Sample records for adenosine receptor antagonists

  1. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio


    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  2. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong


    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  3. Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms


    Yu, Liqun; Shen, Hai-Ying; Coelho, Joana E.; Araújo, Inês M.; HUANG, QING-YUAN; Day, Yuan-Ji; Rebola, Nelson; Canas, Paula M.; Rapp, Erica Kirsten; Ferrara, Jarrod; Taylor, Darcie; Müller, Christa E.; Linden, Joel; Cunha, Rodrigo A.; Chen, Jiang-Fan


    To investigate whether the motor and neuroprotective effects of adenosine A2A receptor (A2AR) antagonists are mediated by distinct cell types in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease.We used the forebrain A2AR knock-out mice coupled with flow cytometric analyses and intracerebroventricular injection to determine the contribution of A2ARs in forebrain neurons and glial cells to A2AR antagonist-mediated motor and neuroprotective effects.The selecti...

  4. Discovery of Potent and Highly Selective A2B Adenosine Receptor Antagonist Chemotypes. (United States)

    El Maatougui, Abdelaziz; Azuaje, Jhonny; González-Gómez, Manuel; Miguez, Gabriel; Crespo, Abel; Carbajales, Carlos; Escalante, Luz; García-Mera, Xerardo; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy


    Three novel families of A2B adenosine receptor antagonists were identified in the context of the structural exploration of the 3,4-dihydropyrimidin-2(1H)-one chemotype. The most appealing series contain imidazole, 1,2,4-triazole, or benzimidazole rings fused to the 2,3-positions of the parent diazinone core. The optimization process enabled identification of a highly potent (3.49 nM) A2B ligand that exhibits complete selectivity toward A1, A2A, and A3 receptors. The results of functional cAMP experiments confirmed the antagonistic behavior of representative ligands. The main SAR trends identified within the series were substantiated by a molecular modeling study based on a receptor-driven docking model constructed on the basis of the crystal structure of the human A2A receptor.

  5. The Safety of an Adenosine A(1)-Receptor Antagonist, Rolofylline, in Patients with Acute Heart Failure and Renal Impairment Findings from PROTECT

    NARCIS (Netherlands)

    Teerlink, John R.; Iragui, Vicente J.; Mohr, Jay P.; Carson, Peter E.; Hauptman, Paul J.; Lovett, David H.; Miller, Alan B.; Pina, Ileana L.; Thomson, Scott; Varosy, Paul D.; Zile, Michael R.; Cleland, John G. F.; Givertz, Michael M.; Metra, Marco; Ponikowski, Piotr; Voors, Adriaan A.; Davison, Beth A.; Cotter, Gad; Wolko, Denise; DeLucca, Paul; Salerno, Christina M.; Mansoor, George A.; Dittrich, Howard; O'Connor, Christopher M.; Massi, Barry M.


    Background: Adenosine exerts actions in multiple organ systems, and adenosine receptors are a therapeutic target in many development programmes. Objective: The aim of this analysis was to evaluate the safety of rolofylline, an adenosine A(1)-receptor antagonist, in patients with acute heart failure.

  6. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni


    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  7. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  8. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee


    Full Text Available Multiple linear regression analysis was performed on the quantitative structure-activity relationships (QSAR of the triazoloquinazoline adenosine antagonists for human A3receptors. The data set used for the QSAR analysis encompassed the activities of 33triazoloquinazoline derivatives and 72 physicochemical descriptors. A template moleculewas derived using the known molecular structure for one of the compounds when bound tothe human A2B receptor, in which the amide bond was in a cis-conformation. All the testcompounds were aligned to the template molecule. In order to identify a reasonable QSARequation to describe the data set, we developed a multiple linear regression program thatexamined every possible combination of descriptors. The QSAR equation derived from thisanalysis indicates that the spatial and electronic effects is greater than that of hydrophobiceffects in binding of the antagonists to the human A3 receptor. It also predicts that a largesterimol length parameter is advantageous to activity, whereas large sterimol widthparameters and fractional positive partial surface areas are nonadvatageous.

  9. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller


    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  10. De novo analysis of receptor binding affinity data of xanthine adenosine receptor antagonists. (United States)

    Dalpiaz, A; Gardenghi, A; Borea, P A


    The receptor binding affinity data to adenosine A1 and A2 receptors of a wide series of xanthine derivatives have been analyzed by means of the Free-Wilson model. The analysis of the individual group contribution shows, for both A1 and A2 receptors, the primary importance of the presence of bulky substituents at position 8 for an optimum receptor binding. Moreover, considering the different aij contributions of bulky substituents at position 8 for affinity to A1 with respect to A2 receptors, this position appears to be the most important for the synthesis of highly A1 selective xanthine derivatives. Moreover the analysis of group contributions for other substitution positions of the xanthine moiety allows to state that suitable substitutions at positions 3 and 7 could confer some degree of A2 selectivity.

  11. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  12. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor. (United States)

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A


    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  13. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S


    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  14. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela


    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  15. A selective adenosine A2A receptor antagonist ameliorated hyperlocomotion in an animal model of lateral fluid percussion brain injury. (United States)

    Mullah, Saad Habib-E-Rasul; Inaji, Motoki; Nariai, Tadashi; Ishibashi, Satoru; Ohno, Kikuo


    Increased concentration of extracellular adenosine after brain injury is supposed to be one of the causes of secondary brain damage. The purpose of the present study is to examine whether or not administration of adenosine A2A receptor antagonist may be efficacious in ameliorating neurological symptoms by blocking secondary brain damage through cascades initiated by adenosine A2a receptor.Mongolian gerbils were divided into four groups: the trauma-medication (T-M), trauma-saline (T-S), sham-medication (S-M), and sham-saline (S-S) groups. Trauma groups received lateral fluid percussion injury. Medication groups received i.p. injection of SCH58261 (selective adenosine A2A receptor antagonist) until the fifth post-injury day. Open-field locomotion test and grabbing test were conducted before and 1, 3, 5, 7, and 9 days after injury.The total distance of movement in the T-S group was significantly greater than in the other three groups at all time points. In the T-M group, administration of SCH58261 significantly blocked hyperlocomotion, which was observed in the T-S group. There was no significant difference in the total distance among the T-M, S-M, and S-S groups. In the grabbing test, grabbing time was significantly increased in the T-S group 3, 5, 7, and 9 days after the operation. SCH58261 also improved grabbing time in the T-M group.Adenosine A2A antagonist successfully suppressed the trauma-induced hyperlocomotion, presumably by blocking secondary brain damage.

  16. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat (United States)


    not temperate, conditions after administration of a dopamine reuptake inhib- itor in humans (52) and improved thermoregulation in rats after...acute nutritional adenosine antagonist (caffeine and quercetin) administration on endurance exercise performance in the heat. An underlying assumption...both achieved with a small (0.6 mg/kg) intracerebroventricular dose of caffeine, while the same intraperitoneal dose had no effects. It remains

  17. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists. (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Filacchioni, Guido; Martini, Claudia; Trincavelli, Letizia; Lucacchini, Antonio


    Since most of the reported adenosine receptor antagonists are 2-(hetero)aryl-substituted tricyclic heteroaromatic derivatives, in the present study we report the synthesis and the biological evaluation of a new set of 4-amino-1,2,4-triazolo[1,5-a]quinoxalines containing at position-2 an ethyl carboxylate group or a hydrogen atom. The structure-activity relationships on these compounds were in accordance with those of a previously reported series of analogous size and shape, thus suggesting a similar A(1)-binding mode. In particular, the binding data indicate that alkylation of the 4-amino group of these derivatives lead to potent A(1)-receptor antagonists. Moreover, as new results, this study has pointed out that the ethyl 2-carboxylate group can advantageously replace the 2-(hetero)aryl ring of previously reported triazoloquinoxaline derivatives, affording an ameliorated interaction with the A(1)-receptor subtype.

  18. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans


    Kleynhans, Janke


    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  19. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study. (United States)

    Kermanian, Fatemeh; Mehdizadeh, Mehdi; Soleimani, Mansureh; Ebrahimzadeh Bideskan, Ali Reza; Asadi-Shekaari, Majid; Kheradmand, Hamed; Haghir, Hossein


    There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P mechanism of these interactions requires further studies.

  20. De novo analysis of receptor binding affinity data of 8-ethenyl-xanthine antagonists to adenosine A1 and A2a receptors. (United States)

    Dalpiaz, A; Gessi, S; Varani, K; Borea, P A


    The receptor binding affinity data to adenosine A1 and A2a receptors of a wide series of 8-ethenyl-xanthine derivatives has been analyzed by means of the Free-Wilson model. The analysis of the individual group contributions (aij) shows the importance of the presence of an ethenyl moiety at position 8 on the xanthine ring for obtaining selective A2a antagonists. The different aij values of the substituents for the adenosine. A1 receptor do not correlate with the corresponding ones for the A2a receptor, indicating the possibility to obtain A1 and A2a selective compounds. The presence of aromatic substituents at the 8-ethenyl group, such as 3,5-(OCH3)2-phenyl, permits to obtain strongly A2a selective compounds (affinity ratio of up to 100); moreover, it appears that 8-ethenyl-xanthinic derivatives cannot have high selectivity for the adenosine A1 receptor (affinity ratio < or = 10).

  1. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats (United States)

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P


    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  2. The Effects of the Adenosine Receptor Antagonists on the Reverse of Cardiovascular Toxic Effects Induced by Citalopram In-Vivo Rat Model of Poisoning (United States)

    Büyükdeligöz, Müjgan; Hocaoğlu, Nil; Oransay, Kubilay; Tunçok, Yeşim; Kalkan, Şule


    Background: Citalopram is a selective serotonin reuptake inhibitor that requires routine cardiac monitoring to prevent a toxic dose. Prolongation of the QT interval has been observed in acute citalopram poisoning. Our previous experimental study showed that citalopram may be lead to QT prolongation by stimulating adenosine A1 receptors without affecting the release of adenosine. Aims: We examined the effects of adenosine receptor antagonists in reversing the cardiovascular toxic effects induced by citalopram in rats. Study Design: Animal experimentation. Methods: Rats were divided into three groups randomly (n=7 for each group). Sodium cromoglycate (20 mg/kg) was administered to all rats to inhibit adenosine A3 receptor mast cell activation. Citalopram toxicity was achieved by citalopram infusion (4 mg/kg/min) for 20 minutes. After citalopram infusion, in the control group (Group 1), rats were given an infusion of dextrose solution for 60 minutes. In treatment groups, the selective adenosine A1 antagonist DPCPX (Group 2, 8-cyclopentyl-1,3-dipropylxanthine, 20 μg/kg/min) or the selective A2a antagonist CSC (Group 3, 8-(3-chlorostyryl)caffeine, 24 μg/kg/min) was infused for 60 minutes. Mean arterial pressure (MAP), heart rate (HR), QRS duration and QT interval measurements were followed during the experiment period. Statistical analysis was performed by ANOVA followed by Tukey’s multiple comparison tests. Results: Citalopram infusion reduced MAP and HR and prolonged the QT interval. It did not cause any significant difference in QRS duration in any group. When compared to the control group, DPCPX after citalopram infusion shortened the prolongation of the QT interval after 40, 50 and 60 minutes (p<0.01). DPCPX infusion shortened the prolongation of the QT interval at 60 minutes compared with the CSC group (p<0.05). CSC infusion shortened the prolongation of the QT at 60 minutes compared with the control group (p<0.05). Conclusion: DPCPX improved QT interval

  3. Effects of the Adenosine A(1) Receptor Antagonist Rolofylline on Renal Function in Patients With Acute Heart Failure and Renal Dysfunction Results From PROTECT (Placebo-Controlled Randomized Study of the Selective A(1) Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized With Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function)

    NARCIS (Netherlands)

    Voors, Adriaan A.; Dittrich, Howard C.; Massie, Barry M.; DeLucca, Paul; Mansoor, George A.; Metra, Marco; Cotter, Gad; Weatherley, Beth D.; Ponikowski, Piotr; Teerlink, John R.; Cleland, John G. F.; O'Connor, Christopher M.; Givertz, Michael M.


    Objectives This study sought to assess the effects of rolofylline on renal function in patients with acute heart failure (AHF) and renal dysfunction randomized in PROTECT (Placebo-Controlled Randomized Study of the Selective A(1) Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized Wi

  4. Adenosine receptor neurobiology: overview. (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang


    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  5. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. (United States)

    Corriden, Ross; Kilpatrick, Laura E; Kellam, Barrie; Briddon, Stephen J; Hill, Stephen J


    In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface

  6. Selective and potent adenosine A3 receptor antagonists by methoxyaryl substitution on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold. (United States)

    Yaziji, Vicente; Rodríguez, David; Coelho, Alberto; García-Mera, Xerardo; El Maatougui, Abdelaziz; Brea, José; Loza, María Isabel; Cadavid, María Isabel; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy


    The influence of diverse methoxyphenyl substitution patterns on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold is herein explored in order to modulate the A(3) adenosine receptor antagonistic profile. As a result, novel ligands exhibiting excellent potency (K(i) on A(3) AR < 20 nM) and selectivity profiles (above 100-fold within the adenosine receptors family) are reported. Moreover, our joint theoretical and experimental approach allows the identification of novel pharmacophoric elements conferring A(3)AR selectivity, first established by a robust computational model and thereafter characterizing the most salient features of the structure-activity and structure-selectivity relationships in this series.

  7. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.


    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  8. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay. (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A


    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  9. Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor. (United States)

    Squarcialupi, Lucia; Catarzi, Daniela; Varano, Flavia; Betti, Marco; Falsini, Matteo; Vincenzi, Fabrizio; Ravani, Annalisa; Ciancetta, Antonella; Varani, Katia; Moro, Stefano; Colotta, Vittoria


    In previous research, we identified some 7-oxo- and 7-acylamino-substituted pyrazolo[4,3-d]pyrimidine derivatives as potent and selective human (h) A3 adenosine receptor (AR) antagonists. Herein we report on the structural refinement of this class of antagonists aimed at achieving improved receptor-ligand recognition. Hence, substituents with different steric bulk, flexibility and lipophilicity (Me, Ar, heteroaryl, CH2Ph) were introduced at the 5- and 2-positions of the bicyclic scaffold of both the 7-oxo and 7-amino derivatives, and acyl residues were appended on the 7-amino group of the latter. All the 2-phenylpyrazolo[4,3-d]pyrimidin-7-amines and 7-acylamines bearing a 4-methoxyphenyl- or a 2-thienyl group at the 5-position showed high hA3 affinity and selectivity. In particular, the 2-phenyl-5-(2-thienyl)-pyrazolo[4,3-d]pyrimidin-7-(4-methoxybenzoyl)amine 25 (Ki = 0.027 nM) is one of the most potent and selective hA3 antagonists reported so far. By using an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinities were critically described.

  10. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. (United States)

    Stone, Trevor W; Behan, Wilhelmina M H


    Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.

  11. Limits of ligand selectivity from docking to models: in silico screening for A(1 adenosine receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Peter Kolb

    Full Text Available G protein-coupled receptors (GPCRs are attractive targets for pharmaceutical research. With the recent determination of several GPCR X-ray structures, the applicability of structure-based computational methods for ligand identification, such as docking, has increased. Yet, as only about 1% of GPCRs have a known structure, receptor homology modeling remains necessary. In order to investigate the usability of homology models and the inherent selectivity of a particular model in relation to close homologs, we constructed multiple homology models for the A(1 adenosine receptor (A(1AR and docked ∼2.2 M lead-like compounds. High-ranking molecules were tested on the A(1AR as well as the close homologs A(2AAR and A(3AR. While the screen yielded numerous potent and novel ligands (hit rate 21% and highest affinity of 400 nM, it delivered few selective compounds. Moreover, most compounds appeared in the top ranks of only one model. These findings have implications for future screens.

  12. Adenosine AA Receptor Antagonists Do Not Disrupt Rodent Prepulse Inhibition: An Improved Side Effect Profile in the Treatment of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carina J. Bleickardt


    Full Text Available Parkinson's disease (PD is characterized by loss of dopaminergic neurons in the substantia nigra. Current treatments for PD focus on dopaminergic therapies, including L-dopa and dopamine receptor agonists. However, these treatments induce neuropsychiatric side effects. Psychosis, characterized by delusions and hallucinations, is one of the most serious such side effects. Adenosine A2A receptor antagonism is a nondopaminergic treatment for PD with clinical and preclinical efficacy. The present studies assessed A2A antagonists SCH 412348 and istradefylline in rodent prepulse inhibition (PPI, a model of psychosis. Dopamine receptor agonists pramipexole (0.3–3 mg/kg, pergolide (0.3–3 mg/kg, and apomorphine (0.3–3 mg/kg significantly disrupted PPI; ropinirole (1–30 mg/kg had no effect; L-dopa (100–300 mg/kg disrupted rat but not mouse PPI. SCH 412348 (0.3–3 mg/kg did not disrupt rodent PPI; istradefylline (0.1–1 mg/kg marginally disrupted mouse but not rat PPI. These results suggest that A2A antagonists, unlike dopamine agonists, have an improved neuropsychiatric side effect profile.

  13. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2. (United States)

    Gołembiowska, Krystyna; Dziubina, Anna


    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  14. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial

    DEFF Research Database (Denmark)

    Cannon, Christopher P; Husted, Steen; Harrington, Robert A;


    OBJECTIVES: Our goal was to compare the safety and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, with clopidogrel in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS). BACKGROUND: AZD6140 achieves higher mean levels of p...

  15. 2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation. (United States)

    Squarcialupi, Lucia; Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Filacchioni, Guido; Varani, Katia; Corciulo, Carmen; Vincenzi, Fabrizio; Borea, Pier Andrea; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Ciancetta, Antonella; Moro, Stefano


    On the basis of our previously reported 2-arylpyrazolo[4,3-d]pyrimidin-7-ones, a set of 2-arylpyrazolo[4,3-d]pyrimidin-7-amines were designed as new human (h) A3 adenosine receptor (AR) antagonists. Lipophilic groups with different steric bulk were introduced at the 5-position of the bicyclic scaffold (R5 = Me, Ph, CH2Ph), and different acyl and carbamoyl moieties (R7) were appended on the 7-amino group, as well as a para-methoxy group inserted on the 2-phenyl ring. The presence of acyl groups turned out to be of paramount importance for an efficient and selective binding at the hA3 AR. In fact, most of the 7-acylamino derivatives showed low nanomolar affinity (Ki = 2.5-45 nM) and high selectivity toward this receptor. A few selected pyrazolo[4,3-d]pyrimidin-7-amides were effective in counteracting oxaliplatin-induced apoptosis in rat astrocyte cell cultures, an in vitro model of neurotoxicity. Through an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinity and hA3 versus hA2A AR selectivity were explained.

  16. AMP is an adenosine A1 receptor agonist. (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J


    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  17. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan


    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  18. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Directory of Open Access Journals (Sweden)

    Kubilay Oransay


    Full Text Available Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist, 8-(-3-chlorostyryl-caffeine (CSC; A 2a receptor antagonist, or dimethyl sulfoxide (DMSO administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl adenine (EHNA; inhibitor of adenosine deaminase and S-(4-Nitrobenzyl-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport. After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP, heart rate (HR,  QRS duration and QT interval were evaluated. Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group. Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.

  19. Synthesis of novel pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives: potent and selective adenosine A3 receptor antagonists. (United States)

    Banda, Veeraswamy; Chandrasekaran, Balakumar; Köse, Meryem; Vielmuth, Christin; Müller, Christa E; Chavva, Kurumurthy; Gautham, Santhosh Kumar; Pillalamarri, Sambasivarao; Mylavaram, Raghuprasad; Akkinepally, Raghuramarao; Pamulaparthy, Shanthanrao; Banda, Narsaiah


    A series of novel pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 5 was prepared from 2-amino-3-cyano-4-trifluoromethyl-6-phenylpyridine 1 in two steps via formation of iminoether 3 followed by reaction with different aroylhydrazides 4. Representative products 5 were evaluated for their affinity towards all four subtypes of human adenosine receptors. Compounds 2-(3-fluorophenyl)-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5b), 2-(furan-2-yl)-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5d), and 2-(furan-2-yl)-5-methyl-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5j) showed high affinity for the A3 receptors, with Ki values of 8.1, 10.4, and 12.1 nM, respectively, and were >1000-fold selective versus all other adenosine receptor subtypes.

  20. Discovery of 3,4-Dihydropyrimidin-2(1H)-ones As a Novel Class of Potent and Selective A2B Adenosine Receptor Antagonists. (United States)

    Crespo, Abel; El Maatougui, Abdelaziz; Biagini, Pierfrancesco; Azuaje, Jhonny; Coelho, Alberto; Brea, José; Loza, María Isabel; Cadavid, María Isabel; García-Mera, Xerardo; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy


    We describe the discovery and optimization of 3,4-dihydropyrimidin-2(1H)-ones as a novel family of (nonxanthine) A2B receptor antagonists that exhibit an unusually high selectivity profile. The Biginelli-based hit optimization process enabled a thoughtful exploration of the structure-activity and structure-selectivity relationships for this chemotype, enabling the identification of ligands that combine structural simplicity with excellent hA2B AdoR affinity and remarkable selectivity profiles.

  1. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo


    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  2. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors. (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  3. Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch. (United States)

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Kachler, Sonja; Falgner, Nico; Marucci, Gabriella; Thomas, Ajiroghene; Cristalli, Gloria; Volpini, Rosaria; Klotz, Karl-Norbert


    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N(6)-position. In contrast, the adenosine-5'-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5'-substituents on ligand-target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation.

  4. The A3 adenosine receptor: history and perspectives. (United States)

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania


    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  5. Synthesis of an important intermediate of antagonists of the human A2A adenosine receptor%A 2A腺苷受体拮抗剂中间体与抗结剂合成方法研究

    Institute of Scientific and Technical Information of China (English)

    屠美玲; 俞卫平; 冯涛; 贾继宁; 张云; 张建庭


    基于官能化的三唑并[4,5‐d]嘧啶类拮抗剂对人体内 A2A腺苷受体拮抗作用的干预治疗,能有效缓解帕金森综合征的临床症状.该类拮抗剂可以提高多巴胺神经元对纹状体多巴胺的敏感度.重点研究了三唑并[4,5‐d ]嘧啶类拮抗剂合成所需的重要中间体4‐氯‐1H‐[1,2,3]三唑并[d]嘧啶‐6‐胺的合成、表征及应用.并对该中间体进行活性拼接,制备了含呋喃基的三唑并[4,5‐d]嘧啶类拮抗剂8.%Antagonism of the human A2A receptor has been implicated as a point of therapeutic intervention in the alleviation of the symptoms associated with Parkinson's disease .That is to say ,at least in part ,this kind of antago‐nists can improve the sensitivity of the dopaminergic neurons to the residual ,and deplete levels of striatal dopamine . Herein ,we reported a novel synthesis strategy of an important intermediate (4‐chloro‐1H‐benzo[d][1 ,2 ,3]triazol‐6‐amine) of antagonists of the human A2A adenosine receptor .Additionally ,we had also prepared the adenosine receptor 8 .

  6. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors. (United States)

    Ross, Ashley E; Venton, B Jill


    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  7. Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors. (United States)

    Partovi, Dara; Frerking, Matthew


    Kainate receptors are widely reported to regulate the release of neurotransmitter in the CNS, but the mechanisms involved remain controversial. Previous studies have found that the kainate receptor agonist ATPA, which selectively activates Glu(K5)-containing kainate receptors, depresses glutamate release at Schaffer-collateral synapses in the hippocampus. In the present study, we provide pharmacological evidence that this depressant effect is mediated by Glu(K5)-containing heteromers, but is distinct from a similar depressant effect engaged by the kainate receptor agonist domoate. The depressant effect of ATPA is insensitive to antagonists for GABA(A), GABA(B), and adenosine receptors, and is also unaffected by lowering the release probability by reducing extracellular calcium. However, the effect of ATPA is partly occluded by prior activation of GABA(B) receptors and completely occluded by prior activation of adenosine receptors, suggesting a mechanistic convergence of heteromeric Glu(K5) kainate receptor signaling with GABA(B) receptors and adenosine receptors. The effects of domoate are partially occluded by both adenosine and GABA(B) receptor agonists, indicating at least a partial convergence of Glu(K5)-lacking kainate receptor signaling with these other pathways. The depressant effect of ATPA is not blocked by inhibition of serine/threonine protein kinases. These results suggest that ATPA and domoate inhibit glutamate release through mechanisms that converge with those of classical metabotropic receptor agonists, although they do so through different receptors.

  8. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria


    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  9. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich


    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  10. 腺苷A2A受体拮抗剂改善帕金森病运动并发症%Adenosine A2A receptor antagonist 8-( 3-Chlorostyryl) caffeine improves motor complication in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    宋璐; 马雅萍; 刘振国; 巴茂文


    目的 探讨腺苷A2A受体拮抗剂8-(3-Chlorostyryl)caffeine(CSC)对左旋多巴诱发的运动并发症的行为学与细胞学影响.方法 通过6-羟基多巴(6-OHDA)立体定向注射至大鼠前脑内侧束建立帕金森病(PD)动物模型.模型成功大鼠接受每日2次左旋多巴甲酯(50 mg/kg加12.5mg/kg苄丝肼)腹腔注射,持续22 d.在第23天,运动并发症模型组大鼠(n=8)继续接受如上用药,用药组(n=8)在左旋多巴注射前注射腺苷A2A受体拮抗剂CSC,均用药至第29天.同时设假手术组(n=8)和PD对照组(n=8).评估旋转时间,并采用免疫组织化学法和蛋白印迹法观察和检测纹状体区腺苷A2A受体的表达情况.结果 左旋多巴长期用药诱发PD大鼠模型旋转反应时间缩短,同时模型组损伤侧纹状体区腺苷A2A受体的表达升高[阳性细胞指数(IOD),(11.55±2.75)×104>],较假手术组[IOD,(6.02±1.29)×10±]和PD组[IOD,(5.60±1.83)×10±]有统计学意义(F=33.31,P]也下调至对照组和PD组水平.结论 腺苷A2A受体参与了左旋多巴诱发的运动并发症的发生,腺苷A2A受体拮抗剂可能是治疗PD运动并发症有前景的药物.%Objective To investigate cellular and behavioral effects of adenosine A2A receptor antagonist in a rat model of levodopa-induced motor complications.Methods The hemi-parkinsonian rat model was produced by stereotaxically injecting 6-OHDA to right medial forebmin bundle(MFB).Animals were intraperitoneally treated with levodopa 50 mg/kg plus benserazide 12.5 mg/kg twice a day for 22 days levodopa + vehicle.Rotational duration was estimated.After they were sacrificed,the expression of adenosine A2A receptor was observed by immunohistochemistry and Western blot.Results CSC,reversing the shortened rotational duration induced by levodopa,prolonged the rotational duration.This effect was maintained fil the end of the treatment.The chronic levedopa treatment induced an upregulation of adenosine A2A receptor expression in the

  11. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  12. Adenosine receptor control of cognition in normal and disease. (United States)

    Chen, Jiang-Fan


    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  13. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade. (United States)

    Collis, M. G.; Keddie, J. R.; Torr, S. R.


    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  14. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth


    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  15. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits. (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi


    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  16. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Trincavelli, Letizia; Martini, Claudia; Montopoli, Christian; Moro, Stefano


    A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus highlighting the versatility of the triazoloquinoxaline scaffold for obtaining potent and selective hA3 AR antagonists.

  17. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B


    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  18. Carbamazepine-induced upregulation of adenosine A(1)-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway

    NARCIS (Netherlands)

    Biber, K; Fiebich, BL; Gebicke-Harter, P; van Calker, D


    The anticonvulsant and antibipolar drug carbamazepine (CBZ) is known to act as a specific antagonist at adenosine A(1)-receptors. After a 3-week application of CBZ, A(1)-receptors are upregulated in the rat brain. We have investigated the consequences of this upregulation for the A(1)-receptor-media

  19. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma. (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola


    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  20. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B


    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  1. Modulatory effect of adenosine receptors on the ascending and descending neural reflex responses of rat ileum

    Directory of Open Access Journals (Sweden)

    Schusdziarra Volker


    Full Text Available Abstract Background Adenosine is known to act as a neuromodulator by suppressing synaptic transmission in the central and peripheral nervous system. Both the release of adenosine within the small intestine and the presence of adenosine receptors on enteric neurons have been demonstrated. The aim of the present study was to characterize a possible involvement of adenosine receptors in the modulation of the myenteric reflex. The experiments were carried out on ileum segments 10 cm in length incubated in an single chambered organ bath, and the reflex response was initiated by electrical stimulation (ES. Results ES caused an ascending contraction and a descending relaxation followed by a contraction. All motility responses to ES were completely blocked by tetrodotoxin, indicating that they are mediated by neural mechanisms. Atropine blocked the contractile effects, whereas the descending relaxation was significantly increased. The A1 receptor agonist N6-cyclopentyladenosine increased the ascending contraction, whereas the ascending contraction was reduced by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Activation of the A1 receptor further reduced the descending relaxation and the latency of the peristaltic reflex. The A2B receptor antagonist alloxazine increased ascending contraction, whereas descending relaxation remained unchanged. For A2A and A3 receptors, we found contradictory effects of the agonists and antagonists, thus there is no clear physiological role for these receptors at this time. Conclusions This study suggests that the myenteric ascending and descending reflex response of the rat small intestine is modulated by release of endogenous adenosine via A1 receptors.

  2. Identification and function of adenosine A3 receptor in afferent arterioles. (United States)

    Lu, Yan; Zhang, Rui; Ge, Ying; Carlstrom, Mattias; Wang, Shaohui; Fu, Yiling; Cheng, Liang; Wei, Jin; Roman, Richard J; Wang, Lei; Gao, Xichun; Liu, Ruisheng


    Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.

  3. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine. (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi


    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  4. Effect of Acupuncture Anti -Inflammatory Effects on Adenosine Receptor Antagonist - Caffeine in CIA Rats%腺苷受体拮抗剂—咖啡因对CIA大鼠针刺抗炎作用的影响

    Institute of Scientific and Technical Information of China (English)

    柳国英; 李晓佩; 李方; 谢文霞; 叶天申


    weight of the CIA rats were recorded before and after intervention;protein levels of blood serum macrophage migration inhibitory factor( MIF),tumor necrosis factor factor-α(TNF -α)and knee joint synovial TNF -α were tested after the intervention to evaluate the inflammation situation of the rats. Results ;1 Paw swelling,protein levels of the serum MIF,TNF - a and knee joint synovial TNF - α of the acupuncture group rats were significantly lower than other groups, the difference was statistically signifieant( P < 0.05 ) ;body weight was significantly higher than other groups (P <0. 05). There were obvious differences among caffeine - acupuncture group, caffeine group and physiological saline - control group (P < 0.05) ;MIF,TNF — α and knee synovial TNF — α of caffeine — acupuncture group were obviously higher than other two groups. Conclusion:Nonspecific adenosine receptor antagonist - caffeine can increase inflammation of CIA rats and inhibit the effect of acupuncture. Presumably, there are adjustment mechanism of anti — inflammatory related with the adenosine.

