, Marcel M; Baldissera, Matheus D; Doleski, Pedro H; Bottari, Nathieli B; do Carmo, Guilherme M; Araujo, Denise N; Giuriatti, Jessica; Baggio, Vanessa; Leal, Daniela B R; Casagrande, Renata A; Wisser, Cláudia S; Stefani, Lenita M; da Silva, Aleksandro S

    2016-04-01

    Salmonella Gallinarum is the etiologic agent of fowl typhoid that affects chickens and turkeys causing egg production drops, infertility, lower hatchability, high mortality, and as a consequence severe economic losses to the poultry industry. The alterations in NTPDase and adenosine deaminase (ADA) activities have been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this infection. Thus, the aim of this study was to evaluate the activities of NTPDase, 5'nucleotidase, and ADA in serum and hepatic tissue of laying hens naturally infected by Salmonella Gallinarum. Liver and serum samples were collected of 27 laying hens (20 S. Gallinarum infected and 7 uninfected). NTPDase and 5'-nucleotidase activities in serum were increased (P laying hens naturally infected by S. Gallinarum; as well as increased (P laying hens. Histopathological analyses revealed that S. Gallinarum caused fibrinoid necrosis in liver and spleen associated with infiltrates of heterophils, macrophages, lymphocytes, and plasma cells. Considering that NTPDase and ADA are involved in the cell-mediated immunity, this study suggests that activities of these enzymes could be important biomarkers to determine the severity of inflammatory and immune responses in salmonellosis, contributing to clarify the pathogenesis of the disease. PMID:26911648

  20. Cytotoxic purine nucleoside analogues bind to A1, A2A and A3 adenosine receptors

    OpenAIRE

    Jensen, Kyle; Johnson, L’Aurelle A.; Jacobson, Pamala A.; Kachler, Sonja; Kirstein, Mark N.; Lamba, Jatinder; Klotz, Karl-Norbert

    2012-01-01

    Fludarabine, clofarabine and cladribine are anti-cancer agents which are analogues of the purine nucleoside adenosine. These agents have been associated with cardiac and neurological toxicities. Because these agents are analogues of adenosine, they may act through adenosine receptors to elicit their toxic effects. The objective of this study was to evaluate the ability of cytotoxic nucleoside analogues to bind and activate adenosine receptor subtypes (A1, A2A, A2B, and A3). Radioligand bindin...

  1. Comorbidities in Neurology: Is Adenosine the Common Link?

    Science.gov (United States)

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  2. [Effect of Arnica montana tincture on some hydrolytic enzyme activities of rat liver in experimental toxic hepatitis].

    Science.gov (United States)

    Iaremiĭ, I M; Meshchyshen, I F; Hrihor'ieva, N P; Kostiuk, L S

    1998-01-01

    Effects of tinctura arnica on arginase, adenosine triphosphatase, glucose-6-phosphatase and 5'-nucleotidase activities of rats liver in case of experimental toxic hepatitis have been studied. Toxic hepatitis was caused by 2 times interstomach administration of 0.25 ml oil solution of carbon tetrachloride per 100 g of animal weight. 20 mkl/100 g of tinctura arnica was administered every day per os for 14 days. The enzyme activities have been investigated at 3, 7 and 17 days. A significant demention of a studied hydrolytic enzyme activities in rats liver at intoxication of the body by CCI4 has been shown. It has been established that tinctura arnica administered per os to intoxicated animals sped up the normalization of hydrolytic enzyme activities in rat liver.

  3. Rhythm generation by the pre-Bötzinger Complex in medullary slice and island preparations: Effects of adenosine A1 receptor activation

    Directory of Open Access Journals (Sweden)

    Shields Edward J

    2008-10-01

    Full Text Available Abstract Background The pre-Bötzinger complex (preBötC is a central pattern generator within the ventrolateral medulla oblongata's ventral respiratory group that is important for the generation of respiratory rhythm. Activation of adenosine A1 receptors (A1R depresses preBötC rhythmogenesis. Although it remains unclear whether A1R activation is important for organisms in a normal metabolic state, A1R activation is important to the response of the preBötC to metabolic stress, such as hypoxia. This study examined mechanisms linking A1R activation to depression of preBötC rhythmogenesis in medullary slice and island preparations from neonatal mice. Results Converting medullary slices to islands by cutting away much of the medullary tissue adjacent to the preBötC decreased the amplitude of action potential bursts generated by a population of neurons within the preBötC (recorded with an extracellular electrode, and integrated using a hardware integrator, without noticeably affecting burst frequency. The A1R agonist N6-Cyclopentyladenosine (NCPA reduced population burst frequency in slices by ca. 33% and in islands by ca. 30%. As in normal (drug-free artificial cerebrospinal fluid (aCSF, NCPA decreased burst frequency in slices when GABAAergic or GABAAergic and glycinergic transmission were blocked, and in islands when GABAAergic transmission was antagonized. Converting slices to island preparations decreased synaptic input to inspiratory neurons. NCPA further decreased the frequency of synaptic inputs to neurons in island preparations and lowered the input resistance of inspiratory neurons, even when chemical communication between neurons and other cells was impeded. Conclusion Together these data support the suggestion that depression of preBötC activity by A1R activation involves both decreased neuronal excitability and diminished inter-neuronal communication.

  4. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  5. Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome.

    Science.gov (United States)

    Liu, Yang-Wuyue; Yang, Ting; Zhao, Li; Ni, Zhenhong; Yang, Nan; He, Fengtian; Dai, Shuang-Shuang

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit-AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils' fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils' survival during inflammation. PMID:27647162

  6. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    Science.gov (United States)

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  7. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway.

    Directory of Open Access Journals (Sweden)

    He Wang

    Full Text Available Hepatic stellate cell (HSC activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR. Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine's inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway.Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III.

  8. Comparison of Activities and Properties of Pyrophosphate and Adenosine Triphosphate-Dependent Phosphofructokinases of Black Gram (Phaseolus mungo) Seeds.

    Science.gov (United States)

    Ashihara, H; Stupavska, S

    1984-09-01

    Both pyrophosphate-dependent phosphofructokinase (PPi-PFKase, EC 2.7.1.90) and ATPdependent phosphofructokinase (ATP-PFKase, EC 2.7. 1.11) were present in dry and germinated black gram seeds. In the absence of fructose-2,6-biphosphate (F2,6BP), the activity of PPi-PFKase expressed as nmol · min(-1) · (pair of cotyledons)(-1) was much lower than that of ATP-PFKase in both dry and germinated seeds. However, PPi-PFKase was activated by F2,6BP and its activity reached the same level as ATP-PFKase activity. ATP-PFKase showed sigmoidal kinetics respective to fructose-6-phosphate (F6P), while PPi-PFKase exhibited hyperbolic kinetics in the presence of F2,6BP. The F6P concentration for half maximal activity of ATP-PFKase (1.5 mM) was nearly 5 times lower than that of PPi-PFKase (7.1 mM). The apparent Km values of PPi-PFKase for PPi and that of ATP-PFKase for ATP were 0.29 mM and 0.23 mM, respectively. Phosphoenolpyruvate (PEP) and citrate inhibited ATP-PFKase activity, but they did not affect PPi-PFKase activity. The activity of PPi-PFKase was inhibited by Pi, while only a little Pi inhibition was observed in the case of ATP-PFKase. These results suggest that the control mechanism of PPi-PFKase and that of ATP-PFKase are quite different. In contrast to pineapple leaves (Carnal, N. W. and C. C. Black, Biochem. Biophys. Res. Commun. 86, 20-26, 1979) and caster bean seedlings (Krugar et al., FEBS Lett. 153, 409-412, 1983), PPi-PFKase is not the predominant PFKase activity in black gram seeds.

  9. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau;

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were...

  10. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle...... from wild-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P < 0.001). Basal IL-6 release from...

  11. Distinct Roles for the A2B Adenosine Receptor in Acute and Chronic Stages of Bleomycin-Induced Lung Injury

    OpenAIRE

    Yang ZHOU; Schneider, Daniel J.; Morschl, Eva; Song, Ling; Pedroza, Mesias; Karmouty-Quintana, Harry; Le, Thuy.; Sun, Chun-Xiao; Blackburn, Michael R.

    2010-01-01

    Adenosine is an extracellular signaling molecule that is generated in response to cell injury where it orchestrates tissue protection and repair. Whereas adenosine is best known for promoting anti-inflammatory activities during acute injury responses, prolonged elevations can enhance destructive tissue remodeling processes associated with chronic disease states. The generation of adenosine and the subsequent activation of the adenosine 2B receptor (A2BR) is an important processes in the regul...

  12. Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats

    Institute of Scientific and Technical Information of China (English)

    Hai-chun MA; Yan-fen WANG; Chun-sheng FENG; Hua ZHAO; Shuji DOHI

    2005-01-01

    Aim: To investigate the antinociceptive effect of adenosine agonist Rphenylisopropyl-adenosine (R-PIA) given to conscious rats by intracerebroventricular (ICV) and intrathecal (IT), and identify the effect of R-PIA on minimum alveolar concentration (MAC) of halothane with pretreatment of A1 receptor an tagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or K+ channel blocker 4-aminopyridine (4-AP). Methods: Sprague-Dawley rats were implanted with 24 gauge stainless steel guide cannula using stereotaxic apparatus and ICV method, and an IT catheter (PE-10, 8.5 cm) was inserted into the lumbar subarachnoid space, while the rats were under pentobarbital anesthesia. After one week of recovery from surgery, rats were randomly assigned to one of the following protocols: MAC of halothane, or tail-flick latency. All measurements were performed after R-PIA (0.8-2.0 μg) microinjection into ICV and IT with or without pretreatment of DPCPX or 4-AP. Results: Microinjection of adenosine agonist R PIA in doses of 0.8-2.0 μg into ICV and IT produced a significant dose- and time dependent antinociceptive action as reflected by increasing latency times and ICV administration of adenosine agonist R-PIA (0.8 μg) reducing halothane anes thetic requirements (by 29%). The antinociception and reducing halothane requirements effected by adenosine agonist R-PIA was abolished by DPCPX and 4-AP. Conclusion: ICV and IT administration of adenosine agonist R-PIA produced an antinociceptive effect in a dose-dependent manner and decreased hal othane MAC with painful stimulation through activation of A1 receptor subtype, and the underlying mechanism involves K+ channel activation.

  13. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    Science.gov (United States)

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV. PMID:9421927

  14. Ablation of adenosine monophosphate-activated protein kinaseα1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo

    Institute of Scientific and Technical Information of China (English)

    CAI Zhe-jun; DING Ye; ZHANG Miao; LU Qiu-lun; WU Sheng-nan; ZHU Huai-ping; SONG Ping; ZOU Ming-hui

    2016-01-01

    AIM:Atherosclerotic calcification is highly linked with plaque instability and cardiovascular events .Adenosine monophosphate-activated protein kinase ( AMPK) has been involved in the pathogenesis of various cardiovascular disease .The contributions of AMPKαsubunits to the development of atherosclerotic calcification in vivo remained unknown .We hypothesized that AMPKαsubunits may play a role in the development of atherosclerotic calcification .METHODS: Atherosclerotic calcification was generated by 24-week fed of western diet in ApoE-/-background mice .Calcification was evaluated in aortic roots and innominate arteries of ApoE-/-mice or in mice with dual deficiencies of ApoE and AMPKαsubunits globally ( AMPKα1 and AMPKα2 ) , or vascular smooth muscle cell ( VSMC)-specific or macrophage-specific knockout of AMPKα1 with atherosclerotic calcification pone diet . The mechanism of AMPKα1 in regulating Runx2 was further explored in human aortic VSMC .RESULTS: Ablation of AMPKα1 but not AMPKα2 in ApoE-/-background promoted atherosclerotic calcification with increased Runt -related transcription factor ( Runx2 ) expression in VSMC compared with ApoE-/-mice.Conversely, chronic administration of metformin, which activated AMPK, markedly reduced ath-erosclerotic calcification and Runx2 expression in ApoE-/-mice but had less effects in ApoE-/-/AMPKα1 -/-mice.Furthermore, VSMC-but not macrophage-specific deficiency of AMPKα1 in ApoE-/-background promoted atherosclerotic calcification in vivo com-pared with the controls .AMPKα1 silencing in human aortic VSMC prevented Runx 2 from proteasome degradation to trigger osteoblastic differentiation of VSMC .Conversely , activation of AMPK led to Runx 2 instability by inducing its small ubiquitin-like modifier modifi-cation (SUMOylation).Protein inhibitor of activated STAT-1 (PIAS1), the SUMO E3-ligase of Runx2, was directly phosphorylated by AMPKα1 at serine 510, to enhance its SUMO E3-ligase activity.Ablation of PIAS1

  15. An improved red blood cell additive solution maintains 2,3-diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage

    NARCIS (Netherlands)

    P. Burger; H. Korsten; D. de Korte; E. Rombout; R. van Bruggen; A.J. Verhoeven

    2010-01-01

    BACKGROUND: Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM)

  16. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 2- Measured by using ME and At Pase Enzyme Activities and Total Protein Content

    International Nuclear Information System (INIS)

    The present investigation aims at producing sterile adult Mediterranean fruit fly, Ceratitis capitata Wied. Having the best possible vitality through the use of irradiation and /or a mutagenic substances to be used in a sterile insect technique program. Several types of mutagenic that were thought to cause mutations were used as IGR's, temperature, formaldehyde, colchicine, alcohols, serve ral types of larval rearing media and gamma-rays. In a common pathway, malic enzyme (ME) activity, adenosine triphosphatase (ATPase) enzyme activity and the total protein contents are studied as direct parameters for measuring vitality of the insect. It was found that there is an increment at levels of these parameters due to the treatment of egg stage by the previously mentioned treatments specially the usage of the rice hulls as a bulking component in the larval rearing media alone or followed by irradiation of the pupal stage with 90 Gy

  17. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  18. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer

    OpenAIRE

    Kleer, Celina G.; Zhang, Yanhong; Pan, Quintin; Gallagher, Gary; Wu, Mei; Wu, Zhi-fen; Merajver, Sofia D

    2003-01-01

    Background Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer. We found concordant and consistent alterations of two genes in 90% of IBC tumors when compared with stage-matched non-IBC tumors: overexpression of RhoC guanosine triphosphatase and loss of WNT-1 induced secreted protein 3 (WISP3). Further work revealed that RhoC is a transforming oncogene for human mammary epithelial (HME) cells. Despite the aggressiveness of the RhoC-driven phenotype, it d...

  19. The pharmacological activation of adenosine A1 and A3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice

    OpenAIRE

    Hofer, Michal; Pospíšil, Milan; Hoferová, Zuzana; Komůrková, Denisa; Páral, Petr; Savvulidi, Filipp; Šefc, Luděk

    2012-01-01

    This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was ...

  20. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  1. Electroacupuncture improves neuropathic pain Adenosine,adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously

    Institute of Scientific and Technical Information of China (English)

    Wen Ren; Wenzhan Tu; Songhe Jiang; Ruidong Cheng; Yaping Du

    2012-01-01

    Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals.When acupuncture was applied in a rat model,adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine,which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process.Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture.The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves.In neuropathic pain,there is upregulation of P2X purinoceptor 3(P2X3)receptor expression in dorsal root ganglion neurons.Conversely,the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated.The pathways upon which electroacupuncture appear to act are interwoven with pain pathways,and electroacupuncture stimuli converge with impulses originating from painful areas.Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

  2. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    Science.gov (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  3. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene;

    2007-01-01

    calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas the...... protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which was....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release of...

  4. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  5. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin;

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  6. Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Gu Junfei; Ye Shandong; Wang Shan; Sun Wenjia; Hu Yuanyuan

    2014-01-01

    Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB),monocyte chemoattractant protein-1 (MCP-1),intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).Methods MCs were cultured in the medium with normal concentration glucose (group NG,5.6 mmol/L),high concentration glucose (group HG,25 mmol/L) and different concentrations of metformin (group M1,M2,M3).After 48-hour exposure,the supernatants and MCs were collected.The expression of NF-κB,MCP-1,ICAM-1,and TGF-β1 mRNA was analyzed by real time polymerase chain reaction.Westem blotting was used to detect the expression of AMPK,phospho-Thr-172 AMPK (p-AMPK),NF-κB p65,MCP-1,ICAM-1,and TGF-β1 protein.Results After stimulated by HG,the expression of NF-κB,MCP-1,ICAM-1,TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05).Both genes and protein expression of NF-κB,MCP-1,ICAM-1,TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05).The expression of p-AMPK increased with the rising of metformin concentration,presenting the opposite trend,while the level of total-AMPK protein was unchanged with exposure to HG or metformin.Conlusion Metformin can suppress the expression of NF-κB,MCP-1,ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation,which may partlv contribute to its reno-protection.

  7. Role of A3 adenosine receptor in diabetic neuropathy.

    Science.gov (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  8. Protective effect of taurine on hypochlorous acid toxicity to nuclear nucleoside triphosphatase in isolated nuclei from rat liver

    Institute of Scientific and Technical Information of China (English)

    Ju-Xiang Li; Yong-Zheng Pang; Chao-Shu Tang; Zai-Quan Li

    2004-01-01

    AIM: Taurine has been shown to be an effective scavenger of hypochlorous acid (HOCI). The role of HOCI is well established in tissue damage associated with inflammation and injury. In the present study, the effect of HOCI on nuclear nucleoside triphosphatase of hepatocytes and the ability of taurine to prevent this effect were investigated.METHODS: Isolated hepatic nuclei from rat liver were exposed to HOCI with or without taurine. The NTPase activity on nuclear envelope was assayed using ATP and GTP as substrates, respectively.RESULTS: The first series of experiments evaluated the toxicity of HOCl and the efficacy of taurine to protect NTPase.HOCI at 10-9-5×10-6 mol/L reduced nuclear NTPase activities in a concentration dependent manner (ATP and GTP as substrates) (P<0.01). HOCI at 10-6 mol/L reduced the NTPase activity by 65% (ATP as substrate) and 76% (GTP as substrate). Taurine (10-7 to 10-4 mol/L) was tested for protection against HOCI at 10-6 mol/L and the nuclei treated with 5x10-4 mol/L taurine exhibited only 20% and 12% reduction in NTPase activities compared to untreated controls. A second study was performed comparing taurine to glutathione (GSH). GSH and HOCI at 10-6 mol/L exhibited 46% and 67.4% reduction in NTPase activities compared with control. GSH (10-4 mol/L) which was incubated with the nuclei and HOCi still exhibited 44.2% and 44.8% reduction in NTPase activities of untreated control. Taurine with HOCI only exhibited 15.2% and 17.1% reduction in NTPase activities, which provided more powerful protection against HOCI than GSH. The third experiment was undertaken to evaluate the specificity of taurine against HOCI. Incubation of rat hepatic nuclei with Fe3+/H2O2 (1 m mol/L vS 5μ mol/L) resulted in a decrease in nuclear NTPase activities (P<0.01).When hepatic nuclei were incubated with Tau (10-4 mol/L) and Fe3+/H2O2 (1m mol/L vS 5μ mol/L), nuclear NTPase activities were only slightly increased as compared with that of incubation with Fe3+/H

  9. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats.

    Science.gov (United States)

    Scaramuzzi, R J; Baker, D J

    2003-10-01

    Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. PMID:14633184

  10. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    Science.gov (United States)

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-01

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed. PMID:19896942

  11. An adenosine at position 27 in the human immunodeficiency virus type 1 trans-activation response element is not critical for transcriptional or translational activation by Tat.

    OpenAIRE

    Blanchard, A. D.; Powell, R; Braddock, M; Kingsman, A J; Kingsman, S M

    1992-01-01

    Tat protein binds to the trans-activation response (TAR) element of human immunodeficiency virus type 1 RNAs and activates gene expression at the level of transcription in mammalian cell lines and translation in Xenopus oocytes. Certain residues within TAR are important for Tat binding in vitro, including residue A-27, which appears to be able to be modified in a Tat-dependent manner in Xenopus oocytes (L. Sharmeen, B. Bass, N. Sonenberg, H. Weintraub, and M. Groudine, Proc. Natl. Acad. Sci. ...

  12. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    Science.gov (United States)

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  13. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission

    DEFF Research Database (Denmark)

    Goadsby, P J; Hoskin, K L; Storer, R J;

    2002-01-01

    There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg/kg, intraperit......There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg...... from the external jugular vein to determine levels of calcitonin gene-related peptide (CGRP) release before and after drug administration. Intravenous administration of the highly selective adenosine A1 receptor agonist, GR79236 (3-100 microg/kg) had a dose-dependent inhibitory effect on SSS...... 33 +/- 2 pmol/l (n = 6) to 64 +/- 3 pmol/l, an effect substantially reduced by pre-treatment with GR79236 (30 microg/kg; P agonist, GR190178 (30-1000 microg/kg i.v.), also inhibited SSS-evoked neuronal activity in a dose-dependent fashion...

  14. 二甲双胍通过激活腺苷酸活化蛋白激酶(AMPK)的抗肿瘤机制%Antitumor Mechanism of Metformin via Adenosine Monophosphate-activated Protein Kinase (AMPK) Activation

    Institute of Scientific and Technical Information of China (English)

    陈兆煜; 王连唐; 陈雁扬

    2013-01-01

    Metformin, as a traditional oral hypoglycemic agent, is commonly used in the clinical treatment for type 2 diabetes. Recently, a large number of epidemiological researches have shown that metformin could reduce the tumor morbidity of type 2 diabetes, moreover, it has also been indicated that metformin could inhibit the growth, proliferation and transformation of cancer cells in metabolic pathways, cell cycle, oxidative stress and cancer/tumor stem cells transformation via AMPK pathway activation. But the antitumor effect of metformin via AMPK activation still exists arguments, and the deifnite mechanism remains to be further investigated and conifrmed by extensive clinical trials.%二甲双胍是一种传统的口服降糖药,临床上普遍用于2型糖尿病的治疗。近年来大量流行病学研究报道二甲双胍能够降低2型糖尿病患者的肿瘤发病率,亦有研究发现二甲双胍能在代谢途径、细胞周期、氧化应激、肿瘤干细胞转化等方面通过激活腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)信号通路,从而抑制肿瘤细胞的生长、增殖以及转化。但二甲双胍通过激活AMPK的抗肿瘤机制仍存在着争议,其确切的作用机制有待进一步深入的研究,同时亟需大规模的临床试验来证实。

  15. Regulation of adenosine levels during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Stephanie CHU; Wei XIONG; Dali ZHANG; Hanifi SOYLU; Chao SUN; Benedict C ALBENSI; Fiona E PARKINSON

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events,and attenuates the excitotoxic neuronal injury.Adenosine is produced both intracellularly and extracellularly,and nucleoside transport proteins transfer adenosine across plasma membranes.Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption,cellular release of ATP,metabolism of extracellular ATP (and other adenine nucleotides),adenosine influx,adenosine efflux and adenosine metabolism.Recent studies have used genetically modified mice to investigate the relative contributions of intra-and extracellular pathways for adenosine formation.The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase.From these studies,we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures,but not in hippocampal slices or in vivo mice exposed to ischemic conditions.

  16. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    NARCIS (Netherlands)

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.

    2011-01-01

    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  17. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    Science.gov (United States)

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  18. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3121, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  19. Why do premature newborn infants display elevated blood adenosine levels?

    Science.gov (United States)

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  20. Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis

    OpenAIRE

    Aleixo M Muise; Walters, Thomas; Xu, Wei; Shen-Tu, Grace; Guo, Cong-Hui; Fattouh, Ramzi; Lam, Grace Y; Wolters, Victorien M; Bennitz, Joshua; Van Limbergen, Johan; Renbaum, Paul; Kasirer, Yair; Ngan, Bo-yee; Turner, Dan; Denson, Lee A.

    2011-01-01

    Background & AimsRAC1 is a guanosine triphosphatase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases are associated with dysregulation of immune defenses. We studied the role of RAC1 in inflammatory bowel diseases using human genetic and functional studies and animal models of colitis.MethodsWe used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms in a discovery cohort; findings we...

  1. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    that the steady-state response to the increase of plasma adenosine levels above normal resulting from the infusion is global renal vasorelaxation that is the result of A2AR activation in most parts of the renal vasculature, including larger renal arteries, juxtamedullary afferent arterioles, efferent arterioles...

