WorldWideScience

Sample records for adenosine receptor agonist

  1. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  2. AMP Is an Adenosine A1 Receptor Agonist*

    Science.gov (United States)

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  3. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  4. The role of adenosine receptor agonists in regulation of hematopoiesis

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Weiterová, Lenka; Hoferová, Zuzana

    2011-01-01

    Roč. 16, č. 1 (2011), s. 675-685 ISSN 1420-3049 R&D Projects: GA MO OVBIOFYZ20101; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptors * hematopoiesis * myelosuppression Subject RIV: BO - Biophysics Impact factor: 2.386, year: 2011

  5. Therapeutic efficacy of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) against organophosphate intoxication

    NARCIS (Netherlands)

    Bueters, T.J.H.; Groen, B.; Danhof, M.; IJzerman, A.P.; Helden, H.P.M. van

    2002-01-01

    The objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun (O-ethyl-N-dimethylphosphoramidocyanidate), sarin

  6. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  7. Structural Probing and Molecular Modeling of the A₃ Adenosine Receptor: A Focus on Agonist Binding.

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A

    2017-03-11

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A₁, A 2A , A 2B and A₃, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A₃AR (hA₃AR) subtype is implicated in several cytoprotective functions. Therefore, hA₃AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A₃AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A₃AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  8. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A.

    2017-01-01

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A1, A2A, A2B and A3, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A3AR (hA3AR) subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A3AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A3AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates. PMID:28287473

  9. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding

    Directory of Open Access Journals (Sweden)

    Antonella Ciancetta

    2017-03-01

    Full Text Available Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR subtypes, termed A1, A2A, A2B and A3, which belong to the G protein-coupled receptor (GPCR superfamily. The human A3AR (hA3AR subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure–activity relationships (SARs of newly emerged A3AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A3AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  10. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  11. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  12. IB-MECA, an Adenosine A(3) Receptor Agonist, Does Not Influence Survival of Lethally gamma-Irradiated Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2012-01-01

    Roč. 61, č. 6 (2012), s. 649-654 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/08/0158; GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Mouse * IB-MECA * Adenosine A(3) receptor agonist Subject RIV: BO - Biophysics Impact factor: 1.531, year: 2012

  13. Combined pharmacological therapy of the acute radiation disease using a cyclooxygenase-2 inhibitor and an adenosine A(3) receptor agonist

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 9, č. 6 (2014), s. 642-646 ISSN 1895-104X R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Hematopoiesis * Cyclooxygenase inhibition * Adenosine receptor agonist Subject RIV: BO - Biophysics Impact factor: 0.710, year: 2014

  14. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  15. Adenosine Receptors and Wound Healing

    Directory of Open Access Journals (Sweden)

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  16. Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms.

    Science.gov (United States)

    Carlin, Jesse Lea; Jain, Shalini; Gizewski, Elizabeth; Wan, Tina C; Tosh, Dilip K; Xiao, Cuiying; Auchampach, John A; Jacobson, Kenneth A; Gavrilova, Oksana; Reitman, Marc L

    2017-03-01

    Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1 -/- , Adora3 -/- ) mice. Confirming prior data, stimulation of the A 3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H 1 receptors. In contrast, A 1 AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A 1 AR agonists, including N 6 -cyclopentyladenosine (CPA), N 6 -cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A 1 AR and A 3 AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N 6 -endo-norbornyladenosine], or using Adora3 -/- mice allowed selective stimulation of A 1 AR. AMP-stimulated hypothermia can occur independently of A 1 AR, A 3 AR, and mast cells. A 1 AR and A 3 AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A 1 AR nor A 3 AR was required for fasting-induced torpor. A 1 AR and A 3 AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms. Published by Elsevier Ltd.

  17. Pharmacological delayed preconditioning against ischaemia-induced ventricular arrhythmias: effect of an adenosine A1-receptor agonist

    OpenAIRE

    Tissier, Renaud; Souktani, Rachid; Parent de Curzon, Olivier; Lellouche, Nicolas; Henry, Patrick; Giudicelli, Jean-François; Berdeaux, Alain; Ghaleh, Bijan

    2001-01-01

    The goal of this study was to investigate the effects of the delayed pharmacological preconditioning produced by an adenosine A1-receptor agonist (A1-DPC) against ventricular arrhythmias induced by ischaemia and reperfusion, compared to those of ischaemia-induced delayed preconditioning (I-DPC).Eighty-nine instrumented conscious rabbits underwent a 2 consecutive days protocol. On day 1, rabbits were randomly divided into four groups: ‘Control' (saline, i.v.), ‘I-DPC' (six 4-min coronary arter...

  18. Adenosine receptor desensitization and trafficking.

    Science.gov (United States)

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Science.gov (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  20. Methodical Challenges and a Possible Resolution in the Assessment of Receptor Reserve for Adenosine, an Agonist with Short Half-Life

    Directory of Open Access Journals (Sweden)

    Judit Zsuga

    2017-05-01

    Full Text Available The term receptor reserve, first introduced and used in the traditional receptor theory, is an integrative measure of response-inducing ability of the interaction between an agonist and a receptor system (consisting of a receptor and its downstream signaling. The underlying phenomenon, i.e., stimulation of a submaximal fraction of receptors can apparently elicit the maximal effect (in certain cases, provides an opportunity to assess the receptor reserve. However, determining receptor reserve is challenging for agonists with short half-lives, such as adenosine. Although adenosine metabolism can be inhibited several ways (in order to prevent the rapid elimination of adenosine administered to construct concentration–effect (E/c curves for the determination, the consequent accumulation of endogenous adenosine biases the results. To address this problem, we previously proposed a method, by means of which this bias can be mathematically corrected (utilizing a traditional receptor theory-independent approach. In the present investigation, we have offered in silico validation of this method by simulating E/c curves with the use of the operational model of agonism and then by evaluating them using our method. We have found that our method is suitable to reliably assess the receptor reserve for adenosine in our recently published experimental setting, suggesting that it may be capable for a qualitative determination of receptor reserve for rapidly eliminating agonists in general. In addition, we have disclosed a possible interference between FSCPX (8-cyclopentyl-N3-[3-(4-(fluorosulfonylbenzoyloxypropyl]-N1-propylxanthine, an irreversible A1 adenosine receptor antagonist, and NBTI (S-(2-hydroxy-5-nitrobenzyl-6-thioinosine, a nucleoside transport inhibitor, i.e., FSCPX may blunt the effect of NBTI.

  1. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    and lack of EPS in rodents could also be observed in non-human primates. We investigated the effects of CGS 21680 on behaviours induced by D-amphetamine and (-)-apomorphine in EPS-sensitized Cebus apella monkeys. CGS 21680 was administered s.c. in doses of 0.01, 0.025 and 0.05 mg/kg, alone...... and in combination with D-amphetamine and (-)-apomorphine. The monkeys were videotaped after drug administration and the tapes were rated for EPS and psychosis-like symptoms. CGS 21680 decreased apomorphine-induced behavioural unrest, arousal (0.01-0.05 mg/kg) and stereotypies (0.05 mg/kg) while amphetamine...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  2. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    International Nuclear Information System (INIS)

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M.

    1989-01-01

    In the present study, the binding of a highly A2-selective agonist radioligand, [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) is described. [3H]CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that [3H]CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. [3H]CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM [3H]CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of [3H]CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine

  3. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    Science.gov (United States)

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  4. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study.

    Science.gov (United States)

    Kermanian, Fatemeh; Mehdizadeh, Mehdi; Soleimani, Mansureh; Ebrahimzadeh Bideskan, Ali Reza; Asadi-Shekaari, Majid; Kheradmand, Hamed; Haghir, Hossein

    2012-12-01

    There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.

  5. Synthetic adenosine receptor agonists modulate murine haematopoiesis: a study employing the cytotoxic action of 5-fluorouracil

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Vacek, Antonín; Znojil, V.; Pipalová, I.

    2004-01-01

    Roč. 5, Suppl. 2 (2004), s. S65 ISSN 1466-4860. [Congress of the European Hematology Association /9./. 10.06.2004-13.06.2004, Geneva] R&D Projects: GA ČR GA305/02/0423 Keywords : 5-fluorouracil * haematopoiesis * adenosine Subject RIV: BO - Biophysics

  6. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    Science.gov (United States)

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  7. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Science.gov (United States)

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; pcaffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Polyamidoamine (PAMAM) Dendrimer Conjugates of Clickable Agonists of the A3 Adenosine Receptor and Coactivation of the P2Y14 Receptor by a Tethered Nucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Tosh, Dilip, K. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Yoo, Lena S. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Chinn, Moshe [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hong, Kunlun [ORNL; Kilbey, II, S Michael [ORNL; Barrett, Matthew O. [University of North Carolina School of Medicine; Fricks, Ingrid P. [University of North Carolina School of Medicine; Harden, T. Kendall [University of North Carolina School of Medicine; Jacobson, Kenneth A. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

    2010-01-01

    We previously synthesized a series of potent and selective A{sub 3} adenosine receptor (AR) agonists (North-methanocarba nucleoside 5{prime}-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed 'click' chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A{sub 3}AR activation was preserved in these multivalent conjugates, which bound with apparent Ki of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A{sub 3}AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A{sub 3} and P2Y{sub 14} receptors (via amide-linked uridine-5{prime}-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.

  10. Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists

    Directory of Open Access Journals (Sweden)

    Gao Zhan-Guo

    2010-05-01

    Full Text Available Abstract Background Quantum dots (QDs are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs. Results Synthetic strategies for coupling the A2A adenosine receptor (AR agonist CGS21680 (2-[4-(2-carboxyethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine to functionalized QDs were explored. Conjugates tethered through amide-linked chains and poly(ethyleneglycol (PEG displayed low solubility and lacked receptor affinity. The anchor to the dendron was either through two thiol groups of (R-thioctic acid or through amide formation to a commercial carboxy-derivatized QD. The most effective approach was to use polyamidoamine (PAMAM D5 dendrons as multivalent spacer groups, grafted on the QD surface through a thioctic acid moiety. In radioligand binding assays, dendron nucleoside conjugate 11 displayed a moderate affinity at the human A2AAR (Kiapp 1.02 ± 0.15 μM. The QD conjugate of increased water solubility 13, resulting from the anchoring of this dendron derivative, interacted with the receptor with Kiapp of 118 ± 54 nM. The fluorescence emission of 13 occurred at 565 nm, and the presence of the pendant nucleoside did not appreciably quench the fluorescence. Conclusions This is a feasibility study to demonstrate a means of conjugating to a QD a small molecular pharmacophore of a GPCR that is relatively hydrophobic. Further enhancement of affinity by altering the pharmacophore or the linking structures will be needed to make useful affinity probes.

  11. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death.

    Science.gov (United States)

    Wagner, Cynthia E; Pope, Nicolas H; Charles, Eric J; Huerter, Mary E; Sharma, Ashish K; Salmon, Morgan D; Carter, Benjamin T; Stoler, Mark H; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2016-02-01

    Ex vivo lung perfusion has been successful in the assessment of marginal donor lungs, including donation after cardiac death (DCD) donor lungs. Ex vivo lung perfusion also represents a unique platform for targeted drug delivery. We sought to determine whether ischemia-reperfusion injury would be decreased after transplantation of DCD donor lungs subjected to prolonged cold preservation and treated with an adenosine A2A receptor agonist during ex vivo lung perfusion. Porcine DCD donor lungs were preserved at 4°C for 12 hours and underwent ex vivo lung perfusion for 4 hours. Left lungs were then transplanted and reperfused for 4 hours. Three groups (n = 4/group) were randomized according to treatment with the adenosine A2A receptor agonist ATL-1223 or the dimethyl sulfoxide vehicle: Infusion of dimethyl sulfoxide during ex vivo lung perfusion and reperfusion (DMSO), infusion of ATL-1223 during ex vivo lung perfusion and dimethyl sulfoxide during reperfusion (ATL-E), and infusion of ATL-1223 during ex vivo lung perfusion and reperfusion (ATL-E/R). Final Pao2/Fio2 ratios (arterial oxygen partial pressure/fraction of inspired oxygen) were determined from samples obtained from the left superior and inferior pulmonary veins. Final Pao2/Fio2 ratios in the ATL-E/R group (430.1 ± 26.4 mm Hg) were similar to final Pao2/Fio2 ratios in the ATL-E group (413.6 ± 18.8 mm Hg), but both treated groups had significantly higher final Pao2/Fio2 ratios compared with the dimethyl sulfoxide group (84.8 ± 17.7 mm Hg). Low oxygenation gradients during ex vivo lung perfusion did not preclude superior oxygenation capacity during reperfusion. After prolonged cold preservation, treatment of DCD donor lungs with an adenosine A2A receptor agonist during ex vivo lung perfusion enabled Pao2/Fio2 ratios greater than 400 mm Hg after transplantation in a preclinical porcine model. Pulmonary function during ex vivo lung perfusion was not predictive of outcomes after transplantation. Copyright

  12. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    Science.gov (United States)

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  13. Effects of adenosine A2a receptor agonist and antagonist on cerebellar nuclear factor-kB expression preceded by MDMA toxicity.

    Science.gov (United States)

    Kermanian, Fatemeh; Soleimani, Mansoureh; Pourheydar, Bagher; Samzadeh-Kermani, Alireza; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2014-01-01

    Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neurons. The NF-kB family of proteins are ubiquitously expressed and are inducible transcription factors that regulate the expression of genes involved in disparate processes such as immunity and ingrowth, development and cell-death regulation. In this study we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Sixty three male Sprague-Dawley rats were injected to MDMA (10 and 20mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03mg/kg) injection. The cerebellum were then removed forcresylviolet staining, western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results showed that MDMA increased the number of cerebellar dark neurons. We observed that administration of CGS following MDMA, significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. These results indicated that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.