  5. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved. (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo


    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  6. Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. (United States)

    Nunes, E J; Randall, P A; Santerre, J L; Given, A B; Sager, T N; Correa, M; Salamone, J D


    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A(2A) antagonists can reverse the effects of DA D(2) antagonists on effort-related choice. However, less is known about the effects of adenosine A(1) antagonists. Despite anatomical data showing that A(1) and D(1) receptors are co-localized on the same striatal neurons, it is uncertain if A(1) antagonists can reverse the effects DA D(1) antagonists. The present work systematically compared the ability of adenosine A(1) and A(2A) receptor antagonists to reverse the effects of DA D(1) and D(2) antagonists on a concurrent lever pressing/feeding choice task. With this procedure, rats can choose between responding on a fixed ratio 5 lever-pressing schedule for a highly preferred food (i.e. high carbohydrate pellets) vs. approaching and consuming a less preferred rodent chow. The D(1) antagonist ecopipam (0.2 mg/kg i.p.) and the D(2) antagonist eticlopride (0.08 mg/kg i.p.) altered choice behavior, reducing lever pressing and increasing lab chow intake. Co-administration of the adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.375, 0.75, and 1.5 mg/kg i.p.), and 8-cyclopentyltheophylline (CPT; 3.0, 6.0, 12.0 mg/kg i.p.) failed to reverse the effects of either the D(1) or D(2) antagonist. In contrast, the adenosine A(2A) antagonist KW-6002 (0.125, 0.25 and 0.5 mg/kg i.p.) was able to produce a robust reversal of the effects of eticlopride, as well as a mild partial reversal of the effects of ecopipam. Adenosine A(2A) and DA D(2) receptors interact to regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor

  7. Increased orbitofrontal brain activation after administration of a selective adenosine A2A antagonist in cocaine dependent subjects

    Directory of Open Access Journals (Sweden)

    F. Gerard eMoeller


    Full Text Available Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115 while performing a working memory task with 3 levels of difficulty (3, 5, and 7 digits. fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use.

  8. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A


    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  9. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases. (United States)

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel


    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation.

  10. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Gérard Jean-Louis


    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  11. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly


    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  12. An adenosine A(2A) antagonist injected in the NTS reverses thermal prolongation of the LCR in decerebrate piglets. (United States)

    Xia, Luxi; Bartlett, Donald; Leiter, J C


    Hyperthermia prolongs the laryngeal chemoreflex (LCR). Under normothermic conditions, adenosine antagonists shorten and adenosine A(2A) (Ad-A(2A)) agonists prolong the LCR. Therefore, we tested the hypothesis that SCH-58261, an Ad-A(2A) receptor antagonist, would prevent thermal prolongation of the LCR when injected unilaterally within the nucleus of the solitary tract (NTS). We studied decerebrate piglets aged 4-13 days. We elicited the LCR by injecting 0.1ml of water into the larynx and recorded integrated phrenic nerve activity. The laryngeal chemoreflex was prolonged when the body temperature of each piglet was raised approximately 2.5 degrees C, and SCH-58261 reversed the thermal prolongation of the LCR when injected into the NTS (n=13), but not when injected in the nucleus ambiguus (n=9). Injections of vehicle alone into the NTS did not alter the thermal prolongation of the LCR (n=9). We conclude that activation of adenosine receptors, perhaps located on GABAergic neurons in the NTS, contributes to thermal prolongation of the LCR.

  13. A3 Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve. (United States)

    González-Fernández, Estíbaliz; Sánchez-Gómez, María Victoria; Pérez-Samartín, Alberto; Arellano, Rogelio O; Matute, Carlos


    Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage.

  14. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. (United States)

    van der Walt, M M; Terre'Blanche, G


    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  15. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C


    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  16. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata


    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  17. Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. (United States)

    Varano, Flavia; Catarzi, Daniela; Squarcialupi, Lucia; Betti, Marco; Vincenzi, Fabrizio; Ravani, Annalisa; Varani, Katia; Dal Ben, Diego; Thomas, Ajiroghene; Volpini, Rosaria; Colotta, Vittoria


    A new series of 5-methyl-thiazolo[5,4-d]pyrimidine-7-ones bearing different substituents at position 2 (aryl, heteroaryl and arylamino groups) was synthesized and evaluated in radioligand binding assays to determine their affinities at the human (h) A1, A2A, and A3 adenosine receptors (ARs). Efficacy at the hA(2B) and antagonism of selected ligands at the hA3 were also assessed through cAMP experiments. Some of the new derivatives exhibited good to high hA3AR affinity and selectivity versus all the other AR subtypes. Compound 2-(4-chlorophenyl)-5-methyl-thiazolo[5,4-d]pyrimidine-7-one 4 was found to be the most potent and selective ligand of the series (K(I) hA3 = 18 nM). Molecular docking studies of the reported derivatives were carried out to depict their hypothetical binding mode in our hA3 receptor model.

  18. Electroacupuncture improves neuropathic pain Adenosine,adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously

    Institute of Scientific and Technical Information of China (English)

    Wen Ren; Wenzhan Tu; Songhe Jiang; Ruidong Cheng; Yaping Du


    Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals.When acupuncture was applied in a rat model,adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine,which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process.Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture.The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves.In neuropathic pain,there is upregulation of P2X purinoceptor 3(P2X3)receptor expression in dorsal root ganglion neurons.Conversely,the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated.The pathways upon which electroacupuncture appear to act are interwoven with pain pathways,and electroacupuncture stimuli converge with impulses originating from painful areas.Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

  19. Role of A3 adenosine receptor in diabetic neuropathy. (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin


    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  20. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity. (United States)

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J


    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  1. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. (United States)

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H


    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  2. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  3. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K


    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  4. Equilibrium and kinetic selectivity profiling on the human adenosine receptors. (United States)

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P


    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications.

  5. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3... (United States)


    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health.../092,292, entitled ``A3 Adenosine Receptor Antagonists,'' filed July 10, 1998 , PCT Application PCT/US99/ 15562, entitled''A3 Adenosine Receptor Antagonists,'' filed July 2, 1999 , U.S. Patent...

  6. Adenosine receptors located in the NTS contribute to renal sympathoinhibition during hypotensive phase of severe hemorrhage in anesthetized rats. (United States)

    Scislo, Tadeusz J; O'Leary, Donal S


    Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.

  7. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  8. Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available BACKGROUND: Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2 or hypoxic (2% O(2 conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist had no affects on heart function, whereas DPCPX (A1AR-specific antagonist had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/- had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos. CONCLUSIONS/SIGNIFICANCE: These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of

  9. Electrophysiologic effects of adenosine triphosphate on rabbit sinoatrial node pace maker cells via P1 receptors

    Institute of Scientific and Technical Information of China (English)

    RENLei-Ming; LIJun-Xia; SHIChen-Xia; ZHAODing


    AIM: To study the electrophysiologic effects of adenosine triphosphate (ATP) on rabbit sinoatrial node pacemakercells and the receptors related with the action of ATP. METHODS: Intracellular microelectrode method was usedto record the parameters of action potential (AP) in the rabbit sinoatrial nodes. RESULTS: ATP (0.1-3 mmol/L)decreased the rate of pacemaker firing (RPF) by 16 %-43 % and velocity of diastolic depolarization (VDD) by 33 %-67 %, increased the amplitude of AP (APA) by 6 %-9 % and maximal rate of depolarization (Vmax) by 30 %-76 %,shortened APD50 by 7 %-12 % and APD90 by 6.3 %-9 %, concentration-dependently. The effects of ATP, adenos-ine (Ado), and adenosine diphosphate at the same concentration on AP were not different from each other significantly.Neither uridine triphosphate nor, α,β-methylene ATP had significant electrophysiologic effects on the sinoatrialnode of rabbits. Both the electrophysiologic effects of ATP and Ado on pacemaker cells were inhibited by P1receptor antagonist aminophylline 0.1 mmol/L (P0.05). CONCLUSION: There are nofunctional P2X1 and P2Y2 receptors on pacemaker cells of the rabbit sinoatrial nodes, and the electrophysiologiceffects of ATP in the rabbit sinoatrial node pacemaker cells are mediated via P1 receptors by Ado degraded fromATP.

  10. Ethologically based resolution of D2-like dopamine receptor agonist-versus antagonist-induced behavioral topography in dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa "knockout" mutants congenic on the C57BL/6 genetic background. (United States)

    Nally, Rachel E; Kinsella, Anthony; Tighe, Orna; Croke, David T; Fienberg, Allen A; Greengard, Paul; Waddington, John L


    Given the critical role of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32) in the regulation of dopaminergic function, DARPP-32-null mutant mice congenic on the inbred C57BL/6 strain for 10 generations were examined phenotypically for their ethogram of responsivity to the selective D2-like receptor agonist RU 24213 (N-n-propyl-N-phenylethyl-p-3-hydroxyphenylethylamine) and the selective D2-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-methylaminobenzamide), using procedures that resolve all topographies of behavior in the natural repertoire. After vehicle challenge, levels of sniffing and rearing seated were reduced in DARPP-32 mutants; the injection procedure seems to constitute a "stressor" that reveals phenotypic effects of DARPP-32 deletion not apparent under natural conditions. Topographical effects of 0.3 to 10.0 mg/kg RU 24213, primarily induction of sniffing and ponderous locomotion with accompanying reductions in rearing, grooming, sifting and chewing, were not altered to any material extent in DARPP-32-null mice. However, topographical effects of 0.005 to 0.625 mg/kg YM 09151-2, namely, reduction in sniffing, locomotion, rearing, grooming, and chewing but not sifting, were essentially absent in DARPP-32 mutants. Thus, the D2-like receptor agonist-mediated ethogram was essentially conserved, whereas major elements of the corresponding D2-like receptor antagonist-mediated ethogram were essentially absent in DARPP-32-null mice. This suggests some relationship between 1) extent of tonic dopaminergic activation of DARPP-32 mechanisms and 2) compensatory mechanisms consequent to the developmental absence of DARPP-32, which may emerge to act differentially on individual elements of the DARPP-32 system. Critically, the present data indicate that phenotypic effects of a given gene deletion using an agonist acting on the system disrupted cannot be generalized to a

  11. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  12. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren


    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX c

  13. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. (United States)

    Gonca, Ersöz; Darıcı, Faruk


    Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid with anti-inflammatory activity mediated by enhancing adenosine signaling. As the adenosine A1 receptor activation confers protection against ischemia/reperfusion (I/R)-induced ventricular arrhythmias, we hypothesized that CBD may have antiarrhythmic effect through the activation of adenosine A1 receptor. Cannabidiol has recently been shown to suppress ischemia-induced ventricular arrhythmias. We aimed to research the effect of CBD on the incidence and the duration of I/R-induced ventricular arrhythmias and to investigate the role of adenosine A1 receptor activation in the possible antiarrhythmic effect of CBD. Myocardial ischemia and reperfusion was induced in anesthetized male rats by ligating the left anterior descending coronary artery for 6 minutes and by loosening the bond at the coronary artery, respectively. Cannabidiol alone was given in a dose of 50 µg/kg, 10 minutes prior to coronary artery occlusion and coadministrated with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) in a dose of 100 µg/kg, 15 minutes prior to coronary artery occlusion to investigate whether the antiarrhythmic effect of CBD is modified by the activation of adenosine A1 receptors. The experimental groups were as follows: (1) vehicle control (n = 10), (2) CBD (n = 9), (3) DPCPX (n = 7), and (4) CBD + DPCPX group (n = 7). Cannabidiol treatment significantly decreased the incidence and the duration of ventricular tachycardia, total length of arrhythmias, and the arrhythmia scores compared to control during the reperfusion period. The DPCPX treatment alone did not affect the incidence and the duration of any type of arrhythmias. However, DPCPX aborted the antiarrhythmic effect of CBD when it was combined with it. The present results demonstrated that CBD has an antiarrhythmic effect against I/R-induced arrhythmias, and the antiarrhythmic effect of CBD may be mediated through the activation of adenosine

  14. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    DEFF Research Database (Denmark)

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;


    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  15. Adenosine A(3) receptor-induced CCL2 synthesis in cultured mouse astrocytes

    NARCIS (Netherlands)

    Wittendorp, MC; Boddeke, HWGM; Biber, K


    During neuropathological conditions, high concentrations of adenosine are released, stimulating adenosine receptors in neurons and glial cells. It has recently been shown that stimulation of adenosine receptors in glial cells induces the release of neuroprotective substances such as NGF, S-100beta,

  16. Why are mineralocorticoid receptor antagonists cardioprotective?

    NARCIS (Netherlands)

    W. Chai (Wenxia); A.H.J. Danser (Jan)


    textabstractTwo clinical trials, the Randomized ALdosterone Evaluation Study (RALES) and the EPlerenone HEart failure and SUrvival Study (EPHESUS), have recently shown that mineralocorticoid receptor (MR) antagonists reduce mortality in patients with heart failure on top of ACE inhibition. This effe

  17. Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation. (United States)

    Cunha, Mauricio P; Pazini, Francis L; Rosa, Julia M; Ramos-Hryb, Ana B; Oliveira, Ágatha; Kaster, Manuella P; Rodrigues, Ana Lúcia S


    The benefits of creatine supplementation have been reported in a broad range of central nervous systems diseases, including depression. A previous study from our group demonstrated that creatine produces an antidepressant-like effect in the tail suspension test (TST), a predictive model of antidepressant activity. Since depression is associated with a dysfunction of the adenosinergic system, we investigated the involvement of adenosine A1 and A2A receptors in the antidepressant-like effect of creatine in the TST. The anti-immobility effect of creatine (1 mg/kg, po) or ketamine (a fast-acting antidepressant, 1 mg/kg, ip) in the TST was prevented by pretreatment of mice with caffeine (3 mg/kg, ip, nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (2 mg/kg, ip, selective adenosine A1 receptor antagonist), and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385) (1 mg/kg, ip, selective adenosine A2A receptor antagonist). In addition, the combined administration of subeffective doses of creatine and adenosine (0.1 mg/kg, ip, nonselective adenosine receptor agonist) or inosine (0.1 mg/kg, ip, nucleoside formed by the breakdown of adenosine) reduced immobility time in the TST. Moreover, the administration of subeffective doses of creatine or ketamine combined with N-6-cyclohexyladenosine (CHA) (0.05 mg/kg, ip, selective adenosine A1 receptor agonist), N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA) (0.1 mg/kg, ip, selective adenosine A2A receptor agonist), or dipyridamole (0.1 μg/mouse, icv, adenosine transporter inhibitor) produced a synergistic antidepressant-like effect in the TST. These results indicate that creatine, similarly to ketamine, exhibits antidepressant-like effect in the TST probably mediated by the activation of both adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  18. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels;


    A high degree of structural heterogeneity of the GABAA receptors (GABAARs) has been revealed and is reflected in multiple receptor subtypes. The subunit composition of GABAAR subtypes is believed to determine their localization relative to the synapses and adapt their functional properties...... to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...


    Institute of Scientific and Technical Information of China (English)


    Objective. To investigate whether angiotensin II receptor antagonist and endothelin receptor antagonist can improve the nitroglycerin (Nit) tolerance in vivo. Methods. Twenty-four rats were divided into 4 groups (n=6,each): Control group, Nitroglycerin (Nit) group, Nit+ bosentan group and Nit+ losartan group. Nitroglycerin tolerance was induced by 2-day treatment of nitroglycerin patch (0.05 mg/h). AngiotensinⅡ receptor antagonist losartan ( 10 mg· kg- 1· d- 1 ) and endothelin receptor antagonist bosentan ( 100 mg· kg- 1· d- 1 ) were given by gavage for 2 days respectively. Results. The least hypotensive response to sodium nitroprusside (SNP) was observed in Nit group . The effective percentages of hypotensive response to SNP were increased in both Nit+ losartan group and Nit+ bosentan group compared with Nit group [(31.95± 4.45 ) % vs (21.00± 3.69 ) % , P Conclusion. Endothelin receptor antagonist and angiotensin Ⅱ receptor antagonist could prevent against the Nit tolerance .

  20. The Quintiles Prize Lecture 2004: The identification of the adenosine A2B receptor as a novel therapeutic target in asthma (United States)

    Holgate, Stephen T


    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A2 receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A2 receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A2B subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A2B receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A2B receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  1. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. (United States)

    Holgate, Stephen T


    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A(2) receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A(2) receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A(2B) subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A(2B) receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A(2B) receptor antagonists as a new therapeutic approach to this disease.

  2. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia


    Björklund, Olga


    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  3. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.


    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  4. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease. (United States)

    Nishat, Shamama; Khan, Luqman A; Ansari, Zafar M; Basir, Seemi F


    Cardiovascular complications are one of the major factors for early mortality in the present worldwide scenario and have become a major challenge in both developing and developed nations. It has thus become of immense importance to look for different therapeutic possibilities and treatments for the growing burden of cardiovascular diseases. Recent advancements in research have opened various means for better understanding of the complication and treatment of the disease. Adenosine receptors have become tool of choice in understanding the signaling mechanism which might lead to the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular complications by altering the expression of A3R. This review focuses towards the therapeutic potential of A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular disorder.

  5. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre


    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  6. Adenosine receptors in post-mortem human brain. (United States)

    James, S; Xuereb, J H; Askalan, R; Richardson, P J


    1. Adenosine A2-like binding sites were characterized in post-mortem human brain membranes by examining several compounds for their ability to displace [3H]-CGS 21680 (2[p-(2 carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) binding. 2. Two A2-like binding sites were identified in the striatum. 3. The more abundant striatal site was similar to the A2a receptor previously described in rat striatum, both in its pharmacological profile and striatal localization. 4. The less abundant striatal site had a pharmacological profile similar to that of the binding site characterized in the other brain regions examined. This was intermediate in character between A1 and A2 and may represent another adenosine receptor subtype. 5. The co-purification of [3H]-CGS 21680 binding during immunoisolation of human striatal cholinergic membranes was used to assess the possible cholinergic localization of A2-like binding sites in the human striatum. Only the more abundant striatal site co-purified with cholinergic membranes. This suggests that this A2a-like site is present on cholinergic neurones in the human striatum.

  7. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter


    The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects. In resista......The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects....... In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET(A......) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  8. Optimization of arylindenopyrimidines as potent adenosine A(2A)/A(1) antagonists. (United States)

    Shook, Brian C; Rassnick, Stefanie; Chakravarty, Devraj; Wallace, Nathaniel; Ault, Mark; Crooke, Jeffrey; Barbay, J Kent; Wang, Aihua; Leonard, Kristi; Powell, Mark T; Alford, Vernon; Hall, Daniel; Rupert, Kenneth C; Heintzelman, Geoffrey R; Hansen, Kristen; Bullington, James L; Scannevin, Robert H; Carroll, Karen; Lampron, Lisa; Westover, Lori; Russell, Ronald; Branum, Shawn; Wells, Kenneth; Damon, Sandra; Youells, Scott; Beauchamp, Derek; Li, Xun; Rhodes, Kenneth; Jackson, Paul F


    Two reactive metabolites were identified in vivo for the dual A(2A)/A(1) receptor antagonist 1. Two strategies were implemented to successfully mitigate the metabolic liabilities associated with 1. Optimization of the arylindenopyrimidines led to a number of amide, ether, and amino analogs having comparable in vitro and in vivo activity.

  9. Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. (United States)

    Dickenson, John M; Reeder, Steve; Rees, Bob; Alexander, Steve; Kendall, Dave


    There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a

  10. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge. (United States)

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D


    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (I(SC)) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (delta I(SC) 69.5 +/- 6.7 microA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in I(SC), which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM-10 microM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxoamido adenosine; CGS 21680; 0.1-100 microM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-beta-D-ribofuranuronamide; IB-MECA; 30 nM-100 microM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM-1 microM) caused a rightward shift of the adenosine concentration-effect curve only at 1 microM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration-effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline I(SC) was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the I(SC) response to adenosine in the mouse trachea. This receptor does not appear to be

  11. Renal effects of the novel selective adenosine A1 receptor blocker SLV329 in experimental liver cirrhosis in rats.

    Directory of Open Access Journals (Sweden)

    Berthold Hocher

    Full Text Available Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A(1 receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A(1 receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold and natriuretic (up to 13.5-fold effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (-36.5%, p<0.05, especially in those receiving furosemide (-41.9%, p<0.01. SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05. SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A(1 receptor antagonists are clinically beneficial at different stages of liver cirrhosis.

  12. Adenosine A{sub 1} receptors in contrast media-induced renal dysfunction in the normal rat

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Per; Palm, Fredrik [Department of Diagnostic Radiology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Carlsson, Per-Ola [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Sciences, University Hospital, 75185, Uppsala (Sweden); Hansell, Peter [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden)


    Renal vasoconstriction with resultant tissue hypoxia, especially in the renal medulla, has been suggested to play a role in contrast media (CM)-induced nephropathy. In this study we investigated the effects of injection of the non-ionic low-osmolar CM iopromide with and without pretreatment with the selective adenosine A{sub 1}-receptor antagonist DPCPX. The effects were evaluated on regional renal blood flow, outer medullary oxygen tension (PO{sub 2}) and urine output in normal anaesthetised rats. A laser-Doppler technique was used for recording haemodynamic changes while oxygen microelectrodes were used for oxygen measurements. The A{sub 1}-receptor antagonist per se elevated glomerular filtration rate (+44%), cortical blood flow (+15%) and urine output (threefold) while reducing outer medullary PO{sub 2} (-24%). Administration of CM reduced outer medullary blood flow (OMBF; -26%) and PO{sub 2} (-80%) but did not affect cortical blood flow. Urine output increased 28-fold by CM while arterial blood pressure was reduced. The CM-mediated effect on haemodynamics, PO{sub 2}, urine output and blood pressure was unaffected by the A{sub 1}-receptor antagonist. Adenosine A{sub 1}-receptors are not important mediators of the depression of outer medullary blood flow and PO{sub 2} caused by the CM iopromide in the normal rat; however, A{sub 1}-receptors are tonically active to regulate renal haemodynamics, PO{sub 2} and urine production during normal physiological conditions. (orig.)

  13. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. (United States)

    Nayak, Akshata; Chandra, Girish; Hwang, Inah; Kim, Kyunglim; Hou, Xiyan; Kim, Hea Ok; Sahu, Pramod K; Roy, Kuldeep K; Yoo, Jakyung; Lee, Yoonji; Cui, Minghua; Choi, Sun; Moss, Steven M; Phan, Khai; Gao, Zhan-Guo; Ha, Hunjoo; Jacobson, Kenneth A; Jeong, Lak Shin


    Truncated N(6)-substituted-(N)-methanocarba-adenosine derivatives with 2-hexynyl substitution were synthesized to examine parallels with corresponding 4'-thioadenosines. Hydrophobic N(6) and/or C2 substituents were tolerated in A3AR binding, but only an unsubstituted 6-amino group with a C2-hexynyl group promoted high hA2AAR affinity. A small hydrophobic alkyl (4b and 4c) or N(6)-cycloalkyl group (4d) showed excellent binding affinity at the hA3AR and was better than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f-4i did not differ significantly, with Ki values of 7.8-16.0 nM. N(6)-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis model. Most compounds strongly inhibited TGF-β1-induced collagen I upregulation, and their A3AR binding affinities were proportional to antifibrotic effects; 4b was most potent (IC50 = 0.83 μM), indicating its potential as a good therapeutic candidate for treating renal fibrosis.

  14. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  15. Mineralocorticoid and glucocorticoid receptor antagonists in animal models of anxiety

    NARCIS (Netherlands)

    Korte, SM; KorteBouws, GAH; Koob, GF; DeKloet, ER; Bohus, B


    The behavioral effects of intracerebroventricular (ICV) administration of a specific mineralocorticoid receptor (MR) antagonist [RU28318 (10-50 ng/2 mu l)], a glucocorticoid receptor (GR) antagonist [RU38486 (1-50 ng/2 mu l)], or both antagonists (50 ng/2 mu l), were studied in two different animal


    Institute of Scientific and Technical Information of China (English)

    张建梅; 陈永红; 王晓红; 唐朝枢


    Objective. To investigate whether angiotensin II receptor antagonist and endothelin receptor antagonist can improve the nitroglycerin (Nit) tolerance in vivo. Methods. Twenty-four rats were divided into 4 groups (n =6, each): Control group, Nitroglycerin (Nit) group, Nit + bosentan group and Nit + losartan group. Nitroglycerin tolerance was induced by 2-day treatment ofnitroglycerin patch (0. 05mg/h). Angiotensin I1 receptor antagonist losartan (10mg ·kg-1·d-1) and endothe-lin receptor antagonist bosentan ( 100 mg·kg-1· d-1 ) were given by gavage for 2 days respectively. Results. The least hypotensive response to sodium nitroprusside (SNP) was observed in Nit group. The effec-tive percentages of hypotensive response to SNP were increased in both Nit + losartan group and Nit + bosentangroup compared with Nit group [(31.95±4.45) % vs (21.00±3.69) %, P <0.01and (33. 18±6. 16)% vs (21.00±3.69 ) %, P < 0. 01 , respectivelyl. The maximal vessel relaxation induced by SNP was thesame in 4 different groups but the highest EC50 (concentration which produces 50% of the maximal response toSNP) was found in tolerant group[ (34 ±10) nmol/L, P < 0. 01 ]. The ET-1 amounts in plasma and vasculartissue were markedly increased by 54% and 60% in Nit group compared with those in control group( P<0. 01). The ET-1 amounts in plasma and vascular tissue were decreased by 30% and 37% in Nit + losartangroup compared with those in Nit group ( P < 0.01 ). Conclusion. Endothelin receptor antagonist and angiotensin Ⅱ receptor antagonist could prevent against the Nit tolerance.

  17. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana


    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar ( acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen.

  18. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.


    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani


    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  19. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors. (United States)

    Ferguson, Alexandra L; Stone, Trevor W


    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  20. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. (United States)

    Stoddart, Leigh A; Vernall, Andrea J; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J


    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  1. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut


    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  2. Role of adenosine A2b receptor overexpression in tumor progression. (United States)

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo


    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  3. Cerebral A{sub 1} adenosine receptors (A{sub 1}AR) in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Boy, Christian [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Meyer, Philipp T. [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Kircheis, Gerald; Haussinger, Dieter [University of Duesseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Duesseldorf (Germany); Holschbach, Marcus H.; Coenen, Heinz H. [Research Centre Juelich, Institute of Nuclear Chemistry, Juelich (Germany); Herzog, Hans; Elmenhorst, David [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); Kaiser, Hans J. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Zilles, Karl [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); C. and O. Vogt Institute of Brain Research, Duesseldorf (Germany); Bauer, Andreas [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University of Duesseldorf, Department of Neurology, Duesseldorf (Germany)


    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A{sub 1} adenosine receptors (A{sub 1}AR), is likely to be involved. The present study investigates changes of cerebral A{sub 1}AR binding in cirrhotic patients by means of positron emission tomography (PET) and [{sup 18}F]CPFPX, a novel selective A{sub 1}AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B{sub max}/K{sub D}). Cortical and subcortical regions showed lower A{sub 1}AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%). Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A{sub 1}AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A{sub 1}AR density or affinity, as well as blockade of the A{sub 1}AR by endogenous adenosine or exogenous xanthines. (orig.)

  4. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D


    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.

  5. High affinity retinoic acid receptor antagonists: analogs of AGN 193109. (United States)

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A


    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  6. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells. (United States)

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar


    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  7. Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. (United States)

    Katebi, Majid; Fernandez, Patricia; Chan, Edwin S L; Cronstein, Bruce N


    Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A(2A) receptor-deficient and A(2A) antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A(2A) receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A(2A) knockout and A(2A) antagonist-treated mice were stained for Procollagen alpha2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A(2A) receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A(2A) receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A(2A) receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy.

  8. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase. (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub


    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  9. Evidence for an A1-adenosine receptor in the guinea-pig atrium. (United States)

    Collis, M. G.


    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  10. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats



    Parkinson’s disease (PD) is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R) with adenosine A2A receptor (A2AR) (forming D2R-A2AR oligomers) – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a...

  11. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho


    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  12. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. (United States)

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza


    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (Pacid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (Pacid and adenosine A(2A) receptors contribute to these salutary properties.

  13. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. (United States)

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O


    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  14. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. (United States)

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger


    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  15. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar


    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  16. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. (United States)

    Gerber, U; Gähwiler, B H


    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Arginine 199 and leucine 208 have key roles in the control of adenosine A2A receptor signalling function.

    Directory of Open Access Journals (Sweden)

    Nicolas Bertheleme

    Full Text Available One successful approach to obtaining high-resolution crystal structures of G-protein coupled receptors is the introduction of thermostabilising mutations within the receptor. This technique allows the generation of receptor constructs stabilised into different conformations suitable for structural studies. Previously, we functionally characterised a number of mutants of the adenosine A2A receptor, thermostabilised either in an agonist or antagonist conformation, using a yeast cell growth assay and demonstrated that there is a correlation between thermostability and loss of constitutive activity. Here we report the functional characterisation of 30 mutants intermediate between the Rag23 (agonist conformation mutant and the wild-type receptor using the same yeast signalling assay with the aim of gaining greater insight into the role individual amino acids have in receptor function. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for alanine abolishes constitutive activity. In addition, the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. A184L and L272A mutations also reduce constitutive activity and potency although to a lesser extent than the R199A and L208A. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put our findings into a structural context.

  18. A/sub 1/ and A/sub 2/ adenosine receptor regulation of erythropoietin production

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Brookins, J.; Beckman, B.; Fisher, J.W.


    The effects of adenosine (ADE) and ADE agonists on erythropoietin (Ep) production were determined using percent (%) /sup 59/Fe incorporation in red cells of exhypoxic polycythemic mice. The hemisulfate salt of ADE produced a significant increase in % /sup 59/Fe incorporation in response to hypoxia in concentrations of 400 to 1600 nmol/kg/day. 5'-N-ethyl-carboxamideadenosine (NECA), a selective A/sub 2/ receptor agonist, increased radioiron incorporation in a dose-dependent manner. In contrast, N/sup 6/-cyclohexyladenosine (CHA), a selective A/sub 1/ receptor agonist, did not affect radioiron incorporation in concentrations up to 1600 nmol/kg/day. Albuterol, a beta 2-adrenergic agonist, enhanced % /sup 59/Fe incorporation in polycythemic mice and low doses of CHA, which were not effective alone on % /sup 59/Fe incorporation in polycythemic mice exposed to hypoxia, inhibited the enhancement in radioiron induced by albuterol plus hypoxia. Theophylline, a well-known antagonist of ADE receptors, blocked the ADE and NECA enhancement in radioiron incorporation at a dose of theophylline alone which produced only a slight enhancement of % /sup 59/Fe incorporation.