  2. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    Science.gov (United States)

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine-triggered signal transduction cascade and the activation state of protein kinase C in regulating apoptosis of human thymocytes. PMID:7818494

  3. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    Science.gov (United States)

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy. PMID:16961725

  4. Diversification of the RAB Guanosine Triphosphatase Family in Dicots and Monocots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    RAB guanosine triphosphatases (GTPases) are key regulators of vesicle trafficking and are essential to the growth and development of all eukaryotic cells. During evolution, the RAB family has expanded in different patterns to facilitate distinct cellular, developmental and physiological adaptations. Yeast has only 11 family members, whereas mammalian RABs have expanded to 18 RAB subfamilies. Plant RABs have diversified primarily by duplicating members within a single subfamily. Plant RABs are divided into eight subfamilies, corresponding to mammalian RAB1, RAB2, RAB5, RAB6,RAB7, RAB8, RAB11 and RAB18. Functional diversification of these is exemplified by the RAB11s, orthologs of which are partitioned into unique cell compartments in plants where they function to transport vesicles during localized tip growth.Similarly, the RAB2 family in grasses is likely involved in vesicle secretion associated with wall expansion, as determined by analysis of over-expression mutants. We propose that dicots and monocots have also diverged in their RAB profiles to accommodate unique cellular functions between the two groups. Here we present a bioinformatics analysis comparing the RAB sub-families of rice, maize and Arabidopsis. These results will guide future functional studies to test for the role of diversification of subfamilies unique to monocots compared to dicots.

  5. The role of adenosine A2A receptors on neuromuscular transmission upon ageing

    OpenAIRE

    Pousinha, Paula Isabel Antunes, 1978-

    2012-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2012 Adenosine is a neuromodulator with important actions in the nervous system. The activation of adenosine A2A receptors has been shown to modulate the action of other receptors. Considering that it was observed an interaction between adenosine A2A receptors and TrkB receptors in hippocampus, I hypothesized that the activation of A2A receptors could also facilitate BDNF actions on ne...

  6. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.

    Science.gov (United States)

    Pagliaro, P; Senzaki, H; Paolocci, N; Isoda, T; Sunagawa, G; Recchia, F A; Kass, D A

    1999-10-01

    1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where

  7. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    Science.gov (United States)

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  8. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    Science.gov (United States)

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  9. Adenosine, Energy Metabolism, and Sleep

    Directory of Open Access Journals (Sweden)

    Tarja Porkka-Heiskanen

    2003-01-01

    Full Text Available While the exact function of sleep remains unknown, it is evident that sleep was developed early in phylogenesis and represents an ancient and vital strategy for survival. Several pieces of evidence suggest that the function of sleep is associated with energy metabolism, saving of energy, and replenishment of energy stores. Prolonged wakefulness induces signs of energy depletion in the brain, while experimentally induced, local energy depletion induces increase in sleep, similarly as would a period of prolonged wakefulness. The key molecule in the induction of sleep appears to be adenosine, which induces sleep locally in the basal forebrain.

  10. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Science.gov (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  11. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Science.gov (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  12. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

    Science.gov (United States)

    Cameron, Kimberly O; Kung, Daniel W; Kalgutkar, Amit S; Kurumbail, Ravi G; Miller, Russell; Salatto, Christopher T; Ward, Jessica; Withka, Jane M; Bhattacharya, Samit K; Boehm, Markus; Borzilleri, Kris A; Brown, Janice A; Calabrese, Matthew; Caspers, Nicole L; Cokorinos, Emily; Conn, Edward L; Dowling, Matthew S; Edmonds, David J; Eng, Heather; Fernando, Dilinie P; Frisbie, Richard; Hepworth, David; Landro, James; Mao, Yuxia; Rajamohan, Francis; Reyes, Allan R; Rose, Colin R; Ryder, Tim; Shavnya, Andre; Smith, Aaron C; Tu, Meihua; Wolford, Angela C; Xiao, Jun

    2016-09-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.

  13. Receptor crosstalk: haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model

    OpenAIRE

    Trincavelli, Maria Letizia; Cuboni, Serena; Catena Dell’Osso, Mario; Maggio, Roberto; Klotz, Karl-Norbert; Novi, Francesca; Panighini, Anna; Daniele, Simona; Martini, Claudia

    2010-01-01

    A2A adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A2A adenosine receptors are regulated by D2 dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A2A adenosine receptor functional responses caused by the chronic blockade/activation of D2 dop...

  14. Ras activation by SOS

    DEFF Research Database (Denmark)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen;

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual ...

  15. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer

    International Nuclear Information System (INIS)

    Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer. We found concordant and consistent alterations of two genes in 90% of IBC tumors when compared with stage-matched non-IBC tumors: overexpression of RhoC guanosine triphosphatase and loss of WNT-1 induced secreted protein 3 (WISP3). Further work revealed that RhoC is a transforming oncogene for human mammary epithelial (HME) cells. Despite the aggressiveness of the RhoC-driven phenotype, it does not quantitatively reach that of the true IBC tumors. We have demonstrated that WISP3 has tumor growth and angiogenesis inhibitory functions in IBC. We proposed that RhoC and WISP3 cooperate in the development of IBC. Using an antisense approach, we blocked WISP3 expression in HME cells. Cellular proliferation and growth were determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and anchorage-independent growth in a soft agar assay. Vascular endothelial growth factor (VEGF) was measured in conditioned medium by enzyme-linked immunosorbent assay. Antisense inhibition of WISP3 in HME cells increased RhoC mRNA levels and resulted in an increase in cellular proliferation, anchorage-independent growth and VEGF levels in the conditioned medium. Conversely, restoration of WISP3 expression in the highly malignant IBC cell line SUM149 was able to decrease the expression of RhoC protein. WISP3 modulates RhoC expression in HME cells and in the IBC cell line SUM149. This provides further evidence that these two genes act in concert to give rise to the highly aggressive IBC phenotype. We propose a model of this interaction as a starting point for further investigations

  16. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    Science.gov (United States)

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  17. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  18. Chronic hypoxia increases arterial blood pressure and reduces adenosine and ATP induced vasodilatation in skeletal muscle in healthy humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Boushel, Robert Christopher; Robach, P;

    2014-01-01

    AIMS: To determine the role played by adenosine, ATP and chemoreflex activation on the regulation of vascular conductance in chronic hypoxia. METHODS: The vascular conductance response to low and high doses of adenosine and ATP was assessed in ten healthy men. Vasodilators were infused into the f...

  19. Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum

    Directory of Open Access Journals (Sweden)

    Denis eHervé

    2011-08-01

    Full Text Available In the principal neurons of striatum (medium spiny neurons, MSNs, cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological situations, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Galpha-olf/beta2/gamma7 in particular association with adenylate cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor-dependent cAMP signaling is modulated by the neuronal levels of Galpha-olf, indicating that Galpha-olf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1 receptor responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Galpha-olf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1 stimulation, occurring despite an unaltered D1 receptor density. In conclusion, alterations in the highly specialized assembly of Galpha-olf/beta2/gamma7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1 receptor signaling in the striatum.

  20. Optical Aptasensors for Adenosine Triphosphate

    Science.gov (United States)

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  1. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  2. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  3. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Science.gov (United States)

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  4. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Science.gov (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  5. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Science.gov (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma. PMID:15821340

  6. 5’-Phosphate and 5’-Phosphonate Ester Derivatives of (N)-Methanocarba Adenosine with in Vivo Cardioprotective Activity

    OpenAIRE

    Kumar, T. Santhosh; Yang, Tiehong; Mishra, Shilpi; Cronin, Chunxia; Charkaborty, Saibal; Shen, Jian-Bing; Liang, Bruce T.; Jacobson, Kenneth A.

    2013-01-01

    Activation of a cardiac myocyte P2X4 receptor protects in heart failure. 5’-Phosphonate and 5’-phosphate analogues of AMP containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system could protect from heart failure by potentially activating this cardioprotective channel. Phosphoesters and phosphonodiesters were synthesized and administered in vivo via a mini-osmotic pump in a mouse ischemic heart failure model; most significantly increased intact heart contractile function (echocardiography) ...

  7. Adenosine triphosphate inhibition of yeast trehalase.

    Science.gov (United States)

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  8. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  9. Electrocardiographic profile of adenosine pharmacological stress testing

    OpenAIRE

    Sun, Hao; TIAN, YUEQIN; ZHENG, LIHUI; Pan, Qingrong; XIE, BOQIA

    2015-01-01

    Adenosine stress testing in conjunction with radionuclide myocardial perfusion imaging has become a common approach for the detection of coronary artery diseases in patients who are unable to perform adequate levels of exercise. However, specific electrocardiographic alterations during the test have been rarely described. Using a Chinese population, the aim of the present study was to provide a detailed electrocardiographic profile of adenosine stress testing. The study population included 1,...

  10. Increased Na+/K(+)-pump activity and adenosine triphosphate utilization after compound 48/80-induced histamine secretion from rat mast cells

    DEFF Research Database (Denmark)

    Johansen, Torben; Praetorius, Birger Hans

    1994-01-01

    -production were measured by the bioluminescence technique (firefly lantern) and by measurement of the lactate production under anaerobic conditions (antimycin A, oligomycin), respectively. There was an increased requirement for ATP after the secretory response associated with an increased activity of the Na...

  11. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG

    2009-01-01

    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  12. KATP-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation

    OpenAIRE

    Ford, William R.; Lopaschuk, Gary D.; Schulz, Richard; Clanachan, Alexander S

    1998-01-01

    Optimization of myocardial energy substrate metabolism improves the recovery of mechanical function of the post-ischaemic heart. This study investigated the role of KATP-channels in the regulation of the metabolic and mechanical function of the aerobic and post-ischaemic heart by measuring the effects of the selective KATP-channel activator, cromakalim, and the effects of the KATP-channel antagonist, glibenclamide, in rat fatty acid perfused, working hearts in vitro. The role of KATP channels...

  13. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    Science.gov (United States)

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  14. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    Science.gov (United States)

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  15. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  16. Liver MicroRNA-291b-3p Promotes Hepatic Lipogenesis through Negative Regulation of Adenosine 5'-Monophosphate (AMP)-activated Protein Kinase α1.

    Science.gov (United States)

    Meng, Xiangyu; Guo, Jun; Fang, Weiwei; Dou, Lin; Li, Meng; Huang, Xiuqing; Zhou, Shutong; Man, Yong; Tang, Weiqing; Yu, Liqing; Li, Jian

    2016-05-13

    In a microarray study, we found that hepatic miR-291b-3p was significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. The function of miR-291b-3p is unknown. The potential role of miR-291b-3p in regulating hepatic lipid metabolism was explored in this study. High-fat diet (HFD)- and chow-fed mice were injected with an adenovirus expressing a miR-291b-3p inhibitor and a miR-291b-3p mimic through the tail vein. Hepatic lipids and lipogenic gene expression were analyzed. Additionally, gain- and loss-of-function studies were performed in vitro to identify direct targets of miR-291b-3p. MiR-291b-3p expression and the protein levels of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) were increased in the steatotic liver of db/db mice and HFD-fed mice versus their respective controls. Inhibition of hepatic miR-291b-3p expression prevented increases in hepatic lipogenesis and steatosis in HFD-fed mice. The opposite was observed when miR-291b-3p was overexpressed in the livers of chow-fed C57BL/6J wild-type mice. In vitro studies revealed that silencing of miR-291b-3p in NCTC1469 hepatic cells ameliorated oleic acid/palmitic acid mixture-induced elevation of cellular triglycerides. Importantly, we identified AMP-activated protein kinase (AMPK)-α1 as a direct target of miR-291b-3p. Using metformin, an activator of AMPK, we showed that AMPK activation-induced inhibition of hepatic lipid accumulation was accompanied by reduced expression of miR-291b-3p in the liver. Liver miR-291b-3p promoted hepatic lipogenesis and lipid accumulation in mice. AMPKα1 is a direct target of miR-291b-3p. In conclusion, our findings indicate that miR-291b-3p promotes hepatic lipogenesis by suppressing AMPKα1 expression and activity, indicating the therapeutic potential of miR-291b-3p inhibitors in fatty liver disease. PMID:27013659

  17. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor ΚB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells

    Directory of Open Access Journals (Sweden)

    Li J

    2014-03-01

    inhibit IL-1β, IL-6, and IL-8 production induced by TNF-α. In addition, we also found that pretreatment with the adenosine monophosphate-activated protein kinase (AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside obviously inhibited TNF-α-induced proinflammatory cytokine production. These observations suggest that the inhibitory effect of genistein on TNF-α-induced proinflammatory cytokine production is dependent on AMPK activation. Conclusion: These findings indicate that genistein suppressed TNF-α-induced inflammation by inhibiting the ROS/Akt/NF-ΚB pathway and promoting AMPK activation in MH7A cells. Keywords: genistein, rheumatoid arthritis, cytokine, signal transduction, inflammation

  18. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    Science.gov (United States)

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  19. Inosine triphosphatase allele frequency and association with ribavirin-induced anaemia in Brazilian patients receiving antiviral therapy for chronic hepatitis C

    Science.gov (United States)

    Delvaux, Nathália; da Costa, Vanessa Duarte; da Costa, Maristella Matos; Villar, Livia Melo; Coelho, Henrique Sérgio Moraes; Esberard, Eliane Bordalo Cathalá; Flores, Priscila Pollo; Brandão-Mello, Carlos Eduardo; Villela-Nogueira, Cristiane Alves; de Almeida, Adilson José; Lampe, Elisabeth

    2015-01-01

    Inosine triphosphatase (ITPA) single nucleotide polymorphisms (SNPs) are strongly associated with protection against ribavirin (RBV)-induced anaemia in European, American and Asian patients; however, there is a paucity of data for Brazilian patients. The aim of this study was to evaluate the ITPA SNP (rs7270101/rs1127354) frequency in healthy and hepatitis C virus (HCV)-infected patients from Brazil and the association with the development of severe anaemia during antiviral therapy. ITPA SNPs were determined in 200 HCV infected patients and 100 healthy individuals by sequencing. Biochemical parameters and haemoglobin (Hb) levels were analysed in 97 patients who underwent antiviral therapy. A combination of AArs7270101+CCrs1127354 (100% ITPase activity) was observed in 236/300 individuals. Anaemia was observed in 87.5% and 86.2% of treated patients with AA (rs7270101) and CC genotypes (rs1127354), respectively. Men with AA (rs7270101) showed a considerable reduction in Hb at week 12 compared to those with AC/CC (p = 0.1475). In women, there was no influence of genotype (p = 0.5295). For rs1127354, men with the CC genotype also showed a sudden reduction in Hb compared to those with AC. Allelic distribution of rs7270101 and rs1127354 shows high rates of the genotypes AA and CC, respectively, suggesting that the study population had a great propensity for developing RBV-induced anaemia. A progressive Hb reduction during treatment was observed; however, this reduction was greater in men at week 12 than in women. PMID:26154744

  20. Inosine triphosphatase allele frequency and association with ribavirin-induced anaemia in Brazilian patients receiving antiviral therapy for chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Nathália Delvaux

    2015-08-01

    Full Text Available Inosine triphosphatase (ITPA single nucleotide polymorphisms (SNPs are strongly associated with protection against ribavirin (RBV-induced anaemia in European, American and Asian patients; however, there is a paucity of data for Brazilian patients. The aim of this study was to evaluate the ITPA SNP (rs7270101/rs1127354 frequency in healthy and hepatitis C virus (HCV-infected patients from Brazil and the association with the development of severe anaemia during antiviral therapy. ITPA SNPs were determined in 200 HCV infected patients and 100 healthy individuals by sequencing. Biochemical parameters and haemoglobin (Hb levels were analysed in 97 patients who underwent antiviral therapy. A combination of AArs7270101+CCrs1127354 (100% ITPase activity was observed in 236/300 individuals. Anaemia was observed in 87.5% and 86.2% of treated patients with AA (rs7270101 and CC genotypes (rs1127354, respectively. Men with AA (rs7270101 showed a considerable reduction in Hb at week 12 compared to those with AC/CC (p = 0.1475. In women, there was no influence of genotype (p = 0.5295. For rs1127354, men with the CC genotype also showed a sudden reduction in Hb compared to those with AC. Allelic distribution of rs7270101 and rs1127354 shows high rates of the genotypes AA and CC, respectively, suggesting that the study population had a great propensity for developing RBV-induced anaemia. A progressive Hb reduction during treatment was observed; however, this reduction was greater in men at week 12 than in women.

  1. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    Science.gov (United States)

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  2. Post-Meal Responses of Elongation Factor 2 (eEF2 and Adenosine Monophosphate-Activated Protein Kinase (AMPK to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Donald K. Layman

    2012-11-01

    Full Text Available Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2. This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0 or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270, 80:40:40 mg leucine, isoleucine, and valine (Leu80, 2.63 g carbohydrates (CHO2.6, 1 g carbohydrates (CHO1.0, or water (Sham control. Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0, but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to

  3. Role of adenosine in the antiepileptic effects of deep brain stimulation

    Science.gov (United States)

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  4. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  5. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H.G.; Carr, W.E.; Gleeson, R.A.

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  6. Lower frequency of the low activity adenosine deaminase allelic variant (ADA1*2 in schizophrenic patients Diminuição da frequência da variante alélica de baixa atividade da adenosina desaminase (ADA1*2 em pacientes esquizofrênicos

    Directory of Open Access Journals (Sweden)

    Gustavo Pimentel Dutra

    2010-09-01

    Full Text Available OBJECTIVE: Adenosine may play a role in the pathophysiology of schizophrenia, since it modulates the release of several neurotransmitters such as glutamate, dopamine, serotonin and acetylcholine, decreases neuronal activity by pos-synaptic hyperpolarization and inhibits dopaminergic activity. Adenosine deaminase participates in purine metabolism by converting adenosine into inosine. The most frequent functional polymorphism of adenosine deaminase (22G→A (ADA1*2 exhibits 20-30% lower enzymatic activity in individuals with the G/A genotype than individuals with the G/G genotype. The aim of this study was to evaluate the ADA polymorphism 22G→A (ADA1*2 in schizophrenic patients and healthy controls. METHOD: The genotypes of the ADA 22G→A were identified with allele-specific PCR strategy in 152 schizophrenic patients and 111 healthy individuals. RESULTS: A significant decrease in the frequency of the G/A genotype was seen in schizophrenic patients (7/152 - 4.6% relative to controls (13/111 - 11.7%, p = 0.032, OR = 2.6. CONCLUSION: These results suggest that the G/A genotype associated with low adenosine deaminase activity and, supposingly, with higher adenosine levels is less frequent among schizophrenic patients.OBJETIVO: A adenosina pode ter um papel importante na fisiopatologia da esquizofrenia, uma vez que modula a liberação de vários neurotransmissores, tais como glutamato, dopamina, serotonina e acetilcolina, diminui a atividade neuronal por hiperpolarização pós-sináptica e inibe a atividade dopaminérgica. A adenosina desaminase participa do metabolismo das purinas pela conversão de adenosina em inosina. O mais frequente polimorfismo funcional da adenosina desaminase (22G →A (ADA1*2 exibe uma diminuição de 20-30% da atividade funcional em indivíduos com genótipo G/A quando comparados com indivíduos com o genótipo G/G. O objetivo deste estudo foi avaliar o polimorfismo 22G→A (ADA1*2 em pacientes esquizofrênicos e em

  7. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    Science.gov (United States)

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  8. Internalization and desensitization of adenosine receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; IJzerman, A.P.; Grip, W.J. de; Beukers, M.W.

    2008-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein clas

  9. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  10. Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes

    OpenAIRE

    Alloisio, Susanna; Cugnoli, Carlo; Ferroni, Stefano; Nobile, Mario

    2004-01-01

    Despite the accumulating evidence that under various pathological conditions the extracellular elevation of adenine-based nucleotides and nucleosides plays a key role in the control of astroglial reactivity, how these signalling molecules interact in the regulation of astrocyte function is still largely elusive.The action of the nucleoside adenosine in the modulation of the intracellular calcium signalling ([Ca2+]i) elicited by adenosine 5′-triphosphate (ATP)-induced activation of P2 purinoce...

  11. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    Previously, we have shown that pancreatic acini release adenosine triphosphate (ATP) and ATP-handling enzymes, and pancreatic ducts express various purinergic P2 receptors. The aim of the present study was to establish whether pancreatic ducts also express adenosine receptors and whether...... these could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell......) for duct cell lines. Whole-cell patch-clamp recordings on rat pancreatic ducts showed that, in about half of the recordings, adenosine depolarized the membrane voltage, and this was because of the opening of Cl(-) channels. Using a Cl(-)-sensitive fluorophore and single-cell imaging on duct cell lines...

  12. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    DEFF Research Database (Denmark)

    Zhao, Xin; Sun, X Y; Erlinge, D;

    2000-01-01

    Neurohormonal changes in congestive heart failure (CHF) include an enhanced peripheral sympathetic nerve activity which results in increased release of noradrenaline, neuropeptide Y and ATP. To examine if such changes in CHF would modulate peripheral pre- and postsynaptic receptors of ATP and its...... effects mediated by the endothelial P2Y receptors are unaffected in CHF. Moreover, the adenosine-mediated inhibitory effects on heart rate and blood pressure were also attenuated in the CHF rats. The most important changes in adenosine and P2-receptor function induced by ischaemic CHF were the reduced...... pressor effect mediated by the P2X receptor and the increased heart rate due to an attenuated inhibitory effect of adenosine....

  13. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  14. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  15. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Science.gov (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  16. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    DEFF Research Database (Denmark)

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  17. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    Directory of Open Access Journals (Sweden)

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  18. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  19. Relation of Na+, K(+)-ATPase to delayed motor nerve conduction velocity: effect of aldose reductase inhibitor, ADN-138, on Na+, K(+)-ATPase activity.

    Science.gov (United States)

    Hirata, Y; Okada, K

    1990-06-01

    The role of sorbitol, myo-inositol, and Na+, K(+)-adenosine triphosphatase (ATPase) activity on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-diabetic rats was studied. Reduction of MNCV and Na+, K(+)-ATPase in caudal nerves appeared after 3 weeks of diabetes, and at this time treatment with aldose reductase inhibitor (ARI), ADN-138 and 1% myo-inositol supplement was begun. One percent myo-inositol supplement for 3 weeks resulted in a significant increase in myo-inositol levels in diabetic nerves, but left MNCV and sorbitol levels unchanged. In contrast, treatment with ADN-138 for 3 weeks reduced sorbitol levels in diabetic nerves and resulted in significant increases in MNCV and Na+, K(+)-ATPase in the nerves. Since ADN-138 did not restore myo-inositol levels, the increase in Na+, K(+)-ATPase levels by ADN-138 treatment was independent of myo-inositol levels. Also, nerve Na+ levels in ADN-138-treated rats were reduced and the ratio of K+ to Na+ was raised, while 1% myo-inositol supplement did not affect them. These results suggest that treatment with ADN-138 elevates MNCV through a series of processes: ARI----reduction of sorbitol level----increase in Na+, K(+)-ATPase activity----correction of K+, Na+ imbalance----increase in MNCV.

  20. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N-methanocarbathymidine

    Directory of Open Access Journals (Sweden)

    Moyer Richard W

    2008-03-01

    Full Text Available Abstract Background The vaccinia virus (VV F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive

  1. Adenosine receptors and asthma in humans

    OpenAIRE

    Wilson, C N

    2008-01-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine...

  2. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    OpenAIRE

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  3. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    Institute of Scientific and Technical Information of China (English)

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.

  4. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.

    Science.gov (United States)

    Malave, Lauren B; Broderick, Patricia A

    2014-06-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE(®) was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079

  5. Ischemic preconditioning protects post-ischemic renal function in anesthetized dogs: role of adenosine and adenine nucleotides

    Institute of Scientific and Technical Information of China (English)

    Fan-zhu LI; Shoji KIMURA; Akira NISHIYAMA; Matlubur RAHMAN; Guo-xing ZHANG; Youichi ABE

    2005-01-01

    Aim: To investigate the effects of renal ischemic preconditioning (IPC) on both renal hemodynamics and the renal interstitial concentrations of adenosine and adenine nucleotides induced by ischemia-reperfusion injury.Methods: Renal hemodynamics responses to ischemia-reperfusion injury in mongrel dog models were determined with or without multiple brief renal ischemic preconditioning treatments, as well as the adenosine A1 receptor antagonist (KW-3902),respectively.The renal interstitial concentrations of adenosine and adenine nucleotides in response to ischemia-reperfusion injury, either following 1-3 cycles of IPC or not, were measured simultaneously using microdialysis sampling technology.Results: One 10-min IPC, adenosine A1 receptor antagonist (KW3902) also shortened the recovery time of renal blood flow (RBF) and urine flow (UF), as well as mean blood pressure (BP).Advanced renal IPC attenuated the increment of adenosine and adenine nucleotides, as well as recovery time during the 60-min reperfusion which followed the 60-min renal ischemia.All of these recovery times were dependent on the cycles of 10-min IPC.The renal interstitial concentrations of adenosine and adenine nucleotides increased and decreased during renal ischemia and reperfusion, respectively.Conclusion: A significant relativity in dog models exists between the cycles of 10-min renal IPC and the recovery time of BP, UF, and RBF during the 60-min renal reperfusion following 60-min renal ischemia, respectively.Renal IPC can protect against ischemiareperfusion injury and the predominant effect of endogenous adenosine induced by prolonged renal ischemia; renal adenosine A1 receptor activation during the renal ischemia-reperfusion injury is detrimental to renal function.