  14. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  15. Characterization of the pharmacokinetics, brain distribution, and therapeutic efficacy of the adenosine A1 receptor partial agonist 2'-deoxy-N6-cyclopentyladenosine in sarin-poisoned rats

    International Nuclear Information System (INIS)

    Bueters, Tjerk J.H.; IJzerman, Ad P.; Helden, Herman P.M. van; Danhof, Meindert

    2003-01-01

    Characterization of the pharmacokinetics, brain distribution, and therapeutic efficacy of the adenosine A 1 receptor partial agonist 2'-deoxy-N 6 -cyclopentyladenosine in sarin-poisoned rats. Bueters, T.J.H., IJzerman, A.P., Van Helden, H.P.M., and Danhof, M. (2003). The objective of the present study was to determine (1) the influence of sarin poisoning (144 μg/kg sc) on the pharmacokinetics and brain distribution of the adenosine A 1 receptor partial agonist 2'-deoxy-N 6 -cyclopentyladenosine (2'dCPA), and (2) the effect of 2'dCPA (20 mg/kg iv) on the central acetylcholine (ACh) release and protection against sarin toxicity. A five-compartment model successfully described the pharmacokinetic profile of 2'dCPA in blood and brain microdialysate. A covariate analysis revealed that the volume of distribution of 2'dCPA in blood was different in sarin-poisoned rats, 177 ± 7 versus 148 ± 8 ml in control rats. However, the transport of 2'dCPA from blood to the brain was unaffected as reflected by the values of the intercompartmental transport clearances, 0.21 ± 0.02 and 0.21 ± 0.04 μl/min in control and sarin-poisoned rats, respectively. Also the area-under-curve (AUC) ratios of brain microdialysate and blood were identical with values of 0.02 ± 0.001 and 0.02 ± 0.002, respectively, demonstrating the restricted transport of 2'dCPA into the brain in both treatment groups. Treatment of sarin-poisoned rats by 2'dCPA did not adequately prevent the accumulation of ACh in the central nervous system. 2'dCPA delayed the emergence of concomitant symptoms compared to untreated rats, but eventually only 29% of the animals survived 24 h. In conclusion, the pharmacokinetic profile of 2'dCPA in blood was slightly changed by sarin, but not the distribution of 2'dCPA into the brain. The therapeutic efficacy of 2'dCPA against sarin was limited, presumably due to insufficient quantities of 2'dCPA reaching the brain

  16. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.

    Science.gov (United States)

    Janes, Kali; Esposito, Emanuela; Doyle, Timothy; Cuzzocrea, Salvatore; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

    2014-12-01

    Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy. Copyright © 2014

  17. Synergistic interaction between a PDE5 inhibitor (sildenafil) and a new adenosine A2A receptor agonist (LASSBio-1359) improves pulmonary hypertension in rats.

    Science.gov (United States)

    Alencar, Allan K; Carvalho, Fábio I; Silva, Ananssa M; Martinez, Sabrina T; Calasans-Maia, Jorge A; Fraga, Carlos M; Barreiro, Eliezer J; Zapata-Sudo, Gisele; Sudo, Roberto T

    2018-01-01

    Pulmonary hypertension (PH) is characterized by enhanced pulmonary vascular resistance, which causes right ventricle (RV) pressure overload and results in right sided heart failure and death. This work investigated the effectiveness of a combined therapy with PDE5 inhibitor (PDE5i) and a new adenosine A2A receptor (A2AR) agonist in mitigating monocrotaline (MCT) induced PH in rats. An in vitro isobolographic analysis was performed to identify possible synergistic relaxation effect between sildenafil and LASSBio 1359 in rat pulmonary arteries (PAs). In the in vivo experiments, PH was induced in male Wistar rats by a single intraperitoneal injection of 60 mg/kg MCT. Rats were divided into the following groups: control (saline injection only), MCT + vehicle, MCT + sildenafil, MCT + LASSBio 1359 and MCT + combination of sildenafil and LASSBio 1359. Fourteen days after the MCT injection, rats were treated daily with oral administration of the regimen therapies or vehicle for 14 days. Cardiopulmonary system function and structure were evaluated by echocardiography. RV systolic pressure and PA endothelial function were measured. Isobolographic analysis showed a synergistic interaction between sildenafil and LASSBio 1359 in rat PAs. Combined therapy with sildenafil and LASSBio 1359 but not monotreatment with low dosages of either sildenafil or LASSBio 1359 ameliorated all of PH related abnormalities in cardiopulmonary function and structure in MCT challenged rats. The combination of sildenafil and LASSBio 1359 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to improve quality of life and outcomes for PH patients.

  18. Effect of fluoxetine and adenosine receptor NECA agonist on G alpha q/11 protein of C6 glioma cells

    Czech Academy of Sciences Publication Activity Database

    Kovářů, H.; Kovářů, F.; Lisá, Věra

    2012-01-01

    Roč. 33, č. 6 (2012), s. 614-618 ISSN 0172-780X Institutional support: RVO:67985823 Keywords : C6 glioma cells * SSRI antidepressant * G alpha q/11 signalling * G protein coupled receptor Subject RIV: ED - Physiology Impact factor: 0.932, year: 2012

  19. Excitatory effect of the A2A adenosine receptor agonist CGS-21680 on spontaneous and K+-evoked acetylcholine release at the mouse neuromuscular junction.

    Science.gov (United States)

    Palma, A G; Muchnik, S; Losavio, A S

    2011-01-13

    The mechanism of action of the A2A adenosine receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) in the facilitation of spontaneous (isotonic and hypertonic condition) and K+-evoked acetylcholine (ACh) release was investigated in the mouse diaphragm muscles. At isotonic condition, the CGS-21680-induced excitatory effect on miniature end-plate potential (MEPP) frequency was not modified in the presence of CdCl2 and in a medium free of Ca2+ (0Ca2+-EGTA), but it was abolished after buffering the rise of intracellular Ca2+ with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxy-methyl) (BAPTA-AM) and when the Ca2+-ATPase inhibitor thapsigargin was used to deplete intracellular Ca2+ stores. CGS-21680 did not have a direct effect on the Ca2+-independent neurotransmitter-releasing machinery, since the modulatory effect on the hypertonic response was also occluded by BAPTA-AM and thapsigargin. CGS-21680 facilitation on K+-evoked ACh release was not altered by the P/Q-type voltage-dependent calcium channel (VDCC) blocker ω-Agatoxin IVA, but it was completely prevented by both, the L-type VDCC blocker nitrendipine (which is known to immobilize their gating charges), or thapsigargin, suggesting that the effects of CGS-21680 on L-type VDCC and thapsigargin-sensitive internal stores are associated. We found that the VDCC pore blocker Cd2+ (2 mM Ca2+ or 0Ca2+-EGTA) failed to affect the CGS-21680 effect in high K+ whereas nitrendipine in 0Ca2+-EGTA+Cd2+ occluded its action. The blockade of Ca2+ release from endoplasmic reticulum with ryanodine antagonized the facilitating effect of CGS-21680 in control and high K+ concentration. It is concluded that, at the mouse neuromuscular junction, activation of A2A receptors facilitates spontaneous and K+-evoked ACh release by an external Ca2+-independent mechanism but that involves mobilization of Ca2+ from internal stores: during spontaneous ACh release

  20. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  1. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  2. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  3. Role of adenosine receptors in caffeine tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, S.G.; Mante, S.; Minneman, K.P. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  4. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  5. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  6. Adenosine receptor modulation of seizure susceptibility in rats

    International Nuclear Information System (INIS)

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A 1 adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of 3 H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A 1 adenosine receptors in the cerebral cortex

  7. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    International Nuclear Information System (INIS)

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H.

    1990-01-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-[ 3 H]ethylcarboxamidoadenosine [( 3 H]NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the [ 3 H]NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors

  8. The Role of Adenosine Receptors in Psychostimulant Addiction

    Directory of Open Access Journals (Sweden)

    Inmaculada Ballesteros-Yáñez

    2018-01-01

    Full Text Available Adenosine receptors (AR are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS, adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC, through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A, as well as with other subtypes (e.g., A2A/D2, opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are

  9. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  10. The Neuroprotective Benefits of Central Adenosine Receptor Stimulation in a Soman Nerve Agent Rat Model

    Science.gov (United States)

    2014-04-01

    where treatment is delayed and nerve agent-induced status epilepticus develops. New therapeutic targets are required to improve survivability and...Exp Ther 304(3): 1307-1313. Compton, J. R. (2004). Adenosine Receptor Agonist Pd 81,723 Protects Against Seizure/ Status Epilepticus and...Dragunow (1994). " Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms." Neuroscience 58(2): 245-261. Youssef, A. F. and B. W

  11. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    Science.gov (United States)

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  12. Involvement of A1 adenosine receptors and neural pathways in adenosine-induced bronchoconstriction in mice.

    Science.gov (United States)

    Hua, Xiaoyang; Erikson, Christopher J; Chason, Kelly D; Rosebrock, Craig N; Deshpande, Deepak A; Penn, Raymond B; Tilley, Stephen L

    2007-07-01

    High levels of adenosine can be measured from the lungs of asthmatics, and it is well recognized that aerosolized 5'AMP, the precursor of adenosine, elicits robust bronchoconstriction in patients with this disease. Characterization of mice with elevated adenosine levels secondary to the loss of adenosine deaminase (ADA) expression, the primary metabolic enzyme for adenosine, further support a role for this ubiquitous mediator in the pathogenesis of asthma. To begin to identify pathways by which adenosine can alter airway tone, we examined adenosine-induced bronchoconstriction in four mouse lines, each lacking one of the receptors for this nucleoside. We show, using direct measures of airway mechanics, that adenosine can increase airway resistance and that this increase in resistance is mediated by binding the A(1) receptor. Further examination of this response using pharmacologically, surgically, and genetically manipulated mice supports a model in which adenosine-induced bronchoconstriction occurs indirectly through the activation of sensory neurons.

  13. Amyotrophic Lateral Sclerosis (ALS and Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Ana M. Sebastião

    2018-04-01

    Full Text Available In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS. Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR, most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  14. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  16. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    International Nuclear Information System (INIS)

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L.

    1989-01-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-[4-(2-[2-[(4- aminophenyl)methylcarbonylamino]ethylaminocarbonyl]- ethyl)phenyl]ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-[(R)-1-methyl- 2-phenylethyl]adenosine (R-PIA) greater than (+)-N6-[(S)-1-methyl-2- phenylethyl]adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-[beta, gamma-imido]triphosphate

  17. Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors.

    Science.gov (United States)

    Prediger, Rui D S; Takahashi, Reinaldo N

    2005-03-16

    The recognition of an unfamiliar juvenile rat by an adult rat has been shown to imply short-term memory processes. The present study was designed to examine the role of adenosine receptors in the short-term social memory of rats using the social recognition paradigm. Adenosine (5.0-10.0 mg/kg), the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.025-0.05 mg/kg) and the selective adenosine A(2A) receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA, 1.0-5.0 mg/kg), given by i.p. route 30 min before the test, disrupted the juvenile recognition ability of adult rats. This negative effect of adenosine (5.0 mg/kg, i.p.) on social memory was prevented by pretreatment with the non-selective adenosine receptor antagonist caffeine (10.0 mg/kg, i.p.), the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 mg/kg, i.p.) and the adenosine A(2A) antagonist 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, 1.0 mg/kg, i.p.). Furthermore, acute administration of caffeine (10.0-30.0 mg/kg, i.p.), DPCPX (1.0-3.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.) improved the short-term social memory in a specific manner. These results indicate that adenosine modulates the short-term social memory in rats by acting on both A1 and A(2A) receptors, with adenosine receptor agonists and antagonists, respectively, disrupting and enhancing the social memory.

  18. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  19. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  20. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    Science.gov (United States)

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  1. Ethanol-induced increase in portal blood flow: Role of acetate and A1- and A2-adenosine receptors

    International Nuclear Information System (INIS)

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H.

    1988-01-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A 1 -adenosine receptor agonist N-6-cyclohexyl adenosine and the A 2 -agonist 5'-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A 2 -subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues

  2. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  3. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  4. Regulatory effects of adenosine A2A receptors on psychomotor ability and mood behavior of mice

    Directory of Open Access Journals (Sweden)

    Li JIANG

    2011-07-01

    Full Text Available Objective To explore the effects of gene knock-out,agonist or inhibitor of adenosine A2A receptor on the locomotor activity,and anxiety-or depression-like behavior of mice.Methods Male C57BL/6 mice,comprising those underwent gene knock-out of adenosine A2A receptor(A2AKO and their wild-type(WT littermates,were assigned into A2AKO group and WT group.Another batch of male C57BL/6,specific-pathogen-free(SPF mice,were assigned into SCH58261 group,CGS21680 group and control group.Mice of aforesaid 3 groups were transperitoneally administered with SCH58261,a specific inhibitor of adenosine A2A receptor at a dose of 2mg/kg,CGS21680,a specific agonist of adenosine A2A receptor at a dose of 0.5mg/kg,and vehicle(0.25ml,comprising DMSO and saline,respectively.Ten minutes after injection,mice of the 3 groups underwent open-field test,elevated plus-maze test and forced swimming test to detect their locomotor activity,anxiety-and depression-like behavior.Results a Compared with WT group,the total movement distance decreased(P 0.05.b Compared with control group,the total movement distance decreased and the stay time in the peripheral area increased significantly in the open field test(P 0.05.Conclusions The agonist of adenosine A2A receptor may depress the spontaneous motility and exploratory behavior,and exacerbate the anxiety and depression,and it simulates the effect induced by knock-out of A2A receptor gene,but it is opposite to the effect induced by A2A receptor inhibitor.

  5. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    Science.gov (United States)

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Activation of adenosine receptors and inhibition of cyclooxygenases: two recent pharmacological approaches to modulation of radiation suppressed hematopoiesis

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Vacek, A.; Hola, J.; Weiterova, L.; Streitova, D.; Znojil, V.

    2008-01-01

    Searching for drugs conforming to requirements for protection and/or treatment of radiation-induced damage belongs to the most important tasks of current radiobiology. In the Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic, two original approaches for stimulation of radiation-suppressed hematopoiesis have been tested in recent years, namely activation of adenosine receptors and inhibition of cyclooxygenases. Non-selective activation of adenosine receptors, induced by combined administration of dipyridamole, a drug preventing adenosine uptake and supporting thus its extracellular receptor-mediated action, and adenosine monophosphate, an adenosine prodrug, has been found to stimulate hematopoiesis when the drugs were given either pre- or post-irradiation. When synthetic adenosine receptor agonists selective for individual adenosine receptor subtypes were tested, stimulatory effects in myelosuppressed mice have been found after administration of IB-MECA, a selective adenosine A3 receptor agonist. Non-selective cyclooxygenase inhibitors, inhibiting both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), indomethacin, diclofenac, or flurbiprofen, have been observed to act positively on radiation-perturbed hematopoiesis in sublethally irradiated mice. However, their undesirable gastrointestinal side effects have been found to negatively influence survival of lethally irradiated animals. Recently tested selective COX-2 inhibitor meloxicam, preserving protective action of COX-1-synthesized prostaglandins in the gastrointestinal tissues, has been observed to retain the hematopoiesis-stimulating effects of non-selective cyclooxygenase inhibitors and to improve the survival of animals exposed to lethal radiation doses. These findings bear evidence for the possibility to use selective adenosine A3 receptor agonists and selective COX-2 inhibitors in human practice for treatment of

  7. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  8. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  9. The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers.