  19. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. (United States)

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R


    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  20. A pharmacophore model for dopamine D4 receptor antagonists (United States)

    Boström, Jonas; Gundertofte, Klaus; Liljefors, Tommy


    A pharmacophore model for dopamine D4 antagonists has been developed on the basis of a previously reported dopamine D2 model. By using exhaustive conformational analyses (MM3* force field and the GB/SA hydration model) and least-squares molecular superimposition studies, a set of eighteen structurally diverse high affinity D4 antagonists have successfully been accommodated in the D4 pharmacophore model. Enantioselectivities may be rationalized by conformational energies required for the enantiomers to adopt their proposed bioactive conformations. The pharmacophore models for antagonists at the D4 and D2 receptor subtypes have been compared in order to get insight into molecular properties of importance for D2/D4 receptor selectivity. It is concluded that the bioactive conformations of antagonists at the two receptor subtypes are essentially identical. Receptor essential volumes previously identified for the D2 receptor are shown to be present also in the D4 receptor. In addition, a novel receptor essential volume in the D4 receptor, not present in the D2 receptor, has been identified. This feature may be exploited for the design of D4 selective antagonists. However, it is concluded that the major determinant for D2/D4 selectivity is the nature of the interactions between the receptor and aromatic ring systems. The effects of the electronic properties of these ring systems on the affinities for the two receptor subtypes differ substantially.

  1. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea (United States)

    Brown, C.M.; Collis, M.G.


    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  2. Dopamine D2 antagonist-induced striatal Nur77 expression requires activation of mGlu5 receptors by cortical afferents

    Directory of Open Access Journals (Sweden)

    Jérôme eMaheux


    Full Text Available Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5 and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists.

  3. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar


    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  4. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax


    Popov, Serguei G.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles


    AIM: To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.

  5. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPS-I: evidence for the involvement of spinal adenosine A1 receptor. (United States)

    Martins, Daniel F; Prado, Marcos R B; Daruge-Neto, Eduardo; Batisti, Ana P; Emer, Aline A; Mazzardo-Martins, Leidiane; Santos, Adair R S; Piovezan, Anna P


    This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain-like behavior in animal models of complex regional pain syndrome type-I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus-evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose-related inhibition of mechanical hyperalgesia over a 3-week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor.

  6. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors. (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J


    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  7. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity. (United States)

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson


    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.

  8. Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. (United States)

    Fontinha, Bruno M; Delgado-García, José M; Madroñal, Noelia; Ribeiro, Joaquim A; Sebastião, Ana M; Gruart, Agnès


    Previous in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation (LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A(2A) receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A(2A) receptor antagonist, SCH58261, upon a well-known associative learning paradigm-classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus (US). A single electrical pulse was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS-US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.) -injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261-injected mice. In conclusion, the endogenous activation of adenosine A(2A) receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.

  9. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen


    Full Text Available Abstract Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF have been widely reported. In the central nervous system (CNS, astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC, mitogen-activated protein kinases (MAPKs: p38 and ERK1/2, and the nuclear transcription factor (NF-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (CgA and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions


    Directory of Open Access Journals (Sweden)

    B. B. Gegenava


    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  11. Ethanol and Caffeine effects on social interaction and recognition in mice: Involvement of adenosine A2A and A1 receptors

    Directory of Open Access Journals (Sweden)

    Laura López-Cruz


    Full Text Available Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg increasing social contact and higher doses (1.0-1.5 g/kg reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg, and even blocked social preference at higher doses (30.0-60.0 mg/kg. The A1 antagonist CPT (3-9 mg/kg did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg. Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the formation of social

  12. Characterization of the A2B adenosine receptor from mouse, rabbit, and dog. (United States)

    Auchampach, John A; Kreckler, Laura M; Wan, Tina C; Maas, Jason E; van der Hoeven, Dharini; Gizewski, Elizabeth; Narayanan, Jayashree; Maas, Garren E


    We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)). This 9 amino acid deletion is located in the second intracellular loop at the only known splice junction of the A(2B)AR and seems to result from the use of an additional 5' donor site found in the rabbit and dog but not in the human, rat, or mouse sequences. [(3)H]3-Isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyano-[2,6-(3)H]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine ([(3)H]MRS 1754) bound with high affinity to membranes prepared from human embryonic kidney (HEK) 293 cells expressing mouse, rabbit, and dog A(2B)ARs. Competition binding studies performed with a panel of agonist (adenosine and 2-amino-3,5-dicyano-4-phenylpyridine analogs) and antagonist ligands identified similar potency orders for the A(2B)AR orthologs, although most xanthine antagonists displayed lower binding affinity for the dog A(2B)AR compared with A(2B)ARs from rabbit and mouse. No specific binding could be detected with membranes prepared from HEK 293 cells expressing the rabbit A(2B)AR(103-111) variant. Furthermore, the variant failed to stimulate adenylyl cyclase or calcium mobilization. We conclude that significant differences in antagonist pharmacology of the A(2B)AR exist between species and that some species express nonfunctional variants of the A(2B)AR due to "leaky" splicing.

  13. Allosteric modulators affect the internalization of human adenosine A1 receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; Hout, G. van den; Roerink, S.F.; Grip, W.J. de; IJzerman, A.P.; Beukers, M.W.


    To study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressi

  14. New antagonist agents of neuropeptide y receptors

    Directory of Open Access Journals (Sweden)

    Ignacio Aldana


    Full Text Available In the CNS, NPY has been implicated in obesity and feeding, endocrine function and metabolism. Potent and selective rNPY antagonists will be able to probe the merits of this approach for the treatment of obesity. We report the synthesis and preliminary evaluation of some hydrazide derivatives as antagonists of rNPY.

  15. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen


    from such studies are currently accumulating and suggest that the histamine-2 receptor antagonists have potential beneficial effects in the treatment of certain malignant, autoimmune and skin diseases, either alone or in combination with other drugs. The beneficial effect of histamine-2 receptor...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  16. Deficiency of interleukin-1 receptor antagonist responsive to anakinra. (United States)

    Schnellbacher, Charlotte; Ciocca, Giovanna; Menendez, Roxanna; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Duarte, Ana M; Rivas-Chacon, Rafael


    We describe a 3-month-old infant who presented to our institution with interleukin (IL)-1 receptor antagonist deficiency (DIRA), which consists of neutrophilic pustular dermatosis, periostitis, aseptic multifocal osteomyelitis, and persistently high acute-phase reactants. Skin findings promptly improved upon initiation of treatment with anakinra (recombinant human IL-1 receptor antagonist), and the bony lesions and systemic inflammation resolved with continued therapy.

  17. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists


    Mohammad eKhanfar; Anna eAffini; Kiril eLutsenko; Katarina eNikolic; Stefania eButini; Holger eStark


    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex...

  18. Interleukin-2 receptor antagonists as induction therapy after heart transplantation

    DEFF Research Database (Denmark)

    Møller, Christian H; Gustafsson, Finn; Gluud, Christian;


    About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras.......About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras....

  19. Increased alphaCGRP potency and CGRP-receptor antagonist affinity in isolated hypoxic porcine intramyocardial arteries

    DEFF Research Database (Denmark)

    Hasbak, Philip; Eskesen, Karen; Schifter, Søren


    receptor mRNA. 6. We conclude that hypoxic incubation increases the relaxation and cAMP production induced by alphaCGRP and AMY in rings of porcine coronary arteries in vitro. A concomitant release of adenosine, a cyclooxygenase product, an endothelium-derived substance, activation of vascular ATP...... effect in hypoxia. The Schild plot-derived pK(B) values revealed an increase in the apparent affinity of the antagonist for the CGRP(1) receptor from 7.0 to 7.2 under control conditions versus 8.0 in hypoxia. 5. Removal of endothelium, peptidase inhibitors, preincubation with the adenosine A(2A) receptor......1. This study describes the effects of hypoxia on relaxing responses and cAMP production induced by the known vasodilator peptides: alphaCGRP, amylin (AMY) and adrenomedullin (AM) on isolated pig coronary arteries in vitro. 2. Hypoxic incubation increased the vasorelaxant effect of alphaCGRP (four...

  20. Identification of a novel conformationally constrained glucagon receptor antagonist. (United States)

    Lee, Esther C Y; Tu, Meihua; Stevens, Benjamin D; Bian, Jianwei; Aspnes, Gary; Perreault, Christian; Sammons, Matthew F; Wright, Stephen W; Litchfield, John; Kalgutkar, Amit S; Sharma, Raman; Didiuk, Mary T; Ebner, David C; Filipski, Kevin J; Brown, Janice; Atkinson, Karen; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel


    Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand efficiency (LLE or LipE) culminated in enantiomers (+)-trans-26 and (-)-trans-27 which exhibit good physicochemical and in vitro drug metabolism profiles. In vivo, significant pharmacokinetic differences were noted with the two enantiomers, which were primarily driven through differences in clearance rates. Enantioselective oxidation by cytochrome P450 was ruled out as a causative factor for pharmacokinetic differences.

  1. Antagonists of the kappa opioid receptor. (United States)

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward


    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  2. Approaches to the rational design of selective melanocortin receptor antagonists (United States)

    Hruby, Victor J; Cai, Minying; Nyberg, Joel; Muthu, Dhanasekaran


    Introduction When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease. Areas covered This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors. Expert opinion Though there has been progress, there are still few drugs available that address the many significant biological activities and diseases that are associated with these receptors, which is possibly due to the lack of receptor selectivity that these designed ligands are currently showing. The authors believe that further studies into the antagonists’ 3D conformational and topographical properties in addition to future mutagenesis studies will provide greater insight into these ligands which could play a role in the treatment of various diseases in the future. PMID:22646078

  3. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. (United States)

    Oishi, Yo; Huang, Zhi-Li; Fredholm, Bertil B; Urade, Yoshihiro; Hayaishi, Osamu


    Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.

  4. Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human A3 adenosine receptor ligands. (United States)

    Saíz-Urra, Liane; Teijeira, Marta; Rivero-Buceta, Virginia; Helguera, Aliuska Morales; Celeiro, Maria; Terán, Ma Carmen; Besada, Pedro; Borges, Fernanda


    Adenosine regulates tissue function by activating four G-protein-coupled adenosine receptors (ARs). Selective agonists and antagonists for A3 ARs have been investigated for the treatment of a variety of immune disorders, cancer, brain, and heart ischemic conditions. We herein present a QSAR study based on a Topological sub-structural molecular design (TOPS-MODE) approach, intended to predict the A3 ARs of a diverse dataset of 124 (94 training set/ 30 prediction set) adenosine derivatives. The final model showed good fit and predictive capability, displaying 85.1 % of the experimental variance. The TOPS-MODE approach afforded a better understanding and interpretation of the developed model based on the useful information extracted from the analysis of the contribution of different molecular fragments to the affinity.

  5. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. (United States)

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D


    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain.

  6. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome. (United States)

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R


    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc.

  7. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. (United States)

    Patel, Leena; Thaker, Aswin


    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. The pathophysiologic mechanisms of diabetic nephropathy are incompletely understood but include overproduction of various growth factors and cytokines. Upregulation of vascular endothelial growth factor (VEGF) is a pathogenic event occurring in most forms of podocytopathy; however, the mechanisms that regulate this growth factor induction are not clearly identified. A2B receptors have been found to regulate VEGF expression under hypoxic environment in different tissues. One proposed hypothesis in mediating diabetic nephropathy is the modulation of VEGF-NO balance in renal tissue. We determined the role of adenosine A2B receptor in mediating VEGF overproduction and nitrite in diabetic nephropathy. The renal content of A2B receptors and VEGF was increased after 8 weeks of diabetes induction. The renal and plasma nitrite levels were also reduced in these animals. In vivo administration of A2B adenosine receptor antagonist (MRS1754) inhibited the renal over expression of VEGF and adverse renal function parameters. The antagonist administration also improved the kidney tissue nitrite levels. In conclusion, we demonstrated that VEGF induction via adenosine signaling might be the critical event in regulating VEGF-NO axis in diabetic nephropathy.

  8. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease. (United States)

    Jörg, Manuela; May, Lauren T; Mak, Frankie S; Lee, Kiew Ching K; Miller, Neil D; Scammells, Peter J; Capuano, Ben


    A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.

  9. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. (United States)

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D


    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders.

  10. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration. (United States)

    Björklund, Olga; Kahlström, Johan; Salmi, Peter; Ogren, Sven Ove; Vahter, Marie; Chen, Jiang-Fan; Fredholm, Bertil B; Daré, Elisabetta


    Adenosine and its receptors are, as part of the brain stress response, potential targets for neuroprotective drugs. We have investigated if the adenosine receptor system affects the developmental neurotoxicity caused by the fish pollutant methylmercury (MeHg). Behavioral outcomes of low dose perinatal MeHg exposure were studied in mice where the A(1) and A(2A) adenosine receptors were either partially blocked by caffeine treatment or eliminated by genetic modification (A(1)R and A(2A)R knock-out mice). From gestational day 7 to day 7 of lactation dams were administered doses that mimic human intake via normal diet, i.e. 1microM MeHg and/or 0.3g/l caffeine in the drinking water. This exposure to MeHg resulted in a doubling of brain Hg levels in wild type females and males at postnatal day 21 (PND21). Open field analysis was performed at PND21 and 2 months of age. MeHg caused time-dependent behavioral alterations preferentially in male mice. A decreased response to amphetamine in 2-month-old males pointed to disturbances in dopaminergic functions. Maternal caffeine intake induced long-lasting changes in the offspring evidenced by an increased motor activity and a modified response to psychostimulants in adult age, irrespectively of sex. Similar alterations were observed in A(1)R knock-out mice, suggesting that adenosine A(1) receptors are involved in the alterations triggered by caffeine exposure during development. Perinatal caffeine treatment and, to some extent, genetic elimination of adenosine A(1) receptors, attenuated the behavioral consequences of MeHg in males. Importantly, also deletion of the A(2A) adenosine receptor reduced the vulnerability to MeHg, consistent with the neuroprotective effects of adenosine A(2A) receptor inactivation observed in hypoxia and Parkinson's disease. Thus, the consequences of MeHg toxicity during gestation and lactation can be reduced by adenosine A(1) and A(2A) receptor inactivation, either via their genetic deletion or by

  11. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. (United States)

    Marquardt, D L; Walker, L L; Heinemann, S


    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  12. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism. (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J


    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  13. Adenosine enhances sweet taste through A2B receptors in the taste bud. (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D


    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  14. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    DEFF Research Database (Denmark)

    Zhao, Xin; Sun, X Y; Erlinge, D;


    Neurohormonal changes in congestive heart failure (CHF) include an enhanced peripheral sympathetic nerve activity which results in increased release of noradrenaline, neuropeptide Y and ATP. To examine if such changes in CHF would modulate peripheral pre- and postsynaptic receptors of ATP and its...... effects mediated by the endothelial P2Y receptors are unaffected in CHF. Moreover, the adenosine-mediated inhibitory effects on heart rate and blood pressure were also attenuated in the CHF rats. The most important changes in adenosine and P2-receptor function induced by ischaemic CHF were the reduced...... pressor effect mediated by the P2X receptor and the increased heart rate due to an attenuated inhibitory effect of adenosine....

  15. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.R.; Synder, S.H.


    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  16. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor. (United States)

    Muzzi, Mirko; Coppi, Elisabetta; Pugliese, Anna Maria; Chiarugi, Alberto


    Purinergic neurotransmission mediated by adenosine (Ado) type 1 receptors (A1Rs) plays pivotal roles in negative modulation of epileptic seizures, and Ado is thought to be a key endogenous anticonvulsant. Recent evidence, however, indicates that AMP, the metabolic precursor of Ado, also activate A1Rs. Here, we evaluated the antiepileptic effects of AMP adopting in vitro and in vivo models of epilepsy. We report that AMP reversed the increase in population spike (PS) amplitude and the decrease in PS latency induced by a Mg(2+)-free extracellular solution in CA1 neurons of mouse hippocampal slices. The AMP effects were inhibited by the A1R antagonist DPCPX, but not prevented by inhibiting conversion of AMP into Ado, indicating that AMP inhibited per se sustained hippocampal excitatory neurotransmission by directly activating A1Rs. AMP also reduced seizure severity and mortality in a model of audiogenic convulsion. Of note, the anticonvulsant effects of AMP were potentiated by preventing its conversion into Ado and inhibited by DPCPX. When tested in a model of kainate-induced seizure, AMP prolonged latency of convulsions but had no effects on seizure severity and mortality. Data provide the first evidence that AMP is an endogenous anticonvulsant acting at A1Rs.


    NARCIS (Netherlands)



    The cells of origin of the perforant pathway are destroyed in Alzheimer's disease (AD). In rat the adenosine A1-receptors are specifically localized on the perforant path terminals in the molecular layer of the dentate gyrus. In the present study the density of A1-receptors in the hippocampus of Alz

  18. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana;


    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− chann...

  19. Serotonin 2A receptor antagonists for treatment of schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn;


    Introduction: All approved antipsychotic drugs share an affinity for the dopamine 2 (D2) receptor; however, these drugs only partially ameliorate the symptoms of schizophrenia. It is, therefore, of paramount importance to identify new treatment strategies for schizophrenia. Areas covered: Preclin......Introduction: All approved antipsychotic drugs share an affinity for the dopamine 2 (D2) receptor; however, these drugs only partially ameliorate the symptoms of schizophrenia. It is, therefore, of paramount importance to identify new treatment strategies for schizophrenia. Areas covered...... receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...... antagonists appear to assume an intermediate position by being marginally superior to placebo but inferior to conventional antipsychotic drugs. Three previous 5-HT2A receptor antagonists have been discontinued after Phase II or III trials, and available Phase IIa data on the remaining 5-HT2A receptor...

  20. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission. (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi


    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS.

  1. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel


    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  2. Apparent affinity of some 8-phenyl-substituted xanthines at adenosine receptors in guinea-pig aorta and atria. (United States)

    Collis, M. G.; Jacobson, K. A.; Tomkins, D. M.


    1 Some 8-phenyl-substituted, 1,3 dipropyl xanthines have previously been demonstrated to have a 20-400 fold greater affinity for A1 binding sites in rat CNS membranes than for A2 adenosine receptors in intact CNS cells from guinea-pigs. In the present study these compounds (1,3, dipropyl-8-phenylxanthine: DPPX; 1,3 dipropyl-8-(2 amino-4-chlorophenyl) xanthine: PACPX; 8-(4-(2-amino-ethyl)amino) carbonyl methyl oxyphenyl)-1,3-dipropylxanthine: XAC; and D-Lys-XAC) together with two that have not been reported to exhibit A1-receptor selectively (8-(p-sulphophenyl)theophylline: 8-PST; 8-(4-carboxy methyl oxyphenyl)-1,3-dipropylxanthine: XCC) have been evaluated as antagonists of the effects of 2-chloroadenosine in two isolated cardiovascular tissues. 2 The isolated tissues used were guinea-pig atria (bradycardic response) and aorta (relaxation), which are thought to possess A1 and A2 adenosine receptors, respectively. 3 All the xanthines antagonized responses evoked by 2-chloroadenosine in both tissues but did not affect responses evoked by acetylcholine (atria) or sodium nitrite (aorta). 4 The xanthines, 8-PST, XAC, D-Lys XAC, XCC and DPPX appeared to be competitive antagonists of the effects of 2-chloroadenosine, as Schild plot slopes did not differ significantly from unity. The 1,3-dipropyl substituted compounds had pA2 values from 6.5 to 7.4 and were more potent than the 1,3 dimethyl substituted 8-PST (pA2 4.9 to 5). 5 For individual xanthines, there was no difference between pA2 values obtained in the atria and in the aorta.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3664093

  3. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D.; Fuchshuber, F.; Girschele, F.; Hacker, M.; Wadsak, W.; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Grassinger, L. [University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, Wiener Neustadt (Austria); Hoerleinsberger, W.J. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Vienna, Cognitive Science Research Platform, Vienna (Austria); Hoeftberger, R.; Leisser, I. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Shanab, K.; Spreitzer, H. [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria); Gerdenitsch, W. [Medical University of Vienna, Institute of Biomedicinal Research, Vienna (Austria)


    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [{sup 18}F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [{sup 125}I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [{sup 18}F]FE rate at SUPPY may be a suitable A3 PET

  4. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan


    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...

  5. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  6. Receptor discrimination and control of agonist-antagonist binding. (United States)

    Tallarida, R J


    The law of mass action is the common model for the interaction of agonist and antagonist compounds with cellular receptors. Parameters of the interaction, obtained from functional and radioligand-binding studies, allow discrimination and subtyping of receptors and aid in understanding specific mechanisms. This article reviews the theory and associated mathematical models and graphical transformations of data that underlie the determination of receptor parameters. The main theory assumes that agonist and antagonist compounds bind to cells that have a fixed number of receptors and provides the framework for obtaining drug-receptor parameters from data and their graphical transformations. Conditions that produce a change in receptor number, a newer concept in pharmacology, can have an important effect on the parameter values derived in the usual way. This review concludes with a discussion of the quantitative study of receptor-mediated feedback control of endogenous ligands, a very new topic with potentially important implications for understanding antagonist effectiveness, loss of control, and chaos in regulated mass action binding.

  7. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T;


    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... and lack of EPS in rodents could also be observed in non-human primates. We investigated the effects of CGS 21680 on behaviours induced by D-amphetamine and (-)-apomorphine in EPS-sensitized Cebus apella monkeys. CGS 21680 was administered s.c. in doses of 0.01, 0.025 and 0.05 mg/kg, alone...... and in combination with D-amphetamine and (-)-apomorphine. The monkeys were videotaped after drug administration and the tapes were rated for EPS and psychosis-like symptoms. CGS 21680 decreased apomorphine-induced behavioural unrest, arousal (0.01-0.05 mg/kg) and stereotypies (0.05 mg/kg) while amphetamine...

  8. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A1 adenosine receptors. (United States)

    Klishin, A; Tsintsadze, T; Lozovaya, N; Krishtal, O


    When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors. PMID:8618915

  9. Apparent affinity of 1,3-dipropyl-8-cyclopentylxanthine for adenosine A1 and A2 receptors in isolated tissues from guinea-pigs. (United States)

    Collis, M. G.; Stoggall, S. M.; Martin, F. M.


    1. The classification of adenosine receptor subtypes (A1 and A2) in intact tissues has been based on the order of agonist potency. In this study the apparent affinity of 1,3-dipropyl-8-cyclopentylxanthine (CPX), an antagonist which has been reported to be A1 selective, and the non-selective antagonist 1,3-dimethyl-8-phenylxanthine (8PT) has been evaluated on isolated tissues from the guinea-pig. 2. The isolated tissues used were atria (bradycardic response, proposed A1 sub-type), aorta and trachea (relaxant response, proposed A2 sub-type). 3. Both the xanthines antagonized responses to adenosine in the three tissues but had little or no effect on responses to carbachol (atria), sodium nitrite (aorta) or isoprenaline (trachea). 4. pA2 values for 8PT were similar on the three tissues (6.3-6.7), however, the pA2 value for CPX on the atria (7.9-8.4) was greater than that on the aorta (6.6) or trachea (6.6). 5. These results support the suggestion that the adenosine receptors which mediate bradycardia in the atrium are of the A1 sub-type and that those which mediate relaxation in the aorta and trachea are of the A2 type. PMID:2790383

  10. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen


    Considerable evidence has emerged to suggest that histamine participates in the regulation of the inflammatory response, immune reaction, coagulation cascade, and cardiovascular function. Furthermore, histamine may play a major role in the growth of normal and malignant tissue as a regulator...... of proliferation and angiogenesis. Specific histamine receptors have been identified on the surface of bone marrow cells, immune competent cells, endothelial cells, fibroblasts, and also on malignant cells. This has prompted research in regulation by specific histamine receptor agonists and antagonists. Results...... from such studies are currently accumulating and suggest that the histamine-2 receptor antagonists have potential beneficial effects in the treatment of certain malignant, autoimmune and skin diseases, either alone or in combination with other drugs. The beneficial effect of histamine-2 receptor...

  11. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos


    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  12. 5-Hydroxytryptamine3 receptor antagonists and cardiac side effects

    DEFF Research Database (Denmark)

    Brygger, Louise; Herrstedt, Jørn


    INTRODUCTION: 5-Hydroxytryptamine3-receptor antagonists (5-HT3-RA) are the most widely used antiemetics in oncology, and although tolerability is high, QTC prolongation has been observed in some patients. AREAS COVERED: The purpose of this article is to outline the risk of cardiac adverse events...

  13. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G


    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  14. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro


    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  15. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    Directory of Open Access Journals (Sweden)

    Víctor Fernández-Dueñas


    Full Text Available Parkinson’s disease (PD is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R with adenosine A2A receptor (A2AR (forming D2R-A2AR oligomers – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET, we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model, D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments.

  16. Therapeutic efficacy of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) against organophosphate intoxication

    NARCIS (Netherlands)

    Bueters, T.J.H.; Groen, B.; Danhof, M.; IJzerman, A.P.; Helden, H.P.M. van


    The objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun (O-ethyl-N-dimethylphosphoramidocyanidate), sarin (

  17. Kappa opioid receptor antagonist and N-methyl-D- aspartate receptor antagonist affect dynorphin- induced spinal cord electrophysiologic impairment

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Liangbi Xiang; Jun Liu; Dapeng Zhou; Hailong Yu; Qi Wang; Wenfeng Han; Weijian Ren


    The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity.The wave amplitude and latencies of motor- and somatosensory-evoked potentials were significantly recovered at 7 and 14 days after combined injection of dynorphin and either the kappa opioid receptor antagonist nor-binaltorphimine or the N-methyl-D-aspartate receptor antagonist MK-801.The wave amplitude and latency were similar in rats after combined injection of dynorphin and nor-binaltorphimine or MK-801.These results suggest that intrathecal injection of dynorphin causes damage to spinal cord function.Prevention of N-methyl-D-aspartate receptor or kappa receptor activation lessened the injury to spinal cord function induced by dynorphin.

  18. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG


    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  19. Adenosine A2B receptor: from cell biology to human diseases (United States)

    Sun, Ying; Huang, Pingbo


    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  20. Aldosterone receptor antagonists: current perspectives and therapies


    Guichard JL; Clark III D; Calhoun DA; Ahmed MI


    Jason L Guichard, Donald Clark III, David A Calhoun, Mustafa I Ahmed University of Alabama at Birmingham, Department of Medicine, Division of Cardiovascular Disease, Vascular Biology and Hypertension Program, Birmingham, AL, USA Abstract: Aldosterone is a downstream effector of angiotensin II in the renin–angiotensin–aldosterone system and binds to the mineralocorticoid receptor. The classical view of aldosterone primarily acting at the level of the kidneys to regulate pl...

  1. Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. (United States)

    Butler, Matt; Sanmugalingam, Devika; Burton, Victoria J; Wilson, Tammy; Pearson, Ruth; Watson, Robert P; Smith, Philip; Parkinson, Scott J


    Adenosine possesses potent anti-inflammatory properties which are partly mediated by G(i) -coupled adenosine A3 receptors (A3Rs). A3R agonists have shown clinical benefit in a number of inflammatory conditions although some studies in A3R-deficient mice suggest a pro-inflammatory role. We hypothesised that, in addition to cell signalling effects, A3R compounds might inhibit neutrophil chemotaxis by disrupting the purinergic feedback loop controlling leukocyte migration. Human neutrophil activation triggered rapid upregulation of surface A3R expression which was disrupted by pre-treatment with either agonist (Cl-IB-MECA) or antagonist (MRS1220). Both compounds reduced migration velocity and neutrophil transmigration capacity without impacting the response to chemokines per se. Similar effects were observed in murine neutrophils, while cells from A3R-deficient mice displayed a constitutively impaired migratory phenotype indicating compound-induced desensitisation and genetic ablation had the same functional outcome. In a dextran sodium sulphate-induced colitis model, A3R-deficient mice exhibited reduced colon pathology and decreased tissue myeloperoxidase levels at day 8 - consistent with reduced neutrophil recruitment. However, A3R-deficient mice were unable to resolve the dextran sodium sulphate-induced inflammation and had elevated numbers of tissue-associated bacteria by day 21. Our data indicate that A3Rs play a role in neutrophil migration and disrupting this function has the potential to adversely affect innate immune responses.

  2. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist (United States)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev


    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  3. From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. (United States)

    Springthorpe, Brian; Bailey, Andrew; Barton, Patrick; Birkinshaw, Timothy N; Bonnert, Roger V; Brown, Roger C; Chapman, David; Dixon, John; Guile, Simon D; Humphries, Robert G; Hunt, Simon F; Ince, Francis; Ingall, Anthony H; Kirk, Ian P; Leeson, Paul D; Leff, Paul; Lewis, Richard J; Martin, Barrie P; McGinnity, Dermot F; Mortimore, Michael P; Paine, Stuart W; Pairaudeau, Garry; Patel, Anil; Rigby, Aaron J; Riley, Robert J; Teobald, Barry J; Tomlinson, Wendy; Webborn, Peter J H; Willis, Paul A


    Starting from adenosine triphosphate (ATP), the identification of a novel series of P2Y(12) receptor antagonists and exploitation of their SAR is described. Modifications of the acidic side chain and the purine core and investigation of hydrophobic substituents led to a series of neutral molecules. The leading compound, 17 (AZD6140), is currently in a large phase III clinical trial for the treatment of acute coronary syndromes and prevention of thromboembolic clinical sequelae.

  4. Docking-based virtual screening of potential human P2Y12 receptor antagonists

    Institute of Scientific and Technical Information of China (English)

    Hua Chen; Xianchi Dong; Minyun Zhou; Haiming Shi; Xinping Luo


    Platelet plays essential roles in hemostasis and its dysregulation can lead to arterial thrombosis. P2Y12 is an important platelet membrane adenosine diphosphate receptor,and its antagonists have been widely developed as anticoagulation agents. The current P2Y12 inhibitors available in clinical practice have not fully achieved saOsfactory antithrombotic effects, leaving room for further improvement To identify new chemical compounds as potential anticoagulation inhibitors, we constructed a three-dimensional structure model of human P2Y12 by homology modeling based on the recently reported G-protein coupled receptor Meleagris gallopavo βl adrenergic receptor. Virtual screening of the modeled P2Y12 against three subsets of small molecules from the ZINC database, namely lead-like, fragment-like, and drug-like, identified a number of compounds tbat might have high binding affinity to P2Y12.Detailed analyses of the top three compounds from each subset with the highest scores indicated that all of these compounds beard a hydrophobic bulk supplemented with a few polar atoms which bound at the ligand binding site via largely hydrophobic interactions with the receptor. This study not only provides a structure model of P2Y12 for rational design of anti-platelet inhibitors, but also identifies some potential chemicals for further development.