  6. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2014-02-01

    Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension. PMID:24216055

  7. Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity

    OpenAIRE

    Cunha, Rodrigo A.

    2008-01-01

    Adenosine is a prototypical neuromodulator, which mainly controls excitatory transmission through the activation of widespread inhibitory A1 receptors and synaptically located A2A receptors. It was long thought that the predominant A1 receptor-meditated modulation by endogenous adenosine was a homeostatic process intrinsic to the synapse. New studies indicate that endogenous extracellular adenosine is originated as a consequence of the release of gliotransmitters, namely ATP, which sets a glo...

  8. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  9. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  10. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.

    Science.gov (United States)

    Hein, T W; Kuo, L

    1999-10-01

    Adenosine is known to play an important role in the regulation of coronary blood flow during metabolic stress. However, there is sparse information on the mechanism of adenosine-induced dilation at the microcirculatory levels. In the present study, we examined the role of endothelial nitric oxide (NO), G proteins, cyclic nucleotides, and potassium channels in coronary arteriolar dilation to adenosine. Pig subepicardial coronary arterioles (50 to 100 microm in diameter) were isolated, cannulated, and pressurized to 60 cm H(2)O without flow for in vitro study. The arterioles developed basal tone and dilated dose dependently to adenosine. Disruption of endothelium, blocking of endothelial ATP-sensitive potassium (K(ATP)) channels by glibenclamide, and inhibition of NO synthase by N(G)-nitro-L-arginine methyl ester and of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one produced identical attenuation of vasodilation to adenosine. Combined administration of these inhibitors did not further attenuate the vasodilatory response. Production of NO from coronary arterioles was significantly increased by adenosine. Pertussis toxin, but not cholera toxin, significantly inhibited vasodilation to adenosine, and this inhibitory effect was only evident in vessels with an intact endothelium. Tetraethylammonium, glibenclamide, and a high concentration of extraluminal KCl abolished vasodilation of denuded vessels to adenosine; however, inhibition of calcium-activated potassium channels by iberiotoxin had no effect on this dilation. Rp-8-Br-cAMPS, a cAMP antagonist, inhibited vasodilation to cAMP analog 8-Br-cAMP but failed to block adenosine-induced dilation. Furthermore, vasodilations to 8-Br-cAMP and sodium nitroprusside were not inhibited by glibenclamide, indicating that cAMP- and cGMP-induced dilations are not mediated by the activation of K(ATP) channels. These results suggest that adenosine activates both endothelial and smooth muscle pathways to exert

  11. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.

    Science.gov (United States)

    Katz, N K; Ryals, J M; Wright, D E

    2015-01-29

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  12. Effects of AMP579 and adenosine on L-type Ca2+ current in isolated rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiong WANG; Bo-wei WU; Dong-mei WU

    2005-01-01

    Aim: To compare the effects of AMP579 and adenosine on L-type Ca2+ current (ICa- L) in rat ventricular myocytes and explore the mechanism by which AMP579 acts on ICa-L. Methods: ICa-L was recorded by patch-clamp technique in whole-cell configuration. Results: Adenosine (10 nmol/L to 50 μmol/L) showed no effect on basal ICa- L, but it inhibited the ICa-L induced by isoproterenol 10 nmol/L in a concen tration-dependent manner with the IC50 of 13.06 μmol/L. Similar to adenosine,AMP579 also showed an inhibitory effect on the ICa-L induced by isoproterenol.AMP579 and adenosine (both in 10 μmol/L) suppressed isoproterenol-induced ICa-L by 11.1% and 5.2%, respectively. In addition, AMP579 had a direct inhibitory effect on basal ICa-L in a concentration-dependent manner with IC50 (1.17 μmol/L).PD116948 (30 μmol/L), an adenosine A1 receptor blocker, showed no action on the inhibitory effect of AMP579 on basal ICa-L. However, GF109203X (0.4 μmol/L), a special protein kinase C (PKC) blocker, could abolish the inhibitory effect of AMP579 on basal ICa-L. So the inhibitory effect of AMP579 on basal ICa-L was induced through activating PKC, but not linked to adenosine A1 receptor. Conclusion:AMP579 shows a stronger inhibitory effect than adenosine on the ICa-L induced by isoproterenol. AMP579 also has a strong inhibitory effect on basal ICa-L in rat ventricular myocytes. Activation of PKC is involved in the inhibitory effect of AMP579 on basal ICa-L at downstream-mechanism.

  13. High-dose adenosine overcomes the attenuation of myocardial perfusion reserve caused by caffeine.

    OpenAIRE

    Reyes, E.; Loong, C Y; Harbinson, Mark; Donovan, J; Anagnostopoulos, C.; Underwood, S. R.

    2008-01-01

    Objectives:We studied whether an increase in adenosine dose overcomes caffeine antagonism on adenosine-mediated coronary vasodilation.Background:Caffeine is a competitive antagonist at the adenosine receptors, but it is unclear whether caffeine in coffee alters the actions of exogenous adenosine, and whether the antagonism can be surmounted by increasing the adenosine dose.Methods:Myocardial perfusion scintigraphy (MPS) was used to assess adenosine-induced hyperemia in 30 patients before (bas...

  14. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the

  15. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK.

    Science.gov (United States)

    Chen, Zhicheng; Xiong, Cherry; Pancyr, Cassandra; Stockwell, Jocelyn; Walz, Wolfgang; Cayabyab, Francisco S

    2014-07-16

    Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that

  16. [Concentration of prostaglandins and cyclic adenosine-3',5'-monophosphate in the tissues of rats].

    Science.gov (United States)

    Komissarenko, V P; Slavnov, V N; Epsheĭn, E V; Malinkovich, V D

    1977-04-01

    The content of prostaglandines (PG) and cyclic 3',5'-adenosine monphosphate (cAMP) was investigated in rat tissues by the radioisotopic method of competitive binding. Maximum quantities of both PG and cAMP were revealed in the same most actively functioning organs: the brain, incretory glands, small intestine. Fatty tissue showed minimum quantities of these substances. Results indicate a close functional relationship between the PG synthesis and adenylatecyclase activity in the body tissues.

  17. Direct Growth Graphene on Cu Nanoparticles by Chemical Vapor Deposition as Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

    OpenAIRE

    Xu, Shicai; Man, Baoyuan; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Liu, Hanping

    2015-01-01

    We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped around a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibra...

  18. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  19. In Vitro Functional Study of Rice Adenosine 5'-Phosphosulfate Kinase

    Institute of Scientific and Technical Information of China (English)

    WANG De-zhen; CHEN Guo-guo; LU Lu-jia; JIANG Zhao-jun; RAO Yu-chun; SUN Mei-hao

    2016-01-01

    Sulfate can be activated by ATP sulfurylase and adenosine 5'-phosphosulfate kinase (APSK)in vivo. Recent studies suggested that APSK inArabidopsis thaliana regulated the partition between APS reduction and phosphorylation and its activity can be modulated by cellular redox status. In order to study regulation of APSK in rice (OsAPSK),OsAPSK1 gene was cloned and its activity was analyzed. OsAPSK1 C36 and C69 were found to be the conserved counterparts of C86 and C119, which involved in disulfide formation in AtAPSK.C36A/C69A OsAPSK1 double mutation was made by site directed mutagenesis. OsAPSK1 and its mutant were prokaryotically over-expressed and purified, and then assayed for APS phosphorylation activity. OsAPSK1 activity was depressed by oxidized glutathione, while the activity of its mutantwas not. Further studies in the case that oxidative stress will fluctuatein vivo3'-phosphoadenosine-5'-phosphosulfate content, and all APSK isoenzymes have similar regulation patterns are necessary to be performed.

  20. Detection of ouabain-insensitive H(+)-transporting, K(+)-stimulated p-nitrophenylphosphatase activity in rat gastric glands by cerium-based cytochemistry.

    Science.gov (United States)

    Kobayashi, T; Seguchi, H

    1990-12-01

    We employed a modification of our previously reported cerium-based cytochemical method for ouabain-sensitive, K-dependent p-nitrophenylphosphatase (Na-K ATPase) activity to detect ouabain-insensitive, K-stimulated p-nitrophenylphosphatase (K-pNPPase) activity in rat gastric glands. Biochemically, the enzyme activity of gastric glands incubated in a medium containing 50 mM Tricine buffer (pH 7.5), 50 mM KCl, 10 mM MgCl2, 2 mM CeCl3, 2 mM p-nitrophenylphosphate (pNPP), 2.5 mM levamisole, 10 mM ouabain, and 0.00015% Triton X-100, was optimal at pH 7.5-8.0 and decreased above pH 8.5. The amount of p-nitrophenol after incubation increased linearly in proportion to the amount of tissue in the medium. The enzyme activity was inhibited by omeprazole, sodium flouride (NaF), N-ethylmaleimide (NEM), and dicyclohexylcarbodiimide (DCCD). Heat-treated specimens had no enzyme activity. The enzyme activity increased with addition of K ions up to the concentration of 50 mM, and became constant above 50 mM. Cytochemically, the parietal cells of the gastric glands reacted positively for ouabain-insensitive K-pNPPase activity. Intense reaction was observed at the microvilli of the luminal surface and the intracellular canaliculi. The tubulovesicular system showed weak enzyme activity. The reaction products were found as fine, granular, electron-dense deposits in the cytoplasm just beneath the plasma membrane. The ouabain-insensitive K-pNPPase activity detected in this study appears, therefore, to be associated with that of H-transporting, K-stimulated adenosine triphosphatase (H-K ATPase).

  1. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    OpenAIRE

    Kubilay Oransay; Nil Hocaoglu; Mujgan Buyukdeligoz; Yesim Tuncok; Sule Kalkan

    2014-01-01

    Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist), 8-(-3-chlorostyryl)-caffeine (CSC; A 2a receptor antagonist), or dimethyl sulfoxide (DMSO) administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour...

  2. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    OpenAIRE

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  3. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa;

    2011-01-01

    molecule was purified to homogeneity through a C(18) reverse phase HPLC column. By determination of its structure by MALDITOF and (1)H- and (13)C-NMR, adenosine was revealed to be responsible for the observed cytokine induction activities. Further studies using 8-sulfophenyl theophylline, a selective...... view of the source of exogenous adenosine in vivo and provide a mechanistic link between inflammatory disease and bacterial infection....

  4. Molecular Pathways of Disturbed Sleep and Depression: Studies on Adenosine and Gene Expression Patterns

    OpenAIRE

    Gass, Natalia

    2010-01-01

    Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has...

  5. Possible regulation of the Salmonella typhimurium histidine operon by adenosine triphosphate phosphoribosyltransferase: large metabolic effects.

    OpenAIRE

    Goitein, R K; Parsons, S. M.

    1980-01-01

    An effort to find growth conditions leading to conditional regulation of the histidine operon of Salmonella typhimurium by the allosteric first enzyme of the pathway, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), is reported. A strain deleting the enzyme, TR3343, behaved simply and predictably under all growth conditions, whereas histidine auxotrophs containing active enzyme behaved in complicated ways dependent upon the location of the histidine pathway lesion. hisE strains...

  6. Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances

    OpenAIRE

    Li, Gen; Nakagome, Izumi; Hirono, Shuichi; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-01-01

    Cordycepin, which is an analogue of a nucleoside adenosine, exhibits a wide variety of pharmacological activities including anticancer effects. In this study, ADA1- and ADA2-expressing HEK293 cells were established to determine the major ADA isoform responsible for the deamination of cordycepin. While the metabolic rate of cordycepin deamination was similar between ADA2-expressing and Mock cells, extensive metabolism of cordycepin was observed in the ADA1-expressing cells with K m and V max v...

  7. Synergistic myoprotection of L-arginine and adenosine in a canine model of global myocardial ischaemic reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    DU Lei; DIAN Ke; CHEN Hui-jiao; AN Qi; JIA Meng-xing; YANG Ping-liang; WANG Wei; DENG Shuo-zeng; LIU Jin

    2007-01-01

    Background Endogenous nitric oxide and adenosine increase simultaneously to keep the balance of energy demand and supply when the oxygen supply is insufficient, which suggests that nitric oxide and adenosine might exert a synergistic myoprotection during tissue hypoxia. In this study, we tested this hypothesis utilizing a canine model of prolonged global myocardial ischaemic reperfusion injury.Methods In this double blind, controlled study, the hearts of 24 anaesthetized mongrel dogs were arrested for 2 hours with aortic cross clamping and blood cardioplegia. The treatment groups were those supplemented with 2 mmol/L L-arginine (ARG), supplemented with 1 mmol/L adenosine (ADO), ARG + ADO supplemented with both, and no supplementation (control) (n=6 in each group). Haemodynamics, biochemical indices, adenosine triphosphate (ATP) content and myeloperoxidase activities of myocardium were determined to evaluate myocardial injury. Statistical comparison was performed by two way ANOVA.Results Although the requirements for inotropic supports were higher, the cardiac outputs were lower in control group than in ARG, ADO and the combination groups. Plasma cardiac troponin I levels were higher and the areas of hydropic changes were larger in control group than in ARG and ADO groups. Combination of arginine and adenosine provided further myoprotection with respect to better cardiac performance, lower release of cardiac troponin I, and smaller areas of hydropic changes compared with ARG and ADO groups. ATP content was higher, but myeloperoxidase activities of myocardium were significantly lower in the combination group than in control, ARG and ADO groups (P<0.05).Conclusions Combination of L-arginine and adenosine provides synergistic myoprotection in a canine model of global myocardial ischaemia. Thus, the combination is recommended when the heart is exposed to a prolonged ischaemia during cardiac surgery.

  8. 腺苷和睡眠觉醒调节%Adenosine and Sleep-Wake Regulation

    Institute of Scientific and Technical Information of China (English)

    曲卫敏; 孙宇; 许奇; 黄志力

    2011-01-01

    腺苷作为神经调质,调节多种神经生物学功能.随觉醒时间延长,动物脑内腺苷水平逐渐增高,在睡眠期显著降低.因此,腺苷被认为是调节睡眠的内稳态因子之一.腺苷受体(receptor,R)有A1R、A2AR、A2BR和A3R四种亚型,其中A1R和A2AR与诱导睡眠相关.激活A1R可抑制促觉醒神经元诱导睡眠,也可抑制促眠神经元导致觉醒,其作用存在脑区依赖性.A2AR介导内源性前列素D:的促眠作用,A2AR激动剂具有最强的促眠效应,阻断A2AR引起觉醒,在睡眠觉醒调节中扮演重要角色.本文综述腺苷调节睡眠和觉醒的研究进展,讨论腺苷受体激动剂和拮抗剂在睡眠疾病治疗中的潜在价值及存在问题.%Adenosine may function as a neuromodulator in the central nervous system. The extracellular concentration of adenosine increases in the brain during prolonged wakefulness and decreases during the sleep recovery penod. Therefore, adenosine is proposed to act as one of homeostatic regulators of sleep.There are four adenosine receptor subtypes, adenosine A1 receptor (A1R), A2AR, A2BR and A3R. Both the adenosine A1R and A2AR are demonstrated to be involved in sleep induction. Inhibition of wake-promoting neurons via the A1R mediates the sleep-inducing effects of adenosine, whereas activation of A1R in sleep-promoting neurons induces wakefulness, suggesting that A1R regulates the sleep-wake cycle in a site-dependent manner. On the other hand, the A2AR mediates the somnogenic effects of endogenous PGD2.A2AR agonist induces the most potent sleep similar to physiological sleep among somnogens reported so far,whereas blockade of A2AR induces wakefulness. Among adenosine receptors responsible for sleep induction,the role of A2AR is predominant. This paper presents an overview of the current knowledge about the role of adenosine in the sleep-wake regulation and briefly discusses the potential therapeutic applications of agonists and antagonists of these

  9. Adenosine receptors located in the NTS contribute to renal sympathoinhibition during hypotensive phase of severe hemorrhage in anesthetized rats.

    Science.gov (United States)

    Scislo, Tadeusz J; O'Leary, Donal S

    2006-11-01

    Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.

  10. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, B.; Lacoste, I.; Ehrenfeld, J. (Commissariat a l' Energie Atomique, Villefranche-sur-mer (France))

    1991-04-01

    We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride, indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+).

  11. Inhibition of uptake of adenosine into human blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Trieschnigg, A.C.

    1980-01-01

    Adenosine transport into human blood platelets is mediated by two independent systems with different affinities. Both systems transport only purine nucleosides and no pyrimidine nucleosides. In experiments with differently substituted purine nucleosides, purines and analogues, differences in carrier

  12. Distribution of adenosine receptors in human sclera fibroblasts

    OpenAIRE

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin; Ge, Jian

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines...

  13. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    Science.gov (United States)

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  14. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  15. Direct Growth Graphene on Cu Nanoparticles by Chemical Vapor Deposition as Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

    CERN Document Server

    Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Liu, Hanping

    2015-01-01

    We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped around a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based...

  16. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists.

    Science.gov (United States)

    Robinson, Sarel J; Petzer, Jacobus P; Terre'Blanche, Gisella; Petzer, Anél; van der Walt, Mietha M; Bergh, Jacobus J; Lourens, Anna C U

    2015-11-01

    In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists. PMID:26462195

  17. Adenosine kinase inhibition protects against cranial radiation-induced cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Munjal M Acharya

    2016-06-01

    Full Text Available Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting, however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK. Adult rats exposed to cranial irradiation (10 Gy showed significant declines in performance of hippocampal-dependent cognitive function tasks (novel place recognition, novel object recognition, and contextual fear conditioning 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the fear conditioning task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP. Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection also against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS

  18. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A.

    Science.gov (United States)

    Kobayashi, S; Beitner-Johnson, D; Conforti, L; Millhorn, D E

    1998-10-15

    1. Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia. 2. Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h. 3. Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h. 4. Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10% O2 for 48 h. 5. PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10% O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsalpha, an effector of the A2 signalling pathway. 6. Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10% O2.7. We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia

  19. Determination of serum adenosine deaminase and xanthine oxidase levels in patients with crimean-congo hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    V. Kenan Celik

    2010-01-01

    Full Text Available OBJECTIVE: Crimean-Congo hemorrhagic fever is an acute viral hemorrhagic fever with a high mortality rate. Despite increasing knowledge about hemorrhagic fever viruses, little is known about the pathogenesis of Crimean-Congo hemorrhagic fever. In this study, we measured serum adenosine deaminase and xanthine oxidase levels in Crimean-Congo hemorrhagic fever patients. METHODS: Serum adenosine deaminase levels were measured with a sensitive colorimetric method described by Giusti and xanthine oxidase levels by the method of Worthington in 30 consecutive hospitalized patients (mean age 42.6 ± 21.0. Laboratory tests confirmed their diagnoses of Crimean-Congo hemorrhagic fever. Thirty-five subjects (mean age 42.9 ± 19.1 served as the control group. RESULTS: There was a significant difference in adenosine deaminase and xanthine oxidase levels between cases and controls (p0.05. CONCLUSION: Adenosine deaminase and xanthine oxidase levels were increased in patients with Crimean-Congo hemorrhagic fever. Elevated serum xanthine oxidase activity in patients with Crimean-Congo hemorrhagic fever may be associated with reactive oxygen species generated by the xanthine/xanthine oxidase system during inflammatory responses. In addition, elevated lipid peroxidation may contribute to cell damage and hemorrhage. The association of cell damage and hemorrhage with xanthine oxidase activity should be further investigated in large-scale studies.

  20. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    Science.gov (United States)

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  1. Changes in the rate of formation and resistance to reabsorption of cerebrospinal fluid during deliberate hypotension induced with adenosine or hemorrhage.

    Science.gov (United States)

    Shapira, Y; Artru, A A; Lam, A M

    1992-03-01

    Adenosine is recommended for induction of deliberate hypotension. Although its effects on brain vasculature and metabolism and intracranial pressure have been reported, its effects on cerebrospinal fluid dynamics have not. In this study the rate of cerebrospinal fluid formation (Vf), resistance to reabsorption of cerebrospinal fluid (Ra), and electroencephalogram (EEG) activity were determined in rabbits before and during decrease of cerebral perfusion pressure (CPP) with intravenous (iv) adenosine or hemorrhage. In the adenosine group (n = 6), Vf and Ra were determined at control CPP, at CPP of 50, 35, and 28 mmHg achieved with iv adenosine, and at CPP greater than 60 mmHg achieved with iv adenosine combined with iv phenylephrine. In the hemorrhage group (n = 6), Vf and Ra were determined at the first four experimental conditions only. Control values for Vf (9 +/- 3 and 9 +/- 4 microliter.min-1, mean +/- SD) and Ra (428 +/- 567 and 412 +/- 144 cmH2O.ml-1.min) did not differ between groups. In the adenosine group, Vf did not change significantly when CPP was decreased. However, in the hemorrhage group, Vf decreased significantly at CPP of 50 and 35 mmHg and became unmeasurable at CPP of 28 mmHg. Ra did not change significantly in either group. An increase of low-frequency (0.5-3.0 Hz) EEG activity and/or decrease of higher-frequency (3.5-30 Hz) EEG activity occurred at CPP of 28 mmHg in the adenosine group and at CPP of 35 mmHg in the hemorrhage group.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Importance of tissue perfusion in ST segment elevation myocardial infarction patients undergoing reperfusion strategies: role of adenosine.

    Science.gov (United States)

    Forman, Mervyn B; Jackson, Edwin K

    2007-11-01

    High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion. PMID:18000974

  3. Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Myocardial perfusion associates with clinical syndromes and prognosis.Adenosine could improve myocardial perfusion of acute myocardial infarction within 6 hours,but few data are available on late perfusion of myocardial infarction (MI).This study aimed at quantitatively evaluating the value of intracoronary adenosine improving myocardial perfusion in late reperfused MI with myocardial contrast echocardiography(MCE).Methods Twenty-six patients with anterior wall infarcts were divided randomly into 2 groups:adenosine group(n=12) and normal saline group(n=14).Their history of myocardial infarction was about 3-12 weeks.Adenosine or normalsaline was given when the guiding wire crossed the lesion through percutaneous coronary intervention(PCI),then the balloon was dilated and stent(Cypher/Cypher select)was implanted at the lesion.Contrast pulse sequencing MCE with Sonovue contrast via the coronary route was done before PCI and 30 minutes after PCI.Video densitometry and contrast filled-blank area were calculated with the CUSQ off-line software.Heart function and cardiac events were followed up within 30 days.Results Perfusion in the segments of the criminal occlusive coronary artery in the adenosine group was better than that in the saline group(5.71±0.29 vs 4.95±1.22,P<0.05).Ischemic myocardial segment was deminished significantly afterPCI,but the meliorated area was bigger in the adenosine group than in the saline group((1.56±0.60)cm2 vs(1.02±0.56) cm2,P<0.05).The video densitometry in critical segments was also improved significantly in the adenosine group (5.53±0.36 vs 5.26±0.35,P<0.05).Left ventricular ejection fraction(LVEF)was improved in all patients after PCI,but EF was not significant between the two groups((67±6)% vs(62±7)%,P>0.05).There was no in-hospital or 30-day major adverse cardiac event(MACE)in the adenosine group but 3 MACE in the saline group in 30 days after PCI.Conclusions Adenosine could improve myocardial microvascular

  4. Hepatitis C virus core protein induces energy metabolism disorders of hepatocytes by down-regulation of silent mating type information regulation 2 homolog-1 and adenosine monophosphate-acti vated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    于建武

    2013-01-01

    Objective To study the role of silent mating type information regulation2homotog-1(SIRT1)-adenosine monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway in hepatitis C virus core protein(HCV-core)induced energy metabolism disorders

  5. Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106.