    Science.gov (United States)

    Kennedy, Dylan P; McRobb, Fiona M; Leonhardt, Susan A; Purdy, Michael; Figler, Heidi; Marshall, Melissa A; Chordia, Mahendra; Figler, Robert; Linden, Joel; Abagyan, Ruben; Yeager, Mark

    2014-02-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.

  10. Adenosine receptors and caffeine in retinopathy of prematurity.

    Science.gov (United States)

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-06-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  12. [The receptorial responsiveness method (RRM): a new possibility to estimate the concentration of pharmacologic agonists at their receptors].

    Science.gov (United States)

    Pák, Krisztián; Kiss, Zsuzsanna; Erdei, Tamás; Képes, Zita; Gesztelyi, Rudolf

    2014-01-01

    Cardiovascular disease is the biggest challenge in terms of life expectancy in developed countries. Adenosine contributes to the adaptation of the heart to ischemia and hypoxia, because adenosine, in addition to its metabolite role in the nucleic acid metabolism, is the endogenous agonist of the ubiquitous adenosine receptor family. Adenosine receptor activation is beneficial in most cases, it improves the balance between energy supply and consumption, reduces injury caused by stressors and inhibits the unfavorable tissue remodeling. Pharmacological manipulation of cardioprotective effects evoked by adenosine is an important, although to date not sufficiently utilized endeavor that may have therapeutic and preventive implications in cardiovascular diseases. As the ligand binding site of adenosine receptors is accessible from the extracellular space, it is especially important to know the adenosine concentration of the interstitial fluid ([Ado](ISF)). However, in the functioning heart, [Ado](ISF) values range in an extremely wide interval, spanning from nano- to micromolar concentrations, as estimated by the commonly used methods. Our recently developed procedure, the receptorial responsiveness method (RRM), may resolve this problem in certain cases. RRM enables quantification of an acute increase in the concentration of a pharmacological agonist, uniquely in the microenvironment of the receptors of the given agonist. As a limitation, concentration of agonists with short half-life (just like adenosine) at their receptors can only be quantified with the equieffective concentration of a stable agonist exerting the same action. In a previous study using RRM, inhibition of the transmembrane nucleoside transport in the euthyroid guinea pig atrium produced an increase in [Ado](ISF) that was equieffective with 18.8 +/- 3 nM CPA (N6-cyclopentyladenosine, a stable, selective A1 adenosine receptor agonist). This finding is consistent with observations of others, i.e., in the

  13. The Use of Adenosine Agonists to Treat Nerve Agent-Induced Seizure and Neuropathology

    Science.gov (United States)

    2016-09-01

    not be cited for purposes of advertisement . REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this...survivability. That was an important step to clinical relevancy as it was feared that ADO’s depression of cardiovascular output would exacerbate...kainate, adenosine and neuropeptide Y receptors. Neurochemical Research. 28: 1501-1515. 23. Bjorness, T. E. & R. W. Greene . 2009. Adenosine and sleep

  14. Synthesis of carbon-11 labelled cyclopentyltheophylline: A radioligand for PET studies of adenosine receptors

    International Nuclear Information System (INIS)

    Yorke, J.C.; Prenant, C.; Crouzel, C.

    1990-01-01

    Adenosine is presently considered as a neuromodulator, and an adenosine system has been described including secretory neurons, with a diffused distribution, specific receptors and a re-uptake system distributed heterogeneously in different anatomic areas. In order to localize the adenosine receptors in vivo by PET, the authors have synthesized the carbon-11 labelled 8-cyclopentyltheophylline, a known adenosine antagonist of A 1 receptors

  15. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    and liraglutide, as well as the emerging GLP-1R agonists including the long-acting compounds. Expert opinion: An emerging therapeutic trend toward initial or early combination therapy with metformin- and incretin-based therapy is anticipated for patients with type 2 diabetes. GLP-1-based therapy has so far proven...... development may improve the effects of GLP-1 even further with optimized pharmacokinetic profiles resulting in fewer side effects. Meta-analyses have shown promising effects on cardiovascular disease and data from ongoing multicenter trials with cardiovascular endpoints are expected in 2015....

  16. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  17. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  18. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  19. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  20. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    Science.gov (United States)

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  2. Small-molecule AT2 receptor agonists

    DEFF Research Database (Denmark)

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha

    2018-01-01

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist...... with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8......, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also...

  3. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    Science.gov (United States)

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  4. Communication over the network of binary switches regulates the activation of A2A adenosine receptor.

    Directory of Open Access Journals (Sweden)

    Yoonji Lee

    2015-02-01

    Full Text Available Dynamics and functions of G-protein coupled receptors (GPCRs are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs "binary switches" as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 2(10 microstates, we show that (i the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii among the three receptor states the apo state explores the broadest range of microstates; (iii in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif.

  5. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    ...) that are leading candidate modulators of PD risk. In Year 4 we have obtained and reported evidence that the adenosine receptor blocker caffeine as well as specific genetic depletion of the A2A subtype of adenosine receptor...

  6. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  8. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  9. Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.

    Science.gov (United States)

    Seven, Yasin B; Perim, Raphael R; Hobson, Orinda R; Simon, Alec K; Tadjalli, Arash; Mitchell, Gordon S

    2018-04-15

    Although adenosine 2A (A 2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A 2A receptor siRNA injections. A 2A receptor siRNA injections selectively knocked down A 2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A 2A receptors relevant to A 2A receptor-induced phrenic motor facilitation. Upregulation of A 2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A 2A receptors for pMF are unknown. This is an important question since the physiological outcome of A 2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A 2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A 2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A 2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A 2A receptor knock-down was verified by a ∼45% decrease in A 2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, p

  10. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available The adenosine A2A receptor (A2AR, the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses.

  11. PET imaging of adenosine A2A receptors

    NARCIS (Netherlands)

    Zhou, Xiaoyun

    2017-01-01

    This thesis describes the development and evaluation of [11C]preladenant as a novel radioligand for in vivo imaging of adenosine A2A receptors in the brain with positron-emission tomography (PET). The 11C-labeled drug [11C]preladenant was produced with high radiochemical yield and specific activity.

  12. Cerebral adenosine A1 receptors are upregulated in rodent encephalitis

    NARCIS (Netherlands)

    Paul, Souman; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W.; Ishiwata, Kiichi; Elsinga, Philip H.; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A.; van Waarde, Aren

    2014-01-01

    Adenosine A(1) receptors (A(1) Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A(1) Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis.

  13. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    Science.gov (United States)

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  15. Characterization of cardiac adenosine receptors using N6-phenyladenosines and a new radioligand, [125I]-(m-aminophenyl)adenosine

    International Nuclear Information System (INIS)

    Kwatra, M.M.; Hosey, M.M.; Green, R.

    1986-01-01

    The chick heart contains adenosine receptors with characteristics similar to the R adenosine receptors found in the CNS. They have synthesized several N 6 -phenyladenosines and tested their potencies for inhibiting the binding of [ 125 I](p-aminobenzyl)adenosine {[ 125 I]ABA) to chick heart membranes. Of the 12 compounds tested, N 6 -(p-aminobenzyl) adenosine (ABA) was the least potent (IC 50 ∼ 40 nM) while N 6 -(m-nitrophenyl)adenosine(MNPA) was the most potent (IC 50 ∼ 1 nM). The IC 50 of N 6 -(m-aminophenyl)adenosine(MAPA) was greater than that of N 6 -phenyladenosine(PA) while that of MNPA was less than that of PA. The effects of these electron-releasing (-NH 2 ) and electron-withdrawing (-NO 2 ) groups along with data obtained with other phenyl-substituted N 6 -phenyladenosines suggest that the electron density of the N 6 -nitrogen may affect the affinities of these compounds for the cardiac adenosine receptor. MAPA can be iodinated to produce a new ligand, [ 125 I]MAPA. This iodination, like that of ABA, increases the affinity of the compound and produces a ligand with good affinity and low nonspecific binding suitable for studies on tissues with low concentrations of adenosine receptors

  16. 125I-labeled 8-phenylxanthine derivatives: antagonist radioligands for adenosine A1 receptors

    International Nuclear Information System (INIS)

    Linden, J.; Patel, A.; Earl, C.Q.; Craig, R.H.; Daluge, S.M.

    1988-01-01

    A series of 8-phenylxanthine derivatives has been synthesized with oxyacetic acid on the para phenyl position to increase aqueous solubility and minimize nonspecific binding and iodinatable groups on the 1- or 3-position of the xanthine ring. The structure-activity relationship for binding of these compounds to A1 adenosine receptors of bovine and rat brain and A2 receptors of human platelets was examined. The addition of arylamine or photosensitive aryl azide groups to the 3-position of xanthine had little effect on A1 binding affinity with or without iodination, whereas substitutions at the 1-position caused greatly reduced A1 binding affinity. The addition of an aminobenzyl group to the 3-position of the xanthine had little effect on A2 binding affinity, but 3-aminophenethyl substitution decreased A2 binding affinity. Two acidic 3-(arylamino)-8-phenylxanthine derivatives were labeled with 125 I and evaluated as A1 receptor radioligands. The new radioligands bound to A1 receptors with KD values of 1-1.25 nM. Specific binding represented over 80% of total binding. High concentrations of NaCl or other salts increased the binding affinity of acidic but not neutral antagonists, suggesting that interactions between ionized xanthines and receptors may be affected significantly by changes in ionic strength. On the basis of binding studies with these antagonists and isotope dilution with the agonist [ 125 I]N6-(4-amino-3-iodobenzyl)adenosine, multiple agonist affinity states of A1 receptors have been identified

  17. In vitro desensitization of beta-adrenoceptors in guinea pig trachea: interactions between beta-adrenoceptor agonists and influence of adenosine and other drugs.

    Science.gov (United States)

    Matran, R; Naline, E; Advenier, C; Duroux, P

    1989-01-01

    The aim of this study was to investigate quantitatively the action of and the interaction between beta-adrenergic receptor agonists in desensitizing guinea pig isolated trachea. It was also to evaluate the influence of substances whose effects on desensitization are either disputed (theophylline, indomethacin, ketotifen, hydrocortisone) or unknown (nicardipine, Bay K 8644, fenspiride, adenosine). Tracheal strips were contracted with histamine (5 x 10(-5) M) or acetylcholine (5.10(-5) M) and concentration-response (C/R) curves for various beta-adrenoceptor agonists were determined before and after incubation (20 min to 4 h) with the same beta-adrenoceptor agonist (autodesensitization), with other beta-adrenoceptor agonists (cross-desensitization), or with a beta-adrenoceptor agonist and another substance. Our results show that the autodesensitization induced by isoprenaline is concentration dependent and that concentration dependence is more pronounced with salbutamol and fenoterol than with isoprenaline and adrenaline with respect to autodesensitization: shifts (log unit) of the C/R curves were 0.59 +/- 0.06 (N = 5) for salbutamol (10(-5) M), 0.78 +/- 0.09 (N = 5) for fenoterol (10(-6) M), 0.30 +/- 0.04 (N = 9) for isoprenaline (10(-5) M), and 0.33 +/- 0.05 (N = 5) for adrenaline (10(-5) M). Our studies of cross-desensitization (desensitization to isoprenaline, adrenaline, salbutamol, and fenoterol induced by incubation with isoprenaline 10(-5) M) showed a significantly greater shift in the C/R curves for fenoterol (0.56 +/- 0.08, N = 5) and salbutamol (0.62 +/- 0.05, N = 5) than for adrenaline (0.35 +/- 0.07, N = 5) and isoprenaline itself (0.30 +/- 0.05, N = 9). Of the substances we studied, none modified the desensitization induced by isoprenaline except hydrocortisone and adenosine. Hydrocortisone (10(-8) M) reduced it significantly, although to a negligible extent. Adenosine (3 x 10(-4) M) did not shift the C/R curve to isoprenaline by itself, but incubation

  18. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  19. Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Fontella, Fernanda Urruth; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Dalmaz, Carla; Sarkis, João José Freitas

    2006-02-28

    Adenosine acting on A(1) receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O(2) consumption and physical hyperactivity. Here, we investigated the effects of administration of a specific agonist of adenosine A(1) receptor (N(6)-cyclopentyladenosine; CPA) on nociception, anxiety, exploratory response, locomotion and brain oxidative stress of hyperthyroid rats. Hyperthyroidism was induced by daily intraperitoneal injections of l-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus and exploratory behavior, locomotion and anxiety were analyzed by open-field and plus-maze tests. We verified the total antioxidant reactivity (TAR), lipid peroxide levels by the thiobarbituric acid reactive species (TBARS) reaction and the free radicals content by the DCF test. Our results demonstrated that CPA reverted the hyperalgesia induced by hyperthyroidism and decreased the exploratory behavior, locomotion and anxiety in hyperthyroid rats. Furthermore, CPA decreased lipid peroxidation in hippocampus and cerebral cortex of control rats and in cerebral cortex of hyperthyroid rats. CPA also increased the total antioxidant reactivity in hippocampus and cerebral cortex of control and hyperthyroid rats, but the production of free radicals verified by the DCF test was changed only in cerebral cortex. These results suggest that some of the hyperthyroidism effects are subjected to regulation by adenosine A(1) receptor, demonstrating the involvement of the adenosinergic system in this pathology.

  20. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep.