  5. μ Opioid receptor: novel antagonists and structural modeling (United States)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela


    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  6. Antagonistic action of pitrazepin on human and rat GABAA receptors (United States)

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo


    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  7. Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. (United States)

    Ganzella, Marcelo; Faraco, Rafael Berger; Almeida, Roberto Farina; Fernandes, Vinícius Fornari; Souza, Diogo Onofre


    Inosine (INO) has an anticonvulsant effect against seizures induced by antagonists of GABAergic system. Quinolinic acid (QA) is an agonist NMDA receptors implicated in the neurobiology of seizures. In the present study, we investigated the anticonvulsant effect of intracerebroventricular (i.c.v.) INO administration against QA-induced seizures in adult mice. We also investigated whether the benzodiazepines (BZ) or adenosine (ADO) receptors were involved in the INO effects. Animals were pretreated with an i.c.v. injection of either vehicle or INO before an i.c.v. administration of 4 μl QA (36.8 nmol). All animals pretreated with vehicle followed by QA presented seizures. INO protected against QA-induced seizures in a time and dose dependent manner (up to 60% at 400 nmol, 5 min before QA injection). Diazepam (DZ) and ADO (i.c.v.) also exhibited anticonvulsant effect against QA induced seizures. Additionally, i.p. administration of either flumazenil, a BZ receptor antagonist, or caffeine, an ADO receptor antagonist, did not change the anticonvulsant potency of INO i.c.v. injection, but completely abolished the DZ and ADO anticonvulsant effects, respectively. In conclusion, this study demonstrated that INO exert anticonvulsant effect against hyperactivity of the glutamatergic system independently of BZ or ADO receptors activation.

  8. Neuroleptics up-regulate adenosine A2a receptors in rat striatum: implications for the mechanism and the treatment of tardive dyskinesia. (United States)

    Parsons, B; Togasaki, D M; Kassir, S; Przedborski, S


    Neuroleptics, which are potent dopamine receptor antagonists, are used to treat psychosis. In the striatum, dopamine subtype-2 (D2) receptors interact with high-affinity adenosine subtype-2 (A2a) receptors. To examine the effect of various neuroleptics on the major subtypes of striatal dopamine and adenosine receptors, rats received 28 daily intraperitoneal injections of these drugs. Haloperidol (1.5 mg/kg/day) increased the density of striatal D2 receptors by 24% without changing their affinity for [3H]sulpiride. Haloperidol increased the density of striatal A2a receptors by 33% (control, 522.4 +/- 20.7 fmol/mg of protein; haloperidol, 694.6 +/- 23.6 fmol/mg of protein; p sulpiride (100 mg/kg/day) and clozapine (20 mg/kg/day) did not (control, 290.3 +/- 8.7 fmol/mg of protein; haloperidol, 358.1 +/- 6.9 fmol/mg of protein; fluphenazine, 381.3 +/- 13.6 fmol/mg of protein; sulpiride, 319.8 +/- 18.9 fmol/mg of protein; clozapine, 309.2 +/- 13.7 fmol/mg of protein).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists. (United States)

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah


    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  10. Churg-Strauss syndrome associated with leukotriene receptor antagonists (LTRA). (United States)

    Cuchacovich, R; Justiniano, M; Espinoza, L R


    Churg-Strauss syndrome (CSS) is a rare vasculitic disorder that generally occurs in patients with bronchial asthma. CSS is being increasingly recognized in asthmatic patients treated with leukotriene receptor antagonists. However, the nature of this relationship remains to be elucidated. The present report describes three asthmatic patients who developed clinical manifestations highly suggestive of CSS, although one patient lacked the presence of eosinophilia. The patient, however, exhibited biopsy-proven cutaneous necrotizing vasculitis, which improved after withdrawal of montelukast. The second patient presented with systemic constitutional signs including fever, malaise, arthralgias, clinical jaundice, peripheral blood eosinophilia, and biopsy-proven eosinophilic hepatitis. The third patient also had circulating eosinophilia, scleritis, and arthritis. All patients improved after discontinuation of the leukotriene receptor antagonist (montelukast).

  11. The role of adenosine in Alzheimer's disease. (United States)

    Rahman, Anisur


    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  12. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists (United States)


    Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8...processes), affect the ability of opioid drugs to counteract pain. We predicted that one way of increasing the effectiveness of the pain-relieving... drugs would be to eliminate or reduce the activity of the chemokines by administering chemokine receptor antagonists (CRAs). The blockade of one or

  13. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine


    Funder JW


    John W FunderPrince Henry's Institute, Clayton, Victoria, AustraliaAbstract: Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor (MR) antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more MR-specific. From a marginal role as a potassium-sparing diuretic, spironolactone was shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure, as ...

  14. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. (United States)

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M


    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.

  15. Discovery of dopamine D₄ receptor antagonists with planar chirality. (United States)

    Sanna, Fabrizio; Ortner, Birgit; Hübner, Harald; Löber, Stefan; Tschammer, Nuska; Gmeiner, Peter


    Employing the D4 selective phenylpiperazine 2 as a lead compound, planar chiral analogs with paracyclophane substructure were synthesized and evaluated for their ability to bind and activate dopamine receptors. The study revealed that the introduction of a [2.2]paracyclophane moiety is tolerated by dopamine receptors of the D2 family. Subtype selectivity for D4 and ligand efficacy depend on the absolute configuration of the test compounds. Whereas the achiral single-layered lead 2 and the double-layered paracyclophane (R)-3 showed partial agonist properties, the enantiomer (S)-3 behaved as a neutral antagonist.

  16. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay. (United States)

    Wang, Si; Bovee, Toine F H


    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter.

  17. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)


    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  18. Presynaptic muscarinic and adenosine receptors are involved in 2 Hz-induced train-of-four fade caused by antinicotinic neuromuscular relaxants in the rat. (United States)

    Pereira, Mw; Bornia, Ecs; Correia-de-Sá, P; Alves-Do-Prado, W


    1. Train-of-four fade (TOF(fade) ) is a clinically useful parameter to monitor the degree of block of neuromuscular transmission in curarized patients. Experimentally, TOF(fade) has been attributed to the blockade of facilitatory nicotinic receptors on motor nerve terminals. There is less information regarding the involvement of coexistent presynaptic receptors (e.g. muscarinic M(1) and M(2) , adenosine A(1) and A(2A) ) in the TOF(fade) produced by antinicotinic agents. 2. In the present study, we evaluated the TOF(fade) caused by antinicotinic neuromuscular relaxants (hexamethonium, d-tubocurarine, vecuronium and rocuronium) as the ratio of the muscle tension produced in the rat diaphragm by the fourth to the first stimulus (T(4) /T(1) ) of a train-of-four stimuli delivered to the phrenic nerve trunk at a frequency of 2 Hz. 3. All antinicotinic agents, except hexamethonium, decreased the amplitude of muscle tension during the first stimulus. Hexamethonium, (5.47 mmol/L), d-tubocurarine- (1.1 μmol/L), vecuronium (4.7 μmol/L)- and rocuronium (9.8 μmol/L)-induced TOF(fade) was attenuated by 10 nmol/L pirenzepine (an M(1) receptor antagonist), 1 μmol/L methoctramine (an M(2) receptor antagonist) and 2.5 nmol/L 1,3-dipropyl-8-cyclopentylxanthine (an A(1) receptor antagonist). Blockade of the A(2A) receptor with 10 nmol/L ZM241385 partially reversed the TOF(fade) induced by d-tubocurarine, vecuronium and rocuronium, but not that caused by the 'pure' neuronal nicotinic receptor antagonist hexamethonium, unless one increased the concentration of ZM241385 to 50 nmol/L. 4. The data indicate that presynaptic M(1) , M(2) , A(1) and A(2A) receptors play a role in neuromuscular TOF(fade) caused by antinicotinic neuromuscular relaxants. Such interplay depends on adenosine tonus and on the affinity of neuromuscular blocking agents for neuronal versus muscular nicotinic receptors.

  19. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats. (United States)

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt


    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.

  20. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)


    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  1. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress. (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F


    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  2. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, Lars


    Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one...... for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question...... to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB....

  3. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. (United States)

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João


    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  4. Comparison of the Effects of Adenosine A1 Receptors Activity in CA1 Region of the Hippocampus on Entorhinal Cortex and Amygdala Kindled Seizures in Rats

    Directory of Open Access Journals (Sweden)

    A. Heidarianpour


    Full Text Available Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppression results from a general depression of brain excitability or through action on particular sites critical for the control of after discharge generation and/or seizure development and propagation. In this regard, comparison of the effects of adenosine A1 receptors of CA1 (region of the ‎hippocampus on entorhinal cortex and amygdala kindled seizures was ‎investigated in this study. Materials & Methods: In this experimental study, Animals were kindled by daily electrical stimulation of amygdale (group A or entorhinal cortex (group B. In the fully kindled animals, N6-‎cyclohexyladenosine (CHA;1 and 10 M; a selective adenosine A1 receptor ‎agonist and 1,3-dimethyl-8-cyclohexylxanthine(CPT;1 ‎µ‎M; a selective ‎adenosine A1 receptors antagonist were microinfused bilaterally into the CA1 ‎region of hippocampus (1l/2min and animals were stimulated at 5 and 15 minutes after drug ‎injection. All animals were received artificial cerebrospinal fluid, 24 h before ‎each drug injection and this result were used as control. Results: The seizure parameters were measured at 5 and 15min post injection. Obtained data showed that CHA at concentrations of 10 ‎µ‎M reduced ‎entorhinal cortex and amygdala after discharge and stage5 seizure durations and ‎increased stage4 latency. CHA at concentration 1‎µ‎M significantly alters ‎seizure parameters of group A but not effect on group B. Intrahippocampal (CA1 region pretreatment of CPT (1 ‎µ‎M before CHA abolished the effects of CHA on seizure parameters.Conclusion: It ‎may be

  5. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex. (United States)

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J


    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  6. Suvorexant: The first orexin receptor antagonist to treat insomnia

    Directory of Open Access Journals (Sweden)

    Ashok K Dubey


    Full Text Available Primary insomnia is mainly treated with drugs acting on benzodiazepine receptors and a few other classes of drugs used for different co-morbidities. A novel approach to treat insomnia has been introduced recently, with the approval of suvorexant, the first in a new class of orexin receptor antagonists. Orexin receptors in the brain have been found to play an important role in the regulation of various aspects of arousal and motivation. The drugs commonly used for insomnia therapy to date, have often been associated with adverse effects, such as, day-time somnolence, amnesia, confusion, and gait disturbance, apart from the risk of dependence on chronic use. Suvorexant has not shown these adverse effects because of its unique mechanism of action. It also appears to be suitable as a chronic therapy for insomnia, because of minimal physical dependence. The availability of this new drug as an effective and safe alternative is an important and welcome development in insomnia management.

  7. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. (United States)

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R


    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  8. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane


    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  9. P2X receptors regulate adenosine diphosphate release from hepatic cells. (United States)

    Chatterjee, Cynthia; Sparks, Daniel L


    Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

  10. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists. (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto


    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  11. Antagonists of chemoattractants reveal separate receptors for cAMP, folic acid and pterin in Dictyostelium

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Wit, René J.W. de; Konijn, Theo M.


    Adenosine 3’,5’-monophosphate (cAMP), folic acid and pterin are chemoattractants in the cellular slime molds. The cAMP analog, 3’-amino-cAMP, inhibits a chemotactic reaction to cAMP at a concentration at which the analog is chemotactically inactive. The antagonistic effect of 3’-amino-cAMP on the ch

  12. P2Y12-ADP receptor antagonists: Days of future and past

    Institute of Scientific and Technical Information of China (English)

    Marc Laine; Franck Paganelli; Laurent Bonello


    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease.Thanks to a better understanding in physiology,pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing theexpansion of percutaneous coronary intervention.Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way.Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate(ADP)-receptor antagonist.This dual antiplatelet therapy has dramatically improved the prognosis of stented patients.However,due to pharmacological limitations of clopidogrel(interindividual variability in its biological efficacy,slow onset of action,mild platelet reactivity inhibition)ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients.Thus,more potent P2Y12-ADP receptor inhibitors were developped including prasugrel,ticagrelor and more recently cangrelor to overcome these pitfalls.These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk.The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient.Recently,the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome.The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients.

  13. Adenosine-A1 receptor agonist induced hyperalgesic priming type II. (United States)

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D


    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  14. Recombinant mouse PAP has pH-dependent ectonucleotidase activity and acts through A(1-adenosine receptors to mediate antinociception.

    Directory of Open Access Journals (Sweden)

    Nathaniel A Sowa

    Full Text Available Prostatic acid phosphatase (PAP is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A(1-adenosine receptor (A(1R activation. In this study, we purified the secretory isoform of mouse (mPAP using the baculovirus expression system to determine if recombinant mPAP also had antinociceptive properties. We found that mPAP dephosphorylated AMP, and to a much lesser extent, ADP at neutral pH (pH 7.0. In contrast, mPAP dephosphorylated all purine nucleotides (AMP, ADP, ATP at an acidic pH (pH 5.6. The transmembrane isoform of mPAP had similar pH-dependent ectonucleotidase activity. A single intraspinal injection of mPAP protein had long-lasting (three day antinociceptive properties, including antihyperalgesic and antiallodynic effects in the Complete Freund's Adjuvant (CFA inflammatory pain model. These antinociceptive effects were transiently blocked by the A(1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX, suggesting mPAP dephosphorylates nucleotides to adenosine to mediate antinociception just like human and bovine PAP. Our studies indicate that PAP has species-conserved antinociceptive effects and has pH-dependent ectonucleotidase activity. The ability to metabolize nucleotides in a pH-dependent manner could be relevant to conditions like inflammation where tissue acidosis and nucleotide release occur. Lastly, our studies demonstrate that recombinant PAP protein can be used to treat chronic pain in animal models.

  15. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    NARCIS (Netherlands)

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.


    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  16. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi


    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  17. Adenosine A2 receptor activation ameliorates mitochondrial oxidative stress upon reperfusion through the posttranslational modification of NDUFV2 subunit of complex I in the heart. (United States)

    Xu, Jingman; Bian, Xiyun; Liu, Yuan; Hong, Lan; Teng, Tianming; Sun, Yuemin; Xu, Zhelong


    While it is well known that adenosine receptor activation protects the heart from ischemia/reperfusion injury, the precise mitochondrial mechanism responsible for the action remains unknown. This study probed the mitochondrial events associated with the cardioprotective effect of 5'-(N-ethylcarboxamido) adenosine (NECA), an adenosine A2 receptor agonist. Isolated rat hearts were subjected to 30min ischemia followed by 10min of reperfusion, whereas H9c2 cells experienced 20min ischemia and 10min reperfusion. NECA prevented mitochondrial structural damage, decreases in respiratory control ratio (RCR), and collapse of mitochondrial membrane potential (ΔΨm). Both the adenosine A2A receptor antagonist SCH58261 and A2B receptor antagonist MRS1706 inhibited the action of NECA. NECA reduced mitochondrial proteins carbonylation, H2O2, and superoxide generation at reperfusion, but did not change superoxide dismutase (SOD) activity. In support, the protective effects of NECA and Peg-SOD on ΔΨm upon reperfusion were additive, implying that NECA's protection is attributable to the reduced superoxide generation but not to the enhancement of the superoxide-scavenging capacity. NECA increased the mitochondrial Src tyrosine kinase activity and suppressed complex I activity at reperfusion in a Src-dependent manner. NECA also reduced mitochondrial superoxide through Src tyrosine kinase. Studies with liquid chromatography-mass spectrometer (LC-MS) identified Tyr118 of the NDUFV2 subunit of complex 1 as a likely site of the tyrosine phosphorylation. Furthermore, the complex I activity of cells transfected with the Y118F mutant was increased, suggesting that this site might be a negative regulator of complex I activity. In support, NECA failed to suppress complex I activity at reperfusion in cells transfected with the Y118F mutant of NDUFV2. In conclusion, NECA prevents mitochondrial oxidative stress by decreasing mitochondrial superoxide generation through inhibition of complex I

  18. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion. (United States)

    Duan, Wei; Ran, Hong; Zhou, Zhujuan; He, Qifen; Zheng, Jian


    In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  19. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Directory of Open Access Journals (Sweden)

    Wei Duan

    Full Text Available In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  20. The Role of Adenosine Signaling in Headache: A Review

    Directory of Open Access Journals (Sweden)

    Nathan T. Fried


    Full Text Available Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP production or 5' AMP-activated protein kinase (AMPK activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine.

  1. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Laboratory Medicine, The Affiliated Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Wang, Zhanli [College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014 (China); Liang, Huaping, E-mail: [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)


    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  2. Classification and virtual screening of androgen receptor antagonists. (United States)

    Li, Jiazhong; Gramatica, Paola


    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  3. Oral Administration of a Retinoic Acid Receptor Antagonist Reversibly Inhibits Spermatogenesis in Mice


    Chung, Sanny S. W.; Wang, Xiangyuan; Roberts, Shelby S.; Stephen M Griffey; Reczek, Peter R.; Wolgemuth, Debra J.


    Meeting men's contraceptive needs, orally administered retinoic acid receptor antagonists represent new lead molecules in developing non-hormonal, reversible male contraceptives without adverse side effects.

  4. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.


    Conlay, L A; Evoniuk, G; Wurtman, R.J.


    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  5. Stimulation of NTS A1 adenosine receptors differentially resets baroreflex control of regional sympathetic outputs. (United States)

    Scislo, Tadeusz J; Ichinose, Tomoko K; O'Leary, Donal S


    Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits

  6. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard


    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  7. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu


    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  8. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. (United States)

    Liu, Hua-Qing; Zhang, Wei-Yu; Luo, Xue-Ting; Ye, Yang; Zhu, Xing-Zu


    1. This study examined whether Paeoniflorin (PF), the major active components of Chinese herb Paeoniae alba Radix, has neuroprotective effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). 2. Subcutaneous administration of PF (2.5 and 5 mg kg(-1)) for 11 days could protect tyrosine hydroxylase (TH)-positive substantia nigra neurons and striatal nerve fibers from death and bradykinesia induced by four-dose injection of MPTP (20 mg kg(-1)) on day 8. 3. When given at 1 h after the last dose of MPTP, and then administered once a day for the following 3 days, PF (2.5 and 5 mg kg(-1)) also significantly attenuated the dopaminergic neurodegeneration in a dose-dependent manner. Post-treatment with PF (5 mg kg(-1)) significantly attenuated MPTP-induced proinflammatory gene upregulation and microglial and astrocytic activation. 4. Pretreatment with 0.3 mg kg(-1) 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor (A1AR) antagonist, 15 min before each dose of PF, reversed the neuroprotective and antineuroinflammatory effects of PF. 5. In conclusion, this study demonstrated that PF could reduce the MPTP-induced toxicity by inhibition of neuroinflammation by activation of the A1AR, and suggested that PF might be a valuable neuroprotective agent for the treatment of PD.

  9. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type. (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro


    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  10. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning. (United States)

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K


    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

  11. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome. (United States)

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi


    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.

  12. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. (United States)

    Wu, Mark N; Ho, Karen; Crocker, Amanda; Yue, Zhifeng; Koh, Kyunghee; Sehgal, Amita


    Caffeine is one of the most widely consumed stimulants in the world and has been proposed to promote wakefulness by antagonizing function of the adenosine A2A receptor. Here, we show that chronic administration of caffeine reduces and fragments sleep in Drosophila and also lengthens circadian period. To identify the mechanisms underlying these effects of caffeine, we first generated mutants of the only known adenosine receptor in flies (dAdoR), which by sequence is most similar to the mammalian A2A receptor. Mutants lacking dAdoR have normal amounts of baseline sleep, as well as normal homeostatic responses to sleep deprivation. Surprisingly, these mutants respond normally to caffeine. On the other hand, the effects of caffeine on sleep and circadian rhythms are mimicked by a potent phosphodiesterase inhibitor, IBMX (3-isobutyl-1-methylxanthine). Using in vivo fluorescence resonance energy transfer imaging, we find that caffeine induces widespread increase in cAMP levels throughout the brain. Finally, the effects of caffeine on sleep are blocked in flies that have reduced neuronal PKA activity. We suggest that chronic administration of caffeine promotes wakefulness in Drosophila, at least in part, by inhibiting cAMP phosphodiesterase activity.

  13. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion (United States)

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya


    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  14. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    DEFF Research Database (Denmark)

    Ilie, A; Ciocan, D; Constantinescu, A O


    . Several lines of evidence suggest that BS reflects an impairment of neocortical connectivity. Here we tested in vivo whether synaptic depression by adenosine A1 receptor (A1R) activation contributes to BS patterns following GCI. Male Wistar rats were subjected to 1, 5 or 10 min of GCI using a "four...... of post-ischemic BS patterns following brief ischemic episodes. It is likely that synaptic depression by post-ischemic A1R activation functionally disrupts the connectivity within the cortical networks to an extent that promotes BS patterns....

  15. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette


    these could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell......, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in the acini...

  16. Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes. (United States)

    Morales-Figueroa, Guadalupe-Elide; Márquez-Gómez, Ricardo; González-Pantoja, Raúl; Escamilla-Sánchez, Juan; Arias-Montaño, José-Antonio


    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [(3)H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [(3)H]-GABA release induced by high K(+) (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-(3)H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K(+)-evoked [(3)H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K(+)-induced [(3)H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections.

  17. Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity


    Assaife-Lopes, Natália; Sousa, Vasco C.; Pereira, Daniela B.; Ribeiro, Joaquim A.; Sebastião, Ana M.


    Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdoma...

  18. The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rikard Dammen

    Full Text Available OBJECTIVE: We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion. DESIGN: The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2 was compared to NECA (adenosine agonist, MRS1754 (ADORA2B receptor antagonist and SCH442146 (ADORA2A antagonist on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo. RESULTS: HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (~90% of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5'-ASA treatment was confirmed in a TNBS-model. CONCLUSION: Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT

  19. Preliminary investigations into triazole derived androgen receptor antagonists. (United States)

    Altimari, Jarrad M; Niranjan, Birunthi; Risbridger, Gail P; Schweiker, Stephanie S; Lohning, Anna E; Henderson, Luke C


    A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 μM, the most promising three compounds were found to display IC50 values of 40-50 μM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.

  20. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua


    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  1. Differential effects of the adenosine A1 receptor agonist adenosine amine congener on renal, femoral and carotid vascular conductance in preterm fetal sheep. (United States)

    Booth, Lindsea C; Tummers, Leonie; Jensen, Ellen C; Barrett, Carolyn J; Malpas, Simon C; Gunn, Alistair J; Bennet, Laura


    1. Adenosine A(1) receptor activation is critical for endogenous neuroprotection from hypoxia-ischaemia, raising the possibility that treatment with A(1) receptor agonists may be an effective physiological protection strategy for vulnerable preterm infants. However, the A(1) receptor can mediate unwanted systemic effects, including vasoconstriction of the afferent glomerular arteriole. There is limited information on whether this occurs at doses that improve cerebral perfusion in the immature brain. 2. Therefore, in the present study, we examined whether infusion of the selective A(1) receptor agonist adenosine amine congener (ADAC) is associated with reduced renal perfusion in chronically instrumented preterm (0.7 gestation) fetal sheep. In the present study, ADAC was given in successive doses of 2.5, 5.0 and 15.0 microg, 45 min apart. 3. Treatment with ADAC was associated with a marked reduction in renal vascular conductance (and blood flow), whereas carotid conductance was increased and there was no significant effect on femoral conductance. In contrast with the stable effects of increasing ADAC dose on vascular conductance, there was a significant dose-related fall in fetal heart rate and blood pressure. 4. In conclusion, these short-term data support the concern that A(1) receptor agonist infusion can selectively impair renal perfusion, even at low doses.

  2. Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito.

    Directory of Open Access Journals (Sweden)

    Sisi Chen

    Full Text Available Insects detect environmental chemicals using chemosensory receptors, such as the ORs, a family of odorant-gated ion channels. Insect ORs are multimeric complexes of unknown stoichiometry, formed by a common subunit (the odorant receptor co-receptor subunit, Orco and one of many variable subunits that confer odorant specificity. The recent discovery of Orco directed ligands, including both agonists and antagonists, suggests Orco as a promising target for chemical control of insects. In addition to competitively inhibiting OR activation by Orco agonists, several Orco antagonists have been shown to act through a non-competitive mechanism to inhibit OR activation by odorants. We previously identified a series of Orco antagonists, including N-(4-ethylphenyl-2-thiophenecarboxamide (OX1a, previously referred to as OLC20. Here, we explore the chemical space around the OX1a structure to identify more potent Orco antagonists. Cqui\\Orco+Cqui\\Or21, an OR from Culex quinquefasciatus (the Southern House Mosquito that responds to 3-methylindole (skatole and is thought to mediate oviposition behavior, was expressed in Xenopus oocytes and receptor function assayed by two-electrode voltage clamp electrophysiology. 22 structural analogs of OX1a were screened for antagonism of OR activation by an Orco agonist. By varying the moieties decorating the phenyl and thiophene rings, and altering the distance between the rings, we were able to identify antagonists with improved potency. Detailed examination of three of these compounds (N-mesityl-2-thiophenecarboxamide, N-(4-methylbenzyl-2-thiophenecarboxamide and N-(2-ethylphenyl-3-(2-thienyl-2-propenamide demonstrated competitive inhibition of receptor activation by an Orco agonist and non-competitive inhibition of receptor activation by an odorant. The ability to inhibit OR activation by odorants may be a general property of this class of Orco antagonist, suggesting that odorant mediated behaviors can be manipulated

  3. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling. (United States)

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit


    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  4. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction. (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K


    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  5. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists. (United States)

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F


    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  6. Neuroprotection of Persea major extract against oxygen and glucose deprivation in hippocampal slices involves increased glutamate uptake and modulation of A1 and A2A adenosine receptors

    Directory of Open Access Journals (Sweden)

    Marielli Letícia Fedalto


    Full Text Available Ischemic stroke is characterised by a lack of oxygen and glucose in the brain, leading to excessive glutamate release and neuronal cell death. Adenosine is produced in response to ATP depletion and acts as an endogenous neuromodulator that reduces excitotoxicity. Persea major (Meins. L.E. Kopp (Lauraceae is a medical plant that is indigenous to South Brazil, and the rural population has used it medicinally due to its anti-inflammatory properties. The aim of this study was to evaluate the neuroprotective effect of Persea major methanolic extract against oxygen and glucose deprivation and re-oxygenation as well as to determine its underlying mechanism of action in hippocampal brain slices. Persea major methanolic extract (0.5 mg/ml has a neuroprotective effect on hippocampal slices when added before or during 15 min of oxygen and glucose deprivation or 2 h of re-oxygenation. Hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation showed significantly reduced glutamate uptake, and the addition of Persea major methanolic extract in the re-oxygenation period counteracted the reduction of glutamate uptake. The presence of A1 or A2A, but not A2B or A3 receptor antagonists, abolished the neuroprotective effect of Persea major methanolic extract. In conclusion, the neuroprotective effect of Persea majormethanolic extract involves augmentation of glutamate uptake and modulation of A1 and A2B adenosine receptors.

  7. Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. (United States)

    Caetano, L; Pinheiro, H; Patrício, P; Mateus-Pinheiro, A; Alves, N D; Coimbra, B; Baptista, F I; Henriques, S N; Cunha, C; Santos, A R; Ferreira, S G; Sardinha, V M; Oliveira, J F; Ambrósio, A F; Sousa, N; Cunha, R A; Rodrigues, A J; Pinto, L; Gomes, C A


    Developmental risk factors, such as the exposure to stress or high levels of glucocorticoids (GCs), may contribute to the pathogenesis of anxiety disorders. The immunomodulatory role of GCs and the immunological fingerprint found in animals prenatally exposed to GCs point towards an interplay between the immune and the nervous systems in the etiology of these disorders. Microglia are immune cells of the brain, responsive to GCs and morphologically altered in stress-related disorders. These cells are regulated by adenosine A2A receptors, which are also involved in the pathophysiology of anxiety. We now compare animal behavior and microglia morphology in males and females prenatally exposed to the GC dexamethasone. We report that prenatal exposure to dexamethasone is associated with a gender-specific remodeling of microglial cell processes in the prefrontal cortex: males show a hyper-ramification and increased length whereas females exhibit a decrease in the number and in the length of microglia processes. Microglial cells re-organization responded in a gender-specific manner to the chronic treatment with a selective adenosine A2A receptor antagonist, which was able to ameliorate microglial processes alterations and anxiety behavior in males, but not in females.Molecular Psychiatry advance online publication, 11 October 2016; doi:10.1038/mp.2016.173.

  8. The synthesis of a series of adenosine A3 receptor agonists. (United States)

    Broadley, Kenneth J; Burnell, Erica; Davies, Robin H; Lee, Alan T L; Snee, Stephen; Thomas, Eric J


    A series of 1'-(6-aminopurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamides that were characterised by 2-dialkylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl substituents on N6 of interest for screening as selective adenosine A3 receptor agonists, have been synthesised. This work involved the synthesis of 2-dialkylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridines and analogues that were coupled with the known 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The oxazolo[4,5-b]pyridines were synthesized by regioselective functionalisation of 2,4-dimethylpyridine N-oxides. The regioselectivities of these reactions were found to depend upon the nature of the heterocycle with 2-dimethylamino-5,7-dimethyloxazolo[4,5-b]pyridine-N-oxide undergoing regioselective functionalisation at the 7-methyl group on reaction with trifluoroacetic anhydride in contrast to the reaction of 4,6-dimethyl-3-hydroxypyridine-N-oxide with acetic anhydride that resulted in functionalisation of the 6-methyl group. To optimise selectivity for the A3 receptor, 5-aminomethyl-7-bromo-2-dimethylamino-4-[(3-methylisoxazol-5-yl)methoxy]benzo[d]oxazole was synthesised and coupled with the 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The products were active as selective adenosine A3 agonists.

  9. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain. (United States)

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I


    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  10. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus]. (United States)

    Bagrov, Ia Iu; Manusova, N B


    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  11. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.


    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  12. Montelukast: More than a Cysteinyl Leukotriene Receptor Antagonist?

    Directory of Open Access Journals (Sweden)

    Gregory R. Tintinger


    Full Text Available The prototype cysteinyl leukotriene receptor antagonist, montelukast, is generally considered to have a niche application in the therapy of exercise- and aspirin-induced asthma. It is also used as add-on therapy in patients whose asthma is poorly controlled with inhaled corticosteroid monotherapy, or with the combination of a long-acting β(2-agonist and an inhaled corticosteroid. Recently, however, montelukast has been reported to possess secondary anti-inflammatory properties, apparently unrelated to conventional antagonism of cysteinyl leukotriene receptors. These novel activities enable montelukast to target eosinophils, monocytes, and, in particular, the corticosteroid-insensitive neutrophil, suggesting that this agent may have a broader spectrum of anti-inflammatory activities than originally thought. If so, montelukast is potentially useful in the chemotherapy of intermittent asthma, chronic obstructive pulmonary disease, cystic fibrosis, and viral bronchiolitis, which, to a large extent, involve airway epithelial cell/neutrophil interactions. The primary objective of this mini-review is to present evidence for the cysteinyl leukotrien–independent mechanisms of action of montelukast and their potential clinical relevance.