    Science.gov (United States)

    Dickenson, John M; Reeder, Steve; Rees, Bob; Alexander, Steve; Kendall, Dave

    2003-08-01

    There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a

  6. Simultaneous determination of adenine,uridine and adenosine in cordyceps sinensis and its substitutes by LC/ESI-MS

    Institute of Scientific and Technical Information of China (English)

    黄兰芳; 吴名剑; 孙贤军; 郭方遒; 梁逸曾; 李晓如

    2004-01-01

    A simple, sensitive and reproducible high performance liquid chromatography-mass spectrometry coupled with electrospray ionization method for simultaneous separation and determination of adenine, adenosine and uridine was developed. The analytical column is a 2.0 mm× 150 mm Shimadzu VP-ODS column and volume fraction of the mobile phase is 86.5 %water, 12.0%methanol and 1.5%formic acid. 2-chloroadenosine was used as internal standard. Selective ion monitoring mode and selective ion monitoring ions at ratio of mass to electric charge of 136 for adenine, 268 for adenosine and 267 for uridine were chosen for quantitative analysis of the three active components. The results show that the regression equations and linear range are Y=0. 062X+0. 005 and 2.0 - 140.0μg · mL 1for adenine, Y=0. 049X+0. 004 and 4. 0 - 115.0 μg · mL-1 for uridine, Y=0. 154X+0. 014 and 1.0 - 125.0 μg · mL 1 for adenosine. The limits of detection are 0.6 μg · mL 1 for adenine, 1.0μg · mL-1 for uri dine and 0.2 μg · mL 1 for adenosine.The recoveries of the three constituents are from 96.6% to 103.2%.

  7. Ion fluxes through KCa2 (SK) and Cav1 (L-type) channels contribute to chronoselectivity of adenosine A1 receptor-mediated actions in spontaneously beating rat atria

    OpenAIRE

    Paulo eCorreia-De-Sá

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Ca...

  8. Modulating effect of adenosine deaminase on function of adenosine A1receptors

    Institute of Scientific and Technical Information of China (English)

    Wan-chun SUN; Yan CAO; Lei JIN; Li-zhen WANG; Fan MENG; Xing-zu ZHU

    2005-01-01

    Aim: To study the modulating effect of adenosine deaminase (ADA) on yhe adenosine A1 receptor (A1R) in HEK293 cells stably expressing the human A1R.Methods: cDNA was amplified by RT-PCR using total RNA from human embryo brain tissue as the template. The PCR products were subcloned into the plasmid pcDNA3 and cloned into the plasmid pcDNA3.1. The cloned A1R cDNA was sequenced and stably expressed in HEK293 cells. The modulating effect of adenosine deaminase on A1R was studied by using [3H]DPCPX binding assay and an intracellular calcium assay. Results: HEK293 cells stably expressing human A1R were obtained. Saturation studies showed that the KD value and Bmax value of [3H]DPCPX were 1.6±0.2 nmol/L and 1.819±0.215 nmol/g of protein respectively, in the absence of ecto-ADA respectively, and 1.3±0.2 nmol/L and 1.992±0.130 nmol/g of protein in the presence of ecto-ADA respectively, suggesting that the KD value and Bmax value of [3H]DPCPX were unaffected by ecto-ADA. In the case of [3H]DPCPX competition curves obtained from intact cells or membranes, A1R agonist CCPA/[3H]DPCPX competition curve could be fitted well to a one-site model in the absence of ecto-ADA and a two-site model in the presence of ecto ADA with a KH value of 0.74 (0.11-4.8) nmol/L (intact cells) or 1.8 (0.25-10) nmol/L (membrane) and a KL value of 0.94 (0.62-1.41) μmol/L (intact cells) or 0.77 (0.29-0.99) μmol/L (membrane). The KL value is not significantly different from the IC50 value of 0.84(0.57-1.23) μmol/L (intact cells) or 0.84 (0.63-1.12) μmol/L (membrane) obtained in the absence of ecto-ADA. Similar results were obtained from the CPA/[3H]DPCPX competition curve in the absence or presence of ecto-ADA on intact cells or membranes. Intracellular calcium assay demonstrated that the EC50 value of CPA were 10 (5-29) nmol/L and 94 (38-229) nmol/L in the presence or absence of ecto-ADA, respectively. Conclusion: A1R stably expressed in the HEK293 cells display a low affinity for agonists in

  9. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Science.gov (United States)

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  10. Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available BACKGROUND: Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2 or hypoxic (2% O(2 conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist had no affects on heart function, whereas DPCPX (A1AR-specific antagonist had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/- had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos. CONCLUSIONS/SIGNIFICANCE: These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of

  11. Thallium-201 scintigraphy of the myocardium in connection with adenosine

    International Nuclear Information System (INIS)

    It is shown that thallium-201 SPECT studies of the myocardium performed subsequent to intravenous infusion of adenosine provide results at least as valuable as those from exercise thallium-201 scintigraphy in the diagnosis of coronary artery disease. The infusion of adenosine offers great advantages over exercise studies in that it is a standardized procedure uninfluenced by a patient's physical fitness, which can thus be used in all cases. There are quite a number of clinically tolerable untoward reactions that may be associated with discomfort but do not warrant discontinuation of the procedure. Serious, verifiable side-effects are rare and disappear immediately on termination of the infusion. The most recent research in this field has shown that newly developed compounds of 99mTc are also suitable for radionuclide studies of the myocardium with adenosine vasodilation. (orig.)

  12. [Mast cells, their adenosine receptors and reactive oxygen species in chronic inflammatory pathologies of childhood].

    Science.gov (United States)

    Renke, Joanna; Popadiuk, Stefan; Wozniak, Michał; Szlagatys-Sidorkiewicz, Agnieszka; Hansdorfer-Korzon, Rita

    2006-01-01

    Mast cells were described by Erhlich at the end of XIX-th century. Their role was deeply investigated in asthma and allergy. The massive degranulation of mast cells in allergy can lead to anaphylactic shock. Recently, mast cells have been recognized again as a very interesting topic for investigation, due to their possible role in chronic inflammation. Moreover, through adenosine receptors, mast cells can be activated or inactivated. That is why these cells are regarded as a potential target of new drugs. It has been reported, that mast cells generate intracellular reactive oxygen species (ROS) in response to stimulation with divergent physiologically relevant stimulants. The intensification of ROS production may be measured by the level of carbonyl groups, as a marker of protein peroxidation. However, the role of mast cells in other than asthma diseases with chronic inflammation needs further investigation. It was found out that the information about mast cell distribution in colonic mucosa may serve as help in differentiation between inflammatory bowel disease and collagenous colitis. Moreover, its accumulation in focal active gastritis was confirmed in patients with Crohn's disease. An important role in regulation of inflammatory process seems to be reserved for adenosine receptors present on mastocytes. The activation of mast cells through the adenosine receptor is connected with 11-8 release, which stimulate the migration of leukocytes and oxidation reactions. The detection of mast cells in tissues should not be limited only to the simple histologic examination. It should be completed by the detection of products of degranulation, e.g. tryptase. This is the way to find out their actual function and state of activation. PMID:17203808

  13. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions.

    Science.gov (United States)

    Cheng, Changmei; Fan, Chang; Wan, Rong; Tong, Chunyuan; Miao, Zhiwei; Chen, Jing; Zhao, Yufen

    2002-06-01

    The phosphorylation of adenosine with trimetaphosphate in solution, in solid phase and using wet-dry cycles was carried out and it was found that wet-dry cycles were the most efficient. The catalytic effects of some metal ions on the phosphorylation were also studied and it was discovered that Ni(II) is the most effective. The combination of wet-dry cycles (4 cycles) and catalysis by Ni(II) led to an unprecedented high conversion of adenosine to phosphorylated products (30%) near neutral pH. The main phosphorylated products were 2',3'-cyclic AMP (10.4%) and 5'-ATP (13.0%). PMID:12227426

  14. No role of interstitial adenosine in insulin-mediated vasodilation

    DEFF Research Database (Denmark)

    Dela, F; Stallknecht, B

    1999-01-01

    healthy subjects (H) and in four subjects with a complete, high (C5-C6/7) spinal cord injury (SCI) a hyperinsulinaemic (480 mU min-1 kg-1), isoglycaemic clamp was performed. SCI subjects were included as it has been proposed that adenosine and adenine nucleotides may be released from nerve endings in the...... skeletal muscle. Adenosine concentrations in the extracellular fluid (ECF) of skeletal muscle in the thigh were measured by means of the microdialysis technique. Leg blood flow (LBF) was measured by termodilution. In response to insulin infusion, LBF always increased (P < 0.05) (from 228 +/- 25 and 318...

  15. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    Science.gov (United States)

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. PMID:26732366

  16. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  17. Development of coronary vasospasm during adenosine-stress myocardial perfusion CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Aeo; Kwon, Woon Jeong [Dept. of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2015-06-15

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  18. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. PMID:27114365

  19. Amplified fluorescence detection of adenosine via catalyzed hairpin assembly and host-guest interactions between β-cyclodextrin polymer and pyrene.

    Science.gov (United States)

    Huang, Haihua; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Song, Chunxia

    2016-04-21

    Nowadays, enzyme-free nucleic acid-based signal amplification strategies are frequently utilized in the design of biosensors due to their excellent sensitivity. Developing more extended analytical methods is fundamental for basic studies in the biological and biomedical fields. Herein, we introduce an enzyme-free amplified detection strategy for the small molecule adenosine. The approach is based on adenosine-aptamer binding triggered catalyzed hairpin assembly and host-guest interactions between β-cyclodextrin polymer (β-CDP) and pyrene. Two hairpin probes (probe H1 and probe H2) and an aptamer-trigger/inhibitor duplex probe were employed in the system and the pyrene-labeled probe H1 was chosen as the signal unit. In the absence of adenosine, the aptamer-trigger was inhibited by the inhibitor strand. The hairpin probes were in the closed hairpin formation without activation of the trigger strand. Pyrene labeled at the 5'-termini of the single-stranded stem of probe H1 could be easily trapped in the hydrophobic cavity of β-CDP because of weak steric hindrance, leading to a significant fluorescence enhancement. Once the hairpin assembly was catalyzed by the adenosine-aptamer binding event, a hybridized DNA duplex H1/H2 was created continuously. Pyrene labeled at the 5'-termini of the DNA duplex H1/H2 finds it difficult to enter the cavity of β-CDP due to steric hindrance, leading to a weaker fluorescence signal. Thus, the target could be detected by this simple mix-and-detect amplification method without a need for expensive and perishable protein enzymes. As low as 42 nM of adenosine was detected by this assay, which is comparable to that of some reported colorimetric methods. Meanwhile, the proposed method was further successfully applied to detect adenosine in human serum samples, showing great potential for adenosine detection from complex fluids.

  20. Identification of Electronic and Structural Descriptors of Adenosine Analogues Related to Inhibition of Leishmanial Glyceraldehyde-3-Phosphate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Norka B. H. Lozano

    2013-04-01

    Full Text Available Quantitative structure–activity relationship (QSAR studies were performed in order to identify molecular features responsible for the antileishmanial activity of 61 adenosine analogues acting as inhibitors of the enzyme glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana (LmGAPDH. Density functional theory (DFT was employed to calculate quantum-chemical descriptors, while several structural descriptors were generated with Dragon 5.4. Variable selection was undertaken with the ordered predictor selection (OPS algorithm, which provided a set with the most relevant descriptors to perform PLS, PCR and MLR regressions. Reliable and predictive models were obtained, as attested by their high correlation coefficients, as well as the agreement between predicted and experimental values for an external test set. Additional validation procedures were carried out, demonstrating that robust models were developed, providing helpful tools for the optimization of the antileishmanial activity of adenosine compounds.

  1. Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner.

    Science.gov (United States)

    Stolakis, Vasileios; Liapi, Charis; Zarros, Apostolos; Kalopita, Konstantina; Memtsas, Vassilios; Botis, John; Tsagianni, Anastasia; Kimpizi, Despoina; Varatsos, Alexios; Tsakiris, Stylianos

    2015-12-01

    The experimental simulation of conditions falling within "the fetal alcohol spectrum disorder" (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na(+),K(+)-ATPase and Mg(2+)-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na(+),K(+)-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology.

  2. Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line.

    OpenAIRE

    Schwiebert, E. M.; Karlson, K H; Friedman, P A; Dietl, P.; Spielman, W S; Stanton, B.A.

    1992-01-01

    We examined the regulation by adenosine of a 305-pS chloride (Cl-) channel in the apical membrane of a continuous cell line derived from rabbit cortical collecting duct (RCCT-28A) using the patch clamp technique. Stimulation of A1 adenosine receptors by N6-cyclohexyladenosine (CHA) activated the channel in cell-attached patches. Phorbol 12,13-didecanoate and 1-oleoyl 2-acetylglycerol, activators of protein kinase C (PKC), mimicked the effect of CHA, whereas the PKC inhibitor H7 blocked the ac...

  3. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  4. Post-Meal Responses of Elongation Factor 2 (eEF2) and Adenosine Monophosphate-Activated Protein Kinase (AMPK) to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    OpenAIRE

    Layman, Donald K; Anthony, Tracy G.; Garlick, Peter J.; Wilson, Gabriel J; Moulton, Christopher J

    2012-01-01

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements ...

  5. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  6. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... disorders. (b) Classification. Class I (general controls)....

  7. Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter

    Directory of Open Access Journals (Sweden)

    Soylu Hanifi

    2012-03-01

    Full Text Available Abstract Background Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models. Adenosine levels are regulated by nucleoside transporters. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1 decreases extracellular adenosine levels and adenosine A1 receptor activity. In this study, we tested the effect of hENT1 expression on cortical infarct size following intracerebral injection of the vasoconstrictor endothelin-1 (ET-1 or saline. Methods Mice underwent stereotaxic intracortical injection of ET-1 (1 μl; 400 pmol or saline (1 μl. Some mice received the adenosine receptor antagonist caffeine (25 mg/kg, intraperitoneal 30 minutes prior to ET-1. Perfusion and T2-weighted magnetic resonance imaging (MRI were used to measure cerebral blood flow (CBF and subsequent infarct size, respectively. Results ET-1 reduced CBF at the injection site to 7.3 ± 1.3% (n = 12 in hENT1 transgenic (Tg and 12.5 ± 2.0% (n = 13 in wild type (Wt mice. At 48 hours following ET-1 injection, CBF was partially restored to 35.8 ± 4.5% in Tg and to 45.2 ± 6.3% in Wt mice; infarct sizes were significantly greater in Tg (9 ± 1.1 mm3 than Wt (5.4 ± 0.8 mm3 mice. Saline-treated Tg and Wt mice had modest decreases in CBF and infarcts were less than 1 mm3. For mice treated with caffeine, CBF values and infarct sizes were not significantly different between Tg and Wt mice. Conclusions ET-1 produced greater ischemic injury in hENT1 Tg than in Wt mice. This genotype difference was not observed in mice that had received caffeine. These data indicate that hENT1 Tg mice have reduced ischemia-evoked increases in adenosine receptor activity compared to Wt mice.

  8. Facile synthesis of N-6 adenosine modified analogue toward S-adenosyl methionine derived probe for protein arginine methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Wei Hong; James Dowden

    2011-01-01

    Chemically modified cellular co-factors that provide function, such as immobilization or incorporation of fluorescent dyes, are valuable probes of biological activity. A convenient route to obtain S-adenosyl methionine (AdoMet) analogues modified at N-6 adenosine to feature a linker terminating in azide functionality is described herein. Subsequent decoration of such AdoMet analogues with guanidinium terminated linkers leads to novel potential bisubstrate inhibitors for protein arginine methyltransferases, PRMTs.

  9. Effect of adenosine receptors on 3, 4 methylene dioxy methamphetamine induced hyperthermic, neuroinflammatory and neurotoxic effects in mouse brain

    OpenAIRE

    Khairnar, Amit S.

    2010-01-01

    Previous studies of ours and other groups in mice have shown that 3, 4 Methylenedioxymethamphetamine (MDMA, ecstasy) produces neurotoxic damage to dopaminergic neurons and neuroinflammation and caffeine, an adenosine A1/A2A antagonist enhances glial activation induced by MDMA, suggesting potential facilitation of neurodegenerative processes. In the present study we want to investigate effect of caffeine on MDMA induced dopaminergic neurotoxicity in adult mice, whereas selective A1 ( DPCPX ) a...

  10. Stimulation of NTS A1 adenosine receptors differentially resets baroreflex control of regional sympathetic outputs.

    Science.gov (United States)

    Scislo, Tadeusz J; Ichinose, Tomoko K; O'Leary, Donal S

    2008-01-01

    Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits

  11. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia;

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act in...

  12. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen

    2012-08-01

    Full Text Available Abstract Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF have been widely reported. In the central nervous system (CNS, astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC, mitogen-activated protein kinases (MAPKs: p38 and ERK1/2, and the nuclear transcription factor (NF-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (CgA and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions

  13. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Directory of Open Access Journals (Sweden)

    Fernanda R. Roque

    2011-01-01

    Full Text Available OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C and trained (T. An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05. RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion.

  14. MicroRNA-146b-3p Regulates Retinal Inflammation by Suppressing Adenosine Deaminase-2 in Diabetes

    Directory of Open Access Journals (Sweden)

    Sadanand Fulzele

    2015-01-01

    Full Text Available Hyperglycemia- (HG- Amadori-glycated albumin- (AGA- induced activation of microglia and monocytes and their adherence to retinal vascular endothelial cells contribute to retinal inflammation leading to diabetic retinopathy (DR. There is a great need for early detection of DR before demonstrable tissue damages become irreversible. Extracellular adenosine, required for endogenous anti-inflammation, is regulated by the interplay of equilibrative nucleoside transporter with adenosine deaminase (ADA and adenosine kinase. ADA, including ADA1 and ADA2, exists in all organisms. However, because ADA2 gene has not been identified in mouse genome, how diabetes alters adenosine-dependent anti-inflammation remains unclear. Studies of pig retinal microglia and human macrophages revealed a causal role of ADA2 in inflammation. Database search suggested miR-146b-3p recognition sites in the 3′-UTR of ADA2 mRNA. Coexpression of miR-146b-3p, but not miR-146-5p or nontargeting miRNA, with 3′-UTR of the ADA2 gene was necessary to suppress a linked reporter gene. In the vitreous of diabetic patients, decreased miR-146b-3p is associated with increased ADA2 activity. Ectopic expression of miR-146b-3p suppressed ADA2 expression, activity, and TNF-α release in the AGA-treated human macrophages. These results suggest a regulatory role of miR-146b-3p in diabetes related retinal inflammation by suppressing ADA2.

  15. Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice.

    Science.gov (United States)

    Fontinha, Bruno M; Delgado-García, José M; Madroñal, Noelia; Ribeiro, Joaquim A; Sebastião, Ana M; Gruart, Agnès

    2009-06-01

    Previous in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation (LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A(2A) receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A(2A) receptor antagonist, SCH58261, upon a well-known associative learning paradigm-classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus (US). A single electrical pulse was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS-US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.) -injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261-injected mice. In conclusion, the endogenous activation of adenosine A(2A) receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.

  16. An adenosine A(2A) antagonist injected in the NTS reverses thermal prolongation of the LCR in decerebrate piglets.

    Science.gov (United States)

    Xia, Luxi; Bartlett, Donald; Leiter, J C

    2008-12-31

    Hyperthermia prolongs the laryngeal chemoreflex (LCR). Under normothermic conditions, adenosine antagonists shorten and adenosine A(2A) (Ad-A(2A)) agonists prolong the LCR. Therefore, we tested the hypothesis that SCH-58261, an Ad-A(2A) receptor antagonist, would prevent thermal prolongation of the LCR when injected unilaterally within the nucleus of the solitary tract (NTS). We studied decerebrate piglets aged 4-13 days. We elicited the LCR by injecting 0.1ml of water into the larynx and recorded integrated phrenic nerve activity. The laryngeal chemoreflex was prolonged when the body temperature of each piglet was raised approximately 2.5 degrees C, and SCH-58261 reversed the thermal prolongation of the LCR when injected into the NTS (n=13), but not when injected in the nucleus ambiguus (n=9). Injections of vehicle alone into the NTS did not alter the thermal prolongation of the LCR (n=9). We conclude that activation of adenosine receptors, perhaps located on GABAergic neurons in the NTS, contributes to thermal prolongation of the LCR.

  17. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Science.gov (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  18. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    OpenAIRE

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  19. Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

    OpenAIRE

    Kavianipour, Mohammad

    2002-01-01

    Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an...

  20. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease

    Energy Technology Data Exchange (ETDEWEB)

    Kooistra, J.; Small, G.D.; Setlow, J.K.; Shapanka, R.

    1976-04-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity.

  1. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep.

    Science.gov (United States)

    Oishi, Yo; Huang, Zhi-Li; Fredholm, Bertil B; Urade, Yoshihiro; Hayaishi, Osamu

    2008-12-16

    Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.

  2. 2型糖尿病患者骨骼肌脂肪酸含量及腺苷酸活化蛋白激酶α表达和活性的变化%Expression and activity of adenosine monophosphate-activated protein kinase α and its effects on fatty acid metabolism in skeletal muscle in patients with type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    胡淑国; 苏冠明; 杨洋; 刘琼; 王丽慧; 高丽娟

    2015-01-01

    Objective To observe the expression and activity of adenosine monophosphate-activated protein kinaseα(AMPK⁃α) in skeletal muscle in type 2 diabetes mellitus(T2DM ), and investigate its role in lipid accumulation in skeletal muscle and insulin resistance. Methods A total of 20 cases with or without T2DM who received selective surgery in the Second Hospital of Shijiazhuang City between June 2013 and June 2014 were enrolled from department of orthopedics. These patients were divided into two groups:diabetic group(DM group, n=10) and non⁃diabetic group(NC group, n=10), 6 and 7 males and 4 and 3 females respectively, the mean age was (62±10) years and (63±9) years. Blood pressure was calculated and blood samples were drawn from an antecubial vein for measurement of plasma glucose, insulin, lipid and free fat acid(FFA). Insulin sensitivity index (ISI) was calculated. Skeletal muscle tissue was collected and analyzed en bloc for triglyceride, long⁃chain acyl⁃CoA esters(LCACoAs), AMPK⁃α1 and AMPK⁃α2 mRNA expression, as well as protein expression of AMPK⁃α1, AMPK⁃α2 and phosphorylated AMPK⁃α(p⁃AMPK⁃α). The data of the two groups were compared with t⁃test. Results The levels of blood glycated hemoglobin A1c, fasting plasma glucose(FPG), fasting insulin(FINS), triglyceride(TG), FFA were all significantly higher in DM group than those in NC group (t=4.96, 4.50, 2.28, 2.12, 2.15, all P DM group than that in NC group (-4.9±0.6 vs-3.7±0.5, t=-6.71, P<0.05). The triglyceride and LCACoAs in skeletal muscle were both higher in DM group than those in NC group((6.0±1.6)μmol/g vs (4.5±1.6)μmol/g, (3.1 ± 1.1 )μmol/g vs (2.1 ± 1.0)μmol/g, t=2.13, 2.11, both P<0.05). Compared with those in NC group, the expression of AMPK-α2 mRNA and protein levels of AMPK-α2 and P-AMPK-α in skeletal muscle decreased in DM group((0.89±0.21)×105 vs (1.23±0.19)×105, 0.69±0.09 vs 0.77±0.08, 0.48±0.09 vs 0.57± 0.10, t=-3.87,-2.29,-2.15, all P<0

  3. [Modification of phenylalanyl-tRNA-synthetase from Escherichia coli MRE600 by adenosine-5'-trimetaphosphate].