    Science.gov (United States)

    Coleman, Christal G; Baghdoyan, Helen A; Lydic, Ralph

    2006-03-01

    In vivo microdialysis in C57BL/6J (B6) mouse was used to test the hypothesis that activating adenosine A(2A) receptors in the pontine reticular formation (PRF) increases acetylcholine (ACh) release and rapid eye movement (REM) sleep. Eight concentrations of the adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; CGS) were delivered to the PRF and ACh in the PRF was quantified. ACh release was significantly increased by dialysis with 3 mum CGS and significantly decreased by dialysis with 10 and 100 microm CGS. Co-administration of the adenosine A(2A) receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM) blocked the CGS-induced increase in ACh release. In a second series of experiments, CGS (3 microm) was delivered by dialysis to the PRF for 2 h while recording sleep and wakefulness. CGS significantly decreased time in wakefulness (-51% in h 1; -54% in h 2), increased time in non-rapid eye movement (NREM) sleep (90% in h 1; 151% in h 2), and increased both time in REM sleep (331% in h 2) and the number of REM sleep episodes (488% in h 2). The enhancement of REM sleep is consistent with the interpretation that adenosine A(2A) receptors in the PRF of the B6 mouse contribute to REM sleep regulation, in part, by increasing ACh release in the PRF. A(2A) receptor activation may promote NREM sleep via GABAergic inhibition of arousal promoting neurons in the PRF.

  1. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  2. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins.

    Science.gov (United States)

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  3. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  4. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  5. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    Science.gov (United States)

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  7. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  8. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    Science.gov (United States)

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  9. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  10. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    OpenAIRE

    Chee, Hyun Keun; Oh, S. June

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine ...

  11. Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus

    DEFF Research Database (Denmark)

    Weihprecht, H; Lorenz, J N; Schnermann, J

    1990-01-01

    Adenosine has been proposed to act within the juxtaglomerular apparatus (JGA) as a mediator of the inhibition of renin secretion produced by a high NaCl concentration at the macula densa. To test this hypothesis, we studied the effects of the adenosine1 (A1)-receptor blocker 8-cyclopentyl-1......,3-dipropylxanthine (CPX) on renin release from single isolated rabbit JGAs with macula densa perfused. The A1-receptor agonist, N6-cyclohexyladenosine (CHA), applied in the bathing solution at 10(-7) M, was found to inhibit renin secretion, an effect that was completely blocked by adding CPX (10(-5) M) to the bath....... Applied to the lumen, 10(-5) M CPX produced a modest stimulation of renin secretion rates suppressed by a high NaCl concentration at the macula densa (P less than 0.05). The effect of changing luminal NaCl concentration on renin secretion rate was examined in the presence of CPX (10(-7) and 10(-5) M...

  12. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Principles of agonist recognition in Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    , functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically...

  14. Nicotine receptor partial agonists for smoking cessation

    Directory of Open Access Journals (Sweden)

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  15. Nicotine receptor partial agonists for smoking cessation.

    Science.gov (United States)

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2012-04-18

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist') in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialised register was in December 2011. We also searched online clinical trials registers. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up.The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. Two recent cytisine trials (937 people) found that more participants taking cytisine stopped smoking compared with placebo at longest follow-up, with a pooled RR of

  16. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  17. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  18. Autoradiographic visualization of A 1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA

    International Nuclear Information System (INIS)

    Weber, R.G.; Lohse, M.J.; Jones, C.R.; Palacios, J.M.

    1988-01-01

    A 1 -adenosine receptors were identified in sections of rat brain and guinea pig kidney with the radioiodinated agonist 1 25I-N 6 -p-hydroxyphenylisopropyladenosine ( 1 25I-HPIA) using in vitro autoradiography. The affinities of adenosine receptor ligands in competing with 1 25I-HPIA binding to tissue sections were in good agreement with those found in membranes and indicate that the binding site represents an A 1 pattern of [ 3 H]N 6 -cyclohexyladenosine ([ 3 H]CHA) binding sites determined previously, with highest densities in the hippocampus and dentate gyrus, the cerebellar cortex, some thalamic nuclei and certain layers of the cerebral cortex. In the guinea pig kidney 1 25I-HPIA labelled longitudinal structures in the medulla. This study demonstrates that 1 25I-HPIA allows the autoradiographic detection of A-1 adenosine receptors in the brain and peripheral organs and has the advantage of short exposure times (author)

  19. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514 ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  20. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    Science.gov (United States)

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  1. Novel approaches for targeting the adenosine A2A receptor.

    Science.gov (United States)

    Yuan, Gengyang; Gedeon, Nicholas G; Jankins, Tanner C; Jones, Graham B

    2015-01-01

    The adenosine A2A receptor (A2AR) represents a drug target for a wide spectrum of diseases. Approaches for targeting this membrane-bound protein have been greatly advanced by new stabilization techniques. The resulting X-ray crystal structures and subsequent analyses provide deep insight to the A2AR from both static and dynamic perspectives. Application of this, along with other biophysical methods combined with fragment-based drug design (FBDD), has become a standard approach in targeting A2AR. Complementarities of in silico screening based- and biophysical screening assisted- FBDD are likely to feature in future approaches in identifying novel ligands against this key receptor. This review describes evolution of the above approaches for targeting A2AR and highlights key modulators identified. It includes a review of: adenosine receptor structures, homology modeling, X-ray structural analysis, rational drug design, biophysical methods, FBDD and in silico screening. As a drug target, the A2AR is attractive as its function plays a role in a wide spectrum of diseases including oncologic, inflammatory, Parkinson's and cardiovascular diseases. Although traditional approaches such as high-throughput screening and homology model-based virtual screening (VS) have played a role in targeting A2AR, numerous shortcomings have generally restricted their applications to specific ligand families. Using stabilization methods for crystallization, X-ray structures of A2AR have greatly accelerated drug discovery and influenced development of biophysical-in silico hybrid screening methods. Application of these new methods to other ARs and G-protein-coupled receptors is anticipated in the future.

  2. MELATONIN DAN MELATONIN RECEPTOR AGONIST SEBAGAI PENANGANAN INSOMNIA PRIMER KRONIS

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Ayu Maha Iswari

    2013-04-01

    Full Text Available Melatonin is a hormone that has an important role in the mechanism of sleep. Hypnotic effects of melatonin and melatonin receptor agonist are mediated via MT1 and MT2 receptors, especially in circadian rhythm pacemaker, suprachiasmatic nucleus, which is worked on the hypothalamic sleep switch. This mechanism is quite different with the GABAergic drugs such as benzodiazepine. Agonist melatonin triggers the initiation of sleep and normalize circadian rhythms so that makes it easier to maintain sleep. The main disadvantage of melatonin in helping sleep maintenance on primary insomnia is that the half life is very short. The solution to this problem is the use of prolonged-release melatonin and melatonin receptor agonist agents such as ramelteon. Melatoninergic agonist does not cause withdrawal effects, dependence, as well as cognitive and psychomotor disorders as often happens on the use of benzodiazepine.  

  3. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  4. Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of Δ9-tetrahydrocannabinol on spatial memory.

    Science.gov (United States)

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2011-01-01

    The cannabinoid CB(1) receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A(1) receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A(1) receptors localized in GABAergic cells do not directly influence GABA release. CB(1) and A(1) receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ(9)-tetrahydrocannabinol (THC, a CB(1) receptor agonist) and caffeine (an adenosine receptor antagonist). We first tested the hypothesis that an A(1)-CB(1) interaction influences GABA and glutamate release in the hippocampus. We found that A(1) receptor activation attenuated the CB(1)-mediated inhibition of GABA and glutamate release and this interaction was manifested at the level of G-protein activation. Using in vivo and in vitro approaches, we then investigated the functional implications of the adenosine-cannabinoid interplay that may arise following chronic caffeine consumption. Chronic administration of caffeine in mice (intraperitoneally, 3 mg/kg/day, for 15 days, >12 h before trials) led to an A(1)-mediated enhancement of the CB(1)-dependent acute disruptive effects of THC on a short-term spatial memory task, despite inducing a reduction in cortical and hippocampal CB(1) receptor number and an attenuation of CB(1) coupling with G protein. A(1) receptor levels were increased following chronic caffeine administration. This study shows that A(1) receptors exert a negative modulatory effect on CB(1)-mediated inhibition of GABA and glutamate release, and provides the first evidence of chronic caffeine-induced alterations on the cannabinoid system in the cortex and hippocampus, with functional implications in spatial memory.

  5. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A; Kwizera, Chantal; Sijbesma, Jurgen W A; Ishiwata, Kiichi; Willemsen, Antoon T M; Elsinga, Philip H; Dierckx, Rudi A J O; van Waarde, Aren

    2011-08-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX) and PET. This study aims to test whether (11)C-MPDX can be used for quantitative studies of cerebral A(1)R in rodents. (11)C-MPDX was injected (intravenously) into isoflurane-anesthetized male Wistar rats (300 g). A dynamic scan of the central nervous system was obtained, using a small-animal PET camera. A cannula in a femoral artery was used for blood sampling. Three groups of animals were studied: group 1, controls (saline-treated); group 2, animals pretreated with the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg, intraperitoneally); and group 3, animals pretreated (intraperitoneally) with a 20% solution of ethanol in saline (2 mL) plus the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine dihydrochloride (ABT-702) (1 mg). DPCPX is known to occupy cerebral A(1)R, whereas ethanol and ABT-702 increase extracellular adenosine. In groups 1 and 3, the brain was clearly visualized. High uptake of (11)C-MPDX was noted in striatum, hippocampus, and cerebellum. In group 2, tracer uptake was strongly suppressed and regional differences were abolished. The treatment of group 3 resulted in an unexpected 40%-45% increase of the cerebral uptake of radioactivity as indicated by increases of PET standardized uptake value, distribution volume from Logan plot, nondisplaceable binding potential from 2-tissue-compartment model fit, and standardized uptake value from a biodistribution study performed after the PET scan. The partition coefficient of the tracer (K(1)/k(2) from the model fit) was not altered under the study conditions. (11)C-MPDX shows a regional distribution in rat brain consistent with binding to A(1)R. Tracer binding is blocked by the selective A

  6. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    International Nuclear Information System (INIS)

    Liang, B.T.

    1989-01-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand [3H]-8-cyclopentyl-1,3-diproylxanthine ([3H]CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that [3H] CPX is an antagonist radioligand. Competition curves for [3H] CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific [3H]CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid)

  7. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Activation of adenosine A3 receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Pospíšil, Milan; Holá, Jiřina; Štreitová, Denisa; Znojil, V.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 247-252 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hematopoiesis * adenosine A3 receptor agonist * hematopoietic growth factors Subject RIV: BO - Biophysics Impact factor: 1.430, year: 2009

  9. Principles of agonist recognition in Cys-loop receptors

    Directory of Open Access Journals (Sweden)

    Timothy eLynagh

    2014-04-01

    Full Text Available Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine and GABA. After the term chemoreceptor emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.

  10. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  11. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    Science.gov (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  12. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    OpenAIRE

    Serpa, Andr?; Correia, Sara; Ribeiro, Joaquim A.; Sebasti?o, Ana M.; Cascalheira, Jos? F.

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3?30??M) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ? 2.7??M and an E max? of 31% ? 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10?150?nM), an EC50 of 35 ? 19?nM, an...

  13. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    Science.gov (United States)

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  14. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    Science.gov (United States)

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  15. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Trial Watch: Toll-like receptor agonists for cancer therapy.

    Science.gov (United States)

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-08-01

    Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology , we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.

  17. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    Continued progress has been made toward each of the Specific Aims (SAs) 1 and 2 (SA 3 completed) of our research project, Caffeine, adenosine receptors and estrogen in toxin models of Parkinson's disease...

  19. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers...... connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained w......Fw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Ga(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Ga(12...

  20. Medicinal chemistry of adenosine, P2Y and P2X receptors.

    Science.gov (United States)

    Jacobson, Kenneth A; Müller, Christa E

    2016-05-01

    Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain

  1. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  2. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max; Winerdal, Malin E.; Wang, Ying-Qing; Fredholm, Bertil B.; Winqvist, Ola; Ådén, Ulrika

    2015-01-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R−/−) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction siz...

  3. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat

    Science.gov (United States)

    2008-11-01

    358–363, 1996. 11. Cook NC, Samman S. Flavonoids —chemistry, metabolism, cardiopro- tective effects, and dietary sources. Nutr Biochem 7: 66–76, 1996...metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310, 1997. R400 ADENOSINE RECEPTOR ANTAGONISM AND EXERCISE IN THE HEAT...Interactions of flavonoids with adenosine receptors. J Med Chem 39: 781–788, 1996. 35. MacRae HS, Mefferd KM. Dietary antioxidant supplementation com

  4. Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates

    Directory of Open Access Journals (Sweden)

    Shainberg Asher

    2008-10-01

    Full Text Available Abstract Background An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs was recently introduced. Results A known adenosine receptor (AR agonist was conjugated to polyamidoamine (PAMAM dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethylamino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase was maintaining a free amino group (secondary in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor. Conclusion This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR

  5. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    , it was found that 58% of PANC-1 cells responded to adenosine, whereas only 9% of CFPAC-1 cells responded. Adenosine elicited Ca(2+) signals only in a few rat and human duct cells, which did not seem to correlate with Cl(-) signals. A(2A) receptors were localized in the luminal membranes of rat pancreatic ducts......, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in the acini...

  6. Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy.

    Science.gov (United States)

    Tang, Z; Diamond, M A; Chen, J-M; Holly, T A; Bonow, R O; Dasgupta, A; Hyslop, T; Purzycki, A; Wagner, J; McNamara, D M; Kukulski, T; Wos, S; Velazquez, E J; Ardlie, K; Feldman, A M

    2007-10-01

    The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.

  7. Thrombopoietin-receptor agonists in haematological disorders: The Danish experience

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Hasselbalch, Hans

    2011-01-01

    The objective of this study was to investigate the use of thrombopoietin-receptor agonists (TPO-ra) in patients with refractory primary immune thrombocytopenia (ITP) as well as off-label use of TPO-ra in Danish haematology departments. Hospital medical records from 32 of the 39 patients having re...

  8. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    Science.gov (United States)

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  9. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  10. Agonist discrimination between AMPA receptor subtypes

    DEFF Research Database (Denmark)

    Coquelle, T; Christensen, J K; Banke, T G

    2000-01-01

    The lack of subtype-selective compounds for AMPA receptors (AMPA-R) led us to search for compounds with such selectivity. Homoibotenic acid analogues were investigated at recombinant GluR1o, GluR2o(R), GluR3o and GluR1o + 3o receptors expressed in Sf9 insect cells and affinities determined in [3H...

  11. Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers.