  13. Histamine and histamine receptor antagonists in cancer biology. (United States)

    Blaya, Bruno; Nicolau-Galmés, Francesca; Jangi, Shawkat M; Ortega-Martínez, Idoia; Alonso-Tejerina, Erika; Burgos-Bretones, Juan; Pérez-Yarza, Gorka; Asumendi, Aintzane; Boyano, María D


    Histamine has been demonstrated to be involved in cell proliferation, embryonic development, and tumour growth. These various biological effects are mediated through the activation of specific histamine receptors (H1, H2, H3, and H4) that differ in their tissue expression patterns and functions. Although many in vitro and in vivo studies of the modulatory roles of histamine in tumour development and metastasis have been reported, the effect of histamine in the progression of some types of tumours remains controversial; however, recent findings on the role of histamine in the immune system have shed new light on this question. This review focuses on the recent advances in understanding the roles of histamine and its receptors in tumour biology. We report our recent observations of the anti-tumoural effect of H1 histamine antagonists on experimental and human melanomas. We have found that in spite of exogenous histamine stimulated human melanoma cell proliferation, clonogenic ability and migration activity in a dose-dependent manner, the melanoma tumour growth was not modulated by in vivo histamine treatment. On the contrary, terfenadine-treatment in vitro induced melanoma cell death by apoptosis and in vivo terfenadine treatment significantly inhibited tumour growth in murine models. These observations increase our understanding of cancer biology and may inspire novel anticancer therapeutic strategies.

  14. Development of selective agonists and antagonists of P2Y receptors



    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were report...

  15. Dopamine D(3) receptor antagonists: The quest for a potentially selective PET ligand. Part two: Lead optimization. (United States)

    Micheli, Fabrizio; Holmes, Ian; Arista, Luca; Bonanomi, Giorgio; Braggio, Simone; Cardullo, Francesca; Di Fabio, Romano; Donati, Daniele; Gentile, Gabriella; Hamprecht, Dieter; Terreni, Silvia; Heidbreder, Christian; Savoia, Chiara; Griffante, Cristiana; Worby, Angela


    The lead optimization process to identify new selective dopamine D(3) receptor antagonists is reported. DMPK parameters and binding data suggest that selective D(3) receptor antagonists as potential PET ligands might have been identified.

  16. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function (United States)

    Batalha, Vânia L.; Ferreira, Diana G.; Coelho, Joana E.; Valadas, Jorge S.; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E.; Hamdane, Malika; Outeiro, Tiago F.; Bader, Michael; Meijsing, Sebastiaan H.; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V.


    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  17. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. (United States)

    Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Valadas, Jorge S; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E; Hamdane, Malika; Outeiro, Tiago F; Bader, Michael; Meijsing, Sebastiaan H; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V


    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions.

  18. Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. (United States)

    Sadek, Bassem; Kuder, Kamil; Subramanian, Dhanasekaran; Shafiullah, Mohamed; Stark, Holger; Lażewska, Dorota; Adem, Abdu; Kieć-Kononowicz, Katarzyna


    To determine the potential of histamine H3 receptor (H3R) ligands as new antiepileptic drugs (AEDs), aromatic ether, and diether derivatives (1-12) belonging to the nonimidazole class of ligands, with high in-vitro binding affinity at human H3R, were tested for their in-vivo anticonvulsive activity in the maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in rats. The anticonvulsive effects of a systemic injection of 1-12 on MES-induced and PTZ-kindled seizures were evaluated against the reference AED phenytoin (PHT) and the structurally related H3R antagonist/inverse agonist pitolisant (PIT). Among the most promising ligands 2, 4, 5, and 11, there was a significant and dose-dependent reduction in the duration of tonic hind limb extension (THLE) in MES-induced seizure subsequent to administration of 4 and 5 [(5, 10, and 15 mg/kg, intraperitoneally (i.p.)]. The protective effects observed for the 1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3-methylpiperidine derivative 11 at 10 mg/kg, i.p. were significantly greater than those of PIT, and were reversed by pretreatment with the central nervous system penetrant H1R antagonist pyrilamine (PYR) (10 mg/kg). Moreover, the protective action of the reference AED PHT, at a dose of 5 mg/kg (without considerable protection in the MES model), was significantly augmented when coadministered with derivative 11 (5 mg/kg, i.p.). Surprisingly, pretreatment with derivative 7 (10 mg/kg, i.p.), an ethylphenoxyhexyl-piperidine derivative without considerable protection in the MES model, potently altered PTZ-kindled seizure, significantly prolonged myoclonic latency time, and clearly shortened the total seizure time when compared with control, PHT, and PIT. These interesting results highlight the potential of H3R ligands as new AEDs or as adjuvants to available AED therapeutics.

  19. Inhibition of tryptase release from human colon mast cells by histamine receptor antagonists. (United States)

    He, Shao-Heng; Xie, Hua; Fu, Yi-Ling


    The main objective of this study was to investigate the ability of histamine receptor antagonists to modulate tryptase release from human colon mast cells induced by histamine. Enzymatically dispersed cells from human colon were challenged with histamine in the absence or presence of the histamine receptor antagonists, and the tryptase release was determined. It was found that histamine induced tryptase release from colon mast cells was inhibited by up to approximately 61.5% and 24% by the H1 histamine receptor antagonist terfenadine and the H2 histamine receptor antagonist cimetidine, respectively, when histamine and its antagonists were added to cells at the same time. The H3 histamine receptor antagonist clobenpropit had no effect on histamine induced tryptase release from colon mast cells at all concentrations tested. Preincubation of terfenadine, cimetidine or clobenpropit with cells for 20 minutes before challenging with histamine did not enhance the ability of these antihistamines to inhibit histamine induced tryptase release. Apart from terfenadine at 100 microg/ml, the antagonists themselves did not stimulate tryptase release from colon mast cells following both 15 minutes and 35 minutes incubation periods. It was concluded that H1 and H2 histamine receptor antagonists were able to inhibit histamine induced tryptase release from colon mast cells. This not only added some new data to our hypothesis of self-amplification mechanisms of mast cell degranulation, but also suggested that combining these two types of antihistamine drugs could be useful for the treatment of inflammatory bowel disease (IBD).

  20. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    Directory of Open Access Journals (Sweden)

    Sadek B


    , in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-ylpropoxyphenylmethanol, and its (S-enantiomer (4 significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R-enantiomer (3 in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats. Keywords: histamine, H3 receptor, isomeric antagonists, anticonvulsant activity, stereo­selectivity

  1. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R;


    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin......During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical...

  2. Synthesis and Dual Histamine H1 and H2 Receptor Antagonist Activity of Cyanoguanidine Derivatives



    Premedication with a combination of histamine H1 receptor (H1R) and H2 receptor (H2R) antagonists has been suggested as a prophylactic principle, for instance, in anaesthesia and surgery. Aiming at pharmacological hybrids combining H1R and H2R antagonistic activity, a series of cyanoguanidines 14–35 was synthesized by linking mepyramine-type H1R antagonist substructures with roxatidine-, tiotidine-, or ranitidine-type H2R antagonist moieties. N-desmethylmepyramine was connected via a poly-met...

  3. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists. (United States)

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger


    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  4. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor. (United States)

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin


    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications.

  5. The effects of the adenosine A3 receptor agonist IB-MECA on sodium taurocholate-induced experimental acute pancreatitis. (United States)

    Prozorow-Krol, Beata; Korolczuk, Agnieszka; Czechowska, Grazyna; Slomka, Maria; Madro, Agnieszka; Celinski, Krzysztof


    The role of adenosine A3 receptors and their distribution in the gastrointestinal tract have been widely investigated. Most of the reports discuss their role in intestinal inflammations. However, the role of adenosine A3 receptor agonist in pancreatitis has not been well established. The aim of this study is [corrected] to evaluate the effects of the adenosine A3 receptor agonist on the course of sodium taurocholate-induced experimental acute pancreatitis (EAP). The experiments were performed on 80 male Wistar rats, 58 of which survived, subdivided into 3 groups: C--control rats, I--EAP group, and II--EAP group treated with the adenosine A3 receptor agonist IB-MECA (1-deoxy-1-6[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl)-N-methyl-B-D-ribofuronamide at a dose of 0.75 mg/kg b.w. i.p. at 48, 24, 12 and 1 h before and 1 h after the injection of 5% sodium taurocholate solution into the biliary-pancreatic duct. Serum for α-amylase and lipase determinations and tissue samples for morphological examinations were collected at 2, 6, and 24 h of the experiment. In the IB-MECA group, α-amylase activity was decreased with statistically high significance compared to group I. The activity of lipase was not significantly different among the experimental groups but higher than in the control group. The administration of IB-MECA attenuated the histological parameters of inflammation as compared to untreated animals. The use of A3 receptor agonist IB-MECA attenuates EAP. Our findings suggest that stimulation of adenosine A3 receptors plays a positive role in the sodium taurocholate-induced EAP in rats.

  6. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain (United States)



    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  7. Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations. (United States)

    Mlejnek, Petr; Dolezel, Petr; Frydrych, Ivo


    The question as to whether A3 adenosine receptor (A3AR) agonists, N (6)-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.

  8. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity. (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert


    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.

  9. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J


    BACKGROUND: Guidelines recommend the use of adenosine diphosphate receptor inhibitor (ADPri) therapy for 1 year postacute myocardial infarction; yet, early cessation of therapy occurs frequently in clinical practice. METHODS AND RESULTS: We examined 11 858 acute myocardial infarction patients tre...... adverse cardiovascular event risk. CLINICAL TRIAL REGISTRATION: URL: Unique identifier: NCT01088503....

  10. Effects of IL-4 and IL-13 on adenosine receptor expression and responsiveness of the human mast cell line 1

    NARCIS (Netherlands)

    Versluis, Mieke; Postma, Dirkje S.; Timens, Wim; Hylkema, Machteld N.


    Background: Inhalation of adenosine-5'-monophosphate (AMP) causes bronchoconstriction in asthma but not in healthy subjects. Bronchoconstriction upon AMP inhalation is thought to occur by histamine release and subsequent binding to receptors on airway smooth muscle cells. Methods: To explain enhance

  11. Adenosine A(2A receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Masahiro Mishina

    Full Text Available Adenosine A(2A receptors (A2ARs are thought to interact negatively with the dopamine D(2 receptor (D2R, so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD. However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET with [7-methyl-(11C]-(E-8-(3,4,5-trimethoxystyryl-1,3,7-trimethylxanthine ([(11C]TMSX in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test. In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test. In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an

  12. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding

    DEFF Research Database (Denmark)

    Hansen, Mathilde Johanne Kaas; Olsen, Johan Gotthardt; Bernichtein, Sophie;


    H than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ~6.8 making histidine residues obvious candidates for examination....... From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity...... and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure...

  13. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana


    by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor....... These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion....

  14. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. (United States)

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz


    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  15. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia


    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  16. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo;


    be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor......The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly...

  17. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    Miguel Muñoz; Rafael Coveñas; Francisco Esteban; Maximino Redondo


    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, which are involved in their viability. This overexpression suggests the possibility of specific treatment against tumour cells using NK-1 receptor antagonists, thus promoting a considerable decrease in the side effects of the treatment. This strategy opens up new approaches for cancer treatment, since these antagonists, after binding to their molecular target, induce the death of tumour cells by apoptosis, exert an antiangiogenic action and inhibit the migration of tumour cells. The use of NK-1 receptor antagonists such as aprepitant (used in clinical practice) as antitumour agents could be a promising innovation. The value of aprepitant as an antitumour agent could be determined faster than for less well-known compounds because many studies addressing its safety and characterization have already been completed. The NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific drugs against tumour cells; and these antagonists could be new candidate anti-cancer drugs.

  18. Iontophoresis of endothelin receptor antagonists in rats and men.

    Directory of Open Access Journals (Sweden)

    Matthieu Roustit

    Full Text Available INTRODUCTION: The treatment of scleroderma-related digital ulcers is challenging. The oral endothelin receptor antagonist (ERA bosentan has been approved but it may induce liver toxicity. The objective of this study was to test whether ERAs bosentan and sitaxentan could be locally delivered using iontophoresis. METHODS: Cathodal and anodal iontophoresis of bosentan and sitaxentan were performed on anaesthetized rat hindquarters without and during endothelin-1 infusion. Skin blood flow was quantified using laser-Doppler imaging and cutaneous tolerability was assessed. Iontophoresis of sitaxentan (20 min, 20 or 100 µA was subsequently performed on the forearm skin of healthy men (n = 5. RESULTS: In rats neither bosentan nor sitaxentan increased skin blood flux compared to NaCl. When simultaneously infusing endothelin-1, cathodal iontophoresis of sitaxentan increased skin blood flux compared to NaCl (AUC(0-20 were 44032.2 ± 12277 and 14957.5 ± 23818.8 %BL.s, respectively; P = 0.01. In humans, sitaxentan did not significantly increase skin blood flux as compared to NaCl. Iontophoresis of ERAs was well tolerated both in animals and humans. CONCLUSIONS: This study shows that cathodal iontophoresis of sitaxentan but not bosentan partially reverses endothelin-induced skin vasoconstriction in rats, suggesting that sitaxentan diffuses into the dermis. However, sitaxentan does not influence basal skin microvascular tone in rats or in humans.

  19. Mineralocorticoid Receptor Antagonists for Treatment of Hypertension and Heart Failure. (United States)

    Sica, Domenic A


    Spironolactone and eplerenone are both mineralocorticoid-receptor antagonists. These compounds block both the epithelial and nonepithelial actions of aldosterone, with the latter assuming increasing clinical relevance. Spironolactone and eplerenone both affect reductions in blood pressure either as mono- or add-on therapy; moreover, they each afford survival benefits in diverse circumstances of heart failure and the probability of renal protection in proteinuric chronic kidney disease. However, as use of mineralocorticoid-blocking agents has expanded, the hazards inherent in taking such drugs have become more apparent. Whereas the endocrine side effects of spironolactone are in most cases little more than a cosmetic annoyance, the potassium-sparing effects of both spironolactone and eplerenone can prove disastrous, even fatal, if sufficient degrees of hyperkalemia emerge. For most patients, however, the risk of developing hyperkalemia in and of itself should not discourage the sensible clinician from bringing these compounds into play. Hyperkalemia should always be considered a possibility in patients receiving either of these medications; therefore, anticipatory steps should be taken to minimize the likelihood of its occurrence if long-term therapy of these agents is being considered.

  20. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie


    In the present experiments we examined the renovascular constrictor effects of ANG II in the chronic and complete absence of A1 adenosine receptors (A1AR) using mice with targeted deletion of the A1AR gene. Glomerular filtration rate (GFR) was not different between A1AR +/+ and A1AR -/- mice under...... and increased renal vascular resistance significantly more in A1AR +/+ than in A1AR -/- mice. Perfused afferent arterioles isolated from A1AR +/+ mice constricted in response to bath ANG II with an EC50 of 1.5 +/- 0.4 x 10(-10) mol/l, whereas a right shift in the dose-response relationship with an EC50 of 7.......3 +/- 1.2 x 10(-10) mol/l (P resistance...

  1. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. (United States)

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P


    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  2. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery. (United States)

    Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal


    Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction.

  3. Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. (United States)

    Duarte, Filipe V; Amorim, João A; Varela, Ana T; Teodoro, João S; Gomes, Ana P; Cunha, Rodrigo A; Palmeira, Carlos M; Rolo, Anabela P


    Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser(9) GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser(9)-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.

  4. Activation of adenosine receptor potentiates the anticonvulsant effect of phenytoin against amygdala kindled seizures. (United States)

    Sun, Zhen; Zhong, Xiao-Ling; Zong, Yu; Wu, Zhong-Chen; Zhang, Qun; Yu, Jin-Tai; Tan, Lan


    Drug resistance in epilepsy is considered as a complicated and multifactorial problem. Poor penetration of antiepileptic drugs (AEDs) across blood-brain barrier (BBB) into the brain, which results in insufficient level of the drugs at the targeted brain region, has been discussed as one mechanism contributing to pharmacoresistance of epilepsies. Therefore, modulating permeability of BBB is the effective treatment strategy since it facilitates the entry of AEDs into the central nervous system (CNS). Recently, signaling through receptors for the adenosine has been identified as a potent modulator of BBB permeability. This paper aimed to investigate the effects of auxiliary application of adenosine receptor (AR) agonist on amygdala-kindled seizures in adult male Wistar rats. When fully kindled seizures were achieved by daily electrical stimulation of the amygdala, rats were randomly divided into three groups: control, phenytoin, and phenytoin (PHT)+5'-N-ethylcarboxamidoadenosine (NECA) groups. NECA (0.08 mg/kg, i.v.) was applied to the PHT+NECA group after the administration of PHT (75 mg/kg, i.p. on the first day; 50mg/kg, i.p. on the following 9 days). Intravenous infusion of NECA resulted in a significant increase in brain PHT levels as compared with the PHT treatment alone. On the other hand, the auxiliary application of NECA dramatically decreased the frequency of generalized seizures and seizure stage, shortened duration of afterdischarge and generalized seizures, as well as the elevated the afterdischarge threshold and generalized seizures threshold. Our study demonstrated that auxiliary application of AR agonist enhanced brain antiepileptic drug levels and strengthened the anticonvulsant properties of PHT against amygdala kindled seizures.

  5. Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates

    Directory of Open Access Journals (Sweden)

    Shainberg Asher


    Full Text Available Abstract Background An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs was recently introduced. Results A known adenosine receptor (AR agonist was conjugated to polyamidoamine (PAMAM dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethylamino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase was maintaining a free amino group (secondary in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor. Conclusion This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR

  6. New generic approach to the treatment of organophosphate poisoning : Adenosine receptor mediated inhibition of ACh-release

    NARCIS (Netherlands)

    van Helden, HPM; Moor, E; Westerink, BHC; Bruijnzeel, PLB


    Current treatment of acute organophosphate (OP) poisoning includes a combined administration of a cholinesterase reactivator (oxime), a muscarinic receptor antagonist (atropine) and an anticonvulsant (diazepam). This treatment is not adequate since it does not prevent neuronal brain damage and incap

  7. Evaluation of H2 receptor antagonists in chronic idiopathic urticaria

    Directory of Open Access Journals (Sweden)

    Minocha Y


    Full Text Available H1-antagonist (hydroxyzine hydrochloride in dosage of 10 mg-25 mg thrice a day failed to elicit satisfactory response in 60 out of 170 patients of chronic idiopathic urticaria. Additional administration of H2-antagonist (cimetidine in dosage of 200 mg four times a day, in patients not responding earlier to H1-antagonist alones exhibited moderate to good improvement of various parameters of urticaria in approximately 85% patients

  8. The NK1 receptor antagonist L822429 reduces heroin reinforcement. (United States)

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus


    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects.

  9. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven


    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors.

  10. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. (United States)

    Löscher, W


    It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of

  11. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation

    Directory of Open Access Journals (Sweden)

    Jianping eZhang


    Full Text Available Adenosine A2A receptors (A2ARs in the nucleus accumbens (Acb have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV encoding humanized Renilla green fluorescent protein (hrGFP as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC and shell (AcbSh of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.

  12. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.


    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  13. Stimulation of NTS A1 adenosine receptors evokes counteracting effects on hindlimb vasculature. (United States)

    McClure, Joseph M; O'Leary, Donal S; Scislo, Tadeusz J


    Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the

  14. Therapeutic potential of CRF receptor antagonists: a gut-brain perspective. (United States)

    Heinrichs, S C; Taché, Y


    Activation of the corticotropin-releasing factor (CRF) family of neuropeptide receptors in the brain and periphery appears to mediate stress-related changes in a variety of physiological and functional domains. Comparative pharmacology of CRF receptor agonists suggests that CRF, urocortin, sauvagine and urotensin consistently mimic, and conversely peptide CRF receptor antagonists lessen, the functional consequences of stressor exposure. Together with the development of novel non-peptide CRF receptor antagonists, a growing number of CRF receptor selective ligands are available to elucidate the neurobiology and physiological role of CRF systems. The present review considers available preclinical evidence as well as results from one Phase II clinical trial which address the hypothesis that CRF receptor antagonists may represent a new option for pharmacotherapy of stress-related disorders.

  15. The discovery of the benzazepine class of histamine H3 receptor antagonists. (United States)

    Wilson, David M; Apps, James; Bailey, Nicholas; Bamford, Mark J; Beresford, Isabel J; Briggs, Michael A; Calver, Andrew R; Crook, Barry; Davis, Robert P; Davis, Susannah; Dean, David K; Harris, Leanne; Heightman, Tom D; Panchal, Terry; Parr, Christopher A; Quashie, Nigel; Steadman, Jon G A; Schogger, Joanne; Sehmi, Sanjeet S; Stean, Tania O; Takle, Andrew K; Trail, Brenda K; White, Trevor; Witherington, Jason; Worby, Angela; Medhurst, Andrew D


    This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties.

  16. PET imaging to measure therapy-related occupancy and disease-induced changes of expression of adenosine A1 receptors in the rodent brain

    NARCIS (Netherlands)

    Paul, Souman


    Rol van adenosine A1 receptor in de vroege fase van encefalitis Adenosine A1 receptoren (A1R) spelen een belangrijke rol bij de bescherming van hersencellen tijdens de vroege fase van hersenontsteking (encefalitis) bij ratten en mogelijk ook bij mensen. Dat concludeert Souman Paul in zijn proefschri

  17. Update on leukotriene receptor antagonists in preschool children wheezing disorders

    Directory of Open Access Journals (Sweden)

    Montella Silvia


    Full Text Available Abstract Asthma is the most common chronic disease in young children. About 40% of all preschool children regularly wheeze during common cold infections. The heterogeneity of wheezing phenotypes early in life and various anatomical and emotional factors unique to young children present significant challenges in the clinical management of this problem. Anti-inflammatory therapy, mainly consisting of inhaled corticosteroids (ICS, is the cornerstone of asthma management. Since Leukotrienes (LTs are chemical mediators of airway inflammation in asthma, the leukotriene receptor antagonists (LTRAs are traditionally used as potent anti-inflammatory drugs in the long-term treatment of asthma in adults, adolescents, and school-age children. In particular, montelukast decreases airway inflammation, and has also a bronchoprotective effect. The main guidelines on asthma management have confirmed the clinical utility of LTRAs in children older than five years. In the present review we describe the most recent advances on the use of LTRAs in the treatment of preschool wheezing disorders. LTRAs are effective in young children with virus-induced wheeze and with multiple-trigger disease. Conflicting data do not allow to reach definitive conclusions on LTRAs efficacy in bronchiolitis or post-bronchiolitis wheeze, and in acute asthma. The excellent safety profile of montelukast and the possibility of oral administration, that entails better compliance from young children, represent the main strengths of its use in preschool children. Montelukast is a valid alternative to ICS especially in poorly compliant preschool children, or in subjects who show adverse effects related to long-term steroid therapy.

  18. Endothelin receptor antagonist and airway dysfunction in pulmonary arterial hypertension

    Directory of Open Access Journals (Sweden)

    Borst Mathias M


    Full Text Available Abstract Background In idiopathic pulmonary arterial hypertension (IPAH, peripheral airway obstruction is frequent. This is partially attributed to the mediator dysbalance, particularly an excess of endothelin-1 (ET-1, to increased pulmonary vascular and airway tonus and to local inflammation. Bosentan (ET-1 receptor antagonist improves pulmonary hemodynamics, exercise limitation, and disease severity in IPAH. We hypothesized that bosentan might affect airway obstruction. Methods In 32 IPAH-patients (19 female, WHO functional class II (n = 10, III (n = 22; (data presented as mean ± standard deviation pulmonary vascular resistance (11 ± 5 Wood units, lung function, 6 minute walk test (6-MWT; 364 ± 363.7 (range 179.0-627.0 m, systolic pulmonary artery pressure, sPAP, 79 ± 19 mmHg, and NT-proBNP serum levels (1427 ± 2162.7 (range 59.3-10342.0 ng/L were measured at baseline, after 3 and 12 months of oral bosentan (125 mg twice per day. Results and Discussion At baseline, maximal expiratory flow at 50 and 25% vital capacity were reduced to 65 ± 25 and 45 ± 24% predicted. Total lung capacity was 95.6 ± 12.5% predicted and residual volume was 109 ± 21.4% predicted. During 3 and 12 months of treatment, 6-MWT increased by 32 ± 19 and 53 ± 69 m, respectively; p Conclusion This study gives first evidence in IPAH, that during long-term bosentan, improvement of hemodynamics, functional parameters or serum biomarker occur independently from persisting peripheral airway obstruction.

  19. Discovery of antagonists of tick dopamine receptors via chemical library screening and comparative pharmacological analyses. (United States)

    Ejendal, Karin F K; Meyer, Jason M; Brust, Tarsis F; Avramova, Larisa V; Hill, Catherine A; Watts, Val J


    Ticks transmit a wide variety of disease causing pathogens to humans and animals. Considering the global health impact of tick-borne diseases, there is a pressing need to develop new methods for vector control. We are exploring arthropod dopamine receptors as novel targets for insecticide/acaricide development because of their integral roles in neurobiology. Herein, we developed a screening assay for dopamine receptor antagonists to further characterize the pharmacological properties of the two D₁-like dopamine receptors (Isdop1 and Isdop2) identified in the Lyme disease vector, Ixodes scapularis, and develop a screening assay for receptor antagonists. A cell-based, cyclic AMP luciferase reporter assay platform was implemented to screen the LOPAC(1280) small molecule library for Isdop2 receptor antagonists, representing the first reported chemical library screen for any tick G protein-coupled receptor. Screening resulted in the identification of 85 "hit" compounds with antagonist activity at the Isdop2 receptor. Eight of these chemistries were selected for confirmation assays using a direct measurement of cAMP, and the effects on both Isdop1 and Isdop2 were studied for comparison. Each of these eight compounds showed antagonistic activity at both Isdop1 and Isdop2, although differences were observed regarding their relative potencies. Furthermore, comparison of the pharmacological properties of the tick dopamine receptors with that of the AaDOP2 receptor from the yellow fever mosquito and the human dopamine D₁ receptor (hD₁) revealed species-specific pharmacological profiles of these receptors. Compounds influencing dopaminergic functioning, such as the dopamine receptor antagonists discovered here, may provide lead chemistries for discovery of novel acaricides useful for vector control

  20. Adenosine A1 receptor-mediated inhibition of in vitro prolactin secretion from the rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    D.L.W. Picanço-Diniz


    Full Text Available In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R-N6-(2-phenylisopropyladenosine (R-PIA at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w. treatment compared to control (264.56 ± 15.46 ng/mg t.w.. R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w. of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w., whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w. and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w. with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively. Similarly, R-PIA (0.01 µM decreased (242.00 ± 24.00 ng/mg t.w. the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.. In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w. on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.. These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.

  1. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B


    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  2. Discovery of 2-substituted benzoxazole carboxamides as 5-HT3 receptor antagonists. (United States)

    Yang, Zhicai; Fairfax, David J; Maeng, Jun-Ho; Masih, Liaqat; Usyatinsky, Alexander; Hassler, Carla; Isaacson, Soshanna; Fitzpatrick, Kevin; DeOrazio, Russell J; Chen, Jianqing; Harding, James P; Isherwood, Matthew; Dobritsa, Svetlana; Christensen, Kevin L; Wierschke, Jonathan D; Bliss, Brian I; Peterson, Lisa H; Beer, Cathy M; Cioffi, Christopher; Lynch, Michael; Rennells, W Martin; Richards, Justin J; Rust, Timothy; Khmelnitsky, Yuri L; Cohen, Marlene L; Manning, David D


    A new class of 2-substituted benzoxazole carboxamides are presented as potent functional 5-HT(3) receptor antagonists. The chemical series possesses nanomolar in vitro activity against human 5-HT(3)A receptors. A chemistry optimization program was conducted and identified 2-aminobenzoxazoles as orally active 5-HT(3) receptor antagonists with good metabolic stability. These novel analogues possess drug-like characteristics and have potential utility for the treatment of diseases attributable to improper 5-HT(3) receptor function, especially diarrhea predominant irritable bowel syndrome (IBS-D).

  3. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice. (United States)

    Lee, Jennifer; Martin, Elizabeth; Paulino, Gabriel; de Lartigue, Guillaume; Raybould, Helen E


    Vagal afferent neurons (VAN) express the cholecystokinin (CCK) type 1 receptor (CCK₁R) and, as predicted by the role of CCK in inducing satiation, CCK₁R⁻/⁻ mice ingest larger and longer meals. However, after a short fast, CCK₁R⁻/⁻ mice ingesting high fat (HF) diets initiate feeding earlier than wild-type mice. We hypothesized that the increased drive to eat in CCK₁R⁻/⁻ mice eating HF diet is mediated by ghrelin, a gut peptide that stimulates food intake. The decrease in time to first meal, and the increase in meal size and duration in CCK₁R⁻/⁻ compared to wild-type mice ingesting high fat (HF) diet were reversed by administration of GHSR1a antagonist D-(Lys3)-GHRP-6 (p<0.05). Administration of the GHSR1a antagonist significantly increased expression of the neuropeptide cocaine and amphetamine-regulated transcript (CART) in VAN of HF-fed CCK₁R⁻/⁻ but not wild-type mice. Administration of the GHSR1a antagonist decreased neuronal activity measured by immunoreactivity for fos protein in the nucleus of the solitary tract (NTS) and the arcuate nucleus of both HF-fed wild-type and CCK₁R⁻/⁻ mice. The data show that hyperphagia in CCK₁R⁻/⁻ mice ingesting HF diet is reversed by blockade of the ghrelin receptor, suggesting that in the absence of the CCK₁R, there is an increased ghrelin-dependent drive to feed. The site of action of ghrelin receptors is unclear, but may involve an increase in expression of CART peptide in VAN in HF-fed CCK₁R⁻/⁻ mice.

  4. [Comparative pharmacophore analysis of dual dopamine D2/5-HT(2A) receptor antagonists]. (United States)

    Guo, Yan-shen; Guo, Zong-ru


    Dual dopamine D2/5-HT2A receptor antagonists have potent activity and are referred to atypical antipsychotics due to their lower propensity to elicit EPS and their moderate efficacy toward negative symptoms. However, an on-going challenge in developing atypical antipsychotics drugs is to maintain the favorable profiles and avoid of cardiovascular risk. In this paper, comparative pharmacophore analysis of dual dopamine D2/5-HT2A receptor antagonists, hERG K+ channel blockers, and alA adrenoceptor antagonists is carried out, and the results could give some insight into multi-target drug design.

  5. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. (United States)

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia


    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  6. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen


    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  7. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, E


    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A{sub 1} and A{sub 2A} adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A{sub 1} receptor (A{sub 1}AR) in the modulation of vigilance states. The A{sub 1}AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A{sub 1}AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A{sub 2A} adenosine receptor (A{sub 2A}AR) is also assumed. The distinct functions of the A{sub 1} and A{sub 2A} receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A{sub 1} receptor antagonist, 8-cyclopentyl-3-(3-{sup 18}Ffluoropropyl)- 1-propylxanthine ({sup 18}F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A{sub 1}AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A{sub 1} receptors in human sleep regulation, combining {sup 18}F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A{sub 1}AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered {sup 18}F-CPFPX binding. Moreover, it was

  8. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.