    Science.gov (United States)

    Khodyreva, S N; Nevinskiĭ, G A; Ankilova, V N; Lavrik, O I

    1983-01-01

    Modification of phenylalanyl-tRNA synthetase from E. coli MRE600 by adenosine-5'-trimetaphosphate, phosphorylating analog of ATP was shown to bring about the enzyme inactivation in the reactions of tRNA aminoacylation and ATP-[32P]pyrophosphate exchange. ATP when added in the reaction mixture protects the enzyme against inactivation in both reactions and decreases the level of covalent attachment of the analog. Phenylalanine has no protective effect. tRNA exhibits slight protective effect. Adenosine-5'-trimetaphosphate modifies both types (alpha and beta) of subunits of phenylalanyl-tRNA synthetase which is of alpha 2 beta 2 structure. ATP protects both types of the enzyme subunits against the covalent attachment of the analog. Disposition of the ATP-binding centers in the contact region of the nonequivalent subunits of the enzyme was proposed. The level of covalent attachment of the analog to the enzyme exceeds the number of the enzyme active sites that may be a consequence of the other nucleotide-binding center labeling. PMID:6361520

  4. The efficacy of a novel adenosine agonist (WAG 994) in postoperative dental pain

    Science.gov (United States)

    Seymour, R A; Hawkesford, J E; Hill, C M; Frame, J; Andrews, C

    1999-01-01

    Aims To determine the comparative efficacy of a new novel adenosine agonist (WAG 994) in postoperative pain after third molar surgery. Methods One hundred and twenty-two patients with postoperative pain after third molar surgery were randomised in a placebo double-blind trial with an active control group. In the early postoperative period patients received either a single dose of WAG 994 1 mg, ibuprofen 400 mg or matched placebos. Pain intensity score was recorded on serial visual analogue scales over a 6 h investigation period. Similarly, pain relief was completed on a 4 point categorical scale at each evaluation point. Patients had access to escape analgesic and if these were taken, the time and dosage were recorded. A sparse sampling technique was used to investigate the relationship between analgesic effects and plasma concentrations of WAG 994. Results All three treatment groups were matched for various demographic variables. For all efficacy measures, WAG 994 was not significantly different from placebo (P > 0.05), whereas ibuprofen 400 mg was significantly superior to placebo (P < 0.001). No significant relationships (P < 0.05) were found between WAG 994 pharmacokinetic variables and efficacy measures. Conclusion WAG 994, an adenosine agonist, did not show efficacy in the management of postoperative pain after third molar surgery. Although this pain responds well to nonsteroidal anti-inflammatory drugs, it appears to be resistant to compounds that interact with purinergic receptors. PMID:10383546

  5. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A2A Receptors

    Directory of Open Access Journals (Sweden)

    Annie George

    2015-01-01

    Full Text Available The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR. The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p<0.001 change in recognition index (RI at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory.

  6. Dosagem sérica de adenosina deaminase em lúpus eritematoso sistêmico: ausência de associação com atividade de doença Levels of serum adenosine deaminase in systemic lupus erythematosus: lack of association with disease activity

    Directory of Open Access Journals (Sweden)

    Isabella Lima

    2005-10-01

    Full Text Available O lúpus eritematoso sistêmico (LES é uma doença inflamatória auto-imune, que evolui intercalando períodos de atividade e remissão. OBJETIVO: avaliar a associação da dosagem sérica de adenosina deaminase (ADA e atividade do LES, segundo os critérios do SLEDAI 2K - Systemic lupus erythematosus disease activity index. MÉTODOS: avaliou-se 82 pacientes com LES atendidos em um hospital de referência para o tratamento do LES em Salvador, BA, Brasil. A atividade de doença foi determinada pelo SLEDAI 2K e a dosagem sérica da ADA realizada por colorimetria. RESULTADOS: oitenta e uma pacientes (98,78% eram do sexo feminino e a idade média foi de 35,07±11,73 anos. O escore de SLEDAI médio foi de 11,66±5,89; a média de ADA sérica foi de 38,24±13,61U/l; C3 de 91,93±27,39 mg/dl; C4 de 15,17±5,77 mg/dl e a pesquisa de anticorpos anti-DNA nativo (aDNAn foi positiva em 31 casos (37,8%. Não houve correlação entre os níveis séricos de ADA e escore do SLEDAI. A ADA sérica correlacionou-se inversamente com C4 (r=-0,336 e p=0,001. CONCLUSÕES: no presente estudo a dosagem sérica de ADA não se associou a atividade de doença segundo os critérios do SLEDAI 2K, sugerindo que esse teste não deve ser utilizado como marcador de atividade de doença em LES. Esse resultado diverge da maioria dos trabalhos publicados, o que pode ser explicado pela dificuldade de padronização da técnica de dosagem da ADA ou por diferença nas diversas populações estudadas.Systemic lupus erythematosus (SLE is an autoimmune inflammatory disease, with a variable course and characterized by periods of remissions and exacerbations. OBJECTIVE: To evaluate the association between serum adenosine deaminase (ADA levels and disease activity in SLE. METHODS: Eighty two SLE patients seen at Santa Izabel Hospital in Salvador, BA, Brazil, were studied. Disease activity was measured by SLEDAI 2K- Systemic Lupus Erythematosus Disease Activity Index, and serum ADA was

  7. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  8. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors

    Science.gov (United States)

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  9. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors.

    Science.gov (United States)

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  10. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    Science.gov (United States)

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P thick hair in Caucasian men with AGA as well as in Japanese men and women.

  11. Comparison of the novel vasodilator uridine triphosphate and adenosine for the measurement of fractional flow reserve

    DEFF Research Database (Denmark)

    Sivertsen, Jacob; Jensen, Jan Skov; Galatius, Søren;

    2014-01-01

    AIM: Examination of the fractional flow reserve (FFR) responses of intravenous (IV) adenosine with increasing doses of intracoronary (IC) adenosine versus IC uridine triphosphate (UTP) in patients with coronary artery disease. METHODS AND RESULTS: We measured FFR in 25 patients during continuous IV...... and IC infusion (using a microcatheter in the coronary ostium). Standard IV adenosine infusion (140 μg/kg/min) was compared to 8 equimolar incremental doses of IC UTP and IC adenosine (20, 40, 60, 80, 160, 240, 320 and 640 μg/min) in a randomized order. Across all doses, ΔFFR[IC UTP - IC adenosine......] was -0.038 ± 0.008, Pdose of IC UTP, FFR was significantly lower (FFR[IC UTP] = 0.62 ± 0.04) than during IV adenosine (FFR[IV adenosine] = 0.72 ± 0.05; P=.02) and IC adenosine (FFR[IC adenosine] = 0.68 ± 0.05; P=.03). Furthermore, UTP had significantly fewer side effects compared...

  12. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion.

    Science.gov (United States)

    Chin, A; Svejda, B; Gustafsson, B I; Granlund, A B; Sandvik, A K; Timberlake, A; Sumpio, B; Pfragner, R; Modlin, I M; Kidd, M

    2012-02-01

    Enterochromaffin (EC) cells of the diffuse neuroendocrine cell system secrete serotonin (5-HT) with activation of gut motility, secretion, and pain. These cells express adenosine (ADORA) receptors and are considered to function as mechanosensors. Physiological pathways mediating mechanosensitivity and adenosine responsiveness remain to be fully elucidated, as do their roles in inflammatory bowel disease (IBD) and neoplasia. Pure (98-99%) FACS-sorted normal and IBD human EC cells and neoplastic EC cells (KRJ-I) were studied. IBD-EC cells and KRJ-I overexpressed ADORA2B. NECA, a general ADORA receptor agonist, stimulated, whereas the A2B receptor antagonist MRS1754 inhibited, 5-HT release (EC50 = 1.8 × 10-6 M; IC50 = 3.7 × 10-8 M), which was associated with corresponding alterations in intracellular cAMP levels and pCREB (Ser133). Mechanical stimulation using a rhythmic flex model induced transcription and activation of Tph1 (tryptophan hydroxylase) and VMAT₁ (vesicular monoamine transporter 1) and the release of 5-HT, which could be inhibited by MRS1754 and amplified by NECA. Secretion was also inhibited by H-89 (PKA inhibitor) while Tph1 and VMAT₁ transcription was regulated by PKA/MAPK and PI₃K-mediated signaling. Normal and IBD-EC cells also responded to NECA and mechanical stimulation with PKA activation, cAMP production, and 5-HT release, effects reversible by MRS1754. EC cells express stimulatory ADORA2B, and rhythmic stretch induces A2B activation, PKA/MAPK/IP3-dependent transcription, and PKA-dependent secretion of 5-HT synthesis and secretion. Receptor expression is amplified in IBD and neoplasia, and 5-HT release is increased. Determination of factors that regulate EC cell function are necessary for understanding its role as a mechanosensory cell and to facilitate the development of agents that can selectively target cell function in EC cell-associated disease. PMID:22038827

  13. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    OpenAIRE

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50...

  14. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  15. Effects of paeonol on lipopolysaccharide/adenosine 5′-triphosphate induced NLRP3 inflammasome activation in primary rat microglia%丹皮酚对脂多糖/三磷酸腺苷诱导的小胶质细胞NLRP3炎症小体激活的影响

    Institute of Scientific and Technical Information of China (English)

    王伟; 戴敏; 徐忠东

    2014-01-01

    目的:观察丹皮酚( Pae)对脂多糖( LPS)与三磷酸腺苷( ATP)诱导大鼠原代小胶质细胞NLRP3炎症小体激活的影响,探讨Pae对小胶质细胞炎症反应的抑制作用及其具体机制。方法采用白细胞分化抗原11b(CD11b)免疫荧光染色法鉴定小胶质细胞;采用ELISA法测定培养液中白细胞介素-1β( IL-1β)的水平;采用Western blot检测细胞NLRP3、ASC和caspase-1蛋白表达水平;采用2′,7′-二氯二氢荧光素二乙酯( DCFH-DA)为荧光探针检测细胞内活性氧( ROS)的水平。结果 LPS(0.5 mg·L-1)/ATP(5 mmol·L-1)能增加小胶质细胞ROS及上清液IL-1β水平,上调细胞NLRP3、ASC和caspase-1蛋白水平;Pae能减少细胞 ROS和上清液IL-1β水平,抑制LPS和ATP双信号上调的NLRP3、ASC和caspase-1蛋白水平。结论 Pae能抑制LPS/ATP激活的小胶质细胞NLRP3炎症小体,减少细胞上清液IL-1β水平,Pae对NLRP3炎症小体抑制作用可能与其下调小胶质细胞ROS水平有关。%Aim To investigate the effects of paeonol on lipopolysaccharide ( LPS) and adenosine 5′-triphos-phate ( ATP) induced NLRP3 inflammasome activation in primary rat microglia and the mechanisms responsi-ble for this anti-inflammatory effects. Methods Pri-mary rat microglia were identified immunohistochemi-cally using the cluster of differentiation 11 b ( CD11 b ) antibody. Proinflammatory cytokine IL-1β was deter-mined by ELISA. Western blot was performed to ob-serve the protein expression of NLRP3 , ASC and caspase-1 in cultured primary rat microglia. The level of intracellular reactive oxygen species ( ROS) was mo-nitored by using the fluorescent probe 2′, 7′-dichlo-rofluorescein diacetate ( DCFH-DA ) . Results LPS (0. 5 mg · L-1 )/ATP ( 5 mmol · L-1 ) significantly increased intracellular ROS level and IL-1β secretion and upregulated NLRP3 , ASC and caspase-1 protein expression in primary rat microglia. Paeonol signifi-cantly decreased intracellular ROS level and

  16. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery.

    Science.gov (United States)

    Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-03-01

    Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction. PMID:26718241

  17. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPS-I: evidence for the involvement of spinal adenosine A1 receptor.

    Science.gov (United States)

    Martins, Daniel F; Prado, Marcos R B; Daruge-Neto, Eduardo; Batisti, Ana P; Emer, Aline A; Mazzardo-Martins, Leidiane; Santos, Adair R S; Piovezan, Anna P

    2015-12-01

    This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain-like behavior in animal models of complex regional pain syndrome type-I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus-evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose-related inhibition of mechanical hyperalgesia over a 3-week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor.

  18. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  19. Adenosine receptors in COPD and asymptomatic smokers : effects of smoking cessation

    NARCIS (Netherlands)

    Versluis, Mieke; ten Hacken, Nick; Postma, Dirkje; Barroso, Begona; Rutgers, Bea; Geerlings, Marie; Willemse, Brigitte; Timens, Wim; Hylkema, Machteld

    2009-01-01

    Our group has shown that 1-year smoking cessation persisted or increased airway inflammation in chronic obstructive pulmonary disease (COPD). We compared adenosine and adenosine receptor (AR) expression in COPD and asymptomatic smokers (AS) before and after 1-year smoking cessation. Sputum cytospins

  20. Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate.

    OpenAIRE

    Saito, D.; Ueeda, M; Abe, Y.; Tani, H; Nakatsu, T.; Yoshida, H.; Haraoka, S; Nagashima, H

    1986-01-01

    Intravenous adenosine triphosphate rapidly terminated all 11 episodes of paroxysmal supraventricular tachycardia in 10 patients. Eight patients reported side effects but these resolved within 20 seconds and did not require treatment. Adenosine triphosphate is a suitable agent for the rapid termination of paroxysmal supraventricular tachycardia.

  1. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  2. Adenosine signaling and the energetic costs of induced immunity.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  3. Adenosine Amine Congener as a Cochlear Rescue Agent

    Directory of Open Access Journals (Sweden)

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  4. Distribution of adenosine receptors in human sclera fibroblasts

    Science.gov (United States)

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  5. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    OpenAIRE

    Cátia Vieira; Maria Teresa Magalhães-Cardoso; Fátima Ferreirinha; Isabel Silva; Ana Sofia Dias; Julie Pelletier; Jean Sévigny; Paulo Correia-de-Sá

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis ...

  6. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    Science.gov (United States)

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  7. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  8. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in human...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...

  9. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P muscle cells...... found to have ecto-forms of several enzymes involved in nucleotide metabolism, including ATPases capable of converting extracellular ATP to ADP and AMP. 5. Adenosine added to the cell medium was taken up by muscle cells and incorporated into the adenine nucleotide pool so that after 30 min of incubation......, over 95% of the adenosine label was present in ATP, ADP and AMP. A similar extent of incorporation of adenosine into the nucleotide pool was evident in the endothelial cells. 6. The present data suggest that contracting muscle cells induce an elevation in the extracellular adenosine concentration...

  10. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  11. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Institute of Scientific and Technical Information of China (English)

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  12. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  13. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    Science.gov (United States)

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  14. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models.

    Science.gov (United States)

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  15. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  16. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    Science.gov (United States)

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  17. Validação laboratorial de um método automatizado de dosagem da atividade de adenosina desaminase em líquido pleural e em líquido cefalorraquidiano Laboratorial validation of an automated assay for the determination of adenosine deaminase activity in pleural fluid and cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Feres

    2008-12-01

    determination of adenosine deaminase (ADA activity in pleural fluid (PF and cerebrospinal fluid (CSF, comparing it with a conventional method (the modified Giusti method. METHODS: In total, 134 samples were selected from among those tested in our laboratory: 94 PF samples and 40 CSF samples. The ADA activity was determined using the two methods. Inter- and intra-assay precision was determined, linear regression analysis was performed, simple concordance tests were conducted, and the means of the differences were calculated. RESULTS: The correlation coefficients for PF and CSF samples were, respectively, 0.96 and 0.95. Inter-assay precision was determined using 21 replicates at 3 different activity levels: low, medium and high. The percentage coefficient of variation (%CV was, respectively, 5.9, 8.1 and 5.8 for PF samples, compared with 21.9, 18.6 and 13.8 for CSF samples. Intra-assay precision in %CV was 1.3 and 11.7, respectively, for PF and CSF samples. The concordance between the methods in PF and CRF samples was, respectively, 96.8% and 100%, considering the reference values for the diagnosis of TB to be 40 U/L (conventional and 30 U/L (automated in PF samples, versus 9 U/L (for both methods in CSF samples. CONCLUSIONS: The results validate the use of the automated method of determining ADA activity in PF and CSF samples as an alternative to the conventional method.

  18. Perinatal caffeine, acting on maternal adenosine A(1 receptors, causes long-lasting behavioral changes in mouse offspring.

    Directory of Open Access Journals (Sweden)

    Olga Björklund

    Full Text Available BACKGROUND: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life. METHODOLOGY/PRINCIPAL FINDINGS: We show that pregnant wild type (WT mice given modest doses of caffeine (0.3 g/l in drinking water gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A(1 receptor gene (A(1RHz. In these mice signaling via adenosine A(1 receptors is reduced to about the same degree as after modest consumption of caffeine. A(1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother's genotype, not offspring's, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A(1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A(1R Hz grandmother preserved higher locomotor response to cocaine. CONCLUSIONS/SIGNIFICANCE: We suggest that perinatal caffeine, by acting on adenosine A(1 receptors in the mother, causes long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.

  19. Dynamic changes of adenosine triphosphate enzyme activity in encephalon tissue of rat with posttraumatic stress disorder psycho and behaviour abnormity%创伤后应激障碍样情感行为异常大鼠脑组织ATP酶活性的动态变化

    Institute of Scientific and Technical Information of China (English)

    肖凯

    2004-01-01

    AIM:To discuss the pathophysiology basis of posttraumatic stress disorder(PTSD like) psycho and behaviour abnormity in attempt to provide a new method in treatments. METHODS:Seventy two male Wistar rats were randomly divided into three groups:hippocampus under threshold electric stimulation group(SE,n=32),hippocampus electrode burying control group(CE,n=32) and normal control group(NC,n=8).Hippocampus were continuously stimulated by constant monopulse electricity,with 25 Hz frequency,1 ms wave length,10 s cluster length,7 min cluster interval and 100 μ A strength under eclampsia threshold. The enzymatic activity changes of Na+ K+ adenosine triphosphate enzyme(ATPase) and Ca2+ ATPase in hippocampal homogenate of the experimental animals and mitochondria were detected in quantitation.RESULTS:The enzymatic activity of Na+-K+-ATPase in hippocampus mitochondria decreased obviously(0.56±0.15)mmol/(kg·s)(F=4.348,P<0.01) in under-threshold electric stimulation group atfer 12 hours of electric timulations as well as(0.61±0.17) mmol/(kg·s) (P<0.05) after 48 hours,which were significantly lower than NC group (0.84±0.22) mmol/(kg·s) the enzymatic activity of Ca2+-ATPase in hippocampus mitochondria also decreased obviously into (0.53±0.14) mmol/(kg·s) (F=4.999,P<0.05) after 24 hours of electric stimulations as well as (0.60±0.16) mmol/(kg·s) after 72 hours, which were significantly lower than NC group (0.83±0.22) mmol/(kg·s).CONCLUSION:Functional damages of the hippocampus, especially the Na K pump and Ca2+ pump in hippocampal mitochondria may have an important significance in the occurrence and development of long term PTSD like psycho and behaviour abnormity in experimental animals.%目的:探讨创伤后应激障碍( posttraumatic stress disorder,PTSD)样精神与行为异常的病理生理基础,为其治疗途径提供新思路. 方法:将 72只雄性 Wistar大鼠随机分组为海马阈下电刺激组( SE, n=32)、海马电极埋植对照组( CE, n=32)

  20. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3.

    Science.gov (United States)

    Jarosch, Marlene S; Gebhardt, Christine; Fano, Silvia; Huchzermeyer, Christine; Ul Haq, Rizwan; Behrens, Christoph J; Heinemann, Uwe

    2015-07-01

    We investigated the effects of hypoxia on sharp wave-ripple complex (SPW-R) activity and recurrent epileptiform discharges in rat hippocampal slices, and the mechanisms underlying block of this activity. Oxygen levels were measured using Clark-style oxygen sensor microelectrodes. In contrast to recurrent epileptiform discharges, oxygen consumption was negligible during SPW-R activity. These network activities were reversibly blocked when oxygen levels were reduced to 20% or less for 3 min. The prolongation of hypoxic periods to 6 min caused reversible block of SPW-Rs during 20% oxygen and irreversible block when 0% oxygen (anoxia) was applied. In contrast, recurrent epileptiform discharges were more resistant to prolonged anoxia and almost fully recovered after 6 min of anoxia. SPW-Rs were unaffected by the application of 1-butyl-3-(4-methylphenylsulfonyl) urea, a blocker of KATP channels, but they were blocked by activation of adenosine A1 receptors. In support of a modulatory function of adenosine, the amplitude and incidence of SPW-Rs were increased during application of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Interestingly, hypoxia decreased the frequency of miniature excitatory post-synaptic currents in CA3 pyramidal cells, an effect that was converted into increased frequency by the adenosine A1 agonist DPCPX. In addition, DPCPX also delayed the onset of hypoxia-mediated block of SPW-Rs. Our data suggest that early adenosine release during hypoxia induces a decrease in pre-synaptic glutamate release and that both might contribute to transient block of SPW-Rs during hypoxia/anoxia in area CA3. PMID:25959377

  1. The genetics of feto-placental development: A study of acid phosphatase locus 1 and adenosine deaminase polymorphisms in a consecutive series of newborn infants

    Directory of Open Access Journals (Sweden)

    Bergamaschi Antonio

    2008-09-01

    Full Text Available Abstract Background Acid phosphatase locus 1 and adenosine deaminase locus 1 polymorphisms show cooperative effects on glucose metabolism and immunological functions. The recent observation of cooperation between the two systems on susceptibility to repeated spontaneous miscarriage prompted us to search for possible interactional effects between these genes and the correlation between birth weight and placental weight. Deviation from a balanced development of the feto-placental unit has been found to be associated with perinatal morbidity and mortality and with cardiovascular diseases in adulthood. Methods We examined 400 consecutive newborns from the Caucasian population of Rome. Birth weight, placental weight, and gestational length were registered. Acid phosphatase locus 1 and adenosine deaminase locus 1 phenotypes were determined by starch gel electrophoresis and correlation analysis was performed by SPSS programs. Informed verbal consent to participate in the study was obtained from the mothers. Results Highly significant differences in birth weight-placental weight correlations were observed among acid phosphatase locus 1 phenotypes (p = 0.005. The correlation between birth weight and placental weight was markedly elevated in subjects carrying acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (A, CA and CB phenotypes compared to those carrying acid phosphatase locus 1 phenotypes with medium-high F isoform concentration (BA and B phenotypes (p = 0.002. Environmental and developmental variables were found to exert a significant effect on birth weight-placental weight correlation in subjects with medium-high F isoform concentrations, but only a marginal effect was observed in those with medium-low F isoform concentrations. The correlation between birth weight and placental weight is higher among carriers of the adenosine deaminase locus 1 allele*2, which is associated with low activity, than in homozygous adenosine

  2. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  3. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    Science.gov (United States)

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  4. Observation on the activities of alpha-L-fucosidase,alkaline phosphatase and adenosine deaminase in pregnant women%妊娠女性α-L-岩藻糖苷酶、碱性磷酸酶和腺苷脱氨酶活性观察

    Institute of Scientific and Technical Information of China (English)

    王玮玮; 孙伟才; 周惠玉

    2014-01-01

    目的:妊娠期女性观察血清α-L-岩藻糖苷酶(AFU)、碱性磷酸酶(ALP)及腺苷脱氨酶(ADA)活性的变化及其与妊娠周期的相关性。方法分别检测352例体检正常的不同妊娠期女性(妊娠组,其中早期妊娠210例、晚期妊娠142例)及322例因不孕就诊且尚未妊娠的体检正常的女性(非妊娠组)血清 AFU、ALP、ADA 活性。对所有对象均进行动态监测(早期妊娠组于妊娠第14、22、30及38周分别检测,晚期妊娠组于妊娠第38及40周检测,非妊娠组于就诊时、就诊后第8及24周检测)并做比较。结果妊娠组血清 ALP、AFU 活性明显高于非妊娠组(P =0.000),ADA 活性则低于非妊娠组(P =0.000)。晚期妊娠组血清 ALP、AFU 活性明显高于早期妊娠组(P =0.000),但 ADA 活性两组间差异无统计学意义(P >0.05)。对早期妊娠组的动态监测显示,随着妊娠周期的增加,AFU 及 ALP 活性逐渐升高,但 ADA 基本无变化。晚期妊娠组第38周及第40周血清 AFU、ALP、ADA 活性差异均无统计学意义(P >0.05)。对非妊娠组的动态监测显示,与就诊时比较,就诊后第8周 ALP、ADA 活性差异有统计学意义(P =0.000),就诊后第24周 ADA 活性差异有统计学意义;与就诊后第8周比较,就诊后第24周 ALP、AFU、ADA 活性差异均有统计学意义(P <0.05)。结论妊娠期女性血清 AFU 及 ALP 活性明显升高,且随孕周的增加,升高趋势越明显。%Objective To observe the activity changes of alpha-L-fucosidase (AFU),alkaline phosphatase (ALP) and adenosine deaminase (ADA)in pregnant women and their correlations with pregnant period.Methods The activities of AFU,ALP and ADA were determined in 352 pregnant women (210 cases with early-stage pregnancy and 142 cases with late-stage pregnancy)and 322 unpregnant women.Dynamic monitoring was performed (early-stage pregnancy

  5. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    Science.gov (United States)

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.. PMID:27660830

  6. Vasopressin is a major vasoconstrictor involved in hindlimb vascular responses to stimulation of adenosine A1 receptors in the nucleus of the solitary tract

    OpenAIRE

    McClure, Joseph M.; Rossi, Noreen F.; Chen, Haiping; O'Leary, Donal S.; Scislo, Tadeusz J.