    Science.gov (United States)

    Taura, J; Valle-León, M; Sahlholm, K; Watanabe, M; Van Craenenbroeck, K; Fernández-Dueñas, V; Ferré, S; Ciruela, F

    2018-04-01

    G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A 2A receptors (A 2A R) and dopamine D 2 receptors (D 2 R) predominantly form A 2A R-D 2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A 2A R and D 2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D 2 R-deficient mouse with the same genetic background (CD-1) than the A 2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A 2A R and D 2 R knock-out mice, with and without the concomitant administration of either the D 2 R agonist sumanirole or the A 2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D 2 R signaling. Similarly, a significant dependence on A 2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A 2A R-D 2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine inhibit TNF-α and CXCL10 production from activated primary murine microglia via A2A receptors.

    Science.gov (United States)

    Newell, Elizabeth A; Exo, Jennifer L; Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Kochanek, Patrick M; Jackson, Edwin K

    2015-01-12

    Some cells, tissues and organs release 2',3'-cAMP (a positional isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'-AMP plus 3'-AMP and convert these AMPs to adenosine (called the extracellular 2',3'-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2',3'-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2',3'-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 μM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N(6)-cyclopentyladenosine (CCPA) (10 μM; selective A1 agonist), 5'-N-ethylcarboxamide adenosine (NECA) (10 μM; agonist for all adenosine receptor subtypes) and CGS21680 (10 μM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. (1) 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; (2) DPSPX nearly eliminated the inhibitory effects of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; (3) CCPA did not affect LPS-induced TNF-α and CXCL10; (4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. 2',3'-cAMP and its metabolites (3'-AMP, 2'-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 2’,3’-cAMP, 3’-AMP, 2’-AMP and Adenosine Inhibit TNF-α and CXCL10 Production From Activated Primary Murine Microglia via A2A Receptors

    Science.gov (United States)

    Newell, Elizabeth A.; Exo, Jennifer L.; Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Background Some cells, tissues and organs release 2’,3’-cAMP (a positional isomer of 3’,5’-cAMP) and convert extracellular 2’,3’-cAMP to 2’-AMP plus 3’-AMP and convert these AMPs to adenosine (called the extracellular 2’,3’-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2’,3’-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2’,3’-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Methods Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 µM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N6-cyclopentyladenosine (CCPA) (10 µM; selective A1 agonist), 5’-N-ethylcarboxamide adenosine (NECA) (10 µM; agonist for all adenosine receptor subtypes) and CGS21680 (10 µM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. Results 1) 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; 2) DPSPX nearly eliminated the inhibitory effects of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; 3) CCPA did not affect LPS-induced TNF-α and CXCL10; 4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. Conclusions 2’,3’-cAMP and its metabolites (3’-AMP, 2’-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. PMID:25451117

  14. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists have been essential in defining the tonic current but both remaining issues concerning the GABAARs involved and the therapeutic possibilities of modulating tonic inhibition underline the need for GABAAR antagonists with improved selectivity....

  15. Cerebral adenosine A₁ receptors are upregulated in rodent encephalitis.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W; Ishiwata, Kiichi; Elsinga, Philip H; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A; van Waarde, Aren

    2014-05-15

    Adenosine A1 receptors (A1Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A1Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis. Neuroinflammatory processes in turn may affect the expression of A1Rs, but the available data is limited and inconsistent. Here, we applied an animal model of encephalitis to assess how neuroinflammation affects the expression of A1Rs. Two groups of animals were studied: Infected rats (n=7) were intranasally inoculated with herpes simplex virus-1 (HSV-1, 1 × 10(7) plaque forming units), sham-infected rats (n=6) received only phosphate-buffered saline. Six or seven days later, microPET scans (60 min with arterial blood sampling) were made using the tracer 8-dicyclopropyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX). Tracer clearance from plasma and partition coefficient (K₁/k₂ estimated from a 2-tissue compartment model fit) were not significantly altered after virus infection. PET tracer distribution volume calculated from a Logan plot was significantly increased in the hippocampus (+37%) and medulla (+27%) of virus infected rats. Tracer binding potential (k₃/k₄ estimated from the model fit) was significantly increased in the cerebellum (+87%) and the medulla (+148%) which may indicate increased A1R expression. This was confirmed by immunohistochemical analysis showing a strong increase of A1R immunoreactivity in the cerebellum of HSV-1-infected rats. Both the quantitative PET data and immunohistochemical analysis indicate that A1Rs are upregulated in brain areas where active virus is present. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  18. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine

    International Nuclear Information System (INIS)

    Goodman, R.R.; Synder, S.H.

    1982-01-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [ 3 H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine

  19. REDUCTION OF ADENOSINE-A1-RECEPTORS IN THE PERFORANT PATHWAY TERMINAL ZONE IN ALZHEIMER HIPPOCAMPUS

    NARCIS (Netherlands)

    JAARSMA, D; SEBENS, JB; KORF, J

    1991-01-01

    The cells of origin of the perforant pathway are destroyed in Alzheimer's disease (AD). In rat the adenosine A1-receptors are specifically localized on the perforant path terminals in the molecular layer of the dentate gyrus. In the present study the density of A1-receptors in the hippocampus of

  20. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    Energy Technology Data Exchange (ETDEWEB)

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K. (GSKPA)

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  1. Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats.

    Science.gov (United States)

    O'Neill, Casey E; LeTendre, McKenzie L; Bachtell, Ryan K

    2012-04-01

    Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade

  2. Adenosine A2A Receptors in the Nucleus Accumbens Bi-Directionally Alter Cocaine Seeking in Rats

    Science.gov (United States)

    O'Neill, Casey E; LeTendre, Mckenzie L; Bachtell, Ryan K

    2012-01-01

    Repeated cocaine administration enhances dopamine D2 receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A2A receptors are colocalized with D2 receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D2 receptor activity. Thus, A2A receptors represent a target for reducing enhanced D2 receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A2A receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A2A receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b--ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A2A receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A2A receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A2A receptor stimulation reduces, while A2A blockade amplifies, D2 receptor

  3. ADENOSINE RECEPTOR STIMULATION BY POLYDEOXYRIBONUCLEOTIDE IMPROVES TISSUE REPAIR AND SYMPTOMOLOGY IN EXPERIMENTAL COLITIS.

    Directory of Open Access Journals (Sweden)

    Giovanni Pallio

    2016-08-01

    Full Text Available Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodelling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodelling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN, to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitro-benzene-sulfonic acid (DNBS, 25mg diluted in 0.8ml 50% ethanol. After 6 hrs, animals were randomized to receive either PDRN (8mg/kg/i.p., or PDRN + the A2A antagonist (DMPX; 10mg/kg/i.p., or vehicle (0.8 ml saline solution daily. In the second model, dextran sodium sulphate (DSS was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 hrs animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxydase activity, and malondialdheyde. All these effects were abolished by the concomitant administration of the A2a antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases.

  4. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor.

    Science.gov (United States)

    Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W

    1992-11-15

    A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans.

  5. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    Directory of Open Access Journals (Sweden)

    Laura López-Cruz

    2018-06-01

    Full Text Available Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.

  6. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ?

    OpenAIRE

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoim...

  7. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Fabrizio Fierro

    2017-09-01

    Full Text Available Human G-protein coupled receptors (hGPCRs constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.

  8. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  9. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  10. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  11. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  12. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  13. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  14. Identification of agonists for a group of human odorant receptors

    Directory of Open Access Journals (Sweden)

    Daniela eGonzalez-Kristeller

    2015-03-01

    Full Text Available Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10% have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs.

  15. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-04-01

    Full Text Available The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating “Go” responses upon exposure to reward-related stimuli and “NoGo” responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R and adenosine A2A receptors (A2AR, and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5. The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that

  16. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  17. Progress towards novel adenosine receptor therapeutics gleaned from the recent patent literature.

    Science.gov (United States)

    Press, Neil J; Fozard, John R

    2010-08-01

    The principle of treating disease with selective adenosine receptor ligands has been demonstrated with drugs on the market, while the lesser understood receptor subtypes are still being probed with new and drug-like pharmaceutical tools. The field of adenosine receptor research is, therefore, highly important as an emerging and proven point of intervention in disease. From 2008 to 2009, > 120 primary patent applications have claimed adenosine receptor ligands, which we analyze by applicant and target. Particularly significant disclosures are described in detail, paying particular attention to the biological data marshalled to support the case. The first published disclosure of new compounds, compound uses or drug targets is often in the patent literature, which can be difficult to trawl, interpret and verify as it is not subject to peer review. We have critically reviewed this area and share our conclusions regarding progress, trends and identification of early tool compounds or compounds of potential clinical significance ahead of peer-reviewed publication. Adenosine receptor research is a thriving field with continuing claims of exciting new compounds with high specificity and intriguing examples of new uses for such ligands.

  18. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  19. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  20. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. (Univ. of Trieste (Italy))

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  1. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    International Nuclear Information System (INIS)

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R.

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-[ 3 H]adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system

  2. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  3. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  4. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    Directory of Open Access Journals (Sweden)

    Víctor Fernández-Dueñas

    2015-01-01

    Full Text Available Parkinson’s disease (PD is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R with adenosine A2A receptor (A2AR (forming D2R-A2AR oligomers – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET, we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model, D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments.

  5. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Science.gov (United States)

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cardiovascular safety and benefits of GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Dalsgaard, Niels B; Brønden, Andreas; Lauritsen, Tina Vilsbøll

    2017-01-01

    INTRODUCTION: Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) constitute a class of drugs for the treatment of type 2 diabetes, and currently, six different GLP-1RAs are approved. Besides improving glycemic control, the GLP-1RAs have other beneficial effects such as weight loss...... and a low risk of hypoglycemia. Treatment with the GLP-1RA lixisenatide has been shown to be safe in patients with type 2 diabetes and recent acute coronary syndrome. Furthermore, liraglutide and semaglutide have been shown to reduce cardiovascular (CV) disease (CVD) risk in type 2 diabetes patients...

  7. Mechanical stress activates NMDA receptors in the absence of agonists

    OpenAIRE

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor i...

  8. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262 ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.643, year: 2015

  9. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    Science.gov (United States)

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  10. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation.

    Science.gov (United States)

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-15

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F(2alpha) (10(-5) M), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [(14)C]adenosine over the microdialysis membrane increased from 0.32 +/- 0.02 to 0.46 +/- 0.02 (n = 4, P lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with adenosine concentration. We conclude that hypoxia-induced coronary artery dilatation is not mediated by increased adenosine produced within the artery wall but might be facilitated by increased adenosine sensitivity at the A(2A) receptor level.

  11. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  12. Helminthosporic acid functions as an agonist for gibberellin receptor.

    Science.gov (United States)

    Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi

    2017-11-01

    Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.

  13. [Safety and tolerability of GLP-1 receptor agonists].

    Science.gov (United States)

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  14. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl......− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte......) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on Vte, an equivalent short-circuit current (Isc), and whole-cell Cl− currents were inhibited...

  15. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea.

    Science.gov (United States)

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P; Ramkumar, Vickram

    2016-04-06

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  16. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea

    Science.gov (United States)

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P.

    2016-01-01

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser727 (but not Tyr701) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways. R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  17. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  18. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Urolinin: The First Linear Peptidic Urotensin-II Receptor Agonist.

    Science.gov (United States)

    Bandholtz, Sebastian; Erdmann, Sarah; von Hacht, Jan Lennart; Exner, Samantha; Krause, Gerd; Kleinau, Gunnar; Grötzinger, Carsten

    2016-11-23

    This study investigated the role of individual U-II amino acid positions and side chain characteristics important for U-IIR activation. A complete permutation library of 209 U-II variants was studied in an activity screen that contained single substitution variants of each position with one of the other 19 proteinogenic amino acids. Receptor activation was measured using a cell-based high-throughput fluorescence calcium mobilization assay. We generated the first complete U-II substitution map for U-II receptor activation, resulting in a detailed view into the structural features required for receptor activation, accompanied by complementary information from receptor modeling and ligand docking studies. On the basis of the systematic SAR study of U-II, we created 33 further short and linear U-II variants from eight to three amino acids in length, including d- and other non-natural amino acids. We identified the first high-potency linear U-II analogues. Urolinin, a linear U-II agonist (nWWK-Tyr(3-NO 2 )-Abu), shows low nanomolar potency as well as improved metabolic stability.

  20. Involvement of adenosine in the antiinflammatory action of ketamine.

    Science.gov (United States)

    Mazar, Julia; Rogachev, Boris; Shaked, Gad; Ziv, Nadav Y; Czeiger, David; Chaimovitz, Cidio; Zlotnik, Moshe; Mukmenev, Igor; Byk, Gerardo; Douvdevani, Amos

    2005-06-01

    Ketamine is an anesthetic drug. Subanesthetic doses of ketamine have been shown to reduce interleukin-6 concentrations after surgery and to reduce mortality and the production of tumor necrosis factor alpha and interleukin 6 in septic animals. Similarly, adenosine was shown to reduce tumor necrosis factor alpha and mortality of septic animals. The aim of this study was to determine whether adenosine mediates the antiinflammatory effects of ketamine. Sepsis was induced in mice by lipopolysaccharide or Escherichia coli inoculation. Leukocyte recruitment and cytokine concentrations were used as inflammation markers. Adenosine concentrations were assayed by high-performance liquid chromatography, and the involvement of adenosine in the effects of ketamine was demonstrated by adenosine receptor agonists and antagonists. Ketamine markedly reduced mortality from sepsis, leukocyte recruitment, and tumor necrosis factor-alpha and interleukin-6 concentrations. Ketamine administration in mice and rats was associated with a surge at 20-35 min of adenosine in serum (up to 5 microm) and peritoneal fluid. The adenosine A2A receptor agonist CGS-21680 mimicked the effect of ketamine in peritonitis, whereas the A2A receptor antagonists DMPX and ZM 241385 blocked its antiinflammatory effects. In contrast, A1 and A3 receptor antagonists had no effect. ZM 241385 reversed the beneficial effect of ketamine on survival from bacterial sepsis. The current data suggest that the sepsis-protective antiinflammatory effects of ketamine are mediated by the release of adenosine acting through the A2A receptor.