    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  9. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway. (United States)

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi


    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  10. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang


    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  11. P2X7 receptor antagonists protect against N-methyl-D-aspartic acid-induced neuronal injury in the rat retina. (United States)

    Sakamoto, Kenji; Endo, Kanako; Suzuki, Taishi; Fujimura, Kyosuke; Kurauchi, Yuki; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio


    Activation of N-methyl-d-aspartic acid (NMDA) receptors followed by a large Ca(2+) influx is thought to be a mechanism of glaucoma-induced neuronal cell death. It is possible that damage-associated molecular patterns leak from injured cells, such as adenosine triphosphate, causing retinal ganglion cell death in glaucoma. In the present study, we histologically investigated whether antagonists of the P2X7 receptor protected against NMDA-induced retinal injury in the rat in vivo. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA. We used A438079 (3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine) and brilliant blue G as P2X7 receptor antagonists. Upon morphometric evaluation 7 days after an intravitreal injection (200 nmol/eye), NMDA-induced cell loss was apparent in the ganglion cell layer. Intravitreal A438079 (50 pmol/eye) simultaneously injected with NMDA and intraperitoneal brilliant blue G (50 mg/kg) administered just before the NMDA injection as well as 24 and 48h after significantly reduced cell loss. In addition, A438079 decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells 12h after NMDA injection. P2X7 receptors were immunolocalized in the ganglion cell layer and the inner and outer plexiform layers, whereas the immunopositive P2X7 receptor signal was not detected on the Iba1-positive microglial cells that infiltrated the retina 12h after NMDA injection. The present study shows that stimulation of the P2X7 receptor is involved in NMDA-induced histological damage in the rat retina in vivo. P2X7 receptor antagonists may be effective in preventing retinal diseases caused by glutamate excitotoxicity, such as glaucoma and retinal artery occlusion.

  12. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.;


    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21 to t...

  13. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator. (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N


    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.



    Vincenzi, Fabrizio


    Several studies have suggested the possible involvement of A2A adenosine receptors in the pathogenesis of neuronal disorders, including Huntington’s disease. Huntington’s disease is an inherited neurodegenerative disease clinically characterized by motor, cognitive and behavioural impairments. The genetic cause of the disease is the expanded CAG triplet in a gene coding for huntingtin, a protein involved in several physiological processes. Huntington’s disease affects primarly ...

  15. Effects of caffeine on behavioral and inflammatory changes elicited by copper in zebrafish larvae: Role of adenosine receptors. (United States)

    Cruz, Fernanda Fernandes; Leite, Carlos Eduardo; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros; Bogo, Maurício Reis; Bonan, Carla Denise; Campos, Maria Martha; Morrone, Fernanda Bueno


    This study investigated the effects of caffeine in the behavioral and inflammatory alterations caused by copper in zebrafish larvae, attempting to correlate these changes with the modulation of adenosine receptors. To perform a survival curve, 7dpf larvae were exposed to 10μM CuSO4, combined to different concentrations of caffeine (100μM, 500μM and 1mM) for up to 24h. The treatment with copper showed lower survival rates only when combined with 500μM and 1mM of caffeine. We selected 4 and 24h as treatment time-points. The behavior evaluation was done by analyzing the traveled distance, the number of entries in the center, and the length of permanence in the center and the periphery of the well. The exposure to 10μM CuSO4 plus 500μM caffeine at 4 and 24h changed the behavioral parameters. To study the inflammatory effects of caffeine, we assessed the PGE2 levels by using UHPLC-MS/MS, and TNF, COX-2, IL-6 and IL-10 gene expression by RT-qPCR. The expression of adenosine receptors was also evaluated with RT-qPCR. When combined to copper, caffeine altered inflammatory markers depending on the time of exposure. Adenosine receptors expression was significantly increased, especially after 4h exposure to copper and caffeine together or separately. Our results demonstrated that caffeine enhances the inflammation induced by copper by decreasing animal survival, altering inflammatory markers and promoting behavioral changes in zebrafish larvae. We also conclude that alterations in adenosine receptors are related to those effects.

  16. Bicyclic and tricyclic heterocycle derivatives as histamine H3 receptor antagonists for the treatment of obesity. (United States)

    de Lera Ruiz, Manuel; Zheng, Junying; Berlin, Michael Y; McCormick, Kevin D; Aslanian, Robert G; West, Robert; Hwa, Joyce; Lachowicz, Jean; van Heek, Margaret


    A novel series of non-imidazole bicyclic and tricyclic histamine H3 receptor antagonists has been discovered. Compound 17 was identified as a centrally penetrant molecule with high receptor occupancy which demonstrates robust oral activity in rodent models of obesity. In addition compound 17 possesses clean CYP and hERG profiles and shows no behavioral changes in the Irwin test.

  17. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Edvinsson, Lars


    synapses CGRP results in vasodilatation via receptors on the smooth muscle cells. At central synapses, CGRP acts postjunctionally on second-order neurons to transmit pain centrally via the brainstem and midbrain to higher cortical pain regions. The recently developed CGRP-receptor antagonists have...

  18. Pyrrolidin-3-yl-N-methylbenzamides as potent histamine 3 receptor antagonists. (United States)

    Zhou, Dahui; Gross, Jonathan L; Sze, Jean Y; Adedoyin, Adedayo B; Bowlby, Mark; Di, Li; Platt, Brian J; Zhang, Guoming; Brandon, Nicholas; Comery, Thomas A; Robichaud, Albert J


    On the basis of the previously reported benzimidazole 1,3'-bipyrrolidine benzamides (1), a series of related pyrrolidin-3-yl-N-methylbenzamides were synthesized and evaluated as H(3) receptor antagonists. In particular, compound 32 exhibits potent H(3) receptor binding affinity, improved pharmaceutical properties and a favorable in vivo profile.

  19. Montelukast, a leukotriene receptor antagonist, modulates lung CysLT1

    Institute of Scientific and Technical Information of China (English)

    ZHANGYan-Jun; ZHANGLei; WANGShao-Bin; SHENHua-Hao; WEIEr-Qing


    AIM: To determine the expressions of cysteinyl leukotriene receptors, CysLT, and CysLT2 , in airway eosinophilic inflammation of OVA-induced asthmatic mice and the modulation by montelukast, a CysLT1 receptor antagonist. METHODS: Asthma model was induced by chronic exposure to ovalbumin (OVA) in C57BL/6 mice. The eosinophils in

  20. NSC23766, a widely used inhibitor of Rac1 activation, additionally acts as a competitive antagonist at muscarinic acetylcholine receptors. (United States)

    Levay, Magdolna; Krobert, Kurt Allen; Wittig, Karola; Voigt, Niels; Bermudez, Marcel; Wolber, Gerhard; Dobrev, Dobromir; Levy, Finn Olav; Wieland, Thomas


    Small molecules interfering with Rac1 activation are considered as potential drugs and are already studied in animal models. A widely used inhibitor without reported attenuation of RhoA activity is NSC23766 [(N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride]. We found that NSC23766 inhibits the M2 muscarinic acetylcholine receptor (M2 mAChR)-induced Rac1 activation in neonatal rat cardiac myocytes. Surprisingly, NSC27366 concomitantly suppressed the carbachol-induced RhoA activation and a M2 mAChR-induced inotropic response in isolated neonatal rat hearts requiring the activation of Rho-dependent kinases. We therefore aimed to identify the mechanisms by which NSC23766 interferes with the differentially mediated, M2 mAChR-induced responses. Interestingly, NSC23766 caused a rightward shift of the carbachol concentration response curve for the positive inotropic response without modifying carbachol efficacy. To analyze the specificity of NSC23766, we compared the carbachol and the similarly Giβγ-mediated, adenosine-induced activation of Gi protein-regulated potassium channel (GIRK) channels in human atrial myocytes. Application of NSC23766 blocked the carbachol-induced K(+) current but had no effect on the adenosine-induced GIRK current. Similarly, an adenosine A1 receptor-induced positive inotropic response in neonatal rat hearts was not attenuated by NSC23766. To investigate its specificity toward the different mAChR types, we studied the carbachol-induced elevation of intracellular Ca(2+) concentrations in human embryonic kidney 293 (HEK-293) cells expressing M1, M2, or M3 mAChRs. NSC23766 caused a concentration-dependent rightward shift of the carbachol concentration response curves at all mAChRs. Thus, NSC23766 is not only an inhibitor of Rac1 activation, but it is within the same concentration range a competitive antagonist at mAChRs. Molecular docking analysis at M2 and M3 mAChR crystal

  1. Synthesis and Biological Evaluation of Substituted Desloratadines as Potent Arginine Vasopressin V2 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Shuai Mu


    Full Text Available Twenty-one non-peptide substituted desloratadine class compounds were synthesized as novel arginine vasopressin receptor antagonists from desloratadine via successive acylation, reduction and acylation reactions. Their structures were characterized by 1H-NMR and HRMS, their biological activity was evaluated by in vitro and in vivo studies. The in vitro binding assay and cAMP accumulation assay indicated that these compounds are potent selective V2 receptor antagonists. Among them compounds 1n, 1t and 1v exhibited both high affinity and promising selectivity for V2 receptors. The in vivo diuretic assay demonstrated that 1t presented remarkable diuretic activity. In conclusion, 1t is a potent novel AVP V2 receptor antagonist candidate.

  2. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin


    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  3. Anti free radical action of calcium antagonists and H1 and H2 receptors antagonists in neoplastic disease. (United States)

    della Rovere, F; Broccio, M; Granata, A; Zirilli, A; Brugnano, L; Artemisia, A; Broccio, G


    The blood of the subjects suffering from Neoplastic Disease (ND) shows phenomena of membrane peroxidation due to the presence of Free Radicals (FRs), in a quantity much greater than the one observed in the blood of healthy subjects. This can be detected either by calculating the time necessary for the formation of "Heinz bodies" (Hbs), (p < 0.00001) after oxidative stress of the blood in vitro with acetylphenylidrazine (APH), or by calculating the methemoglobin (metHb) quantity that forms after the same treatment (P < 0.00001). The statistical analyses we carried out showed that metHb formation was not affected by age, sex, smoking habits, red blood cell number, Hb, Ht or tumor staging. In this study, by using equal parameters of investigation, we noted that the blood of the subjects with ND who were previously treated with calcium-antagonists drugs and with antagonists of H1 and H2 receptors, gave results completely superimposable on the results obtained from healthy subjects, implying that the treatment had avoided the increase of FRs. Therefore we concluded that calcium-antagonists and the antagonists of the H1 and H2 receptors behave as antioxidant substances, having decreased the FRs damaging activity on the cellular membranes, thus controlling, although to a limited degree, the pejorative evolution of the disease. It is also important to remember that investigations into the ND, even possible screenings, must take into account the above said data, submitting the subjects under investigation to a pharmacological wash out, particularly with those substances which, are considered to be scavengers of FRs. Some of these substances are investigated in this work.


    NARCIS (Netherlands)



    Muscarinic receptor antagonists were used to study prejunctional M2 and postjunctional M3 receptors in the isolated guinea pig trachea. The effects of four M2-selective muscarinic receptor antagonists (gallamine, methoctramine, AQ-RA 741 and AF-DX 116) were studied on twitch contractions, elicited b

  5. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. (United States)

    Moulton, Bart C; Fryer, Allison D


    In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective β-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease.

  6. Maternal caffeine intake during gestation and lactation down-regulates adenosine A1 receptor in rat brain from mothers and neonates. (United States)

    Lorenzo, A M; León, D; Castillo, C A; Ruiz, M A; Albasanz, J L; Martín, M


    Even though caffeine can be excreted in breast milk, few studies have analyzed the effect of maternal caffeine consumption during lactation on neonatal brain. In the present work pregnant rats were treated daily with 1 g/L of caffeine in their drinking water during pregnancy and/or lactation and the effect on adenosine A(1) receptor in brains from both lactating mothers and 15 days-old neonates was assayed using radioligand binding and real time PCR assays. Mothers receiving caffeine during gestational period developed motor activation in gestational days 8-10 which was associated with a significant decrease of total adenosine A(1) receptor number (84%). A similar decrease was detected in mothers treated with caffeine during lactation (76%) and throughout gestation and lactation (73%); this was accompanied by a significant decrease in mRNA level coding adenosine A(1) receptor (28%). In male neonates, adenosine A(1) receptor was also decreased after chronic caffeine exposure during gestation (80%), lactation (76%) and gestation plus lactation (80%). In female neonates, adenosine A(1) receptor tended to decrease in response to caffeine exposure although no significant variations were found. No variation in the level of mRNA coding adenosine A(1) receptor was detected in neonates in any case. Concerning adenosine A(2A) receptor, radioligand binding assays revealed that this receptor remains unaltered in maternal and neonatal brain in response to caffeine exposure. However, caffeine consumption during gestation and lactation evoked a significant decrease in mRNA level coding A(2A) receptor (32%) in mothers' brain.

  7. Predictions of in vivo prolactin levels from in vitro k I values of d 2 receptor antagonists using an agonist-antagonist interaction model

    NARCIS (Netherlands)

    Petersson, K.J.; Vermeulen, A.M.J.; Friberg, L.E.


    Prolactin elevation is a side effect of all currently available D2 receptor antagonists used in the treatment of schizophrenia. Prolactin elevation is the result of a direct antagonistic D2 effect blocking the tonic inhibition of prolactin release by dopamine. The aims of this work were to assess th

  8. Effects of H1–receptor antagonists in antidepressant tests in rats


    Chitra C. Khanwelkar


    : Considering the vast data suggesting the role of brain histamine(HA) in behaviour,emotions,anxiety and depression;four H1-receptor antagonists; promethazine, diphenhydramine, cyclizine and pheniramine were subjected to antidepressant tests in rats. All H1 – antagonists behaved like antidepressants in animal tests. They antagonized reserpine induced catalepsy, potentiated methamphetamine induced stereotypy and reduced the period of immobility in Porsolt’s behavioural despair test. It is sug...

  9. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. (United States)

    Kleppisch, T; Nelson, M T


    The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels. PMID:8618917

  10. Neurokinin-1 receptor antagonists as antitumor drugs in gastrointestinal cancer: A new approach

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz


    Full Text Available Gastrointestinal (GI cancer is the term for a group of cancers affecting the digestive system. After binding to the neurokinin-1 (NK-1 receptor, the undecapeptide substance P (SP regulates GI cancer cell proliferation and migration for invasion and metastasis, and controls endothelial cell proliferation for angiogenesis. SP also exerts an antiapoptotic effect. Both SP and the NK-1 receptor are located in GI tumor cells, the NK-1 receptor being overexpressed. By contrast, after binding to the NK-1 receptor, NK-1 receptor antagonists elicit the inhibition (epidermal growth factor receptor inhibition of the proliferation of GI cancer cells in a concentration-dependent manner, induce the death of GI cancer cells by apoptosis, counteract the Warburg effect, inhibit cancer cell migration (counteracting invasion and metastasis, and inhibit angiogenesis (vascular endothelial growth factor inhibition. NK-1 receptor antagonists are safe and well tolerated. Thus, the NK-1 receptor could be considered as a new target in GI cancer and NK-1 receptor antagonists (eg, aprepitant could be a new promising approach for the treatment of GI cancer.

  11. Kinetic properties of 'dual' orexin receptor antagonists at OX1R and OX2R orexin receptors.

    Directory of Open Access Journals (Sweden)

    Gabrielle Elizabeth Callander


    Full Text Available Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various ‘dual’ orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S-N-([1,1'-biphenyl]-2-yl-1-(2-((1-methyl-1H-benzo[d]imidazol-2-ylthioacetylpyrrolidine-2-carboxamide. In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-ylmethyl-9-(4-methoxypyrimidin-2-yl-2,9-diazaspiro[5.5]undecan-1-one bind rapidly and reach equilibrium very quickly in both binding and / or functional assays. Overall, the dual antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the dual antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.

  12. Orexin 1 receptor antagonists in compulsive behaviour and anxiety: possible therapeutic use.

    Directory of Open Access Journals (Sweden)

    Emilio eMerlo-Pich


    Full Text Available Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were early on associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders, in this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1 antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioural and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed.

  13. Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. (United States)

    Bowmer, C. J.; Collis, M. G.; Yates, M. S.


    8-Phenyltheophylline (8-PT)(10 mg kg-1) or its vehicle(1 ml kg-1) were administered intravenously or intraperitoneally twice daily over 48 h to rats with acute renal failure (ARF) induced by intramuscular (i.m.) injection of glycerol. Rats treated with 8-PT i.v. had significantly lower plasma urea and creatinine levels at 24 and 48 h compared to untreated animals. The vehicle also reduced plasma urea and creatinine when compared to untreated controls. However, plasma urea levels in 8-PT-treated rats were significantly lower than in vehicle-treated animals at 24 and 48 h after both i.v. and i.p. administration. Plasma creatinine concentrations also tended to be lower in the 8-PT-treated group. [3H]-inulin clearance at 48 h after i.m. glycerol was significantly greater in rats dosed i.p. with 8-PT compared to either untreated or vehicle treated rats. Examination of kidneys taken from rats 48 h after i.m. glycerol showed that 8-PT treatment significantly reduced renal damage and kidney weight compared to the untreated or vehicle-treated groups. In a 7 day study all the rats which received 8-PT i.p. survived whilst in the vehicle and untreated groups the mortality rates were 12 and 21% respectively. In a separate series of experiments 8-PT (10 mg kg-1, i.v. or i.p.) was found to antagonize adenosine-induced bradycardia in conscious rats for up to 5 h. There is no clear explanation for the partial protection afforded by the vehicle but it may be related to either its alkalinity or an osmotic effect produced by the polyethylene glycol component.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3708216

  14. Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. (United States)

    Croy, Carrie H; Chan, Wai Y; Castetter, Andrea M; Watt, Marla L; Quets, Anne T; Felder, Christian C


    Identification of synthetic ligands selective for muscarinic receptor subtypes has been challenging due to the high sequence identity and structural homology among the five muscarinic acetylcholine receptors. Here, we report the pharmacological characterization of PCS1055, a novel muscarinic M4 receptor antagonist. PCS1055 inhibited radioligand [(3)H]-NMS binding to the M4 receptor with a Ki=6.5nM. Though the potency of PCS1055 is lower than that of pan-muscarinic antagonist atropine, it has better subtype selectivity over previously reported M4-selective reagents such as the muscarinic-peptide toxins (Karlsson et al., 1994; Santiago and Potter, 2001a) at the M1 subtype, and benzoxazine ligand PD102807 at the M3-subtype (Bohme et al., 2002). A detailed head-to-head comparison study using [(3)H]-NMS competitive binding assays characterizes the selectivity profiles of PCS1055 to that of other potent muscarinic-antagonist compounds PD102807, tropicamide, AF-DX-384, pirenzapine, and atropine. In addition to binding studies, the subtype specificity of PCS1055 is also demonstrated by functional receptor activation as readout by GTP-γ-[(35)S] binding. These GTP-γ-[(35)S] binding studies showed that PCS1055 exhibited 255-, 69.1-, 342- and >1000-fold greater inhibition of Oxo-M activity at the M4 versus the M1-, M2(-), M3-or M5 receptor subtypes, respectively. Schild analyses indicates that PCS1055 acts as a competitive antagonist to muscarinic M4 receptor, and confirms the affinity of the ligand to be low nanomolar, Kb=5.72nM. Therefore, PCS1055 represents a new M4-preferring antagonist that may be useful in elucidating the roles of M4 receptor signaling.

  15. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D₃ receptor antagonists. (United States)

    Chen, Jianyong; Levant, Beth; Jiang, Cheng; Keck, Thomas M; Newman, Amy Hauck; Wang, Shaomeng


    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (K(i) = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has K(i) values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor.

  16. Adenosine A1 receptor-mediated transactivation of the EGF receptor produces a neuroprotective effect on cortical neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke-qiang XIE; Li-min ZHANG; Yan CAO; Jun ZHU; Lin-yin FENG


    Aim:To understand the mechanism of the transactivation of the epidermal growth factor receptor (EGFR) mediated by the adenosine A1 receptor (A1R).Methods:Primary cultured rat cortical neurons subjected to oxygen-glucose deprivation (OGD) and HEK293/A1R cells were treated with the A1R-specific agonist N6-cyclopentyladenosine (CPA).Phospho-EGFR,Akt,and ERK1/2 were observed by Western blot.An interaction between EGFR and AIR was detected using immunoprecipitation and immunocytochemistry.Results:The A1R agonist CPA causes protein kinase B (Akt) activation and protects primary cortical neurons from oxygen-glucose deprivation (OGD) insult.A1R and EGFR co-localize in the membranes of neurons and form an immunocomplex.A1R stimulation induces significant EGFR phosphorylation via a P13K and Src kinase signaling pathway;this stimulation provides a neuroprotective effect in cortical neurons.CPA leads to sustained phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) in cortical neurons,but only to transient phosphorylation in HEK 293/A1R cells.The response to the AtR agonist is mediated primarily through EGFR trans-activation that is dependent on pertussis toxin (PTX)-sensitive G1 protein and metalloproteases in HEK 293/A1R.Conclusion:A1R-mediated EGFR transactivation confers a neuroprotective effect in primary cortical neurons.P13 kinase and Src kinase play pivotal roles in this response.

  17. Antagonists of the human A(2A) receptor. Part 6: Further optimization of pyrimidine-4-carboxamides. (United States)

    Gillespie, Roger J; Bamford, Samantha J; Clay, Alex; Gaur, Suneel; Haymes, Tim; Jackson, Philip S; Jordan, Allan M; Klenke, Burkhard; Leonardi, Stefania; Liu, Jeanette; Mansell, Howard L; Ng, Sean; Saadi, Mona; Simmonite, Heather; Stratton, Gemma C; Todd, Richard S; Williamson, Douglas S; Yule, Ian A


    Antagonists of the human A(2A) receptor have been reported to have potential therapeutic benefit in the alleviation of the symptoms associated with neurodegenerative movement disorders such as Parkinson's disease. As part of our efforts to discover potent and selective antagonists of this receptor, we herein describe the detailed optimization and structure-activity relationships of a series of pyrimidine-4-carboxamides. These optimized derivatives display desirable physiochemical and pharmacokinetic profiles, which have led to promising oral activity in clinically relevant models of Parkinson's disease.

  18. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure


    Wiebke Janssen; Yves Schymura; Tatyana Novoyatleva; Baktybek Kojonazarov; Mario Boehm; Astrid Wietelmann; Himal Luitel; Kirsten Murmann; Damian Richard Krompiec; Aleksandra Tretyn; Soni Savai Pullamsetti; Norbert Weissmann; Werner Seeger; Hossein Ardeschir Ghofrani; Ralph Theo Schermuly


    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg b...

  19. Effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on ocular blood flow in rabbits. (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi


    Previously, we reported that a relatively selective adenosine A(2A) receptor agonist 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) elicited ocular hypotension in rabbits (Journal of Pharmacological Sciences 2005;97:501-509). In the present study, we investigated the effect of 2-CN-Ado on ocular blood flow in rabbit eyes. An intravitreal injection of 2-CN-Ado increased ocular blood flow, measured by a non-contact laser flowmeter. 2-CN-Ado-induced increase in ocular blood flow was accompanied with the retinal vasodilation. The increase in ocular blood flow was inhibited by an adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, but not by an adenosine A(2B) receptor antagonist alloxazine or an adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The repetitive applications of topical 2-CN-Ado twice a day for 7 days produced a persistent increase in ocular blood flow with ocular hypotension. These results suggest that 2-CN-Ado increases the ocular blood flow mainly via adenosine A(2A) receptor, and that the topical application of 2-CN-Ado for several days not only increases the ocular blood flow but also prolong ocular hypotension, indicating that 2-CN-Ado may be a useful lead compound for the treatment of ischemic retinal diseases such as glaucoma.

  20. Benzodiazepine receptor antagonists for acute and chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Kjaergard, L L; Gluud, C


    The pathogenesis of hepatic encephalopathy is unknown. It has been suggested that liver failure leads to the accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition which may progress to coma. Several trials have assessed benzodiazepine receptor...

  1. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. (United States)

    Katz, N K; Ryals, J M; Wright, D E


    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  2. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway.

    Directory of Open Access Journals (Sweden)

    He Wang

    Full Text Available Hepatic stellate cell (HSC activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR. Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine's inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway.Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III.

  3. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    Institute of Scientific and Technical Information of China (English)

    Serguei; G; Popov; Taissia; G; Popova; Fatah; Kashanchi; Charles; Bailey


    AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores. METHODS:DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d.Ciprofloxacin treatment(50 mg/kg,once daily,intraperitoneally) was initiated at day+1 simultaneously with the ad- ministration of inhibitors,and continued for 10 d.Two doses(2.5 mg/kg and 12.5 mg/kg)of acetyl-tyrosylvalyl-alanyl-aspartyl-chloromethylketone(YVAD)and three doses(0.05,0.15 and 0.3 mg/kg)of 1-[2-Chloro- 6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1- deoxy-N-methyl-β-D-ribofuranuronamide(Cl-IB-MECA) were tested.Animals received YVAD on days 1-4,and Cl-IB-MECA on days 1-10 once daily,subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECAon phosphorylation of AKT and generation of cAMP were tested. RESULTS:We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA.Combination treatment with these substances and ciprofloxacin resulted in up to 90%synergistic protection.All untreated mice died,and antibiotic alone protected only 30% of animals.We conclude that both substances target the aberrant host signaling that underpins anthrax mortality. CONCLUSION:Our findings suggest new possibilities for combination therapy of anthrax with antibiotics,A3R agonists and caspase-1 inhibitors.

  4. Adenosine receptor signaling modulates permeability of the blood-brain barrier. (United States)

    Carman, Aaron J; Mills, Jeffrey H; Krenz, Antje; Kim, Do-Geun; Bynoe, Margaret S


    The blood-brain barrier (BBB) is comprised of specialized endothelial cells that form the capillary microvasculature of the CNS and is essential for brain function. It also poses the greatest impediment in the treatment of many CNS diseases because it commonly blocks entry of therapeutic compounds. Here we report that adenosine receptor (AR) signaling modulates BBB permeability in vivo. A(1) and A(2A) AR activation facilitated the entry of intravenously administered macromolecules, including large dextrans and antibodies to β-amyloid, into murine brains. Additionally, treatment with an FDA-approved selective A(2A) agonist, Lexiscan, also increased BBB permeability in murine models. These changes in BBB permeability are dose-dependent and temporally discrete. Transgenic mice lacking A(1) or A(2A) ARs showed diminished dextran entry into the brain after AR agonism. Following treatment with a broad-spectrum AR agonist, intravenously administered anti-β-amyloid antibody was observed to enter the CNS and bind β-amyloid plaques in a transgenic mouse model of Alzheimer's disease (AD). Selective AR activation resulted in cellular changes in vitro including decreased transendothelial electrical resistance, increased actinomyosin stress fiber formation, and alterations in tight junction molecules. These results suggest that AR signaling can be used to modulate BBB permeability in vivo to facilitate the entry of potentially therapeutic compounds into the CNS. AR signaling at brain endothelial cells represents a novel endogenous mechanism of modulating BBB permeability. We anticipate these results will aid in drug design, drug delivery and treatment options for neurological diseases such as AD, Parkinson's disease, multiple sclerosis and cancers of the CNS.

  5. Perinatal caffeine, acting on maternal adenosine A(1 receptors, causes long-lasting behavioral changes in mouse offspring.

    Directory of Open Access Journals (Sweden)

    Olga Björklund

    Full Text Available BACKGROUND: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life. METHODOLOGY/PRINCIPAL FINDINGS: We show that pregnant wild type (WT mice given modest doses of caffeine (0.3 g/l in drinking water gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A(1 receptor gene (A(1RHz. In these mice signaling via adenosine A(1 receptors is reduced to about the same degree as after modest consumption of caffeine. A(1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother's genotype, not offspring's, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A(1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A(1R Hz grandmother preserved higher locomotor response to cocaine. CONCLUSIONS/SIGNIFICANCE: We suggest that perinatal caffeine, by acting on adenosine A(1 receptors in the mother, causes long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.

  6. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly (United States)

    Rodrigues, Lisa; Miranda, Isabel M.; Andrade, Geanne M.; Mota, Marta; Cortes, Luísa; Rodrigues, Acácio G.; Cunha, Rodrigo A.; Gonçalves, Teresa


    Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density. PMID:27590517

  7. SB-258741: a 5-HT7 receptor antagonist of potential clinical interest. (United States)

    Pouzet, Bruno


    Recently, a series of 5-HT7 receptor antagonists have been developed (24,29,36,68). Among them SB-258741, R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine, (compound "13" in 36,37) was one of the most potent and specific compounds. Due to a lack of specific ligands the pharmacology of 5-HT7 receptor antagonists is still relatively unexplored. It has been suggested, however, that 5-HT7 receptor ligands could be useful in the therapy of various disorders such as sleep disorders, schizophrenia, depression, migraine, epilepsy, pain, or memory impairment. Many of these conceivable indications are not supported by pharmacological data. It is, therefore, of particular interest to review the data generated from studies of one of these most potent and specific 5-HT7 receptor antagonists, SB-258741, with a goal of testing the validity of the proposed clinical indications. In this review, the author describes pharmacology of this compound in order to define its potential clinical use. The available safety pharmacology data are discussed in an attempt to predict potential side effects of specific 5-HT7 receptor antagonists.

  8. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy. (United States)

    Sato, Atsuhisa


    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  9. Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists. (United States)

    Veeraraghavan, P; Nistri, A


    Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain. The impact of CB1Rs on mammalian locomotor networks remains, however, incompletely understood. To clarify how CB1Rs may control synaptic activity and locomotor network function, we used the rat spinal cord in vitro which is an advantageous model to investigate locomotor circuit mechanisms produced by the local central pattern generator. Neither the CB1 agonist anandamide (AEA) nor the CB1R antagonist AM-251 evoked early (3-24h largely impaired locomotor network activity induced by DR stimuli or neurochemicals, and depressed disinhibited bursting without changing reflex amplitude or inducing neurotoxicity even if CB1R immunoreactivity was lowered in the central region. Since CB1R activation usually inhibits cyclic adenosine monophosphate (cAMP) synthesis, we investigated how a 24-h application of AEA or AM-251 affected basal or forskolin-stimulated cAMP levels. While AEA decreased them in an AM-251-sensitive manner, AM-251 per se did not change resting or stimulated cAMP. Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.

  10. At last, a truly selective EP2 receptor antagonist


    Birrell, Mark A.; Nials, Anthony T.


    Ever since the discovery of prostaglandin E2 (PGE2), this lipid mediator has been the focus of intense research. The diverse biological effects of PGE2 are due, at least in part, to the existence of four distinct receptors (EP1–4). This can complicate the analysis of the biological effects produced by PGE2. While there are currently selective pharmacological tools to explore the roles of the EP1,3,4 receptors in cellular and tissue responses, analysis of EP2 receptor-induced responses has bee...