    2009-01-01

    Our previous study showed that stimulation of adenosine A1 receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation versus vasoconstriction mediated by neural and unknown humoral factors. In the present study we investigated the relative contribution of three major potential humoral vasoconstrictors: vasopressin, angiotensin II, and norepinephrine in this response. In ur...

  7. Rescuing the Corticostriatal Synaptic Disconnection in the R6/2 Mouse Model of Huntington’s Disease: Exercise, Adenosine Receptors and Ampakines

    OpenAIRE

    Cepeda, C.; Cummings, D. M.; Hickey, M. A.; Kleiman-Weiner, M.; Chen, J. Y.; Watson, J B; Levine, M.S.

    2010-01-01

    In the R6/2 mouse model of Huntington's disease (HD) we examined the effects of a number of behavioral and pharmacological manipulations aimed at rescuing the progressive loss of synaptic communication between cerebral cortex and striatum. Two cohorts of transgenic mice with ~110 and 210 CAG repeats were utilized. Exercise prevented the reduction in striatal medium-sized spiny neuron membrane capacitance but did not reestablish synaptic communication. Activation of adenosine A2A type receptor...

  8. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.;

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... effect remain unanswered. METHODS AND RESULTS: The interstitial adenosine concentration was determined in the vastus lateralis muscle of healthy humans via dialysis probes inserted in the muscle. The probes were perfused with buffer, and the dialysate samples were collected at rest and during graded knee...... concentration and a higher FaBF (2.22+/-0.18 L/min; PATP, ADP, and AMP increased from...

  9. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana;

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− chann...

  10. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  11. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    International Nuclear Information System (INIS)

    The authors have previously demonstrated that 3H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased 3H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 μl drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine

  12. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-11-01

    Full Text Available Multiple linear regression analysis was performed on the quantitative structure-activity relationships (QSAR of the triazoloquinazoline adenosine antagonists for human A3receptors. The data set used for the QSAR analysis encompassed the activities of 33triazoloquinazoline derivatives and 72 physicochemical descriptors. A template moleculewas derived using the known molecular structure for one of the compounds when bound tothe human A2B receptor, in which the amide bond was in a cis-conformation. All the testcompounds were aligned to the template molecule. In order to identify a reasonable QSARequation to describe the data set, we developed a multiple linear regression program thatexamined every possible combination of descriptors. The QSAR equation derived from thisanalysis indicates that the spatial and electronic effects is greater than that of hydrophobiceffects in binding of the antagonists to the human A3 receptor. It also predicts that a largesterimol length parameter is advantageous to activity, whereas large sterimol widthparameters and fractional positive partial surface areas are nonadvatageous.

  13. A Study of Histology and Enzymatic Histochemistry on Rabbit's Retina in Acute Ocular Hypertension

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The changes of activities of enzymes relating to energy metabolism in rabbit's retina in acute ocular hypertension were observed. The activities of succinate dehydrogenase and adenosine triphosphatase were found to be reduced, while the activities of the lactatic dehydrognease and glucose-6-phosphatase increased. The results revealed the metabolic disturbance of energy in retina after acute ocular hypertension might be the underlying factors relating to the defects of the functions and structures of the...

  14. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas;

    2006-01-01

    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD...... in sodium excretion between the two genotypes on the HS diet. Even on the SD diet, A1R-/- mice had an increased sodium excretion compared with A1R+/+ mice. An abolished tubuloglomerular feedback response and reduced tubular reabsorption can account for the elevated salt excretion found in A1R-/- animals....... The elevated plasma renin concentrations found in the A1R-/- mice could also result in increased blood pressure. Our results confirm that adenosine, acting through the adenosine A1 receptor, plays an important role in regulating blood pressure, renin release, and sodium excretion....

  15. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects

    DEFF Research Database (Denmark)

    Birk, S; Petersen, K.A.; Kruuse, Christina Rostrup;

    2005-01-01

    Adenosine is an endogenous neurotransmitter that is released from the brain during hypoxia and relaxes isolated human cerebral arteries. Many cerebral artery dilators cause migraine attacks. However, the effect of intravenous adenosine on headache and cerebral artery diameter has not previously...... been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design....... Headache was rated on a verbal scale (0-10). Regional cerebral blood flow (rCBF) with 133Xe inhalation and single-photon emission computed tomography (SPECT) and MCA flow velocity (V(MCA)) with transcranial Doppler, were measured in direct sequence. Six participants developed headache during 80 microg kg...

  16. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  17. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  18. Quantification of adenosine triphosphate, adenosine diphosphate, and creatine phosphate in sterlet spermatozoa during maturation.

    Science.gov (United States)

    Fedorov, P; Dzyuba, B; Fedorova, G; Grabic, R; Cosson, J; Rodina, M

    2015-11-01

    Sturgeon spermatozoa maturation during their passage through the kidney is a prerequisite for initiation of motility. Samples of sterlet () testicular sperm (TS) were matured in vitro by incubation in seminal fluid (SF) or in SF supplemented with carbonyl cyanide -chlorophenyl hydrazone (CCCP; a respiration uncoupling agent). Sperm was diluted in activation medium (AM) containing 10 m Tris-HCl buffer (pH 8.5) and 0.25% Pluronic, and spermatozoon motility was assessed. Samples were taken and fixed in 3 perchloric acid at 3 points in the incubation process. Quantification of ATP, ADP, and creatine phosphate (CrP) was conducted using liquid chromatography/high-resolution mass spectrometry. We observed a significant decrease in CrP during artificial maturation of TS in SF. In contrast, ATP and ADP were not significantly affected. Addition of CCCP to SF halted maturation and led to significantly lower CrP whereas ADP significantly increased and ATP was unaffected. Dilution of matured and immature TS with AM led to a significant decrease of ATP and CrP and an increase of ADP compared with their levels before dilution, although immature TS were not motile. Energy dependency of TS maturation in sturgeon was confirmed, which suggests that mitochondrial oxidative phosphorylation is needed for maturation of sturgeon TS. PMID:26641041

  19. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors

    OpenAIRE

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S.; Scislo, Tadeusz J.

    2014-01-01

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as th...

  20. Cyclization of the phosphate side chain of adenosine triphosphate: formation of monoadenosine 5'-trimetaphosphate.

    Science.gov (United States)

    Glonek, T; Kleps, R A; Myers, T C

    1974-07-26

    Monoadenosine 5'-trimetaphosphate has been prepared from adeno-sine 5'-triphosphate by a carbodiimide-mediated condensation. The molecule was characterized by (3l)P nuclear magnetic resonance, and its (31)P spectrum was simulated through the assumption of a three-phosphorus spin system. The molecule is highly reactive and is rapidly converted to adenosine triphosphate upon contact with water. PMID:4834364

  1. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.

    OpenAIRE

    Cronstein, B. N.; Eberle, M A; Gruber, H E; Levin, R I

    1991-01-01

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, we determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts from 4 +/- 1% t...

  2. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    OpenAIRE

    Jaiswal Pundrik; Soldati Thierry; Thewes Sascha; Baskar Ramamurthy

    2012-01-01

    Abstract Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factor...

  3. Aptamer-based Electrochemical Biosensors for Highly Selective and Quantitative Detection of Adenosine

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fan; WU Zai-sheng; ZHANG Song-bai; GUO Meng-meng; CHEN Chen-rui; SHEN Guo-li; YU Ru-qin

    2008-01-01

    A new adenosine biosensor based on aptamer probe is introduced in this article.An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film.When adenosine is bound specifically to the aptamer probe,the interface of the biosensor is changed,resulting in the decrement of the peak current.The response current is proportional to the amount of adenosine in sample.The used electrode can be easily regenerated in hot water.The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0×10-7-1.0×10-4 mol/L with a detection limit of 1.0×10-8 mol/L.The presented biosensor exhibits a nice specificity towards adenosine.It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.

  4. Label-Free Sensing of Adenosine Based on Force Variations Induced by Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Jingfeng Li

    2015-03-01

    Full Text Available We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS. In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated.

  5. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    International Nuclear Information System (INIS)

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up [14C]adenine and released 14C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs

  6. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  7. 腺苷及其受体参与外周痛觉信息调控的机制%Mechanisms of adenosine and its receptors in pain modulation in the peripheral system

    Institute of Scientific and Technical Information of China (English)

    赵静; 米文丽; 毛应启梁

    2011-01-01

    Adenosine is an endogenous nucleoside that widely exists in the human body cells. Through activating different subgroups of adenosine receptors (A1, A2A, A2B, and A3 receptors), adenosine produces various effects in a broad spectrum of tissues, especially in the central nervous systems, which includes modulating physiological and pathological processes such as sleep, learning and memory, depression as well as anxiety. With the research development in the agonists and antagonists of adenosine receptors, the roles of adenosine and its receptors in the peripheral nervous system have been widely revealed. The researches reported that adenosine and its receptors are closely related to transmission and modulation of nociception in peripheral signals.%腺苷是一种遍布人体细胞的内源性核苷,通过其不同类型的受体(A1,A2A,A2B和A3受体)对机体的许多系统(特别是中枢神经系统)及组织发挥着重要的作用,参与调控睡眠、学习记忆、抑郁和焦虑等多种生理和病理过程.随着腺苷对受体亚型选择性激动剂和拮抗剂的开发,人们对腺苷及其受体在外周神经系统中的作用研究越来越深入,并逐步认识到腺苷及其受体与外周痛党信息的传递和调控密切相关.

  8. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  9. Adenosine A{sub 1} receptors in contrast media-induced renal dysfunction in the normal rat

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Per; Palm, Fredrik [Department of Diagnostic Radiology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Carlsson, Per-Ola [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Sciences, University Hospital, 75185, Uppsala (Sweden); Hansell, Peter [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden)

    2004-07-01

    Renal vasoconstriction with resultant tissue hypoxia, especially in the renal medulla, has been suggested to play a role in contrast media (CM)-induced nephropathy. In this study we investigated the effects of injection of the non-ionic low-osmolar CM iopromide with and without pretreatment with the selective adenosine A{sub 1}-receptor antagonist DPCPX. The effects were evaluated on regional renal blood flow, outer medullary oxygen tension (PO{sub 2}) and urine output in normal anaesthetised rats. A laser-Doppler technique was used for recording haemodynamic changes while oxygen microelectrodes were used for oxygen measurements. The A{sub 1}-receptor antagonist per se elevated glomerular filtration rate (+44%), cortical blood flow (+15%) and urine output (threefold) while reducing outer medullary PO{sub 2} (-24%). Administration of CM reduced outer medullary blood flow (OMBF; -26%) and PO{sub 2} (-80%) but did not affect cortical blood flow. Urine output increased 28-fold by CM while arterial blood pressure was reduced. The CM-mediated effect on haemodynamics, PO{sub 2}, urine output and blood pressure was unaffected by the A{sub 1}-receptor antagonist. Adenosine A{sub 1}-receptors are not important mediators of the depression of outer medullary blood flow and PO{sub 2} caused by the CM iopromide in the normal rat; however, A{sub 1}-receptors are tonically active to regulate renal haemodynamics, PO{sub 2} and urine production during normal physiological conditions. (orig.)

  10. Influence of hemodialysis on the plasma concentration of adenosine deaminase in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Eduardo O. Chielle

    2015-06-01

    Full Text Available ABSTRACT Introduction: Over the past years there has been a significant increase in hospitalizations and treatments due to kidney complications that eventually resulted in the increased number of patients on dialysis. The adenosine deaminase (ADA enzyme mediates the formation of some defense cells of the organism and is therefore a marker of inflammation. Objective: The objective of this study was to evaluate biomarkers of renal function and serum ADA of hemodialysis patients. Materials and methods: Blood samples were collected from 80 patients – 40 women and 40 men – between 19 and 60 years old, before and after the completion of hemodialysis. Results: There was a significant difference in levels of creatinine, urea and ADA in pre- and post-hemodialysis periods (p < 0.0001. There was a significant increase in post-dialysis ADA regardless of sex; however there was a significantly greater increase in men. Conclusion: The results showed a reduction in urea and creatinine parameters, evidencing the main purpose of hemodialysis. This study suggests that the determination of ADA activity could be used to monitor inflammation in hemodialysis patients, however wider and more specific studies are needed to show the effectiveness of serum ADA activity as an inflammatory marker in patients with chronic kidney disease.

  11. Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes.

    Science.gov (United States)

    Li, Baoman; Qi, Shuang; Sun, Guangfeng; Yang, Li; Han, Jidong; Zhu, Yue; Xia, Maosheng

    2016-10-01

    Spinal cord injury (SCI) causes long-term disability and has no clinically effective treatment. After SCI, adenosine triphosphate (ATP) may be released from neuronal cells and astrocytes in large amounts. Our previous studies have shown that the extracellular release of ATP increases the phosphorylation of cytosolic phospholipase A2 (cPLA2 ) and triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2) via the stimulation of epidermal growth factor receptor (EGFR) and the downstream phosphorylation of extracellular-regulated protein kinases 1 and 2. Leptin, a glycoprotein, induces the activation of the Janus kinase (JAK2)/signal transducers and activators of transcription-3 (Stat3) pathway via the leptin receptor. In this study, we found that 1) prolonged leptin treatment suppressed the ATP-stimulated release of AA and PGE2 from cultured spinal cord astrocytes; 2) leptin elevated the expression of caveolin-1 (Cav-1) via the JAK2/Stat3 signaling pathway; 3) Cav-1 blocked the interaction between Src and EGFR, thereby inhibiting the phosphorylation of EGFR and cPLA2 and attenuating the release of AA or PGE2; 4) pretreatment with leptin decreased ;he level of apoptosis and the release of interleukin-6 from cocultured neurons and astrocytes; and 5) leptin improved the recovery of locomotion in mice after SCI. Our results highlight leptin as a promising therapeutic agent for SCI. © 2016 Wiley Periodicals, Inc. PMID:27316329

  12. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor. PMID:3957458

  13. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process. PMID:2573631

  14. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    Science.gov (United States)

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  15. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    Science.gov (United States)

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  16. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  17. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Holloway Cameron J

    2010-11-01

    Full Text Available Abstract Introduction Adenosine is the most widely used vasodilator stress agent for Cardiovascular Magnetic Resonance (CMR perfusion studies. With the standard dose of 140 mcg/kg/min some patients fail to demonstrate characteristic haemodynamic changes: a significant increase in heart rate (HR and mild decrease in systolic blood pressure (SBP. Whether an increase in the rate of adenosine infusion would improve peripheral and, likely, coronary vasodilatation in those patients is unknown. The aim of the present study was to assess the tolerance and safety of a high-dose adenosine protocol in patients with inadequate haemodynamic response to the standard adenosine protocol when undergoing CMR perfusion imaging. Methods 98 consecutive patients with known or suspected coronary artery disease (CAD underwent CMR perfusion imaging at 1.5 Tesla. Subjects were screened for contraindications to adenosine, and an electrocardiogram was performed prior to the scan. All patients initially received the standard adenosine protocol (140 mcg/kg/min for at least 3 minutes. If the haemodynamic response was inadequate (HR increase Results All patients successfully completed the CMR scan. Of a total of 98 patients, 18 (18% did not demonstrate evidence of a significant increase in HR or decrease in SBP under the standard adenosine infusion rate. Following the increase in the rate of infusion, 16 out of those 18 patients showed an adequate haemodynamic response. One patient of the standard infusion group and two patients of the high-dose group developed transient advanced AV block. Significantly more patients complained of chest pain in the high-dose group (61% vs. 29%, p = 0.009. On multivariate analysis, age > 65 years and ejection fraction Conclusions A substantial number of patients do not show adequate peripheral haemodynamic response to standard-dose adenosine stress during perfusion CMR imaging. Age and reduced ejection fraction are predictors of inadequate

  18. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    Science.gov (United States)

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  19. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.; Cherezov, Vadim; Chien, Ellen Y.T.; Lane, J. Robert; IJzerman, Adriaan P.; Stevens, Raymond C. (Scripps); (Leiden/Amsterdam)

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.

  20. 腺苷与肺动脉高压关系研究进展%Study progress of adenosine in pulmonary arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    钱国清; 王良兴

    2009-01-01

    Adenosine is an endogenous nucleoside that mediates several important functions by the activation of four known cell surface (A1, A2A,A2B and A3) receptors. Adenosine therapy for the hypoxia, postoperative and other causes of pulmonary arterial hypertension has a significant effect,but its mechanisms are still controversial. This review describes the recent advances of adenosine in the study of mechanism and treatment of pulmonary arterial hypertension.%腺苷是一种内皮源性嘌呤核苷,通过与A1、A2A、A2B及A3四种腺苷受体亚型相结合而发挥不同的生物学效应.腺苷对于缺氧、术后和特发性等多种原因引起的肺动脉高压都具有明显的治疗效果,但其作用机制尚存在争议.本文综述了腺苷对肺动脉高压的作用机制及治疗研究进展.

  1. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes

    Science.gov (United States)

    Roseti, Cristina; Palma, Eleonora; Martinello, Katiuscia; Fucile, Sergio; Morace, Roberta; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonietta; Giangaspero, Felice; Aronica, Eleonora; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Cristalli, Gloria; Lambertucci, Catia; Marucci, Gabriella; Volpini, Rosaria; Limatola, Cristina; Eusebi, Fabrizio

    2009-01-01

    We previously found that the endogenous anticonvulsant adenosine, acting through A2A and A3 adenosine receptors (ARs), alters the stability of currents (IGABA) generated by GABAA receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of IGABA expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABAA receptors revealed instability, manifested by a large IGABA rundown, which in most of the oocytes (≈70%) was obviously impaired by the new A2A antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A3 receptor antagonist (ANR235) significantly improved IGABA stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered IGABA rundown on ANR94 treatment. Our findings indicate that antagonizing A2A and A3 receptors increases the IGABA stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy. PMID:19721003

  2. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  3. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1.

    Science.gov (United States)

    Naval-Macabuhay, Isaac; Casanova, Víctor; Navarro, Gemma; García, Felipe; León, Agathe; Miralles, Laia; Rovira, Cristina; Martinez-Navio, José M; Gallart, Teresa; Mallol, Josefa; Gatell, José M; Lluís, Carme; Franco, Rafael; McCormick, Peter J; Climent, Núria

    2016-02-01

    Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection. PMID:26310829

  4. A2A adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE–knockout mice

    OpenAIRE

    Teng, Bunyen

    2011-01-01

    Bunyen Teng, S Jamal MustafaDepartment of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USAAbstract: Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolip...

  5. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    Science.gov (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  6. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  7. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  8. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Wenjie; Wei; Richard; Graeff; Jianbo; Yue

    2014-01-01

    Mobilization of intracellular Ca2+ stores is involved inmany diverse cell functions, including: cell proliferation;differentiation; fertilization; muscle contraction; secre-tion of neurotransmitters, hormones and enzymes;and lymphocyte activation and proliferation. Cyclic ad-enosine diphosphate ribose(cADPR) is an endogenousCa2+ mobilizing nucleotide present in many cell typesand species, from plants to animals. cADPR is formedby ADP-ribosyl cyclases from nicotinamide adenine di-nucleotide. The main ADP-ribosyl cyclase in mammalsis CD38, a multi-functional enzyme and a type Ⅱ mem-brane protein. It has been shown that many extracel-lular stimuli can induce cADPR production that leadsto calcium release or influx, establishing cADPR as asecond messenger. cADPR has been linked to a widevariety of cellular processes, but the molecular mecha-nisms regarding cADPR signaling remain elusive. Theaim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advanc-es involving the mechanism and physiological functionsof cADPR-mediated Ca2+ mobilization.

  9. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    Science.gov (United States)

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  10. Mitochondrial Damage and Apoptosis Induced by Adenosine Deaminase Inhibition and Deoxyadenosine in Human Neuroblastoma Cell Lines.

    Science.gov (United States)

    Garcia-Gil, Mercedes; Tozzi, Maria Grazia; Balestri, Francesco; Colombaioni, Laura; Camici, Marcella

    2016-07-01

    The treatment with deoxycoformycin, a strong adenosine deaminase inhibitor, in combination with deoxyadenosine, causes apoptotic cell death of two human neuroblastoma cell lines, SH-SY5Y and LAN5. Herein we demonstrate that, in SH-SY5Y cells, this combination rapidly decreases mitochondrial reactive oxygen species and, in parallel, increases mitochondrial mass, while, later, induces nuclear fragmentation, and activation of caspase-8, -9, and -3. In previous papers we have shown that a human astrocytoma cell line, subjected to the same treatment, undergoes apoptotic death as well. Therefore, both astrocytoma and neuroblastoma cell lines undergo apoptotic death following the combined treatment with deoxycoformycin and deoxyadenosine, but several differences have been found in the mode of action, possibly reflecting a different functional and metabolic profile of the two cell lines. Overall this work indicates that the neuroblastoma cell lines, like the line of astrocytic origin, are very sensitive to purine metabolism perturbation thus suggesting new therapeutic approaches to nervous system tumors. J. Cell. Biochem. 117: 1671-1679, 2016. © 2015 Wiley Periodicals, Inc. PMID:26659614

  11. INHIBITORY EFFECTS OF ADENOSINE 5' -TRIPHOSPHATE ON COCHLEAR FUNCTION OF GUINEA PIG

    Institute of Scientific and Technical Information of China (English)

    杨军; 李吉平; 钱敏飞; 徐秀玲; 王家东; 丁大连

    2005-01-01

    Objective To study effects of adenosine 5'-triphosphate (ATP) on cochlear function of guinea pig. Methods After perfusion of ATP into perilymphatic spaces of the guinea pig cochlea, summating potential (SP), cochlear microphonic (CM) , auditory nerve compound action potential ( CAP ) , distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) were measured. Results The results showed concentration-dependent effect of ATP on the response alterations of bioelectric activity in cochlea. Administration of lmmol/L ATP caused an increase both in the amplitude of the SP and in the threshold of ABR, a decrease in amplitude of the CAP and DPOAE. In addition, response alterations of the CAP and DPOAE showed in an intensity- and frequency-dependent manner, respectively. At levels of 20 -70dB nHL sound intensity, lmmol/L ATP caused a significant decrease in the CAP amplitude, while at moderate and high frequency ranges of 2 -8kHz it reduced DPOAE amplitude significantly. 330μmol/L ATP also increased the threshold of ABR. Conclusion ATP through perilymphatic perfusion could inhibit cochlear function of guinea pig.

  12. The effect of renal stones on serum adenosine aminohydrolase and AMP-aminohydrolase in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Faridah; Yusof; Atheer; Awad; Mehde; Wesen; Adel; Mehdi; Hamid; Ghazali; Azlina; Abd; Rahman

    2015-01-01

    Objective: To verify possible associations between adenosine aminohydrolase(ADA) and AMP-aminohydrolase(AMPDA) to E3 SUMO-protein ligase NSE2(NSMCE2) in patients with renal stones. And to isolate, purify and characterize ADA in patients with renal stones and healthy group.Methods: A total of 60 renal stones patients and 50 control were enrolled in a case-control study. The blood urea, creatinine, uric acid, protein, albumin, ADA and AMPDA were measured by colorimetric tests. The serum NSMCE2 was measured by ELISA.Results: Serum ADA, AMPDA and specii c activity of enzymes showed signii cant decrease(P < 0.05) in patients with renal stones compared to control group, mean levels of sera NSMCE2 and uric acid had a signii cant increase(P < 0.01 and P < 0.05, respectively) in patients compared to control group.Conclusions: The present study suggests that ADA, AMP deaminase and NSMCE2 can be used as a indicator to monitor the DNA damage and inl ammation disorders in the patients with kidney stones.

  13. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    Science.gov (United States)

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  14. Rapid tolerance against focal cerebral ischemia induced by isoflurane anesthesia is attenuated by adenosine A1 receptor antagonist in rats

    Institute of Scientific and Technical Information of China (English)

    刘艳红; 熊利泽

    2003-01-01

    The brief anesthesia with isoflurane induces rapid tolerance against focal cerebral ischemia in rats and adenosine A1 receptor antagonist, DPCPX, attenuates the beneficial effect of isoflurane preconditioning.