  1. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Hurtado, Erica; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Lanuza, Maria Angel; Tomàs, Josep

    2014-07-01

    To date, four subtypes of adenosine receptors have been cloned (A(1)R, A(2A)R, A(2B)R, and A(3)R). In a previous study we used confocal immunocytochemistry to identify A(1)R and A(2A)R receptors at mouse neuromuscular junctions (NMJs). The data shows that these receptors are localized differently in the three cells (muscle, nerve and glia) that configure the NMJs. A(1)R localizes in the terminal teloglial Schwann cell and nerve terminal, whereas A(2A)R localizes in the postsynaptic muscle and in the axon and nerve terminal. Here, we use Western blotting to investigate the presence of A(2B)R and A(3)R receptors in striated muscle and immunohistochemistry to localize them in the three cells of the adult neuromuscular synapse. The data show that A(2B)R and A(3)R receptors are present in the nerve terminal and muscle cells at the NMJs. Neither A(2B)R nor A(3)R receptors are localized in the Schwann cells. Thus, the four subtypes of adenosine receptors are present in the motor endings. The presence of these receptors in the neuromuscular synapse allows the receptors to be involved in the modulation of transmitter release. © 2014 Anatomical Society.

  2. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  3. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    International Nuclear Information System (INIS)

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-01-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [ 3 H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  4. Novel kinin B1 receptor agonists with improved pharmacological profiles.

    Science.gov (United States)

    Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand

    2009-04-01

    There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.

  5. The 5-HT(1F) receptor agonist lasmiditan as a potential treatment of migraine attacks

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Olesen, Jes

    2012-01-01

    Lasmiditan is a novel selective 5-HT(1F) receptor agonist. It is both scientifically and clinically relevant to review whether a 5-HT(1F) receptor agonist is effective in the acute treatment of migraine. Two RCTs in the phase II development of lasmiditan was reviewed. In the intravenous placebo...

  6. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also...

  7. Click-Chemistry-Mediated Synthesis of Selective Melanocortin Receptor 4 Agonists

    DEFF Research Database (Denmark)

    Palmer, Daniel; Gonçalves, Juliana P.L.; Hansen, Louise V.

    2017-01-01

    The melanocortin receptor 4 (MC4R) subtype of the melanocortin receptor family is a target for therapeutics to ameliorate metabolic dysfunction. Endogenous MC4R agonists possess a critical pharmacophore (HFRW), and cyclization of peptide agonists often enhances potency. Thus, 17 cyclized peptides...

  8. Trial Watch: Toll-like receptor agonists in oncological indications.

    Science.gov (United States)

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  9. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  10. Adenosine AA Receptor Antagonists Do Not Disrupt Rodent Prepulse Inhibition: An Improved Side Effect Profile in the Treatment of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carina J. Bleickardt

    2012-01-01

    Full Text Available Parkinson's disease (PD is characterized by loss of dopaminergic neurons in the substantia nigra. Current treatments for PD focus on dopaminergic therapies, including L-dopa and dopamine receptor agonists. However, these treatments induce neuropsychiatric side effects. Psychosis, characterized by delusions and hallucinations, is one of the most serious such side effects. Adenosine A2A receptor antagonism is a nondopaminergic treatment for PD with clinical and preclinical efficacy. The present studies assessed A2A antagonists SCH 412348 and istradefylline in rodent prepulse inhibition (PPI, a model of psychosis. Dopamine receptor agonists pramipexole (0.3–3 mg/kg, pergolide (0.3–3 mg/kg, and apomorphine (0.3–3 mg/kg significantly disrupted PPI; ropinirole (1–30 mg/kg had no effect; L-dopa (100–300 mg/kg disrupted rat but not mouse PPI. SCH 412348 (0.3–3 mg/kg did not disrupt rodent PPI; istradefylline (0.1–1 mg/kg marginally disrupted mouse but not rat PPI. These results suggest that A2A antagonists, unlike dopamine agonists, have an improved neuropsychiatric side effect profile.

  11. Agonist-induced affinity alterations of a central nervous system. cap alpha. -bungarotoxin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.J.; Bennett, E.L.

    1979-01-01

    The ability of cholinergic agonists to block the specific interaction of ..cap alpha..-bungarotoxin (..cap alpha..-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of ..cap alpha..-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of ..cap alpha..-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.

  12. The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rikard Dammen

    Full Text Available We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion.The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2 was compared to NECA (adenosine agonist, MRS1754 (ADORA2B receptor antagonist and SCH442146 (ADORA2A antagonist on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo.HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (~90% of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5'-ASA treatment was confirmed in a TNBS-model.Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT production and secretion in IBD.

  13. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    Science.gov (United States)

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    Science.gov (United States)

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934

  15. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    Science.gov (United States)

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor

  16. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis

    International Nuclear Information System (INIS)

    Boy, Christian; Meyer, Philipp T.; Kircheis, Gerald; Haussinger, Dieter; Holschbach, Marcus H.; Coenen, Heinz H.; Herzog, Hans; Elmenhorst, David; Kaiser, Hans J.; Zilles, Karl; Bauer, Andreas

    2008-01-01

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A 1 adenosine receptors (A 1 AR), is likely to be involved. The present study investigates changes of cerebral A 1 AR binding in cirrhotic patients by means of positron emission tomography (PET) and [ 18 F]CPFPX, a novel selective A 1 AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B max /K D ). Cortical and subcortical regions showed lower A 1 AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p 1 AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A 1 AR density or affinity, as well as blockade of the A 1 AR by endogenous adenosine or exogenous xanthines. (orig.)

  17. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    Science.gov (United States)

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling.

    Science.gov (United States)

    White, Pamela J; Webb, Tania E; Boarder, Michael R

    2003-06-01

    Previous reports on heterologously-expressed human P2Y11 receptors have indicated that ATP, but not UTP, is an agonist stimulating both phosphoinositidase C and adenylyl cyclase. Consistent with these findings, we report that in 1321N1 cells expressing human P2Y11 receptors, UTP stimulation did not lead to accumulation of inositol(poly)phosphates under conditions in which ATP gave a robust, concentration-dependent effect. Unexpectedly, however, both UTP and ATP stimulated increases in cytosolic Ca2+ concentration ([Ca2+]c), with both nucleotides achieving similar EC50 and maximal responses. The responses to maximally effective concentrations of ATP and UTP were not additive. The [Ca2+]c increase in response to UTP was less dependent on extracellular Ca2+ than was the response to ATP. AR-C67085 (2-propylthio-beta,gamma-difluoromethylene-d-ATP, a P2Y11-selective agonist), adenosine 5'-O-(3-thiotriphosphate), and benzoyl ATP were all full agonists with potencies similar to those of ATP and UTP. In desensitization experiments, exposure to ATP resulted in loss of the UTP response; this response was more sensitive to desensitization than that of ATP. Pertussis toxin pretreatment attenuated the response to UTP but left the ATP response unaffected. The presence of 2-aminoethyl diphenylborate differentially affected the responses of ATP and UTP. No mRNA transcripts for P2Y2 or P2Y4 were detectable in the P2Y11-expressing cells. We conclude that UTP is a Ca2+-mobilizing agonist at P2Y11 receptors and that ATP and UTP acting at the same receptor recruit distinct signaling pathways. This example of agonist-specific signaling is discussed in terms of agonist trafficking and differential signal strength.

  19. Identification of novel selective V2 receptor non-peptide agonists.

    Science.gov (United States)

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  20. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.

    Science.gov (United States)

    Vogel, Reiner; Lüdeke, Steffen; Siebert, Friedrich; Sakmar, Thomas P; Hirshfeld, Amiram; Sheves, Mordechai

    2006-02-14

    Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.

  1. Mechanical stress activates NMDA receptors in the absence of agonists.

    Science.gov (United States)

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca 2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca 2+ influx. Extracellular Mg 2+ at 2 mM did not significantly affect the shear induced Ca 2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  2. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  4. ''Spare'' alpha 1-adrenergic receptors and the potency of agonists in rat vas deferens

    International Nuclear Information System (INIS)

    Minneman, K.P.; Abel, P.W.

    1984-01-01

    The existence of ''spare'' alpha 1-adrenergic receptors in rat vas deferens was examined directly using radioligand binding assays and contractility measurements. Alpha 1-adrenergic receptors in homogenates of rat vas deferens were labeled with [ 125 I]BE 2254 ( 125 IBE). Norepinephrine and other full alpha 1-adrenergic receptor agonists were much less potent in inhibiting 125 IBE binding than in contracting the vas deferens in vitro. Treatment with 300 nM phenoxybenzamine for 10 min to irreversibly inactivate alpha 1-adrenergic receptors caused a large decrease in the potency of full agonists in causing contraction of this tissue and a 23-48% decrease in the maximal contraction observed. Using those data, equilibrium constants for activation (Kact values) of the receptors by agonists were calculated. These Kact values agreed well with the equilibrium binding constants (KD values) determined from displacement of 125 IBE binding. The reduction in alpha 1-adrenergic receptor density following phenoxybenzamine treatment was determined by Scatchard analysis of specific 125 IBE binding sites and compared with the expected reduction (q values) calculated from the agonist dose-response curves before and after phenoxybenzamine treatment. This suggests that phenoxybenzamine functionally inactivates alpha 1-adrenergic receptors at or near the receptor binding site. These experiments suggest that the potencies of agonists in activating alpha 1-adrenergic receptors in rat vas deferens agree well with their potencies in binding to the receptors. The greater potency of agonists in causing contraction may be due to spare receptors in this tissue. The data also demonstrate that phenoxybenzamine irreversibly inactivates alpha 1-adrenergic receptors in rat vas deferens, but that the decrease in receptor density is much smaller than that predicted from receptor theory

  5. Preparation and first evaluation of [18F]FE-SUPPY: a new PET tracer for the adenosine A3 receptor

    International Nuclear Information System (INIS)

    Wadsak, Wolfgang; Mien, Leonhard-Key; Shanab, Karem; Ettlinger, Dagmar E.; Haeusler, Daniela; Sindelar, Karoline; Lanzenberger, Rupert R.; Spreitzer, Helmut; Viernstein, Helmut; Keppler, Bernhard K.; Dudczak, Robert; Kletter, Kurt; Mitterhauser, Markus

    2008-01-01

    Introduction: Changes of the adenosine A 3 receptor subtype (A3AR) expression have been shown in a variety of pathologies, especially neurological and affective disorders, cardiac diseases and oncological and inflammation processes. Recently, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE-SUPPY) was presented as a high-affinity ligand for the A3AR with good selectivity. Our aims were the development of a suitable labeling precursor, the establishment of a reliable radiosynthesis for the fluorine-18-labeled analogue [ 18 F]FE-SUPPY and a first evaluation of [ 18 F]FE-SUPPY in rats. Methods: [ 18 F]FE-SUPPY was prepared in a feasible and reliable manner by radiofluorination of the corresponding tosylated precursor. Biodistribution was carried out in rats, and organs were removed and counted. Autoradiography was performed on rat brain slices in the presence or absence of 2-Cl-IB-MECA. Results: Overall yields and radiochemical purity were sufficient for further preclinical and clinical applications. The uptake pattern of [ 18 F]FE-SUPPY found in rats mainly followed the described mRNA distribution pattern of the A3AR. Specific uptake in brain was demonstrated by blocking with a selective A3AR agonist. Conclusion: We conclude that [ 18 F]FE-SUPPY has the potential to serve as the first positron emission tomography tracer for the A3AR

  6. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  7. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  8. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  9. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  10. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists

    DEFF Research Database (Denmark)

    Sasmal, Pradip K; Krishna, C Vamsee; Sudheerkumar Adabala, S

    2015-01-01

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR a...... of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified....

  11. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    Science.gov (United States)

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  12. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes.

  13. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    International Nuclear Information System (INIS)

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-01-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects

  14. Prolonging survival of corneal transplantation by selective sphingosine-1-phosphate receptor 1 agonist.

    Directory of Open Access Journals (Sweden)

    Min Gao

    Full Text Available Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1 selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival.

  15. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats.

    Science.gov (United States)

    Hu, Zhenzhen; Lee, Chung-Il; Shah, Vikash Kumar; Oh, Eun-Hye; Han, Jin-Yi; Bae, Jae-Ryong; Lee, Kinam; Chong, Myong-Soo; Hong, Jin Tae; Oh, Ki-Wan

    2013-01-01

    Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs). Sleep was recorded using electroencephalogram (EEG) for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM) sleep. Interestingly, cordycepin increased θ (theta) waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B) were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  16. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  17. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Katia Varani

    2017-01-01

    Full Text Available Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs. In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.

  18. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    Science.gov (United States)

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  19. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    OpenAIRE

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the pre...

  20. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  1. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    Science.gov (United States)

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  2. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  3. Serotonin 2A receptor agonist binding in the human brain with [C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, A.; da Cunha-Bang, S.; McMahon, Barry P.

    2014-01-01

    [C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely ....... Thus, we here describe [C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT receptors in the human brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 April 2014; doi:10.1038/jcbfm.2014.68....... than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT receptors with [C]Cimbi-36 PET. The two-tissue compartment model using arterial input...

  4. Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors.

    Directory of Open Access Journals (Sweden)

    Li-Song Zhang

    Full Text Available As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME predictions showed that the 7 compounds (especially Cpd#1 hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.

  5. Cerebral A{sub 1} adenosine receptors (A{sub 1}AR) in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Boy, Christian [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Meyer, Philipp T. [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Kircheis, Gerald; Haussinger, Dieter [University of Duesseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Duesseldorf (Germany); Holschbach, Marcus H.; Coenen, Heinz H. [Research Centre Juelich, Institute of Nuclear Chemistry, Juelich (Germany); Herzog, Hans; Elmenhorst, David [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); Kaiser, Hans J. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Zilles, Karl [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); C. and O. Vogt Institute of Brain Research, Duesseldorf (Germany); Bauer, Andreas [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University of Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-03-15

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A{sub 1} adenosine receptors (A{sub 1}AR), is likely to be involved. The present study investigates changes of cerebral A{sub 1}AR binding in cirrhotic patients by means of positron emission tomography (PET) and [{sup 18}F]CPFPX, a novel selective A{sub 1}AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B{sub max}/K{sub D}). Cortical and subcortical regions showed lower A{sub 1}AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%). Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A{sub 1}AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A{sub 1}AR density or affinity, as well as blockade of the A{sub 1}AR by endogenous adenosine or exogenous xanthines. (orig.)