  11. Modification of formalin-induced nociception by different histamine receptor agonists and antagonists. (United States)

    Farzin, Davood; Nosrati, Farnaz


    The present study evaluated the effects of different histamine receptor agonists and antagonists on the nociceptive response in the mouse formalin test. Intracerebroventricular (20-40 microg/mouse i.c.v.) or subcutaneous (1-10 mg/kg s.c.) injection of HTMT (H(1) receptor agonist) elicited a dose-related hyperalgesia in the early and late phases. Conversely, intraperitoneal (20 and 30 mg/kg i.p.) injection of dexchlorpheniramine (H(1) receptor antagonist) was antinociceptive in both phases. At a dose ineffective per se, dexchlorpheniramine (10 mg/kg i.p.) antagonized the hyperalgesia induced by HTMT (40 mug/mouse i.c.v. or 10 mg/kg s.c.). Dimaprit (H(2) receptor agonist, 30 mg/kg i.p.) and ranitidine (H(2) receptor antagonist, 20 and 40 mg/kg i.p.) reduced the nociceptive responses in the early and late phases. No significant change in the antinociceptive activity was found following the combination of dimaprit (30 mg/kg i.p.) with ranitidine (10 mg/kg i.p.). The antinociceptive effect of dimaprit (30 mg/kg i.p.) was prevented by naloxone (5 mg/kg i.p.) in the early phase or by imetit (H(3) receptor agonist, 25 mg/kg i.p.) in both early and late phases. The histamine H(3) receptor agonist imetit was hyperalgesic following i.p. administration of 50 mg/kg. Imetit-induced hyperalgesia was completely prevented by treatment with a dose ineffective per se of thioperamide (H(3) receptor antagonist, 5 mg/kg i.p.). The results suggest that histamine H(1) and H(3) receptor activations increase sensitivity to nociceptive stimulus in the formalin test.

  12. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor (United States)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.


    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  13. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. (United States)

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa


    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  14. AMPA and GABA receptor antagonists and their interaction in rats with a genetic form of absence epilepsy

    NARCIS (Netherlands)

    Kaminski, R.M.; Rijn, C.M. van; Turski, W.A.; Czuczwar, S.J.; Luijtelaar, E.L.J.M. van


    The effects of combined and single administration of the -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 7,8-methylenedioxy-1-(4-aminophenyl)-4-methyl-3-acetyl-4,5-dihydro-2,3 -benzodiazepine (LY 300164), and of the GABAB receptor antagonist -aminopropyl-n-butyl-phosp

  15. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology. (United States)

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai M; Egebjerg, Jan; Madsen, Ulf; Nielsen, Birgitte; Bräuner-Osborne, Hans; Stensbøl, Tine B; Krogsgaard-Larsen, Povl


    Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.

  16. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice. (United States)

    Nuutinen, Saara; Mäki, Tiia; Rozov, Stanislav; Bäckström, Pia; Hyytiä, Petri; Piepponen, Petteri; Panula, Pertti


    We have earlier found that the histamine H3 receptor (H3R) antagonism diminishes motivational aspects of alcohol reinforcement in mice. Here we studied the role of H3Rs in cue-induced reinstatement of alcohol seeking in C57BL/6J mice using two different H3R antagonists. Systemic administration of H3R antagonists attenuated cue-induced alcohol seeking suggesting that H3R antagonists may reduce alcohol craving. To understand how alcohol affects dopamine and histamine release, a microdialysis study was performed on C57BL/6J mice and the levels of histamine, dopamine and dopamine metabolites were measured in the nucleus accumbens. Alcohol administration was combined with an H3R antagonist pretreatment to reveal whether modulation of H3R affects the effects of alcohol on neurotransmitter release. Alcohol significantly increased the release of dopamine in the nucleus accumbens but did not affect histamine release. Pretreatment with H3R antagonist ciproxifan did not modify the effect of alcohol on dopamine release. However, histamine release was markedly increased with ciproxifan. In conclusion, our findings demonstrate that H3R antagonism attenuates cue-induced reinstatement of alcohol seeking in mice. Alcohol alone does not affect histamine release in the nucleus accumbens but H3R antagonist instead increases histamine release significantly suggesting that the mechanism by which H3R antagonist inhibits alcohol seeking found in the present study and the decreased alcohol reinforcement, reward and consumption found earlier might include alterations in the histaminergic neurotransmission in the nucleus accumbens. These findings imply that selective antagonists of H3Rs could be a therapeutic strategy to prevent relapse and possibly diminish craving to alcohol use. This article is part of the Special Issue entitled 'Histamine Receptors'.

  17. Synthesis and dual histamine H₁ and H₂ receptor antagonist activity of cyanoguanidine derivatives. (United States)

    Sadek, Bassem; Alisch, Rudi; Buschauer, Armin; Elz, Sigurd


    Premedication with a combination of histamine H₁ receptor (H₁R) and H₂ receptor (H₂R) antagonists has been suggested as a prophylactic principle, for instance, in anaesthesia and surgery. Aiming at pharmacological hybrids combining H₁R and H₂R antagonistic activity, a series of cyanoguanidines 14-35 was synthesized by linking mepyramine-type H₁R antagonist substructures with roxatidine-, tiotidine-, or ranitidine-type H₂R antagonist moieties. N-desmethylmepyramine was connected via a poly-methylene spacer to a cyanoguanidine group as the "urea equivalent" of the H₂R antagonist moiety. The title compounds were screened for histamine antagonistic activity at the isolated ileum (H₁R) and the isolated spontaneously beating right atrium (H₂R) of the guinea pig. The results indicate that, depending on the nature of the H₂R antagonist partial structure, the highest H₁R antagonist potency resided in roxatidine-type compounds with spacers of six methylene groups in length (compound 21), and tiotidine-type compounds irrespective of the alkyl chain length (compounds 28, 32, 33), N-cyano-N'-[2-[[(2-guanidino-4-thiazolyl)methyl]thio]ethyl]-N″-[2-[N-[2-[N-(4-methoxybenzyl)-N-(pyridyl)-amino] ethyl]-N-methylamino]ethyl] guanidine (25, pKB values: 8.05 (H₁R, ileum) and 7.73 (H₂R, atrium) and the homologue with the mepyramine moiety connected by a six-membered chain to the tiotidine-like partial structure (compound 32, pKB values: 8.61 (H₁R) and 6.61 (H₂R) were among the most potent hybrid compounds. With respect to the development of a potential pharmacotherapeutic agent, structural optimization seems possible through selection of other H₁R and H₂R pharmacophoric moieties with mutually affinity-enhancing properties.

  18. Synthesis and Dual Histamine H1 and H2 Receptor Antagonist Activity of Cyanoguanidine Derivatives

    Directory of Open Access Journals (Sweden)

    Bassem Sadek


    Full Text Available Premedication with a combination of histamine H1 receptor (H1R and H2 receptor (H2R antagonists has been suggested as a prophylactic principle, for instance, in anaesthesia and surgery. Aiming at pharmacological hybrids combining H1R and H2R antagonistic activity, a series of cyanoguanidines 14–35 was synthesized by linking mepyramine-type H1R antagonist substructures with roxatidine-, tiotidine-, or ranitidine-type H2R antagonist moieties. N-desmethylmepyramine was connected via a poly-methylene spacer to a cyanoguanidine group as the “urea equivalent” of the H2R antagonist moiety. The title compounds were screened for histamine antagonistic activity at the isolated ileum (H1R and the isolated spontaneously beating right atrium (H2R of the guinea pig. The results indicate that, depending on the nature of the H2R antagonist partial structure, the highest H1R antagonist potency resided in roxatidine-type compounds with spacers of six methylene groups in length (compound 21, and tiotidine-type compounds irrespective of the alkyl chain length (compounds 28, 32, 33, N-cyano-N'-[2-[[(2-guanidino-4-thiazolylmethyl]thio]ethyl]-N″-[2-[N-[2-[N-(4-methoxybenzyl-N-(pyridyl-amino] ethyl]-N-methylamino]ethyl] guanidine (25, pKB values: 8.05 (H1R, ileum and 7.73 (H2R, atrium and the homologue with the mepyramine moiety connected by a six-membered chain to the tiotidine-like partial structure (compound 32, pKB values: 8.61 (H1R and 6.61 (H2R were among the most potent hybrid compounds. With respect to the development of a potential pharmacotherapeutic agent, structural optimization seems possible through selection of other H1R and H2R pharmacophoric moieties with mutually affinity-enhancing properties.

  19. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma

    DEFF Research Database (Denmark)

    Bisgaard, H


    Cysteinyl leukotrienes, synthesized de novo from cell membrane phospholipids, are proinflammatory mediators that play an important role in the pathophysiology of asthma. These mediators are among the most potent of bronchoconstrictors and cause vasodilation, increased microvascular permeability, ...... antagonists are additive with those of beta agonists. These data provide strong support for the use of leukotriene receptor antagonists for treating asthma.......Cysteinyl leukotrienes, synthesized de novo from cell membrane phospholipids, are proinflammatory mediators that play an important role in the pathophysiology of asthma. These mediators are among the most potent of bronchoconstrictors and cause vasodilation, increased microvascular permeability...... ciliary motility, which may hinder mucociliary clearance. Asthmatic patients demonstrate increased production of cysteinyl leukotrienes during naturally occurring asthma and acute asthma attacks as well as after allergen and exercise challenge. The leukotriene receptor antagonists montelukast, zafirlukast...

  20. Orexin Receptor Antagonists: New Therapeutic Agents for the Treatment of Insomnia. (United States)

    Roecker, Anthony J; Cox, Christopher D; Coleman, Paul J


    Since its discovery in 1998, the orexin system, composed of two G-protein coupled receptors, orexins 1 and 2, and two neuropeptide agonists, orexins A and B, has captured the attention of the scientific community as a potential therapeutic target for the treatment of obesity, anxiety, and sleep/wake disorders. Genetic evidence in rodents, dogs, and humans was revealed between 1999 and 2000, demonstrating a causal link between dysfunction or deletion of the orexin system and narcolepsy, a disorder characterized by hypersomnolence during normal wakefulness. These findings encouraged efforts to discover agonists to treat narcolepsy and, alternatively, antagonists to treat insomnia. This perspective will focus on the discovery and development of structurally diverse orexin antagonists suitable for preclinical pharmacology studies and human clinical trials. The work described herein culminated in the 2014 FDA approval of suvorexant as a first-in-class dual orexin receptor antagonist for the treatment of insomnia.

  1. Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. (United States)

    Paoletta, Silvia; Tosh, Dilip K; Finley, Amanda; Gizewski, Elizabeth T; Moss, Steven M; Gao, Zhan-Guo; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A


    (N)-Methanocarba(bicyclo[3.1.0]hexane)adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.g., blood-brain barrier. Molecular modeling predicted that sulfonate groups on C2-phenylethynyl substituents would provide high affinity at both mouse (m) and human (h) A3 adenosine receptors (ARs), while a N(6)-p-sulfophenylethyl substituent would determine higher hA3AR vs mA3AR affinity. These modeling predictions, based on steric fitting of the binding cavity and crucial interactions with key residues, were confirmed by binding/efficacy studies of synthesized sulfonates. N(6)-3-Chlorobenzyl-2-(3-sulfophenylethynyl) derivative 7 (MRS5841) bound selectively to h/m A3ARs (Ki(hA3AR) = 1.9 nM) as agonist, while corresponding p-sulfo isomer 6 (MRS5701) displayed mixed A1/A3AR agonism. Both nucleosides administered ip reduced mouse chronic neuropathic pain that was ascribed to either A3AR or A1/A3AR using A3AR genetic deletion. Thus, rational design methods based on A3AR homology models successfully predicted sites for sulfonate incorporation, for delineating adenosine's CNS vs peripheral actions.

  2. When cytokinin, a plant hormone, meets the adenosine A2A receptor: a novel neuroprotectant and lead for treating neurodegenerative disorders?

    Directory of Open Access Journals (Sweden)

    Yi-Chao Lee

    Full Text Available It is well known that cytokinins are a class of phytohormones that promote cell division in plant roots and shoots. However, their targets, biological functions, and implications in mammalian systems have rarely been examined. In this study, we show that one cytokinin, zeatin riboside, can prevent pheochromocytoma (PC12 cells from serum deprivation-induced apoptosis by acting on the adenosine A(2A receptor (A(2A-R, which was blocked by an A(2A-R antagonist and a protein kinase A (PKA inhibitor, demonstrating the functional ability of zeatin riboside by mediating through A(2A-R signaling event. Since the A(2A-R was implicated as a therapeutic target in treating Huntington's disease (HD, a cellular model of HD was applied by transfecting mutant huntingtin in PC12 cells. By using filter retardation assay and confocal microscopy we found that zeatin riboside reversed mutant huntingtin (Htt-induced protein aggregations and proteasome deactivation through A(2A-R signaling. PKA inhibitor blocked zeatin riboside-induced suppression of mutant Htt aggregations. In addition, PKA activated proteasome activity and reduced mutant Htt protein aggregations. However, a proteasome inhibitor blocked both zeatin riboside-and PKA activator-mediated suppression of mutant Htt aggregations, confirming mediation of the A(2A-R/PKA/proteasome pathway. Taken together, zeatin riboside might have therapeutic potential as a novel neuroprotectant and a lead for treating neurodegenerative disorders.

  3. Adenosine A2A Receptors Mediate Anti-Inflammatory Effects of Electroacupuncture on Synovitis in Mice with Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Qi-hui Li


    Full Text Available To study the role of adenosine A2A receptor (A2AR in mediating the anti-inflammatory effect of electroacupuncture (EA on synovitis in collagen-induced arthritis (CIA, C57BL/6 mice were divided into five treatment groups: Sham-control, CIA-control, CIA-EA, CIA-SCH58261 (A2AR antagonist, and CIA-EA-SCH58261. All mice except those in the Sham-control group were immunized with collagen II for arthritis induction. EA treatment was administered using the stomach 36 and spleen 6 points, and stimulated with a continuous rectangular wave for 30 min daily. EA treatment and SCH58261 were administered daily from days 35 to 49 (n=10. After treatment, X-ray radiography of joint bone morphology was established at day 60 and mouse blood was collected for ELISA determination of tumor necrosis factor alpha (TNF-α levels. Mice were sacrificed and processed for histological examination of pathological changes of joint tissue, including hematoxylin-eosin staining and immunohistochemistry of A2AR expression. EA treatment resulted in significantly reduced pathological scores, TNF-α concentrations, and bone damage X-ray scores. Importantly, the anti-inflammatory and tissue-protective effect of EA treatment was reversed by coadministration of SCH58261. Thus, EA treatment exerts an anti-inflammatory effect resulting in significant protection of cartilage by activation of A2AR in the synovial tissue of CIA.

  4. Remote functionalization of SCH 39166: discovery of potent and selective benzazepine dopamine D1 receptor antagonists. (United States)

    Sasikumar, T K; Burnett, Duane A; Greenlee, William J; Smith, Michelle; Fawzi, Ahmad; Zhang, Hongtao; Lachowicz, Jean E


    A series of novel benzazepine derived dopamine D(1) antagonists have been discovered. These compounds are highly potent at D(1) and showed excellent selectivity over D(2) and D(4) receptors. SAR studies revealed that a variety of functional groups are tolerated on the D-ring of known tetracyclic benzazepine analog 2, SCH 39166, leading to compounds with nanomolar potency at D(1) and good selectivity over D(2)-like receptors.

  5. In vivo evaluation of [11C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain

    NARCIS (Netherlands)

    Zhou, Xiaoyun; Khanapur, Shivashankar; de Jong, Johan R; Willemsen, Antoon T.M.; Dierckx, Rudi Ajo; Elsinga, Philip H; de Vries, Erik Fj


    [(11)C]Preladenant was developed as a novel adenosine A2A receptor positron emission tomography radioligand. The present study aims to evaluate the suitability of [(11)C]preladenant positron emission tomography for the quantification of striatal A2A receptor density and the assessment of striatal A2

  6. Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation. (United States)

    Li, Shanshan; Geiger, Nicholas H; Soliman, Mahmoud L; Hui, Liang; Geiger, Jonathan D; Chen, Xuesong


    Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.

  7. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;


    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  8. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway. (United States)

    Ferrati, Giovanni; Martini, Francisco J; Maravall, Miguel


    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In "driver" thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  9. Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway

    Directory of Open Access Journals (Sweden)

    Giovanni eFerrati


    Full Text Available Short-term synaptic plasticity (STP sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In driver thalamocortical (TC synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors, modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  10. Design, synthesis, and biological evaluation of 4-phenylpyrrole derivatives as novel androgen receptor antagonists. (United States)

    Yamamoto, Satoshi; Matsunaga, Nobuyuki; Hitaka, Takenori; Yamada, Masami; Hara, Takahito; Miyazaki, Junichi; Santou, Takashi; Kusaka, Masami; Yamaoka, Masuo; Kanzaki, Naoyuki; Furuya, Shuichi; Tasaka, Akihiro; Hamamura, Kazumasa; Ito, Mitsuhiro


    A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.

  11. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)


    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on CGRP-in

  12. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A;


    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  13. Long-term use of aldosterone-receptor antagonists in uncontrolled hypertension: A retrospective analysis

    NARCIS (Netherlands)

    P.M. Jansen (Pieter); K. Verdonk (Koen); B.P. Imholz (Ben); A.H.J. Danser (Jan); A.H. van den Meiracker (Anton)


    textabstractBackground. The long-term efficacy of aldosterone-receptor antagonists (ARAs) as add-on treatment in uncontrolled hypertension has not yet been reported. Methods. Data from 123 patients (21 with primary aldosteronism, 102 with essential hypertension) with difficult-to-treat hypertension

  14. Evidence for homogeneity of thromboxane A2 receptor using structurally different antagonists. (United States)

    Swayne, G T; Maguire, J; Dolan, J; Raval, P; Dane, G; Greener, M; Owen, D A


    Nine structurally dissimilar thromboxane antagonists (SQ 29548, ICI 185282, AH 23848, BM 13505 (Daltroban), BM 13177 (Sulotroban), SK&F 88046, L-636499, L-640035 and a Bayer compound SK&F 47821) were studied for activity as thromboxane A2 receptor antagonists. The assays used were inhibition of responses induced by the thromboxane mimetic, U46619, on human washed platelet aggregation, rabbit platelet aggregation, rabbit aortic strip contraction, anaesthetised guinea-pig bronchoconstriction, and a radio-labelled ligand (125I-PTA-OH) binding assay as a measure of affinity for the human platelet receptor. The results of the present study, with activities spanning at least four orders of magnitude along with statistically significant correlations (at least P less than 0.01), strongly suggests that between assays, antagonists and species a homogenous population of thromboxane A2 receptors exists. This finding is in contrast to those of a close series of 13-azapinane antagonists studied by other workers which have suggested receptor heterogeneity.

  15. Effect of the Urotensin Receptor Antagonist Palosuran in Hypertensive Patients With Type 2 Diabetic Nephropathy

    NARCIS (Netherlands)

    L. Vogt; C. Chiurchiu; H. Chadha-Boreham; P. Danaietash; J. Dingemanse; S. Hadjadj; H. Krum; G. Navis; E. Neuhart; A.I. Parvanova; P. Ruggenenti; A.J. Woittiez; R. Zimlichman; G. Remuzzi; D. de Zeeuw


    The urotensin system has been hypothesized to play an important role in the pathophysiology of diabetic nephropathy. In this multicenter, randomized, double-blind, placebo-controlled, 2-period crossover study, the effects of the urotensin receptor antagonist palosuran on urinary albumin excretion an

  16. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast

    DEFF Research Database (Denmark)

    Bisgaard, H; Loland, L; Oj, J A


    Nitric oxide in exhaled air (FENO) is increased in asthmatic children, probably reflecting aspects of airway inflammation. We have studied the effect of the leukotriene receptor antagonist (LTRA) montelukast on FENO with a view to elucidate potential anti-inflammatory properties of LTRAs. Twenty-...

  17. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction (United States)

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  18. Effect of the cannabinoid receptor-1 antagonist rimonabant on lipolysis in rats

    DEFF Research Database (Denmark)

    Mølhøj, Signe; Hansen, Harald S; Schweiger, Martina


    The cannabinoid receptor 1 antagonist, rimonabant, reduces food intake and body weight, but contradictory findings have been reported as to whether the weight-reducing effect is fully accounted for by the reduced food intake or if rimonabant also mediates a lipolytic effect. In the present study...

  19. Predictors of Congestive Heart Failure after Treatment with an Endothelin Receptor Antagonist

    NARCIS (Netherlands)

    Hoekman, Jamo; Lambers Heerspink, Hiddo; Viberti, Giancarlo; Green, Damien; Mann, Johannes F. E.; de Zeeuw, Dick


    Background and objectives The Avosentan on Time to Doubling of Serum Creatinine, End Stage Renal Disease or Death (ASCEND) trial tested the renoprotective effect of the endothelin receptor antagonist avosentan in patients with diabetes and nephropathy, but the study was terminated due to an excess o

  20. Bartonella quintana lipopolysaccharide is a natural antagonist of Toll-like receptor 4.

    NARCIS (Netherlands)

    Popa, C.; Abdollahi-Roodsaz, S.; Joosten, L.A.B.; Takahashi, N.; Sprong, T.; Matera, G.; Liberto, M.C.; Foca, A.; Deuren, M. van; Kullberg, B.J.; Berg, W.B. van den; Meer, J.W.M. van der; Netea, M.G.


    Bartonella quintana is a gram-negative microorganism that causes trench fever and chronic bacteremia. B. quintana lipopolysaccharide (LPS) was unable to induce the production of proinflammatory cytokines in human monocytes. Interestingly, B. quintana LPS is a potent antagonist of Toll-like receptor

  1. Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction : integrating evidence into clinical practice

    NARCIS (Netherlands)

    Zannad, Faiez; Stough, Wendy Gattis; Rossignol, Patrick; Bauersachs, Johann; McMurray, John J. V.; Swedberg, Karl; Struthers, Allan D.; Voors, Adriaan A.; Ruilope, Luis M.; Bakris, George L.; O'Connor, Christopher M.; Gheorghiade, Mihai; Mentz, Robert J.; Cohen-Solal, Alain; Maggioni, Aldo P.; Beygui, Farzin; Filippatos, Gerasimos S.; Massy, Ziad A.; Pathak, Atul; Pina, Ileana L.; Sabbah, Hani N.; Sica, Domenic A.; Tavazzi, Luigi; Pitt, Bertram


    Mineralocorticoid receptor antagonists (MRAs) improve survival and reduce morbidity in patients with heart failure, reduced ejection fraction (HFREF), and mild-to-severe symptoms, and in patients with left ventricular systolic dysfunction and heart failure after acute myocardial infarction. These cl

  2. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik;


    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  3. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V


    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  4. N-Oxide analogs of WAY-100635 : new high affinity 5-HT1A receptor antagonists

    NARCIS (Netherlands)

    Marchais-Oberwinkler, S; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, HV


    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  5. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.


    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evalua

  6. Cannabinoid receptor antagonists and the metabolic syndrome: Novel promising therapeutical approaches. (United States)

    Cervino, C; Pasquali, R; Pagotto, U


    Recent findings in animals and in humans have shown that cannabinoid type 1 receptor antagonists are suitable to become the most promising validated class of drugs to tackle obesity and related disorders. This mini-review will provide a concise and updated revision of the state of art on this topic.

  7. Luteinizing hormone-releasing hormone receptor antagonist may reduce postmenopausal flushing

    NARCIS (Netherlands)

    Gastel, P. van; Zanden, M. van der; Telting, D.; Filius, M.; Bancsi, L.; Boer, H. de


    OBJECTIVE: Hormone therapy (HT) is the most effective treatment of postmenopausal (PMP) flushing; however, its use is often contraindicated. As an alternative option, we explored the efficacy of the luteinizing hormone-releasing hormone (LHRH) receptor antagonist cetrorelix in women with severe PMP

  8. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke. (United States)

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J; Allan, Stuart M


    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials.

  9. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg


    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  10. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya (Stanford-MED); (Kyoto); (Gakushuin); (Kyushu)


    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  11. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Nappi J


    Full Text Available Jean M Nappi, Adam SiegClinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, Charleston, SC, USAAbstract: Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms

  12. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. (United States)

    Heidbreder, Christian A; Newman, Amy H


    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  13. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan


    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  14. Radiosensitizing Effect of P2X7 Receptor Antagonist on Melanoma in vitro and in vivo. (United States)

    Tanamachi, Keisuke; Nishino, Keisuke; Mori, Natsuki; Suzuki, Toshihiro; Tanuma, Sei-Ichi; Abe, Ryo; Tsukimoto, Mitsutoshi


    Melanoma is highly malignant, and generally exhibits radioresistance, responding poorly to radiation therapy. We previously reported that activation of P2X7, P2Y6, and P2Y12 receptors is involved in the DNA damage response after γ-irradiation of human lung adenocarcinoma A549 cells. However, it is not clear whether these receptors are also involved in the case of melanoma cells, although P2X7 receptor is highly expressed in various cancers, including melanoma. Here, we show that P2X7 receptor antagonist enhances radiation-induced cytotoxicity in B16 melanoma cells in vitro and in vivo. We confirmed that these cells express P2X7 receptor mRNA and exhibit P2X7 receptor-mediated activities, such as ATP-induced pore formation and cytotoxicity. We further examined the radiosensitizing effect of P2X7 receptor antagonist Brilliant Blue G (BBG) in vitro by colony formation assay of B16 cells. γ-Irradiation dose-dependently reduced cell survival, and pretreatment with BBG enhanced the radiation-induced cytotoxicity. BBG pretreatment also decreased the number of DNA repair foci in nuclei, supporting involvement of P2X7 receptor in the DNA damage response. Finally, we investigated the radiosensitizing effect of BBG on B16 melanoma cells inoculated into the hind footpad of C57BL/6 mice. Neither 1 Gy γ-irradiation alone nor BBG alone suppressed the increase of tumor volume, but the combination of irradiation and BBG significantly suppressed tumor growth. Our results suggest that P2X7 receptor antagonist BBG has a radiosensitizing effect in melanoma in vitro and in vivo. BBG, which is used as a food coloring agent, appears to be a promising candidate as a radiosensitizer.

  15. Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists. (United States)

    Farzin, Davood; Asghari, Ladan; Nowrouzi, Mahvash


    The effects of different histamine receptor agonists and antagonists on the nociceptive threshold were investigated in mice by two different kinds of noxious stimuli: thermal (hot plate) and chemical (acetic acid-induced abdominal writhing). Intracerebroventricular (icv) injection of the histamine H(1) receptor agonist, HTMT (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl) heptanecarboxamide) (50 microg/mouse), produced a hypernociception in the hot plate and writhing tests. Conversely, intraperitoneal (ip) injection of dexchlorpheniramine (30 and 40 mg/kg) and diphenhydramine (20 and 40 mg/kg) increased the pain threshold in both tests. The histamine H(2) receptor agonist, dimaprit (50 and 100 microg/mouse icv), or antagonist, ranitidine (50 and 100 microg/mouse icv), raised the pain threshold in both hot plate and writhing tests. In the mouse hot plate test, the histamine H(3) receptor agonist, imetit (50 mg/kg ip), reduced the pain threshold, while the histamine H(3) receptor antagonist, thioperamide (10 and 20 mg/kg ip), produced an antinociception. The hypernociceptive effects of HTMT and imetit were antagonized by dexchlorpheniramine (20 mg/kg ip) and thioperamide (5 mg/kg ip), respectively. The results suggest that histaminergic mechanisms may be involved in the modulation of nociceptive stimuli.

  16. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases

    Directory of Open Access Journals (Sweden)

    Samuele Maramai


    Full Text Available D3 receptors represent a major focus of current drug design and development of therapeutics for dopamine-related pathological states. Their close homology with the D2 receptor subtype makes the development of D3 selective antagonists a challenging task. In this review, we explore the relevance and therapeutic utility of D3 antagonists or partial agonists endowed with multireceptor affinity profile in the field of central nervous system disorders such as schizophrenia and drug abuse. In fact, the peculiar distribution and low brain abundance of D3 receptors make them a valuable target for the development of drugs devoid of motor side effects classically elicited by D2 antagonists. Recent research efforts were devoted to the conception of chemical templates possibly endowed with a multi-target profile, especially with regards to other G-protein-coupled receptors (GPCRs.A comprehensive overview of the recent literature in the field is herein provided. In particular, the evolution of the chemical templates has been tracked, according to the growing advancements in both the structural information and the refinement of the key pharmacophoric elements.The receptor/multireceptor affinity and functional profiles for the examined compounds has been covered, together with their most significant pharmacological applications.

  17. Effects of histamine H(1) receptor antagonists on depressive-like behavior in diabetic mice. (United States)

    Hirano, Shoko; Miyata, Shigeo; Onodera, Kenji; Kamei, Junzo


    We previously reported that streptozotocin-induced diabetic mice showed depressive-like behavior in the tail suspension test. It is well known that the central histaminergic system regulates many physiological functions including emotional behaviors. In this study, we examined the role of the central histaminergic system in the diabetes-induced depressive-like behavior in the mouse tail suspension test. The histamine contents in the hypothalamus were significantly higher in diabetic mice than in non-diabetic mice. The histamine H(1) receptor antagonist chlorpheniramine (1-10 mg/kg, s.c.) dose-dependently and significantly reduced the duration of immobility in both non-diabetic and diabetic mice. In contrast, the selective histamine H(1) receptor antagonists epinastine (0.03-0.3 microg/mouse, i.c.v.) and cetirizine (0.01-0.1 microg/mouse, i.c.v.) dose-dependently and significantly suppressed the duration of immobility in diabetic mice, but not in non-diabetic mice. Spontaneous locomotor activity was not affected by histamine H(1) receptor antagonists in either non-diabetic or diabetic mice. In addition, the number and affinity of histamine H(1) receptors in the frontal cortex were not affected by diabetes. In conclusion, we suggest that the altered neuronal system mediated by the activation of histamine H(1) receptors is involved, at least in part, in the depressive-like behavior seen in diabetic mice.

  18. Prevention of Stimulant Induced Euphoria with an Opioid Receptor Antagonist (United States)


    military at large. Section VI: References 1. Weiss, G. and L. Hechtman, Hyperactive children grown up, in ADHD in children, adolescents , and adults...Young Adults With ADHD. J Am Acad Child Adolesc Psychiatry. 50(6): p. 543- 53. 12. Zhu, J., et al., Methylphenidate and mu opioid receptor interactions...1770401 7/29/13 Seasonal Allergies Internal Mild Expected Unrelated Pharmacologic N/A 1770901 7/29/13 Headache Internal Mild Expected Unrelated

  19. Orexin, orexin receptor antagonists and central cardiovascular control


    Carrive, Pascal


    Orexin makes an important contribution to the regulation of cardiovascular function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate and sympathetic nerve activity. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals in the central autonomic network. Thus, the two orexin receptors, Ox1R and Ox2R, which have partly overlapping distributions in the brain, are expressed in the sympathetic pregan...