  15. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  16. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  17. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  18. Evaluation of adenosine preconditioning with 99mTc-His10-annexin V in a porcine model of myocardium ischemia and reperfusion injury: preliminary study

    International Nuclear Information System (INIS)

    Purpose: The goal of this study was to evaluate the feasibility of 99mTc-His10-annexin V for the detection of acute myocardial cell death and to assess the effect of adenosine preconditioning in a porcine model of myocardium ischemia and reperfusion injury (RI). Materials and Methods: 99mTc-His10-annexin V was prepared by one-step direct labeling, and RCP and radiostability were tested. The binding of 99mTc-His10-annexin V to apoptosis was validated in vitro using camptothecin-induced Jurkat cells. In vivo biodistribution was determined in mice by the dissection method. Ischemia of 20-30 min was induced by balloon occlusion of the epicardial coronary artery of the porcine model (n=14). Adenosine was infused intravenously in six pigs before coronary occlusion. 99mTc-His10-annexin V (n=12) was injected intravenously at 1 h after reperfusion. SPECT/CT was acquired at 3 h postinjection. Myocardial perfusion imaging (MPI) with 99mTc-MIBI was also performed 1 day after His10-annexin V imaging. Cardiac tissues were analyzed postmortem using hematoxylin-and-eosin and TUNEL staining. Caspase-3 activity was measured to confirm the presence of apoptosis. Results: 99mTc-His10-annexin V had a RCP >98% and high stability 2 h after radiolabeling; it could bind to apoptotic cells with high affinity. Biodistribution of 99mTc-His10-annexin V showed a predominant uptake in the kidney and relatively low uptake in the myocardium, liver and gastrointestinal tract; rapid clearance from blood and kidney was observed. In the untreated group, intense uptake of His10-annexin V was visualized in the defect which was shown in MPI, whereas in the adenosine group a mild uptake of 99mTc-His10-annexin was found in the risk area which showed no defects in the 99mTc-MIBI image. TUNEL staining and activated caspase-3 confirmed the ongoing apoptosis in RI. Adenosine preconditioning significantly diminished the level of apoptosis. Uptake of His10-annexin V in RI correlated with TUNEL-positive nuclei

  19. Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation.

    Directory of Open Access Journals (Sweden)

    Wen-Bang Yu

    Full Text Available Dissolved oxygen (DO is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616, we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min and low oxygen supply (agitation 450 r/min. The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow, inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism.

  20. Effects of melittin on lipid-protein interactions in sarcoplasmic reticulum membranes.

    OpenAIRE

    Mahaney, James E.; Kleinschmidt, Jörg H.; Marsh, Derek; Thomas, David D.

    1992-01-01

    To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present stud...

  1. Adenosine A(2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Directory of Open Access Journals (Sweden)

    Pin-Chien Huang

    Full Text Available BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs and retinal ganglion cells (RGCs. The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A receptor (A(2AR regulates retinal waves and whether A(2AR regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2AR decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2AR may up-regulate wave frequency. To investigate whether A(2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2AR (A2AR-WT in SACs, suggesting that A(2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2AR mutant (A(2AR-ΔC in SACs, the wave frequency was reduced compared to the A(2AR-WT, but was similar to the control, suggesting that the full-length A(2AR in SACs is required for A(2AR up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2AR up-regulates the frequency of retinal waves via

  2. Adenosine-5'-triphosphate release by Mannheimia haemolytica, lipopolysaccharide, and interleukin-1 stimulated bovine pulmonary epithelial cells.

    Science.gov (United States)

    Craddick, Michael; Patel, Rakhi; Lower, Amanda; Highlander, Sarah; Ackermann, Mark; McClenahan, David

    2012-09-15

    Mannheimia haemolytica, one of the agents associated with bovine respiratory disease complex, can cause severe lung pathology including the leakage of vascular products into the airways and alveoli. Previous work by this laboratory has demonstrated that bovine lung endothelial and epithelial cells undergo dramatic permeability increases when exposed to adenosine-5'-triphosphate (ATP). Therefore, we wanted to determine if ATP levels were elevated in bronchoalveolar lavage (BAL) samples from calves experimentally infected with M. haemolytica. In addition, cultured bovine pulmonary epithelial (BPE) cells were stimulated with heat-killed and live M. haemolytica bacteria, lipopolysaccharide (LPS), lipoteichoic acid (LTA), interleukin-1 (IL-1), and zymosan activated plasma (ZAP) to determine whether they might release extracellular ATP during in vitro infection. Calves experimentally exposed to M. haemolytica had an approximately 2-fold higher level of ATP in their BAL samples compared to control. BPE cells exposed to increasing numbers of heat-killed or live M. haemolytica had significantly increased levels of ATP release as compared to time-matched controls. Finally, BPE cells treated with several concentrations of LPS and IL-1 had increases in ATP release as compared to time-matched controls. This increase appeared to be a result of active ATP secretion by the cells, as cell viability was similar between treated and non-treated cells. Neither ZAP nor LTA induced any ATP release by the cells. In conclusion, ATP levels are elevated in lung secretions from calves infected with M. haemolytica. In addition, lung epithelial cells can actively release ATP when exposed to heat-killed or live M. haemolytica, LPS or IL-1. PMID:22771196

  3. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis.

    Science.gov (United States)

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Squadrito, Francesco; Squadrito, Giovanni; Pallio, Socrate; Anastasi, Giuseppe P; Cutroneo, Giuseppina; Macrì, Antonio; Altavilla, Domenica

    2016-01-01

    Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodeling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodeling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN), to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitrobenzenesulfonic acid (DNBS), 25 mg diluted in 0.8 ml 50% ethanol. After 6 h, animals were randomized to receive either PDRN (8 mg/kg/i.p.), or PDRN + the A2A antagonist [3,7-dimethyl-1-propargylxanthine (DMPX); 10 mg/kg/i.p.], or vehicle (0.8 ml saline solution) daily. In the second model, dextran sulfate sodium (DSS) was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 h animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxidase activity, and malondialdehyde. All these effects were abolished by the concomitant administration of the A2A antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases. PMID:27601997

  4. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Filacchioni, Guido; Martini, Claudia; Trincavelli, Letizia; Lucacchini, Antonio

    2004-02-01

    Since most of the reported adenosine receptor antagonists are 2-(hetero)aryl-substituted tricyclic heteroaromatic derivatives, in the present study we report the synthesis and the biological evaluation of a new set of 4-amino-1,2,4-triazolo[1,5-a]quinoxalines containing at position-2 an ethyl carboxylate group or a hydrogen atom. The structure-activity relationships on these compounds were in accordance with those of a previously reported series of analogous size and shape, thus suggesting a similar A(1)-binding mode. In particular, the binding data indicate that alkylation of the 4-amino group of these derivatives lead to potent A(1)-receptor antagonists. Moreover, as new results, this study has pointed out that the ethyl 2-carboxylate group can advantageously replace the 2-(hetero)aryl ring of previously reported triazoloquinoxaline derivatives, affording an ameliorated interaction with the A(1)-receptor subtype.

  5. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway.

    Science.gov (United States)

    Ferrati, Giovanni; Martini, Francisco J; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In "driver" thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  6. Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway

    Directory of Open Access Journals (Sweden)

    Giovanni eFerrati

    2016-02-01

    Full Text Available Short-term synaptic plasticity (STP sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In driver thalamocortical (TC synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors, modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  7. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    Science.gov (United States)

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  8. Effects of M-cresol on Activity of Total ATPase During the Early Development of Cyprinus carpio var.color%间甲酚对瓯江彩鲤早期发育总 ATP 酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    朱俊华; 梁琍; 姚俊杰; 冯亚楠

    2014-01-01

    Activity of total adenosine triphosphatase ( ATPase) was determined during the early development of Cyp-rinus carpio var.color exposed to 7 mg/L, 13 mg/L and 19 mg/L m-cresol at the temperature of (20 ±2)℃.The influence of m-cresol on the total ATPase was analyzed through biochemical and static toxicological methods .The results showed that the activity of total ATPase had no significant difference in the fertilized eggs and the mature eggs of Cyprinus carpio var.color( P>0.05) .However, the activities of total ATPase in all treatment groups dem-onstrated obvious dose-effect relationship and stage-effect relationship in response to m-cresol during the early de-velopment of Cyprinus carpio var.color.In general, the activity of total ATPase decreased with the extension of de-velopmental time and increasing of m-cresol concentration from gastrula stage of the early development of Cyprinus carpio var.color.%在水温(20±2)℃条件下,设置7 mg/L、13 mg/L、19 mg/L的间甲酚(m-cresol)浓度梯度,研究了瓯江彩鲤(Cyprinus carpio var.color)早期发育过程中总ATP酶活性变化及间甲酚对总ATP酶影响。结果表明,瓯江彩鲤总ATP酶活性在成熟卵和受精卵中无显著差异(P>0.05);各浓度组总ATP酶活性表现为良好的剂量-效应和发育时期-效应关系;总体上看,瓯江彩鲤早期发育从原肠胚期开始,总ATP酶活性随着发育时间的延长和暴露浓度的增加而降低。

  9. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O;

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  10. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal Adenosine A1 receptor function

    NARCIS (Netherlands)

    Moidunny, S.; Dias, R.; Van Calker, D.; Boddeke, H.; Sebastiao, A.; Biber, K.

    2010-01-01

    Objective: Adenosine is a neuromodulator in the central nervous system exhibiting anticonvulsive, neuroprotective and sedating/sleep regulating properties. A pathophysiological importance of adenosine in various neuropsychiatric diseases (e.g. epilepsy, neurodegenerative disorders, apoplexia and moo

  11. Separation of effects of adenosine on energy metabolism from those on cyclic AMP in rat thymic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nordeen, S.K.; Young, D.A.

    1977-08-10

    In rat thymic lymphocytes incubated for 2 h without exogenous energy-providing substrate, adenosine may be substituted for glucose as a means of maximally restoring energy metabolism and those cellular functions whose rates are sensitive to small changes in the energy balance, such as protein synthesis and uridine utilization for RNA synthesis. Since effects of adenosine in thymocytes and other cells have frequently been attributed to changes in cyclic AMP, this report investigates its possible involvement in these glucose-like restorative actions of adenosine. Although the same range of doses of adenosine effective at raising cyclic AMP also elicit roughly parallel stimulations of protein synthesis and uridine utilization, further results dissociate the restorative actions from those on cyclic AMP. (a) Other purine nucleosides mimic the glucose-like actions of adenosine without increasing cyclic AMP; (b) conversely, prostaglandin E/sub 1/ mimics the cyclic AMP response without restoring energy metabolism or energy-dependent functions; and (c) potentiation of the cyclic AMP response, either by inhibiting phosphodiesterase or adenosine deaminase, does not enhance the restorative response to a range of doses of adenosine. Finally, cyclic AMP-mediated glycogenolysis cannot account for the glucose-like effects since addition of adenosine increases, not decreases, levels of glycogen.

  12. Determination of the onset of beta-methyl-digoxin action by potentiation of the adenosine response in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Fukuda,Tamotsu

    1985-06-01

    Full Text Available The onset of beta-methyl-digoxin action was investigated by the potentiation of the adenosine response in guinea pigs and rats, and compared with that of digoxin and dipyridamole. A number of i.v. infusions of adenosine were given to determine the mean control adenosine response and its 95% confidence limits. After oral administration of the drugs, successive infusions of adenosine were continued until a drug-induced potentiation of the adenosine response was observed. The time of appearance of the potentiated adenosine response was marked as the onset of action of the drugs. The onset of action in guinea pigs was 9 to 12 min for 0.2 to 0.4 mg/kg of beta-methyl-digoxin, 90 to 100 min for 0.2 mg/kg of digoxin and 25 min for 5 mg/kg of dipyridamole. The maximal potentiation was 48.8 to 53.8% at 18 to 21 min for beta-methyl-digoxin, 74.5% at 130 min for digoxin and 74.8% at 80 min for dipyridamole. Adenosine infused i.v. into rats produced heart block, as in guinea pigs. However, in rats, the adenosine response was not potentiated by beta-methyl-digoxin and digoxin. Dipyridamole at a dose as high as 200 mg/kg produced 25.8% potentiation at 36 min after oral administration to rats.

  13. Comparison of adenosine and treadmill exercise thallium-201 stress tests for the detection of coronary artery disease.

    Science.gov (United States)

    Abe, S; Takeishi, Y; Chiba, J; Ikeda, K; Tomoike, H

    1993-12-01

    To determine the clinical usefulness of adenosine Tl-201 imaging for the evaluation of coronary artery disease, 22 patients with suspected coronary artery disease who underwent adenosine and exercise Tl-201 single photon emission computed tomography (SPECT) were studied. The peak levels of heart rate (83 vs 123 bpm, p pressure products (10220 vs 20410 bpm x mmHg, p < 0.001) were markedly smaller during adenosine infusion than during exercise. Segmental agreements between adenosine and exercise tests were 90% (218 of 242 segments) regarding the presence of perfusion defects and 89% (215 of 242 segments) regarding the presence of redistribution. Regional Tl-201 uptake (r = 0.85, p < 0.001) and the extent (r = 0.75, p < 0.001) and intensity (r = 0.83, p < 0.001) of Tl-201 defects during adenosine testing were closely correlated with those of exercise testing. Adenosine and exercise tests showed similar sensitivities for the identification of individual coronary stenosis (85% vs 78%). However, in patients who were unable to perform adequate exercise (maximal heart rate < 120 bpm), the sensitivity of adenosine imaging tended to be higher than that of exercise imaging (92% vs 69%, p = 0.07). Adenosine Tl-201 imaging is an alternative to the exercise test for assessing the severity and loci of coronary artery disease, especially in patients who are unable to perform adequate physical exercise. PMID:8283603

  14. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping

    NARCIS (Netherlands)

    Kuijpers, Dirkjan; Prakken, Niek H.; Vliegenthart, Rozemarijn; van Dijkman, Paul R. M.; van der Harst, Pim; Oudkerk, Matthijs

    2016-01-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are

  15. Wound Healing Is Accelerated by Agonists of Adenosine A2 (Gα s-linked) Receptors

    OpenAIRE

    Montesinos, M. Carmen; Gadangi, Pratap; Longaker, Michael; Sung, Joanne; Levine, Jamie; Nilsen, Diana; Reibman, Joan; Min LI; Jiang, Chuan-Kui; Hirschhorn, Rochelle; Recht, Phoebe A.; Ostad, Edward; Levin, Richard I.; Cronstein, Bruce N.

    1997-01-01

    The complete healing of wounds is the final step in a highly regulated response to injury. Although many of the molecular mediators and cellular events of healing are known, their manipulation for the enhancement and acceleration of wound closure has not proven practical as yet. We and others have established that adenosine is a potent regulator of the inflammatory response, which is a component of wound healing. We now report that ligation of the Gαs-linked adenosine receptors on the cells o...

  16. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  17. Oxidative Stress Biomarkers and Adenosine Deaminase over the Alopecic Area of the Patients with Alopecia Areata

    Science.gov (United States)

    Öztürk, Perihan; Arıcan, Özer; Kurutaş, Ergül Belge; Mülayim, Kamil

    2016-01-01

    Background: Alopecia areata (AA) is an autoimmune, T-cell mediated, and chronic inflammatory disorder. The pathological mechanisms of disease are unclear, but oxidative stress may be involved. To our knowledge, no studies have examined the oxidative stress levels or biomarkers within the lesional area and skin surface in patients with AA. Similarly, adenosine deaminase (ADA) has not been characterized in AA. Aims: Therefore, we aimed to define ADA levels and the factors involved in oxidative stress from scalp-scrapes of patients with AA. Study Design: Case-control study. Method: A total of 60 patients (30 diagnosed AA patients and 30 healthy controls) were included in the study. ADA as well as oxidative stress factors, including malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analyzed from scalp-scrapes in both groups and quantified by spectrophotometry. Results: Activities of SOD (p=0.000), CAT (p=0.033), and ADA (p=0.004) as well as levels of GSH (p=0.000) and MDA (p=0.032) in patients with AA were higher than the controls statistically significant. Conclusion: Based on these results, factors associated with oxidative stress were elevated in AA patient scalp-scrapes compared to controls and may have a defined role the disease pathogenesis. Alterations in the activities of antioxidant enzymes from AA patient scraping samples may be a local effect of elevated oxidative stress levels. In this disease, oxidative stress may affect not only hair follicle but also any layers of the skin.

  18. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice.

    Science.gov (United States)

    Bao, Rui; Shui, Xianqi; Hou, Jiong; Li, Jinbao; Deng, Xiaoming; Zhu, Xiaoyan; Yang, Tao

    2016-09-01

    The number of regulatory T cells (Treg cells) and the expression of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also known as CD39) and 5'-ectonucleotidase (NT5E; also known as CD73) on the Treg cell surface are increased during sepsis. In this study, to determine the factors leading to the high expression of CD39 and CD73, and the regulation of the CD39/CD73/adenosine pathway in Treg cells under septic conditions, we constructed a mouse model of sepsis and separated the Treg cells using a flow cytometer. The Treg cells isolated from the peritoneal lavage and splenocytes of the mice were treated with adenosine or the specific adenosine A2A receptor agonist, CGS21680, and were transfected with specific siRNA targeting E2F transcription factor 1 (E2F-1) or cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), which are predicted transcription regulatory factors of CD39 or CD73. The regulatory relationships among these factors were then determined by western blot analysis and dual-luciferase reporter assay. In addition, changes in adenosine metabolism were measured in the treated cells. The results revealed that adenosine and CGS21680 significantly upregulated CD39 and CD73 expression (PTreg cell surface during sepsis. Adenosine and its A2A receptor agonist served as the signal transducer factors of the CD39/CD73/adenosine pathway, accelerating adenosine generation. Our study may benefit further research on adenosine metabolism for the treatment of sepsis. PMID:27430240

  19. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    Science.gov (United States)

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  20. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    Science.gov (United States)

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction. PMID:23181321

  1. Systemic administration of the adenosine A2A agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake

    OpenAIRE

    Mingote, Susana; Pereira, Mariana; Farrar, Andrew M.; McLaughlin, Peter J.; Salamone, John D.

    2008-01-01

    Adenosine A2A receptors are involved in the regulation of several behavioral functions. Adenosine A2A antagonists exert antiparkinsonian effects in animal models, and adenosine A2A agonists suppress locomotion and impair various aspects of motor control. The present experiments were conducted to study the effects of low doses of the adenosine A2A agonist CGS 21680 on lever pressing, specific parameters of food intake, and sedation. In the first experiment, the effects of CGS 21680 on fixed ra...

  2. The Safety of an Adenosine A(1)-Receptor Antagonist, Rolofylline, in Patients with Acute Heart Failure and Renal Impairment Findings from PROTECT

    NARCIS (Netherlands)

    Teerlink, John R.; Iragui, Vicente J.; Mohr, Jay P.; Carson, Peter E.; Hauptman, Paul J.; Lovett, David H.; Miller, Alan B.; Pina, Ileana L.; Thomson, Scott; Varosy, Paul D.; Zile, Michael R.; Cleland, John G. F.; Givertz, Michael M.; Metra, Marco; Ponikowski, Piotr; Voors, Adriaan A.; Davison, Beth A.; Cotter, Gad; Wolko, Denise; DeLucca, Paul; Salerno, Christina M.; Mansoor, George A.; Dittrich, Howard; O'Connor, Christopher M.; Massi, Barry M.

    2012-01-01

    Background: Adenosine exerts actions in multiple organ systems, and adenosine receptors are a therapeutic target in many development programmes. Objective: The aim of this analysis was to evaluate the safety of rolofylline, an adenosine A(1)-receptor antagonist, in patients with acute heart failure.

  3. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection.

    Directory of Open Access Journals (Sweden)

    Mohammad-Ali Jenabian

    Full Text Available The mechanisms by which Regulatory T cells suppress IL-2 production of effector CD4+ T cells in pathological conditions are unclear. A subpopulation of human Treg expresses the ectoenzyme CD39, which in association with CD73 converts ATP/ADP/AMP to adenosine. We show here that Treg/CD39+ suppress IL-2 expression of activated CD4+ T-cells more efficiently than Treg/CD39-. This inhibition is due to the demethylation of an essential CpG site of the il-2 gene promoter, which was reversed by an anti-CD39 mAb. By recapitulating the events downstream CD39/adenosine receptor (A2AR axis, we show that A2AR agonist and soluble cAMP inhibit CpG site demethylation of the il-2 gene promoter. A high frequency of Treg/CD39+ is associated with a low clinical outcome in HIV infection. We show here that CD4+ T-cells from HIV-1 infected individuals express high levels of A2AR and intracellular cAMP. Following in vitro stimulation, these cells exhibit a lower degree of demethylation of il-2 gene promoter associated with a lower expression of IL-2, compared to healthy individuals. These results extend previous data on the role of Treg in HIV infection by filling the gap between expansion of Treg/CD39+ in HIV infection and the suppression of CD4+ T-cell function through inhibition of IL-2 production.

  4. EFFECTS OF DESENSITIZATION AND REBOUND TO ADENOSINE ON ACTION POTENTIAL AND CONTRACTILITY IN ATRIAL CELLS IN GUINEA-PIGS

    Institute of Scientific and Technical Information of China (English)

    张凤杰; 臧伟进; 于晓江; 胡浩; 张春虹; 孙强; 吕军

    2002-01-01

    Objective To investigate the effects of desensitization and rebound to adenosine(Ado) on action potential duration(APD) and contractility in guinea-pig atrial cells. Methods Electrical activity was recorded using standard intracellular microelectrode technique and contractility was recorded using. We studied the effects of adenosine on the action potential and desensitization of contractility and rebound of contractility. Results The results showed that action potential duration were shortened by 1,10,100μmol*L-1Ado, the ratio of shortened APD was (9.58±1.40)%,(13.80±2.26)%,(24.80±3.19)%, respectively. 1μmol*L-1Ado had no desensitization (P>0.05), but the time of desensitization of 10μmol*L-1 Ado and 100μmol*L-1 Ado was 1 minute(P<0.05) and 5 minutes(P<0.05), respectively. The desensitization of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility was changed from (31.4±16.04)%(2 minutes) to (50.60±15.87)% (4 minutes), compared with control. After washing out Ado, contractility was shown to rebound, the ratio of increase of contractility by 1,10,100μmol*L-1 Ado was (12.38±7.50)%,(19.00±8.14)% and (27.60±13.44)%, respectively. Conclusion Ado can abbreviate APD in atrial cells. The desensitization of Ado on APD is characterized by concentration-dependent and time-dependent in atrial cells, and the desensitization of contractility of Ado is obvious and contractility was shown to rebound after washing out Ado.

  5. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy.

    Science.gov (United States)

    Min, Hye Sook; Cha, Jin Joo; Kim, Kitae; Kim, Jung Eun; Ghee, Jung Yeon; Kim, Hyunwook; Lee, Ji Eun; Han, Jee Young; Jeong, Lak Shin; Cha, Dae Ryong; Kang, Young Sun

    2016-09-01

    The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria. PMID:27510383

  6. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    Science.gov (United States)

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  7. Recent developments in A2B adenosine receptor ligands.

    Science.gov (United States)

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1

  8. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    Institute of Scientific and Technical Information of China (English)

    Serguei; G; Popov; Taissia; G; Popova; Fatah; Kashanchi; Charles; Bailey

    2011-01-01

    AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores. METHODS:DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d.Ciprofloxacin treatment(50 mg/kg,once daily,intraperitoneally) was initiated at day+1 simultaneously with the ad- ministration of inhibitors,and continued for 10 d.Two doses(2.5 mg/kg and 12.5 mg/kg)of acetyl-tyrosylvalyl-alanyl-aspartyl-chloromethylketone(YVAD)and three doses(0.05,0.15 and 0.3 mg/kg)of 1-[2-Chloro- 6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1- deoxy-N-methyl-β-D-ribofuranuronamide(Cl-IB-MECA) were tested.Animals received YVAD on days 1-4,and Cl-IB-MECA on days 1-10 once daily,subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECAon phosphorylation of AKT and generation of cAMP were tested. RESULTS:We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA.Combination treatment with these substances and ciprofloxacin resulted in up to 90%synergistic protection.All untreated mice died,and antibiotic alone protected only 30% of animals.We conclude that both substances target the aberrant host signaling that underpins anthrax mortality. CONCLUSION:Our findings suggest new possibilities for combination therapy of anthrax with antibiotics,A3R agonists and caspase-1 inhibitors.