  6. Ascorbic acid enables reversible dopamine receptor 3H-agonist binding

    International Nuclear Information System (INIS)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-01-01

    The effects of ascorbic acid on dopaminergic 3 H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the 3 H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3 H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3 H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3 H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3 H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3 H-agonist binding to dopamine receptors

  7. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia

    2018-01-01

    In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.

  8. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2018-04-01

    Full Text Available In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR in the mammalian neuromuscular junction (NMJ. Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally. These observations underlie the relevance of AR in the NMJ function.

  9. Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington's disease

    International Nuclear Information System (INIS)

    Matusch, Andreas; Elmenhorst, David; Saft, Carsten; Kraus, Peter H.; Gold, Ralf; Hartung, Hans-Peter; Bauer, Andreas

    2014-01-01

    To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington's disease (HD). We quantified the cerebral binding potential (BP ND ) of the A 1 AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [ 18 F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36). Cerebral A 1 AR values of preHD-A subjects were generally higher than those of controls (by up to 31 %, p 1 AR BP ND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25 %, p 1 AR BP ND and years to onset. Before onset of HD, the assumed annual rates of change of A 1 AR density were -1.2 % in the caudatus, -1.7 % in the thalamus and -3.4 % in the amygdala, while the corresponding volume losses amounted to 0.6 %, 0.1 % and 0.2 %, respectively. Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism. (orig.)

  10. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...

  11. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Ahring, Philip K; Christensen, Jeppe K

    2011-01-01

    The neuronal a4ß2 nicotinic acetylcholine receptors exist as two distinct subtypes, (a4)(2)(ß2)(3) and (a4)(3)(ß2)(2), and biphasic responses to acetylcholine and other agonists have been ascribed previously to coexistence of these two receptor subtypes. We offer a novel and radical explanation...

  12. Bioassay directed identification of natural aryl hydrocarbon-receptor agonists in marmalade

    NARCIS (Netherlands)

    Ede, van K.I.; Li, A.; Antunes Fernandes, E.C.; Mulder, P.P.J.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.

    2008-01-01

    Citrus fruit and citrus fruit products, like grapefruit, lemon and marmalade were shown to contain aryl hydrocarbon receptor (AhR) agonists, as detected with the DR CALUX® bioassay. This is of interest regarding the role of the Ah-receptor pathway in the adverse effects of dioxins, PCBs and other

  13. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding site...

  14. Identification of potent, nonabsorbable agonists of the calcium-sensing receptor for GI-specific administration.

    Science.gov (United States)

    Sparks, Steven M; Spearing, Paul K; Diaz, Caroline J; Cowan, David J; Jayawickreme, Channa; Chen, Grace; Rimele, Thomas J; Generaux, Claudia; Harston, Lindsey T; Roller, Shane G

    2017-10-15

    Modulation of gastrointestinal nutrient sensing pathways provides a promising a new approach for the treatment of metabolic diseases including diabetes and obesity. The calcium-sensing receptor has been identified as a key receptor involved in mineral and amino acid nutrient sensing and thus is an attractive target for modulation in the intestine. Herein we describe the optimization of gastrointestinally restricted calcium-sensing receptor agonists starting from a 3-aminopyrrolidine-containing template leading to the identification of GI-restricted agonist 19 (GSK3004774). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Pickering, Darryl S; Greenwood, Jeremy R

    2010-01-01

    We describe an improved synthesis and detailed pharmacological characterization of the conformationally restricted analogue of the naturally occurring nonselective glutamate receptor agonist ibotenic acid (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-7-carboxylic acid (7-HPCA, 5......) at AMPA receptor subtypes. Compound 5 was shown to be a subtype-discriminating agonist at AMPA receptors with higher binding affinity and functional potency at GluA1/2 compared to GluA3/4, unlike the isomeric analogue (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA, 4...

  16. Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory

    OpenAIRE

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2010-01-01

    Abstract The cannabinoid CB1 receptor-mediated modulation of ?-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A1 receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A1 receptors localized in GABAergic cells do not directly influence GABA release. CB1 and A1 receptors are the main targets for the effects of two of the most heavily consumed ps...

  17. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  18. Adenosine A2B Receptors: An Optional Target for the Management of Irritable Bowel Syndrome with Diarrhea?

    Directory of Open Access Journals (Sweden)

    Teita Asano

    2017-11-01

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal disorder, with the characteristic symptoms of chronic abdominal pain and altered bowel habits (diarrhea, constipation, or both. IBS is a highly prevalent condition, which negatively affects quality of life and is a significant burden on global healthcare costs. Although many pharmacological medicines have been proposed to treat IBS, including those targeting receptors, channels, and chemical mediators related to visceral hypersensitivity, successful pharmacotherapy for the disease has not been established. Visceral hypersensitivity plays an important role in IBS pathogenesis. Immune activation is observed in diarrhea-predominant patients with IBS and contributes to the development of visceral hypersensitivity. Adenosine is a chemical mediator that regulates many physiological processes, including inflammation and nociception. Among its receptors, the adenosine A2B receptor regulates intestinal secretion, motor function, and the immune response. We recently demonstrated that the adenosine A2B receptor is involved in visceral hypersensitivity in animal models of IBS. In this review, we discuss the possibility of the adenosine A2B receptor as a novel therapeutic target for IBS.

  19. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    Science.gov (United States)

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  20. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  2. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety.

    Science.gov (United States)

    Coelho, Joana E; Alves, Pedro; Canas, Paula M; Valadas, Jorge S; Shmidt, Tatiana; Batalha, Vânia L; Ferreira, Diana G; Ribeiro, Joaquim A; Bader, Michael; Cunha, Rodrigo A; do Couto, Frederico Simões; Lopes, Luísa V

    2014-01-01

    Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.

  3. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia

    OpenAIRE

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M.; McCullough, Louise; Andreasson, Katrin

    2008-01-01

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE2 receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE2 EP2, EP3, and EP4 receptors, would reduce brain injury in the murine m...

  4. Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian

    2012-01-01

    FFA1 (GPR40) is a new target for treatment of type 2 diabetes. We recently identified the potent FFA1 agonist TUG-469 (5). Inspired by the structurally related TAK-875, we explored the effects of a mesylpropoxy appendage on 5. The appendage significantly lowers lipophilicity and improves metaboli...

  5. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the alpha1 glycine receptor increases during ...

  6. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    Science.gov (United States)

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.

  7. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor.

    Science.gov (United States)

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin

    2016-03-01

    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  9. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    Science.gov (United States)

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  10. A1 not A2A adenosine receptors play a role in cortical epileptic afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel

    2014-01-01

    Roč. 121, č. 11 (2014), s. 1329-1336 ISSN 0300-9564 R&D Projects: GA MŠk(CZ) LH11015 Institutional support: RVO:67985823 Keywords : adenosine receptors * epileptic afterdischarges * cerebral cortex * ontogeny * rat Subject RIV: FH - Neurology Impact factor: 2.402, year: 2014

  11. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J

    2016-01-01

    BACKGROUND: Guidelines recommend the use of adenosine diphosphate receptor inhibitor (ADPri) therapy for 1 year postacute myocardial infarction; yet, early cessation of therapy occurs frequently in clinical practice. METHODS AND RESULTS: We examined 11 858 acute myocardial infarction patients tre...

  12. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  13. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Lang, Manja; Brandt, Erik

    2006-01-01

    [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P functions as a low-potency antagonist but a high-potency full inverse agonist on the ghrelin receptor. Through a systematic deletion and substitution analysis of this peptide, the C-terminal carboxyamidated pentapeptide wFwLX was identified as the core...... structure, which itself displayed relatively low inverse agonist potency. Mutational analysis at 17 selected positions in the main ligand-binding crevice of the ghrelin receptor demonstrated that ghrelin apparently interacts only with residues in the middle part of the pocket [i.e., between transmembrane...... upon both AspII:20 and GluIII:09. The identified pharmacophore can possibly serve as the basis for targeted discovery of also nonpeptide inverse agonists for the ghrelin receptor....

  15. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    Science.gov (United States)

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  16. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    Full Text Available Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (--arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases.

  17. Regulation of ventilation and oxygen consumption by delta- and mu-opioid receptor agonists.

    Science.gov (United States)

    Schaeffer, J I; Haddad, G G

    1985-09-01

    To study the effect of endorphins on metabolic rate and on the relationship between O2 consumption (VO2) and ventilation, we administered enkephalin analogues (relatively selective delta-receptor agonists) and a morphiceptin analogue (a highly selective mu-receptor agonist) intracisternally in nine unanesthetized chronically instrumented adult dogs. Both delta- and mu-agonists decreased VO2 by 40-60%. delta-Agonists induced a dose-dependent decrease in mean instantaneous minute ventilation (VT/TT) associated with periodic breathing. The decrease in VT/TT started and resolved prior to the decrease and returned to baseline of VO2, respectively. In contrast, the mu-agonists induced an increase in VT/TT associated with rapid shallow breathing. Arterial PCO2 increased and arterial PO2 decreased after both delta- and mu-agonists. Low doses of intracisternal naloxone (0.002-2.0 micrograms/kg) reversed the opioid effect on VT/TT but not on VO2; higher doses of naloxone (5-25 micrograms/kg) reversed both. Naloxone administered alone had no effect on VT/TT or VO2. These data suggest that 1) both delta- and mu-agonists induce alveolar hypoventilation despite a decrease in VO2, 2) this hypoventilation results from a decrease in VT/TT after delta-agonists but an increase in dead space ventilation after mu-agonists, and 3) endorphins do not modulate ventilation and metabolic rate tonically, but we speculate that they may do so in response to stressful stimulation.

  18. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  19. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    Science.gov (United States)

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  20. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies (Addendum)

    Science.gov (United States)

    2016-03-01

    diabetic retinopathy . Life Sci. 2013 Jul 30;93(2-3):78-88. doi: 10.1016/j.lfs.2013.05.024. Epub 2013 Jun 12.PMID:23770229 7 AIMS: This study was...undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling...reported recently that adenosine kinase upregulated in retinal tissue of diabetic retinopathy (Elsherbiny et al., 2013). Adenosine kinase (ADK) converts

  1. The non-biphenyl-tetrazole angiotensin AT1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT1 receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2018-03-23

    Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.

  2. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    Science.gov (United States)

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB 1 /CB 2 ) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB 1 /CB 2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  3. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    Science.gov (United States)

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  4. Adenosine A1 receptor-mediated inhibition of in vitro prolactin secretion from the rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    D.L.W. Picanço-Diniz

    2006-11-01

    Full Text Available In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R-N6-(2-phenylisopropyladenosine (R-PIA at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w. treatment compared to control (264.56 ± 15.46 ng/mg t.w.. R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w. of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w., whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w. and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w. with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively. Similarly, R-PIA (0.01 µM decreased (242.00 ± 24.00 ng/mg t.w. the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.. In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w. on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.. These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.

  5. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    Science.gov (United States)

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.

  6. Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity

    DEFF Research Database (Denmark)

    Goncalves de Azavedo, Carlos M. B. P.; Watterson, Kenneth R; Wargent, Ed T

    2016-01-01

    The free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure......-activity relationship studies of a previously disclosed non-acidic sulfonamide FFA4 agonist. Mutagenesis studies indicate that the compounds are orthosteric agonists despite the absence of a carboxylate function. The preferred compounds showed full agonist activity on FFA4 and complete selectivity over FFA1, although...... a significant fraction of these non-carboxylic acids also showed partial antagonistic activity on FFA1. Studies in normal and diet-induced obese (DIO) mice with the preferred compound 34 showed improved glucose tolerance after oral dosing in an oral glucose tolerance test. Chronic dosing of 34 in DIO mice...

  7. Design and synthesis of small molecule agonists of EphA2 receptor.

    Science.gov (United States)

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  8. Mapping adenosine A1 receptors in the cat brain by positron emission tomography with [11C]MPDX

    International Nuclear Information System (INIS)

    Shimada, Yuhei; Ishiwata, Kiichi; Kiyosawa, Motohiro; Nariai, Tadashi; Oda, Keiichi; Toyama, Hinako; Suzuki, Fumio; Ono, Kenichirou; Senda, Michio

    2002-01-01

    We evaluated the potential of [ 11 C]MPDX as a radioligand for mapping adenosine A 1 receptors in comparison with previously proposed [ 11 C]KF15372 in cat brain by PET. Two tracers showed the same brain distribution. Brain uptake of [ 11 C]MPDX (Ki=4.2 nM) was much higher and washed out faster than that of [ 11 C]KF15372 (Ki=3.0 nM), and was blocked by carrier-loading or displaced with an A 1 antagonist. The regional A 1 receptor distribution evaluated with kinetic analysis is consistent with that previously measured in vitro. [ 11 C]MPDX PET has a potential for mapping adenosine A 1 receptors in brain

  9. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  10. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor

    OpenAIRE

    Lin, Wenwei; Yang, Lei; Chai, Sergio C.; Lu, Yan; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a ti...

  11. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    DEFF Research Database (Denmark)

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny

    2007-01-01

    parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein...... intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action. Udgivelsesdato: 2007-Sep-6...

  12. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  13. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  14. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine alpha4beta2 receptors

    DEFF Research Database (Denmark)

    Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech

    2012-01-01

    The a4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of a4ß2 agonists is lacking...

  15. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneu......The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic...... interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h......, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo....

  16. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude

    NARCIS (Netherlands)

    Drijfhout, W.J; de Vries, J.B; Homan, E.J; Brons, H.F; Copinga, S; Gruppen, G; Beresford, I.J M; Hagan, R.M; Grol, Cor; Westerink, B.H.C.

    1999-01-01

    In this study we have examined the ability of melatonin and four synthetic melatonin receptor agonists to entrain endogenous melatonin secretion in rats, free running in constant darkness. The circadian melatonin profile was measured by trans-pineal microdialysis, which not only reveals the time of

  17. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  18. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke

    DEFF Research Database (Denmark)

    Joseph, Jason P; Mecca, Adam P; Regenhardt, Robert W

    2014-01-01

    Evidence indicates that angiotensin II type 2 receptors (AT2R) exert cerebroprotective actions during stroke. A selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exert beneficial effects in models of cardiac and renal disease, as well as hemorrhagic stroke. Here, we hypothe...

  19. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na+ channel interaction

    International Nuclear Information System (INIS)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-01

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na + channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [ 3 H] acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [ 3 H]batrachotoxin to Na + channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22 Na + uptake in the presence and absence of tetrodotoxin, which blocks Na + channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na + channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na + channel-is such that at resting potential the muscarinic receptor induces opening of Na + channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues

  20. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    Science.gov (United States)

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  1. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice.