  20. Serotonin (5-HT3 receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    Directory of Open Access Journals (Sweden)

    Itagaki R


    Full Text Available Ryohei Itagaki, Keiji Koda, Masato Yamazaki, Kiyohiko Shuto, Chihiro Kosugi, Atsushi Hirano, Hidehito Arimitsu, Risa Shiragami, Yukino Yoshimura, Masato Suzuki Department of Surgery, Teikyo University Chiba Medical Center, Anesaki, Ichihara, Chiba, Japan Purpose: Serotonin (5-hydroxytryptamine [5-HT]3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D, in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods: A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20, urgency grade (0–3, and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results: All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion: These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5

  1. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting. (United States)

    Aziz, Fahad


    Chemotherapy can be a life-prolonging treatment for many cancer patients, but it is often associated with profound nausea and vomiting that is so distressing that patients may delay or decline treatment to avoid these side effects. The discovery of several NK1 receptor antagonists is a big revolution to dealt this problem. NK1 receptor antagonists prevent both acute and delayed chemotherapy-induced nausea and vomiting (CINV). These agents act centrally at NK-1 receptors in vomiting centers within the central nervous system to block their activation by substance P released as an unwanted consequence of chemotherapy. By controlling nausea and vomiting, these agents help improve patients' daily living and their ability to complete multiple cycles of chemotherapy. They are effective for both moderately and highly emetogenic chemotherapy regimens. Their use might be associated with increased infection rates; however, additional appraisal of specific data from RCTs is needed.

  2. Discovery and characterization of non-competitive antagonists of group I metabotropic glutamate receptors. (United States)

    Gasparini, F; Floersheim, P; Flor, P J; Heinrich, M; Inderbitzin, W; Ott, D; Pagano, A; Stierlin, C; Stoehr, N; Vranesic, I; Kuhn, R


    We have investigated the mechanism of inhibition of the new group I mGluR antagonists CPCCOEt and MPEP and determined that both compounds have a non-competitive mode of inhibition. Furthermore using chimeric/mutated receptors constructs we have found that these antagonists act at a novel pharmacological site located in the trans-membrane (TM). Specific non-conserved amino acid residues in the TM domain have been identified which are necessary for the inhibition by CPCCOEt and MPEP of the mGlul and mGlu5 receptors, respectively. Using molecular modeling a model of the TM domain was built for both mGlu1 and mGlu5 receptor subtypes. Docking of CPCCOEt and MPEP into their respective model allowed the modelisation of the novel binding site.

  3. Dopamine receptor ligands. Part 18: (1) modification of the structural skeleton of indolobenzazecine-type dopamine receptor antagonists. (United States)

    Robaa, Dina; Enzensperger, Christoph; Abul Azm, Shams El Din; El Khawass, El Sayeda; El Sayed, Ola; Lehmann, Jochen


    On the basis of the D(1/5)-selective dopamine antagonist LE 300 (1), an indolo[3,2-f]benzazecine derivative, we changed the annulation pattern of the heterocycles. The target compounds represent novel heterocyclic ring systems. The most constrained indolo[4,3a,3-ef]benzazecine 2 was inactive, but the indolo[4,3a,3-fg]benzazacycloundecene 3 showed antagonistic properties (functional Ca(2+) assay) with nanomolar affinities (radioligand binding) for all dopamine receptor subtypes, whereas the indolo[2,3-f]benzazecine 4 displayed a selectivity profile similar to 3 but with decreased affinities.

  4. Novel histamine H3-receptor antagonists and partial agonists with a non-aminergic structure


    Nickel, Tobias; Bauer, Ulrich; Schlicker, Eberhard; Kathmann, Markus; Göthert, Manfred; Sasse, Astrid; Stark, Holger; Schunack, Walter


    We determined the affinities of eight novel histamine H3-receptor ligands (ethers and carbamates) for H3-receptor binding sites and their agonistic/antagonistic effects in two functional H3-receptor models. The compounds differ from histamine in that the ethylamine chain is replaced by a propyloxy chain; in the three ethers mentioned below (FUB 335, 373 and 407), R is n-pentyl, 3-methylbutyl and 3,3-dimethylbutyl, respectively.The compounds monophasically inhibited [3H]-Nα-methylhistamine bin...

  5. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria;


    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1) re...

  6. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in aplysia sensory neurons. (United States)

    Dumitriu, Bogdan; Cohen, Jonathan E; Wan, Qin; Negroiu, Andreea M; Abrams, Thomas W


    Highly selective serotonin (5-hydroxytryptamine, 5-HT) receptor antagonists developed for mammals are ineffective in Aplysia due to the evolutionary divergence of neurotransmitter receptors and because the higher ionic strength of physiological saline for marine invertebrates reduces antagonist affinity. It has therefore been difficult to identify antagonists that specifically block individual signaling cascades initiated by 5-HT. We studied two broad-spectrum 5-HT receptor antagonists that have been characterized biochemically in Aplysia CNS: methiothepin and spiperone. Methiothepin is highly effective in inhibiting adenylyl cyclase (AC)-coupled 5-HT receptors in Aplysia. Spiperone, which blocks phospholipase C (PLC)-coupled 5-HT receptors in mammals, does not block AC-coupled 5-HT receptors in Aplysia. In electrophysiological studies, we explored whether methiothepin and spiperone can be used in parallel to distinguish between the AC-cAMP and PLC-protein kinase C (PKC) modulatory cascades that are initiated by 5-HT. 5-HT-induced broadening of the sensory neuron action potential in the presence of tetraethylammonium/nifedipine, which is mediated by modulation of the S-K+ currents, was used an assay for the AC-cAMP cascade. Spike broadening initiated by 5 microM 5-HT was unaffected by 100 microM spiperone, whereas it was effectively blocked by 100 microM methiothepin. Facilitation of highly depressed sensory neuron-to-motor neuron synapses by 5-HT was used as an assay for the PLC-PKC cascade. Spiperone completely blocked facilitation of highly depressed synapses by 5 microM 5-HT. In contrast, methiothepin produced a modest, nonsignificant, reduction in the facilitation of depressed synapses. Interestingly, these experiments revealed that the PLC-PKC cascade undergoes desensitization during exposure to 5-HT.

  7. Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists. (United States)

    Wilson, David M; Apps, James; Bailey, Nicholas; Bamford, Mark J; Beresford, Isabel J; Brackenborough, Kim; Briggs, Michael A; Brough, Stephen; Calver, Andrew R; Crook, Barry; Davis, Rebecca K; Davis, Robert P; Davis, Susannah; Dean, David K; Harris, Leanne; Heslop, Teresa; Holland, Vicky; Jeffrey, Phillip; Panchal, Terrance A; Parr, Christopher A; Quashie, Nigel; Schogger, Joanne; Sehmi, Sanjeet S; Stean, Tania O; Steadman, Jon G A; Trail, Brenda; Wald, Jeffrey; Worby, Angela; Takle, Andrew K; Witherington, Jason; Medhurst, Andrew D


    This Letter describes the discovery of GSK189254 and GSK239512 that were progressed as clinical candidates to explore the potential of H3 receptor antagonists as novel therapies for the treatment of Alzheimer's disease and other dementias. By carefully controlling the physicochemical properties of the benzazepine series and through the implementation of an aggressive and innovative screening strategy that employed high throughput in vivo assays to efficiently triage compounds, the medicinal chemistry effort was able to rapidly progress the benzazepine class of H3 antagonists through to the identification of clinical candidates with robust in vivo efficacy and excellent developability properties.

  8. Discovery of new SCH 39166 analogs as potent and selective dopamine D1 receptor antagonists. (United States)

    Qiang, Li; Sasikumar, T K; Burnett, Duane A; Su, Jing; Tang, Haiqun; Ye, Yuanzan; Mazzola, Robert D; Zhu, Zhaoning; McKittrick, Brian A; Greenlee, William J; Fawzi, Ahmad; Smith, Michelle; Zhang, Hongtao; Lachowicz, Jean E


    A series of novel dopamine D(1) antagonists derived from functionalization of the D-ring of SCH 39166 were prepared. A number of these compounds displayed subnanomolar D(1) activity and more than 1000-fold selectivity over D(2). We found C-3 derivatization afforded compounds with superior overall profile in comparison to the C-2 and C-4 derivatization. A number of highly potent D(1) antagonists were discovered which have excellent selectivity over other dopamine receptors and improved PK profile compared to SCH 39166.

  9. Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor

    DEFF Research Database (Denmark)

    Gloriam, David E.; Wellendorph, Petrine; Johansen, Lars Dan;


    and pharmacological character: (1) chemogenomic lead identification through the first, to our knowledge, ligand inference between two different GPCR families, Families A and C; and (2) the discovery of the most selective GPRC6A allosteric antagonists discovered to date. The unprecedented inference of...... pharmacological activity across GPCR families provides proof-of-concept for in silico approaches against Family C targets based on Family A templates, greatly expanding the prospects of successful drug design and discovery. The antagonists were tested against a panel of seven Family A and C G protein-coupled receptors...

  10. Species differences in the effects of the κ-opioid receptor antagonist zyklophin. (United States)

    Sirohi, Sunil; Aldrich, Jane V; Walker, Brendan M


    We have shown that dysregulation of the dynorphin/kappa-opioid receptor (DYN/KOR) system contributes to escalated alcohol self-administration in alcohol dependence and that KOR antagonists with extended durations of action selectively reduce escalated alcohol consumption in alcohol-dependent animals. As KOR antagonism has gained widespread attention as a potential therapeutic target to treat alcoholism and multiple neuropsychiatric disorders, we tested the effect of zyklophin (a short-acting KOR antagonist) on escalated alcohol self-administration in rats made alcohol-dependent using intermittent alcohol vapor exposure. Following dependence induction, zyklophin was infused centrally prior to alcohol self-administration sessions and locomotor activity tests during acute withdrawal. Zyklophin did not impact alcohol self-administration or locomotor activity in either exposure condition. To investigate the neurobiological basis of this atypical effect for a KOR antagonist, we utilized a κ-, μ-, and δ-opioid receptor agonist-stimulated GTPyS coupling assay to examine the opioid receptor specificity of zyklophin in the rat brain and mouse brain. In rats, zyklophin did not affect U50488-, DAMGO-, or DADLE-stimulated GTPyS coupling, whereas the prototypical KOR antagonist nor-binaltorphimine (norBNI) attenuated U50488-induced stimulation in the rat brain tissue at concentrations that did not impact μ- and δ-receptor function. To reconcile the discrepancy between the present rat data and published mouse data, comparable GTPyS assays were conducted using mouse brain tissue; zyklophin effects were consistent with KOR antagonism in mice. Moreover, at higher concentrations, zyklophin exhibited agonist properties in rat and mouse brains. These results identify species differences in zyklophin efficacy that, given the rising interest in the development of short-duration KOR antagonists, should provide valuable information for therapeutic development efforts.

  11. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa


    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  12. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas


    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD......) diets for a minimum of 10 days before telemetric blood pressure and urinary excretion measurements in metabolic cages. On the NS diet, daytime and nighttime mean arterial blood pressure (MAP) was 7-10 mmHg higher in A1R-/- than in A1R+/+ mice. HS diet did not affect the MAP in A1R-/- mice......, but the daytime and nighttime MAP of the A1R+/+ mice increased by approximately 10 mmHg, to the same level as that in the A1R-/-. On the SD diet, day- and nighttime MAP decreased by approximately 6 mmHg in both A1R-/- and A1R+/+ mice, although the MAP remained higher in A1R-/- than in A1R+/+ mice. Although plasma...

  13. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert


    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  14. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors (United States)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana


    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  15. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar


    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  16. Extended N(6) substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A3 adenosine receptor. (United States)

    Tosh, Dilip K; Paoletta, Silvia; Chen, Zhoumou; Moss, Steven M; Gao, Zhan-Guo; Salvemini, Daniela; Jacobson, Kenneth A


    2-Arylethynyl-(N)-methanocarba adenosine 5'-methyluronamides containing rigid N(6)-(trans-2-phenylcyclopropyl) and 2-phenylethynyl groups were synthesized as agonists for probing structural features of the A3 adenosine receptor (AR). Radioligand binding confirmed A3AR selectivity and N(6)-1S,2R stereoselectivity for one diastereomeric pair. The environment of receptor-bound, conformationally constrained N(6) groups was explored by docking to an A3AR homology model, indicating specific hydrophobic interactions with the second extracellular loop able to modulate the affinity profile. 2-Pyridylethynyl derivative 18 was administered orally in mice to reduce chronic neuropathic pain in the chronic constriction injury model.

  17. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition. (United States)

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo


    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  18. Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action. (United States)

    Furlong, Teri M; Supit, Alva S A; Corbit, Laura H; Killcross, Simon; Balleine, Bernard W


    Addiction is characterized by a persistent loss of behavioral control resulting in insensitivity to negative feedback and abnormal decision-making. Here, we investigated the influence of methamphetamine (METH)-paired contextual cues on decision-making in rats. Choice between goal-directed actions was sensitive to outcome devaluation in a saline-paired context but was impaired in the METH-paired context, a deficit that was also found when negative feedback was provided. Reductions in c-Fos-related immunoreactivity were found in dorsomedial striatum (DMS) but not dorsolateral striatum after exposure to the METH context suggesting this effect reflected a loss specifically in goal-directed control in the METH context. This reduction in c-Fos was localized to non-enkephalin-expressing neurons in the DMS, likely dopamine D1-expressing direct pathway neurons, suggesting a relative change in control by the D1-direct versus D2-indirect pathways originating in the DMS may have been induced by METH-context exposure. To test this suggestion, we infused the adenosine 2A receptor antagonist ZM241385 into the DMS prior to test to reduce activity in D2 neurons relative to D1 neurons in the hope of reducing the inhibitory output from this region of the striatum. We found that this treatment fully restored sensitivity to negative feedback in a test conducted in the METH-paired context. These results suggest that drug exposure alters decision-making by downregulation of the circuitry mediating goal-directed action, an effect that can be ameliorated by acute A2A receptor inhibition in this circuit.

  19. Cannabinoid-1 receptor antagonists in type-2 diabetes. (United States)

    Scheen, André J


    Type-2 diabetes is closely related to abdominal obesity and is generally associated with other cardiometabolic risk factors, resulting in a risk of major cardiovascular disease. Several animal and human observations suggest that the endocannabinoid system is over-active in the presence of abdominal obesity and/or diabetes. Both central and peripheral endocannabinoid actions, via the activation of CB1 receptors, promote weight gain and associated metabolic changes. Rimonabant, the first selective CB(1) receptor blocker in clinical use, has been shown to reduce body weight, waist circumference, triglycerides, blood pressure, insulin resistance index and C-reactive protein levels, and to increase high-density lipoprotein (HDL) cholesterol and adiponectin concentrations in both non-diabetic and diabetic overweight/obese patients. In addition, a 0.5-0.7% reduction in HbA1c levels was observed in metformin- or sulphonylurea-treated patients with type-2 diabetes and in drug-naïve diabetic patients. Almost half of the metabolic changes, including HbA1c reduction, could not be explained by weight loss, suggesting that there are direct peripheral effects. Rimonabant was generally well-tolerated, and the safety profile was similar in diabetic and non-diabetic patients, with a higher incidence of depressed mood disorders, nausea and dizziness. In conclusion, the potential role of rimonabant in overweight/obese patients with type-2 diabetes and at high risk of cardiovascular disease deserves much consideration.

  20. Opioid Receptor Antagonists in the Treatment of Alcoholism. (United States)

    Serecigni, Josep Guardia


    Objetivos: A partir de los recientes progresos en la farmacoterapia del alcoholismo, hemos efectuado una revisión sobre los fármacos antagonistas de los receptores opioides, que tienen aprobada la indicación para el tratamiento del alcoholismo, como son naltrexona y nalmefeno. Metodología: Hemos revisado más de 100 publicaciones sobre péptidos y receptores opioides, el efecto de los fármacos antagonistas de los receptores opioides sobre el consumo de alcohol, tanto en animales como en humanos, tanto en el laboratorio como para el tratamiento del alcoholismo. También se describen las características farmacológicas de naltrexona y de nalmefeno y su utilidad en la práctica clínica. Resultados: Múltiples evidencias han demostrado la eficacia de naltrexona y nalmefeno para reducir el consumo de alcohol, tanto en animales de laboratorio como también en personas estudiadas en situación de bar experimental, aunque debido al diferente perfil receptorial, nalmefeno ha sido relacionado con una mayor eficacia para la reducción del consumo de alcohol, en ratas que presentan dependencia del alcohol. Además, un gran número de ensayos clínicos controlados han demostrado la eficacia de naltrexona para la prevención de recaídas, en personas que presentan un trastorno por dependencia del alcohol. Ensayos clínicos controlados recientes han demostrado la eficacia de nalmefeno “a demanda” para reducir el consumo de alcohol, en personas que presentan un trastorno por dependencia del alcohol de baja gravedad. Conclusiones: Tanto naltrexona como nalmefeno han demostrado ser fármacos seguros, bien tolerados, de manejo sencillo, y eficaces para el tratamiento del trastorno por dependencia del alcohol, (actualmente llamado trastorno por consumo de alcohol). A partir de recientes ensayos clínicos controlados se ha comprobado que nalmefeno produce una reducción significativa del consumo de alcohol, lo cual supone un nuevo objetivo que amplía las posibilidades de

  1. The 5-HT2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate

    Directory of Open Access Journals (Sweden)

    Twum eAnsah


    Full Text Available 5-HT plays a regulatory role in voluntary movements of the basal ganglia and have a major impact on disorders of the basal ganglia such as Parkinson’s disease (PD. Clinical studies have suggested that 5-HT2 receptor antagonists may be useful in the treatment of the motor symptoms of PD. We hypothesized that 5-HT2A receptor antagonists may restore motor function by regulating glutamatergic activity in the striatum. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP exhibited decreased performance on the beam-walking apparatus. Peripheral administration of the 5-HT2A receptor antagonist M100907 improved performance of MPTP-treated mice on the beam-walking apparatus. In vivo microdialysis revealed an increase in striatal extracellular glutamate in MPTP-treated mice and local perfusion of M100907 into the dorsal striatum significantly decreased extracellular glutamate levels in saline and MPTP-treated mice. Our studies suggest that blockade of 5-HT2A receptors may represent a novel therapeutic target for the motor symptoms of Parkinson’s disease.

  2. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist. (United States)

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L


    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  3. Effects of Proton Pump Inhibitors and H2 Receptor Antagonists on the Ileum Motility

    Directory of Open Access Journals (Sweden)

    Atilla Kurt


    Full Text Available Objectives. To investigate the effects of proton pump inhibitors (PPIs and H2 receptor antagonists on ileum motility in rats with peritonitis and compare changes with control group rats. Methods. Peritonitis was induced by cecal ligation and puncture in 8 rats. Another of 8 rats underwent a sham operation and were accepted as controls. Twenty-four hours later after the operation, the rats were killed, and their ileum smooth muscle was excised and placed in circular muscle direction in a 10 mL organ bath. Changes in amplitude and frequency of contractions were analyzed before and after PPIs and H2 receptor blockers. Results. PPI agents decreased the motility in a dose-dependent manner in ileum in both control and intraabdominal sepsis groups. While famotidine had no significant effect on ileum motility, ranitidine and nizatidine enhanced motility in ileum in both control and intraabdominal sepsis groups. This excitatory effect of H2 receptor antagonists and inhibitor effects of PPIs were significantly high in control group when compared to the peritonitis group. The inhibitor effect of pantoprazole on ileum motility was significantly higher than the other two PPI agents. Conclusions. It was concluded that H2 receptor antagonists may be more effective than PPIs for recovering the bowel motility in the intraabdominal sepsis situation.

  4. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.


    period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...... a maximal oxygen uptake ((V) over dotO(2max)) test and a prolonged exercise test, consisting of 60 min of submaximal cycling followed by exercise to fatigue at 90% of (V) over dotO(2max). Main Outcome Measures: (V) over dotO(2max) was measured before and after the treatment period. Hormonal and metabolic......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...

  5. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways. (United States)

    Gsandtner, Ingrid; Freissmuth, Michael


    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.

  6. Classification of 5-HT1A receptor agonists and antagonists using GA-SVM method

    Institute of Scientific and Technical Information of China (English)

    Xue-lian ZHU; Hai-yan CAI; Zhi-jian XU; Yong WANG; He-yao WANG; Ao ZHANG; Wei-liang ZHU


    Aim:To construct a reliable computational model for the classification of agonists and antagonists of 5-HT1A receptor.Methods:Support vector machine (SVM),a well-known machine learning method,was employed to build a prediction model,and genetic algorithm (GA) was used to select the most relevant descriptors and to optimize two important parameters,C and r of the SVM model.The overall dataset used in this study comprised 284 ligands of the 5-HT1A receptor with diverse structures reported in the literatures.Results:A SVM model was successfully developed that could be used to predict the probability of a ligand being an agonist or antagonist of the 5-HT1A receptor.The predictive accuracy for training and test sets was 0.942 and 0.865,respectively.For compounds with probability estimate higher than 0.7,the predictive accuracy of the model for training and test sets was 0.954 and 0.927,respectively.To further validate our model,the receiver operating characteristic (ROC) curve was plotted,and the Area-Under-the-ROC-Curve (AUC) value was calculated to be 0.883 for training set and 0.906 for test set.Conclusion:A reliable SVM model was successfully developed that could effectively distinguish agonists and antagonists among the ligands of the 5-HT1A receptor.To our knowledge,this is the first effort for the classification of 5-HT1A receptor agonists and antagonists based on a diverse dataset.This method may be used to classify the ligands of other members of the GPCR family.

  7. Opioid receptor antagonists increase [Ca2+]i in rat arterial smooth muscle cells in hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    Li KAI; Zhong-feng WANG; Yu-liang SHI; Liang-ming LIU; De-yao HU


    AIM: To examine the effects of opioid receptor antagonists and norepinephrine on intracellular free Ca2+ concentration ([Ca2+]i) in mesenteric arterial (MA) smooth muscle cells (SMC) isolated from normal and hemorrhagic shocked rats in the vascular hyporesponse stage. METHODS: The rat model of hemorrhagic shock was made by withdrawing blood to decrease the artery mean blood pressure to 3.73-4.26 kPa and keeping at the level for 3 h.[Ca2+]i of vascular smooth muscle cells (VSMC) were detected by the laser scan confocal microscopy. RESULTS:In the hyporesponse VMSC of rats in hemorrhagic shock, selective δ-, κ-, and μ-opioid receptor antagonists (naltrindole, nor-binaltorphimine, and β-funaltrexamine, 100 nmol/L) as well as norepinephrine 5 μmol/L significantly increased [Ca2+]i by 47 %±13 %, 37 %±14 %, 33 %±10 %, and 54 %±17 %, respectively, although their effects were lower than those in the normal rat cells (the increased values were 148 %±54 %, 130 %±44 %, 63 %±17 %and 110 %±38 %, respectively); and the norepinephrine-induced increase in [Ca2+]i was further augmented by three δ-, κ-, and μ-opioid receptor antagonists (50 nmol/L, respectively) application (from 52 %± 16 % to 99 %±29 %,146 %±54 % and 137 %±47 %, respectively). CONCLUSION: The disorder of [Ca2+]i regulation induced by hemorrhagic shock was mediated by opioid receptor and α-adrenoceptor, which may be partly responsible for the vascular hyporesponse, and the opioid receptor antagonists improved the response of resistance arteries to vascular stimulants in decompensatory stage of hemorrhagic shock.

  8. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor (United States)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.


    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  9. Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors. (United States)

    Scislo, Tadeusz J; Tan, Nobusuke; O'Leary, Donal S


    Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors

  10. The neurokinin 1 receptor antagonist, ezlopitant, reduces appetitive responding for sucrose and ethanol.

    Directory of Open Access Journals (Sweden)

    Pia Steensland

    Full Text Available BACKGROUND: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer 'liked' are still intensely 'wanted' [7], . The neurokinin 1 (NK1 receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974, in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. CONCLUSIONS/SIGNIFICANCE: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.

  11. Cardiovascular studies with SK&F 93319, an antagonist of histamine at both H1- and H2-receptors.


    Harvey, C A; Owen, D A


    Cardiovascular studies have been made in anaesthetized cats with SK&F 93319, an antagonist of histamine at both H1- and H2-receptors. SK&F 93319, 8 X 10(-8) and 4 X 10(-7) mol kg-1 min-1 antagonized depressor responses to injections of histamine and the maximum displacement of histamine dose-response curves exceeded that which can be obtained with either an H1-receptor antagonist or an H2-receptor antagonist alone. SK&F 93319, 8 X 10(-8) and 4 X 10(-7) mol kg-1 min-1, also caused dose-depende...

  12. X-ray structures define human P2X3 receptor gating cycle and antagonist action (United States)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric


    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the ‘cytoplasmic cap’, which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  13. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties. (United States)

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H


    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  14. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies (United States)


    functional and histological changes asso ciated with diabetic nephropathy in wild type diabetic mice but not in the A2AAR−/− diabetic mice (Awad et al...the beginning of streptozotocin induced diabetes at the age of eight weeks. This treatment , previously demonstrated to increase free adenosine levels in...and it was not affected by ABT 702 treatment Blood glucose levels were higher in diabetic mice compared with non diabetic groups and they were not

  15. A long-acting GH receptor antagonist through fusion to GH binding protein. (United States)

    Wilkinson, Ian R; Pradhananga, Sarbendra L; Speak, Rowena; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J


    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days.


    Institute of Scientific and Technical Information of China (English)

    Sheng Bi; De-sheng Wang; Guo-lin Li; Shang-ha Pan


    Objective To identify an interaction between the interleukin-1 receptor antagonist gene polymorphism and risk of Alzheimer's disease.Methods The study included 117 healthy controls, 85 patients with Alzheimer's disease in a Northeastern Chinese population of Han nationality. Genotypes were determined by a polymerase chain reaction amplification of the intron 2 fragment,harbouring a variable number of short tandem nucleotide sequences. Amplification products were separated on a 2% agarose gel.Results The allele 2 frequency was 27% in healthy controls, and 21% in patients with Alzheimer's disease. Thus for allele 2 as well as for all other alleles, genotypes, or carriage rates, no significant differences compared with controls.Conclusions No association ofinterleukin-1 receptor antagonist gene polymorphism with Alzheimer's disease was identified in this population. It is also possible that the increased risk and disease modifying effects are caused by linkage disequilibrium with other genomic variants in other nearby genes.

  17. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists. (United States)

    Greineisen, William E; Turner, Helen


    The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered.

  18. The safety of interleukin-1 receptor antagonist (anakinra in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    L. Riente


    Full Text Available The safety profile of interleukin-1 receptor antagonist (anakinra has been studied with randomised, placebo-controlled trials involving 2932 patients affected by rheumatoid arthritis. The most frequently reported adverse events were represented by injection site reactions (71% and headache (13.6%. No statistically significant difference in the incidence of infections was observed among the patients treated with the interleukin-1 receptor antagonist and the patients receiving placebo. In particular, the incidence of serious infections was 1,8% in rheumatoid arthritis patients on anakinra therapy and 0,7% in patients on placebo. The reported serious infections consisted of pneumonia, cellulitis, bone and joint infections, bursitis. No case of opportunistic infections or tubercolosis was observed. The results of clinical studies suggest that anakinra is a new well-tolerated drug for the treatment of patients affected by rheumatoid arthritis.

  19. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang


    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested.

  20. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. (United States)

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel


    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  1. A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity. (United States)

    Filipski, Kevin J; Bian, Jianwei; Ebner, David C; Lee, Esther C Y; Li, Jian-Cheng; Sammons, Matthew F; Wright, Stephen W; Stevens, Benjamin D; Didiuk, Mary T; Tu, Meihua; Perreault, Christian; Brown, Janice; Atkinson, Karen; Tan, Beijing; Salatto, Christopher T; Litchfield, John; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel


    A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to rats, in which clearance was high; and compound 49, which demonstrated a dose-dependent reduction in glucose excursion in a rat glucagon challenge experiment.

  2. Relaxant effect of the H2-receptor antagonist oxmetidine on guinea-pig and human airways.


    Advenier, C; Gnassounou, J. P.; Scarpignato, C.


    The effects of three different H2-receptor antagonists (cimetidine, ranitidine and oxmetidine) were tested on isolated preparations of guinea-pig trachea and human bronchus against contractions induced by acetylcholine, histamine and potassium chloride (KCl). In addition, their influence on calcium concentration-response curves in guinea-pig tracheal spirals was examined in a potassium-rich solution (30 mM). Finally, their effects were studied in vivo against acetylcholine and histamine-induc...

  3. Cardiovascular effects of selective agonists and antagonists of histamine H3 receptors in the anaesthetized rat. (United States)

    Coruzzi, G; Gambarelli, E; Bertaccini, G; Timmerman, H


    The cardiovascular responses to a series of selective histamine H3 receptor agonists, (R) alpha-methylhistamine, imetit and immepip and selective antagonists, thioperamide, clobenpropit and clophenpropit, were studied in anaesthetized rats. At 0.003-1 mumol/kg i.v. doses, H3 agonists failed to produce any significant change in the basal blood pressure and heart rate. Larger doses of (R) alpha-methylhistamine increased the blood pressure and heart rate and higher doses of imetit caused vasodepressor responses and reduced heart rate, whereas immepip proved virtually inactive. While (R) alpha-methylhistamine-induced effects were not blocked by histamine H1-, H2- and H3-receptor antagonists, they were however reduced by idazoxan and propranolol, which indicates that the mechanisms involved are adrenergic. The effects induced by imetit are not related to histamine H3 receptors but are mediated by indirect (via 5HT3 receptors) cholinergic mechanisms, since these effects were prevented by 1 mg/kg i.v. atropine and by 0.1 mg/kg i.v. ondansetron. Similarly, the H3 antagonists per se failed to change basal cardiovascular function up to 10 mumol/kg i.v. and only at 30 mumol/kg i.v. were marked decreases observed in the blood pressure and heart rate with a significant reduction in the effects of noradrenaline. These data indicate that in anaesthetized rats, histamine H3 receptor activation or blockade has no effect on basal cardiovascular function. The effects recorded after the administration of large doses of (R) alpha-methylhistamine and imetit are clearly unrelated to histamine H3 receptors and should be taken into account when using these compounds as H3 ligands for "in vivo" experiments.

  4. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Olsen, Inge C; Kjekshus, John K; Torp-Pedersen, Christian;


    AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...

  5. Extended N-Arylsulfonylindoles as 5-HT6 Receptor Antagonists: Design, Synthesis & Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Gonzalo Vera


    Full Text Available Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-tosyl-1H-indol-3-ylethanol (4b, 1-(1-(4-iodophenylsulfonyl-1H-indol-3-yl-2-(4-(2-methoxyphenylpiperazin-1-ylethanol (4g and 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-(naphthalen-1-ylsulfonyl-1H-indol-3-ylethanol (4j showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83. Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM in calcium mobilisation functional assay.

  6. Extended N-Arylsulfonylindoles as 5-HT₆