  9. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  10. Structural basis and evolution of redox regulation in plant adenosine-5;#8242;-phosphosulfate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Ravilious, Geoffrey E.; Nguyen, Amelia; Francois, Julie A.; Jez, Joseph M. (WU)

    2012-05-08

    Adenosine-5'-phosphosulfate (APS) kinase (APSK) catalyzes the phosphorylation of APS to 3'-phospho-APS (PAPS). In Arabidopsis thaliana, APSK is essential for reproductive viability and competes with APS reductase to partition sulfate between the primary and secondary branches of the sulfur assimilatory pathway; however, the biochemical regulation of APSK is poorly understood. The 1.8-{angstrom} resolution crystal structure of APSR from A. thaliana (AtAPSK) in complex with {beta},{gamma}-imidoadenosine-5'-triphosphate, Mg{sup 2+}, and APS provides a view of the Michaelis complex for this enzyme and reveals the presence of an intersubunit disulfide bond between Cys86 and Cys119. Functional analysis of AtAPSK demonstrates that reduction of Cys86-Cys119 resulted in a 17-fold higher kcat/Km and a 15-fold increase in Ki for substrate inhibition by APS compared with the oxidized enzyme. The C86A/C119A mutant was kinetically similar to the reduced WT enzyme. Gel- and activity-based titrations indicate that the midpoint potential of the disulfide in AtAPSK is comparable to that observed in APS reductase. Both cysteines are invariant among the APSK from plants, but not other organisms, which suggests redox-control as a unique regulatory feature of the plant APSK. Based on structural, functional, and sequence analyses, we propose that the redox-sensitive APSK evolved after bifurcation of the sulfur assimilatory pathway in the green plant lineage and that changes in redox environment resulting from oxidative stresses may affect partitioning of APS into the primary and secondary thiol metabolic routes by having opposing effects on APSK and APS reductase in plants.

  11. P型铜转运ATP酶在食管癌组织中的表达及与预后的关系%The Relationship between the Expression of Copper-transporting P-type Adenosine Triphosphatase (ATP7B) in Human Esophageal Cancer Tissues and the Prognosis of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    冯常炜; 李吉林; 侯晓华; 赵影影; 王立东; 何欣; 吴达龙; 高珊珊; 易会兴; 范宗民; 郭花芹

    2005-01-01

    目的:探讨食管鳞状细胞癌组织中P型铜转运ATP酶(ATP7B)的表达与有无淋巴结转移及预后的关系.方法:采用免疫组织化学ABC法检测64例手术切除的食管鳞状细胞癌组织中ATP7B的表达情况,并结合临床资料进行分析.结果:ATP7B的免疫阳性反应主要定位于食管癌细胞的细胞膜和(或)细胞浆,癌组织中ATP7B的阳性率为63%(40/64),其中有淋巴结转移的ATP7B阳性率为73%(30/41),无淋巴结转移阳性率为43%(10/23),两者具有显著性差异(P=0.019);术后生存期<5年组的ATP7B阳性表达率为72%(33/46),术后生存期>5年组的ATP7B阳性表达率为39%(7/18),两者具有显著性差异(P=0.015).结论:ATP7B在食管鳞状细胞癌组织中的过度表达与食管癌的预后密切相关.

  12. P型铜转运ATP酶(ATP7B)在肺腺癌细胞株A549中的表达与顺铂耐药的关系%Expression of Copper-Transporting P-Type Adenosine Triphosphatase(ATP7B) Correlates with Cisplatin-Resistance in Human Lung Adenocarcinoma Cell Line A549

    Institute of Scientific and Technical Information of China (English)

    高贵洲; 王建军; 石思恩

    2009-01-01

    背景与目的 顺铂作为肺癌的基础化疗药物,顺铂耐药是导致肺癌患者化疗失败的重要原因.本实验通过检测P型铜转运ATP酶在肺腺癌细胞A549不同水平耐药株中的表达,以评估ATP7B与A549细胞顺铂耐药的关系.方法采用逐步增加顺铂剂量的方法,诱导出3株不同水平耐顺铂A549细胞株A549/DDP0.5、A549/DDP1.0、A549/DDP2.0,MTT方法检测各组别细胞对顺铂敏感性,应用RT-PCR及Western Blot方法分别检测各组别细胞的ATP7B的mRNA及蛋白表达水平,分析A549细胞顺铂敏感性与ATP7B表达水平的关系.结果相对于亲本A549细胞,3组耐药细胞的顺铂耐药指数分别达到了1.7、3.2、5.2(P<0.001),与此相对应ATP7B的mRNA表达水平分别达到了亲本A549细胞的1.6、4.9、10.1倍(P<0.001),同样地ATP7B的蛋白表达水平也呈现出与顺铂耐药性相平行的递增性高表达.结论肺腺癌细胞A549的顺铂耐药与细胞ATP7B高表达有关,后者的高表达有可能促成了A549细胞的获得性顺铂耐药.

  13. Stimulation of NTS A1 adenosine receptors evokes counteracting effects on hindlimb vasculature.

    Science.gov (United States)

    McClure, Joseph M; O'Leary, Donal S; Scislo, Tadeusz J

    2005-12-01

    Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the

  14. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia?

    LENUS (Irish Health Repository)

    Espinoza, Jimmy

    2012-02-01

    OBJECTIVE: Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN: This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS: Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 +\\/- 0.09 mumol\\/L) than in normal pregnancies (0.52 +\\/- 0.06 mumol\\/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 +\\/- 0.15 mumol\\/L), but not with normal UADV (0.58 +\\/- 0.14 mumol\\/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION: Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.

  15. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    Science.gov (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  16. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency

    NARCIS (Netherlands)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hoenig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E.; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M.; Boelens, Jaap; Davies, E. Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H. Bobby

    2012-01-01

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed o

  17. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Galagudza M

    2012-04-01

    Full Text Available Michael Galagudza1, Dmitry Korolev1, Viktor Postnov2, Elena Naumisheva2, Yulia Grigorova3, Ivan Uskov1, Eugene Shlyakhto11Institute of Experimental Medicine, VA Almazov Federal Heart, Blood and Endocrinology Center, 2Chemical Faculty, St Petersburg State University, 3Department of Pathophysiology, IP Pavlov State Medical University, St Petersburg, Russian FederationAbstract: Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery.Keywords: silica nanoparticles, targeted drug delivery, myocardium, ischemia, reperfusion

  18. Therapeutic efficacy of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) against organophosphate intoxication

    NARCIS (Netherlands)

    Bueters, T.J.H.; Groen, B.; Danhof, M.; IJzerman, A.P.; Helden, H.P.M. van

    2002-01-01

    The objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun (O-ethyl-N-dimethylphosphoramidocyanidate), sarin (

  19. SIGNIFICANCE OF ADENOSINE DEAMINASE SERUM CONCENTRATIONS IN THE DIAGNOSIS OF EXTRA-PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Stevanovic G,

    2011-06-01

    Full Text Available Extra pulmonary tuberculosis (EPTB is a growing problem worldwide. Due to the nature of the disease, the diversity of clinical pictures as well as its minor epidemiological importance, the diagnosis is difficult and often late.In addition to standard TB diagnostic techniques use of new biochemical (surrogate markers are increased. With this work we wanted to examine the usefulness of serum adenosine deaminase levels as a diagnostic parameter for EPTB.The work included 116 patients with fever of unknown origin in which tuberculosis or infectious mononucleosis was not proven and 51 person who had proven EPTB. Correlated adenosine deaminase levels between these two groups we obtained significantly higher values ​​in patients with EPTB. The calculated sensitivity was 0.56, specificity 0.89, positive predictive value 0.80 and negative predictive value 0.72. Certain reducing of the values observed during anti TB therapy. In previous studies the diagnostic importance of adenosine deaminase in the diagnosis of tuberculosis serosityes was demonstrated. The significance of serum levels in diagnosis is rarely evaluated during EPTB. Our findings are similar to the results of authors who have conducted such testing in the pediatric population.Increased concentrations of serum adenosine deaminase have shown the potential of usable screening test and can be used as an indicative EPTB parameter. To fully assess its diagnostic significance require future clinical research.

  20. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  1. Ion fluxes through KCa2 (SK and Cav1 (L-type channels contribute to chronoselectivity of adenosine A1 receptor-mediated actions in spontaneously beating rat atria

    Directory of Open Access Journals (Sweden)

    Paulo eCorreia-De-Sá

    2016-03-01

    Full Text Available Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3 and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type channels.

  2. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria.

    Science.gov (United States)

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A; Faria, Miguel; Fontes-Sousa, Ana P; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca(2+)-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca(2+) influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca(2+) influx through Cav1 (L-type) channels. PMID:27014060

  3. Role of nitric oxide in adenosine-induced vasodilation in humans

    Science.gov (United States)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.

  4. Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels.

    Science.gov (United States)

    Wu, Dan; Ren, Xiang; Hu, Lihua; Fan, Dawei; Zheng, Yang; Wei, Qin

    2015-12-15

    A highly sensitive electrochemical adenosine aptasensor was fabricated by covalently immobilizing 3'-NH2-terminated capture probe (SSDNA1) and thionine (TH) on Au-GS modified glassy carbon electrode. 3'-SH-terminated adenosine aptamer (SSDNA2) was adsorbed onto palladium/copper alloyed supported on MWCNTs (PdCu@MWCNTs)-conjugated multiple bienzymes, glucose oxidase (GOx), and horseradish peroxidase (HRP) (SSDNA2/PdCu@MWCNTs/HRP/GOx). Then, it was immobilized onto the electrode surface through the hybridization between the adenosine aptamer and the capture probe. The signal was amplified based on the gradual electrocatalytic reduction of GOx-generated hydrogen peroxide by the multiple HRP through the mediating ability of the loaded multiple TH. However, the peak current of TH decreased in the presence of adenosine because the interaction between adenosine and its aptamer made SSDNA2/PdCu@MWCNTs/HRP/GOx release from the modified electrode. Various experimental parameters have been optimized for the detection of adenosine and tests for selectivity, reproducibility and stability have also been performed. Under the optimal condition, the proposed aptasensor displayed a wide linear range (10-400 nM) with the low detection limit (2.5 nM), which has been applied in human serum samples with satisfactory results. Thus, the combination of Au-GS as a sensor platform and PdCu@MWCNTs/HRP/GOx as labels can be a promising amplification strategy for highly sensitive adenosine detection. PMID:26164010

  5. Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors.

    Science.gov (United States)

    Scislo, Tadeusz J; Tan, Nobusuke; O'Leary, Donal S

    2005-02-01

    Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors

  6. Creatine kinase activity is associated with blood pressure

    NARCIS (Netherlands)

    L.M. Brewster; G. Mairuhu; N.R. Bindraban; R.P. Koopmans; J.F. Clark; G.A. van Montfrans

    2006-01-01

    Background - We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascula

  7. 2´,3´-Dialdehyde of ATP, ADP, and adenosine inhibit HIV-1 reverse transcriptase and HIV-1 replication.

    Science.gov (United States)

    Schachter, Julieta; Valadao, Ana Luiza Chaves; Aguiar, Renato Santana; Barreto-de-Souza, Victor; Rossi, Atila Duque; Arantes, Pablo Ricardo; Verli, Hugo; Quintana, Paula Gabriela; Heise, Norton; Tanuri, Amilcar; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis

    2014-01-01

    The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.

  8. Effects of PUVA and Narrowband UVB on Tissue and Serum Adenosine Deaminase Levels of Patients with Psoriasis

    Directory of Open Access Journals (Sweden)

    Sinem Öztürk

    2013-12-01

    Full Text Available Objective: Adenosine deaminase (ADA, which is accepted as a non-specific marker of T cell activation in psoriasis, has been shown to have an important role in determining activity of disease and efficacy of treatments. This is the first study investigating the levels of ADA in lesional skins of patients with psoriasis. Methods: Thirty-four patients; 26 with chronic plaque type and eight with guttate psoriasis were enrolled in this study. Patients were treated with PUVA or narrowband UVB. Contol group consisted of 25 patients who had an amputation of any extremity because of trauma. In this study, ADA activities were measured in plasma and tissue samples of patients and control group. Psoriasis Area and Severity Index (PASI scores of patients were determined. Results: Plasma and tissue ADA levels of patients with psoriasis were higher than control group (p0.05. Conclusion: These results support the immunological mechanisms showing activation of T cell acts in the pathogenesis of psoriasis and also this study suggests that the levels of plasma and tissue ADA are reliable laboratory parameters in follow-up of the disease.

  9. Development of a capillary electrophoresis method for analyzing adenosine deaminase and purine nucleoside phosphorylase and its application in inhibitor screening.

    Science.gov (United States)

    Qi, Yanfei; Li, Youxin; Bao, James J

    2016-08-01

    A novel capillary electrophoresis (CE) method was developed for simultaneous analysis of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) in red blood cells (RBCs). The developed method considered and took advantage of the natural conversion from the ADA product, inosine to hypoxanthine. The transformation ratio was introduced for ADA and PNP analysis to obtain more reliable results. After optimizing the enzymatic incubation and electrophoresis separation conditions, the determined activities of ADA and PNP in 12 human RBCs were 0.237-0.833 U/ml and 9.013-10.453 U/ml packed cells, respectively. The analysis of ADA in mice RBCs indicated that there was an apparent activity difference between healthy and hepatoma mice. In addition, the proposed method was also successfully applied in the inhibitor screening from nine traditional Chinese medicines, and data showed that ADA activities were strongly inhibited by Rhizoma Chuanxiong and Angelica sinensis. The inhibition effect of Angelica sinensis on ADA is first reported here and could also inhibit PNP activity. PMID:27173606

  10. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists.

    Science.gov (United States)

    Zhang, Lihui; Liu, Tianjun; Wang, Xia; Wang, Jinan; Li, Guohui; Li, Yan; Yang, Ling; Wang, Yonghua

    2014-01-01

    The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease. PMID:23665268

  11. Sedative, hypnotic and anticonvulsive effects of an adenosine analogue WS090501%腺苷类似物WS090501的镇静、催眠和抗惊厥作用

    Institute of Scientific and Technical Information of China (English)

    李伟; 张建军

    2011-01-01

    This study is to examine the sedative, hypnotic and anticonvulsive effects of an adenosine analogue, WS090501. The spontaneous locomotor activity was recorded by open field equipment, and the EEG of rats was recorded by polyphysiograph. Pentylenetetrazol (PTZ)-induced seizure model was used. The spontaneous locomotor activity was decreased by WS090501 at various doses (0.06, 0.13, and 0.25 mg·kg-1), and the decreasing rate was 28.4%, 47.1% and 61.2% respectively. Furthermore, the effect of WS090501 on spontaneous locomotor activity of mice can be antagonized by DPCPX, a selective adenosine A1R antagonist, but cannot be antagonized by SCH58261, a selective adenosine A2AR antagonist. The NREM sleep was significantly increased by WS090501 (0.05 and 0.2 mg·kg-1), and the increasing rate was 27.6% and 102.8%, respectively, at 6th hour after administration. The REM sleep decreased significantly at the higher dose. PTZ induced serious convulsion in mice. The latency of convulsion was prolonged, and the number of seizure and mortality decreased after administration of WS090501. These results show that WS090501 has potent sedative, hypnotic and anticonwlsive effects, which may be mediated through adenosine A1R.%@@ 腺苷是一种内源性的嘌呤核苷,具有广泛的生理性调节作用.腺苷类似物具有显著的镇静、催眠和抗惊厥作用,可以抑制啮齿类动物的自主活动、诱导NREM睡眠(non rapid-eye-movement sleep,非快动眼睡眠).腺苷及其类似物通过腺苷受体发挥作用.

  12. Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine

    Institute of Scientific and Technical Information of China (English)

    Ming-xia WANG; Lei-ming REN

    2006-01-01

    Aim: To study the growth inhibitory and apoptotic effects of adenosine triphosphate (ATP) and adenosine (ADO) on human gastric carcinoma (HGC)-27 cells in vitro and the mechanisms related to the actions of ATP and ADO. Methods: MTT assay was used to determine the reduction of cell viability. The morphological changes of HGC-27 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange/ethidium bromide double-stained cells. The internucleosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell-cycle analysis after treatment with ATP or ADO was determined by flow cytometry. Results: ATP, ADO and the intermediate metabolites, ADP and AMP, and the agonist of purinergic receptors, reduced cell viability of HGC-27 cells at doses of 0.3 and 1.0 mmol·L-1. The distribution of cell cycle phase and proliferation index (PI) value of HGC-27 cells changed when exposed to ATP or ADO at the concentrations of 0.1,0.3 and 1 mmol/L for 48 h. ATP and ADO both altered the distribution of cell cycle phase via Go/G1-phase arrest and significantly decreased PI value. Under light microscope, the tumor cells exposed to 0.3 mmol·L-1 ATP or ADO displayed morphological changes of apoptosis; a ladder-like pattern of DNA fragmentation obtained from HGC-27 cells treated with 0.1-1 mmol·L-1 ATP or ADO appeared in agarose gel electrophoresis; ATP and ADO induced the apoptosis of HGC-27 cells in a dose-dependent manner at concentrations between 0.03-1 mmol·L-1. The maximum apoptotic rate of HGC-27 cells exposed to ATP or ADO for 48 h was 13.53% or 15.9%, respectively. HGC-27 cell death induced by ATP or ADO was significantly inhibited by dipy-ridamole (10 mmol·L-1), an inhibitor of adenosine transporter, but was not affected by aminophylline, a broad inhibitor of PI receptors and pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetrasodium salt (30 nmol·L-1), a non-selective antagonist of P2

  13. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    Directory of Open Access Journals (Sweden)

    Jaiswal Pundrik

    2012-01-01

    Full Text Available Abstract Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA, weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA- and colony size (smlA- and ctnA- and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size

  14. Serine-324 of myosin's heavy chain is photoaffinity-labeled by 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate

    International Nuclear Information System (INIS)

    A portion of the active site of rabbit skeletal myosin near the ribose ring of ATP can be labeled by the photoaffinity analogue 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate (Bz2ATP). The specificity of the photolabeling was assured by first trapping [14C]Bz2ATP at the active site by use of thiol cross-linking agents. Five radioactive peptides were isolated by high-performance liquid chromatography after extensive trypsin and subtilisin digestion of photolabeled myosin subfragment 1. Four of these peptides were sequenced by Edman techniques, and all originated from a region with the sequence Gly-Glu-Ile-Thr-Val-Pro-Ser-Ile-Asp-Asp-Gln, which corresponds to rabbit myosin heavy chain residues 312-328. The fifth labeled peptide had an amino acid composition appropriate for residues 312-328. Amino acid composition, radiochemical analysis, and sequence data indicate that Ser-324 is the major amino acid residue photolabeled by Bz2ATP. Spectrophotometric evidence indicates that the benzophenone carbonyl group has inserted into a C-H bond from either the α- or β-carbon of serine. These results place Ser-324 at a distance of 6-7 angstrom from the 3'(2') ribose oxygens of ATP bound at the active site of myosin

  15. Randomized clinical trial of adenosine 5'-triphosphate in patients with advanced non-small-cell lung cancer

    NARCIS (Netherlands)

    H.J. Agteresch; P.C. Dagnelie (Pieter); A. van der Gaast (Ate); Th. Stijnen (Theo); J.H.P. Wilson (Paul)

    2000-01-01

    textabstractBACKGROUND: Extracellular adenosine 5'-triphosphate (ATP) is involved in the regulation of a variety of biologic processes, including neurotransmission, muscle contraction, and liver glucose metabolism, via purinergic receptors. In nonrandomized studies invo

  16. Analgesic effects of adenosine in syndrome X are counteracted by theophylline: a double-blind placebo-controlled study.

    Science.gov (United States)

    Eriksson, B E; Sadigh, B; Svedenhag, J; Sylvén, C

    2000-01-01

    It has been proposed that adenosine mediates ischaemic pain in humans. Patients with cardiac Syndrome X are hypersensitive to potential pain stimuli, including adenosine. On the other hand, recent findings suggest that low-dose adenosine infusion may have analgesic effects. Our aim was to test two hypotheses: (1) that the analgesic effect of adenosine is peripheral in origin, and (2) that part of the hypersensitivity to pain of patients with cardiac Syndrome X results from a disturbed mechanism of adenosine analgesia. A total of 12 female Syndrome X patients and eight healthy age-matched female controls were studied in a randomized, double-blind and placebo-controlled study. Adenosine (70 microg/min) or placebo was infused into the forearm via an intra-arterial catheter. After 15 min of infusion, a tourniquet on the upper arm was inflated to 225 mmHg to ensure arterial occlusion. The patient then carried out dynamic handgrip work at 60 Hz. Pain or discomfort in the forearm was estimated continuously according to the Borg CR-10 scale. After the first test, theophylline was infused for 10 min intravenously at a dose of 5 mg/kg body weight. The ischaemic forearm test was then repeated. On a second occasion, the procedure was repeated with the opposite treatment (adenosine/placebo). Only six of 12 Syndrome X patients completed the protocol because of pain during the catheterization procedure or an inability to establish an intra-arterial line. The time to onset of pain in the working, ischaemic forearm was greater for subjects treated with adenosine than for those treated with placebo, both in those Syndrome X patients who tolerated catheterization (49+/-27 s compared with 32+/-18 s; P600654

  17. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder

    OpenAIRE

    Silva-Ramos, M.; Silva, I; Faria, M.; Magalhães-Cardoso, M. T.; Correia, J.; Ferreirinha, F; Correia-de-Sá, P.

    2015-01-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [3H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n...

  18. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae.

    OpenAIRE

    Medin, J A; Hunt, L; Gathy, K; Evans, R K; Coleman, M S

    1990-01-01

    Human adenosine deaminase (EC 3.5.4.4), a key purine salvage enzyme essential for immune competence, has been overproduced in Spodoptera frugiperda cells and in Trichoplusia ni (cabbage looper) larvae infected with recombinant baculovirus. The coding sequence of human adenosine deaminase was recombined into a baculovirus immediately downstream from the strong polyhedrin gene promoter. Approximately 60 hr after infection of insect cells with the recombinant virus, maximal levels of intracellul...

  19. Nucleoside-Derived Antagonists to A3 Adenosine Receptors Lower Mouse Intraocular Pressure and Act across Species

    OpenAIRE

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Peterson-Yantorno, Kim; Stone, Richard A.; Gao, Zhan-Guo; Joshi, Bhalchandra; Besada, Pedro; Jeong, Lak Shin; Jacobson, Kenneth A.; Civan, Mortimer M.

    2009-01-01

    The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine n...

  20. Adenosine kinase deficiency with neurodevelopemental delay and recurrent hepatic dysfunction: A case report

    Science.gov (United States)

    Shakiba, Marjan; Mahjoub, Fatemeh; Fazilaty, Hassan; Rezagholizadeh, Fereshteh; Shakiba, Arghavan; Ziadlou, Maryam; Gahl, William A.; Behnam, Babak

    2016-01-01

    Hypermethioninemia may be benign, present as a nonspecific sign of nongenetic conditions such as liver failure and prematurity, or a severe, progressive inborn error of metabolism. Genetic causes of hypermethioninemia include mitochondrial depletion syndromes caused by mutations in the MPV17 and DGUOK genes and deficiencies of cystathionine β-synthase, methionine adenosyltransferase types I and III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase, citrin, fumarylacetoacetate hydrolase, and adenosine kinase. Here we present a 3-year old girl with a history of poor feeding, irritability, respiratory infections, cholestasis, congenital heart disease, neurodevelopmental delay, hypotonia, sparse hair, facial dysmorphisms, liver dysfunction, severe hypermethioninemia and mild homocystinemia. Genetic analysis of the adenosine kinase (ADK) gene revealed a previously unreported variant (c.479–480 GA>TG) resulting in a stop codon (p.E160X) in ADK. A methionine-restricted diet normalized the liver function test results and improved her hypotonia. PMID:27500280

  1. Synthesis and Pharmacological Evaluation of Modified Adenosines Joined to Mono-Functional Platinum Moieties

    Directory of Open Access Journals (Sweden)

    Stefano D'Errico

    2014-07-01

    Full Text Available The synthesis of four novel platinum complexes, bearing N6-(6-amino-hexyladenosine or a 1,6-di(adenosin-N6-yl-hexane respectively, as ligands of mono-functional cisplatin or monochloro(ethylendiamineplatinum(II, is reported. The chemistry exploits the high affinity of the charged platinum centres towards the N7 position of the adenosine base system and a primary amine of an alkyl chain installed on the C6 position of the purine. The cytotoxic behaviour of the synthesized complexes has been studied in A549 adenocarcinomic human alveolar basal epithelial and MCF7 human breast adenocarcinomic cancer cell lines, in order to investigate their effects on cell viability and proliferation.

  2. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as n