    Science.gov (United States)

    Lang, Undine E; Lang, Florian; Richter, Kerstin; Vallon, Volker; Lipp, Hans-Peter; Schnermann, Jürgen; Wolfer, David P

    2003-10-17

    Several lines of evidence point to the involvement of adenosine in the regulation of important central mechanisms such as cognition, arousal, aggression and anxiety. In order to elucidate the involvement of the adenosine A1 receptor (A1AR) in spatial learning and the control of exploratory behaviour, we assessed A1AR knockout mice (A1AR-/-) and their wild-type littermates (A1AR+/+) in a place navigation task in the water maze and in a battery of forced and free exploration tests. In the water maze, A1AR-/- mice showed normal escape latencies and were indistinguishable from controls with respect to measures of spatial performance during both training and probe trial. But despite normal performance they showed increased wall hugging, most prominently after the relocation of the goal platform for reversal training. Quantitative analysis of strategy choices indicated that wall hugging was increased mainly at the expense of chaining and passive floating, whereas the frequency of trials characterised as direct swims or focal searching was normal in A1AR-/- mice. These results indicate intact spatial cognition, but mildly altered emotional reactions to the water maze environment. In line with this interpretation, A1AR-/- mice showed normal levels and patterns of activity, but a mild increase of some measures of anxiety in our battery of forced and free exploration paradigms. These results are in line with findings published using a genetically similar line, but demonstrate that the magnitude of the changes and the range of affected behavioural measures may vary considerably depending on the environmental conditions during testing.

  2. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    2011-01-01

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  3. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A(1) receptor agonists in rat

    NARCIS (Netherlands)

    Van der Graaf, PH; Nilsson, J; Van Schaick, EA; Danhof, M

    The aim of this study was to investigate the feasibility of a quantitative structure-pharmacokinetic relationships (QSPKR) method based on contemporary three-dimensional (3D) molecular characterization and multivariate statistical analysis. For this purpose, the programs SYBYL/CoMFA, GRID, and

  4. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    Science.gov (United States)

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  5. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    Science.gov (United States)

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  6. Adenosine A2A Receptor in the Monkey Basal Ganglia: Ultrastructural Localization and Colocalization With the Metabotropic Glutamate Receptor 5 in the Striatum

    OpenAIRE

    Bogenpohl, James W.; Ritter, Stefanie L.; Hall, Randy A.; Smith, Yoland

    2012-01-01

    The adenosine A2A receptor (A2AR) is a potential drug target for the treatment of Parkinson’s disease and other neurological disorders. In rodents, the therapeutic efficacy of A2AR modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural...

  7. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration.

    Science.gov (United States)

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-11-17

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  8. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  9. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  10. High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist

    DEFF Research Database (Denmark)

    Holst, Birgitte; Cygankiewicz, Adam; Jensen, Tine Halkjaer

    2003-01-01

    Ghrelin is a GH-releasing peptide that also has an important role as an orexigenic hormone-stimulating food intake. By measuring inositol phosphate turnover or by using a reporter assay for transcriptional activity controlled by cAMP-responsive elements, the ghrelin receptor showed strong, ligand......-independent signaling in transfected COS-7 or human embryonic kidney 293 cells. Ghrelin and a number of the known nonpeptide GH secretagogues acted as agonists stimulating inositol phosphate turnover further. In contrast, the low potency ghrelin antagonist, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance P was surprisingly...... found to be a high potency (EC50 = 5.2 nm) full inverse agonist as it decreased the constitutive signaling of the ghrelin receptor down to that observed in untransfected cells. The homologous motilin receptor functioned as a negative control as it did not display any sign of constitutive activity...

  11. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo

    Science.gov (United States)

    Pastor-Cavada, Elena; Pardo, Leticia M.; Kandil, Dalia; Torres-Fuentes, Cristina; Clarke, Sarah L.; Shaban, Hamdy; McGlacken, Gerard P.; Schellekens, Harriet

    2016-11-01

    Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.

  12. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Knop, Filip K; Holst, Jens J

    2009-01-01

    Lixisenatide, under development by sanofi-aventis, is a novel human glucagon-like peptide-1 receptor (GLP-1R) agonist for the treatment of type 2 diabetes mellitus (T2DM; non-insulin dependent diabetes). The structure of lixisenatide, based on exendin-4(1-39) modified C-terminally with six Lys...... of the anticipated effects of lixisenatide on glycemic measures and weight; favorable results would place lixisenatide for consideration among other GLP-1R agonists in the treatment armamentarium for T2DM....

  13. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    .05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...... subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma....... Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP induced vasodilation in human skeletal muscle. The localization of the P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP induced vasodilation in skeletal muscle. Key words: Skeletal Muscle...

  14. Partial agonists and subunit selectivity at NMDA receptors

    DEFF Research Database (Denmark)

    Risgaard, Rune; Hansen, Kasper Bø; Clausen, Rasmus Prætorius

    2010-01-01

    Subunit-selective ligands for glutamate receptors remains an area of interest as glutamate is the major excitatory neurotransmitter in the brain and involved in a number of diseased states in the central nervous system (CNS). Few subtype-selective ligands are known, especially among the N...

  15. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D.; Fuchshuber, F.; Girschele, F.; Hacker, M.; Wadsak, W.; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Grassinger, L. [University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, Wiener Neustadt (Austria); Hoerleinsberger, W.J. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Vienna, Cognitive Science Research Platform, Vienna (Austria); Hoeftberger, R.; Leisser, I. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Shanab, K.; Spreitzer, H. [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria); Gerdenitsch, W. [Medical University of Vienna, Institute of Biomedicinal Research, Vienna (Austria)

    2015-05-01

    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [{sup 18}F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [{sup 125}I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [{sup 18}F]FE rate at SUPPY may be a suitable A3 PET

  16. Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien; Ho, Chia-Chi; Tsai, Hui-Ti; Hsu, Chin-Yu; Chen, Yu-Cheng; Lin, Pinpin, E-mail: pplin@nhri.org.tw

    2017-06-01

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs. Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altered in the PCB39-treated cells. Interleukin (IL)-24 was the most highly induced gene among AhR-modulated cytokines. Cotreatment with AhR antagonist completely prevented IL-24 induction by AhR agonists in the CL5 cells. Knockdown AhR expression with short-hairpin RNA (shRNA) significantly reduced benzo[a]pyrene (BaP)-induced IL-24 mRNA levels. We further confirmed that gene transcription, but not mRNA stability, was involved in IL-24 upregulation by BaP. Particulate matter (PM) in the ambient air contains some PAHs and is reported to activate AhR. Oropharyngeal aspiration of PM significantly increased IL-24 levels in lung epithelia and in bronchoalveolar lavage fluid of mice 4 weeks after treatment. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonists. - Graphical abstract: (A) Cytokine and chemokine gene expressions were examined in CL5 cells treated with AhR and non-AhR agonists. Thirteen cytokines and chemokines genes were altered in the AhR agonist-treated cells, but not in the non-AhR agonist-treated cells. IL-24 was the most highly induced gene among the AhR-modulated cytokines. (B

  17. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  18. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat.

    Science.gov (United States)

    Materi, L M; Rasmusson, D D; Semba, K

    2000-01-01

    The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.

  19. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  20. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor.

    Science.gov (United States)

    Lin, Wenwei; Yang, Lei; Chai, Sergio C; Lu, Yan; Chen, Taosheng

    2016-01-27

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. The effects of acute multiple intraperitoneal injections of the GABAB receptor agonist baclofen on food intake in rats.

    Science.gov (United States)

    Patel, Sunit M; Ebenezer, Ivor S

    2008-12-28

    This study was undertaken to examine the effects of acute repeated administration of the GABA(B) receptor agonist baclofen on food intake in rats. In Experiment 1, the effects of repeated intraperitoneal (i.p.) injections of the GABA(B) receptor agonist baclofen (1 and 2 mg/kg) at 2 h intervals were investigated on food intake in non-deprived male Wistar rats. Both doses of baclofen significantly increased food intake after the 1st injection (PGABA(B) receptor agonists on food intake and energy homeostasis.

  2. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2 Agonists

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2013-04-01

    Full Text Available The formyl peptide receptor 2 (FPR2 is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ-42 and prion protein (Prp106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP and pituitary adenylate cyclase activating polypeptide (PACAP-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC, protein kinase C (PKC isoforms, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway, the mitogen-activated protein kinase (MAPK pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2

  3. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor.

    Science.gov (United States)

    Muzzi, Mirko; Coppi, Elisabetta; Pugliese, Anna Maria; Chiarugi, Alberto

    2013-12-01

    Purinergic neurotransmission mediated by adenosine (Ado) type 1 receptors (A1Rs) plays pivotal roles in negative modulation of epileptic seizures, and Ado is thought to be a key endogenous anticonvulsant. Recent evidence, however, indicates that AMP, the metabolic precursor of Ado, also activate A1Rs. Here, we evaluated the antiepileptic effects of AMP adopting in vitro and in vivo models of epilepsy. We report that AMP reversed the increase in population spike (PS) amplitude and the decrease in PS latency induced by a Mg(2+)-free extracellular solution in CA1 neurons of mouse hippocampal slices. The AMP effects were inhibited by the A1R antagonist DPCPX, but not prevented by inhibiting conversion of AMP into Ado, indicating that AMP inhibited per se sustained hippocampal excitatory neurotransmission by directly activating A1Rs. AMP also reduced seizure severity and mortality in a model of audiogenic convulsion. Of note, the anticonvulsant effects of AMP were potentiated by preventing its conversion into Ado and inhibited by DPCPX. When tested in a model of kainate-induced seizure, AMP prolonged latency of convulsions but had no effects on seizure severity and mortality. Data provide the first evidence that AMP is an endogenous anticonvulsant acting at A1Rs. © 2013.

  4. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    Science.gov (United States)

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from effluents in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts.

    Directory of Open Access Journals (Sweden)

    Qin Shao

    Full Text Available Nitric oxide (NO plays an important role in cardioprotection, and recent work from our group and others has implicated protein S-nitrosylation (SNO as a critical component of NO-mediated protection in different models, including ischemic pre- and post-conditioning and sex-dependent cardioprotection. However, studies have yet to examine whether protein SNO levels are similarly increased with pharmacologic preconditioning in male and female hearts, and whether an increase in protein SNO levels, which is protective in male hearts, is sufficient to increase baseline protection in female hearts. Therefore, we pharmacologically preconditioned male and female hearts with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA. CHA administration prior to ischemia significantly improved functional recovery in both male and female hearts compared to baseline in a Langendorff-perfused heart model of ischemia-reperfusion injury (% of preischemic function ± SE: male baseline: 37.5±3.4% vs. male CHA: 55.3±3.2%; female baseline: 61.4±5.7% vs. female CHA: 76.0±6.2%. In a separate set of hearts, we found that CHA increased p-Akt and p-eNOS levels. We also used SNO-resin-assisted capture with LC-MS/MS to identify SNO proteins in male and female hearts, and determined that CHA perfusion induced a modest increase in protein SNO levels in both male (11.4% and female (12.3% hearts compared to baseline. These findings support a potential role for protein SNO in a model of pharmacologic preconditioning, and provide evidence to suggest that a modest increase in protein SNO levels is sufficient to protect both male and female hearts from ischemic injury. In addition, a number of the SNO proteins identified with CHA treatment were also observed with other forms of cardioprotective stimuli in prior studies, further supporting a role for protein SNO in cardioprotection.

  6. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    Science.gov (United States)

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  7. Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K.; Salvemini, Daniela; Jacobson, Kenneth A.

    2014-01-01

    We studied patterns of off-target receptor interactions, mostly at G protein-coupled receptors (GPCRs) in the µM range, of nucleoside derivatives that are highly engineered for nM interaction with adenosine receptors (ARs). Because of the considerable interest of using AR ligands for treating diseases of the CNS, we used the Psychoactive Drug Screening Program (PDSP) for probing promiscuity of these adenosine/adenine congeners at 41 diverse receptors, channels and a transporter. The step-wise truncation of rigidified, trisubstituted (at N6, C2, and 5′ positions) nucleosides revealed unanticipated interactions mainly with biogenic amine receptors, such as adrenergic receptors and serotonergic receptors, with affinities as high as 61 nM. The unmasking of consistent sets of structure activity relationship (SAR) at novel sites suggested similarities between receptor families in molecular recognition. Extensive molecular modeling of the GPCRs affected suggested binding modes of the ligands that supported the patterns of SAR at individual receptors. In some cases, the ligand docking mode closely resembled AR binding and in other cases the ligand assumed different orientations. The recognition patterns for different GPCRs were clustered according to which substituent groups were tolerated and explained in light of the complementarity with the receptor binding site. Thus, some likely off-target interactions, a concern for secondary drug effects, can be predicted for analogues of this set of substructures, aiding the design of additional structural analogues that either eliminate or accentuate certain off-target activities. Moreover, similar analyses could be performed for unrelated structural families for other GPCRs. PMID:24859150

  8. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor,...... as generic, pharmacologic tools to switch 7TM receptors with engineered metal-ion sites on or off at will.......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  9. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block.

    Science.gov (United States)

    De Sarro, Giovambattista; Chimirri, Alba; Meldrum, Brian S

    2002-09-06

    We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade. Copyright 2002 Elsevier Science B.V.

  10. Treatment of type 2 diabetes with glucagon-like peptide-1 receptor agonists

    DEFF Research Database (Denmark)

    Hansen, K B; Knop, F K; Holst, Jens Juul

    2009-01-01

    of hypoglycaemia with GLP-1 receptor agonists is low, the compounds have clinically relevant effects on body weight, and data are suggesting beneficial effects on cardiovascular risk factors. Exenatide was released in 2005 for the treatment of type 2 diabetes and liraglutide is expected to be approved by the Food......The incretin system is an area of great interest for the development of new therapies for the management of type 2 diabetes. Existing antidiabetic drugs are often insufficient at getting patients to glycaemic goals. Furthermore, current treatment modalities are not able to prevent the continued...... ongoing decline in pancreatic beta-cell function and, lastly, they have a number of side effects including hypoglycaemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of pharmacological agents, which improve glucose homeostasis in a multifaceted way. Their effects...

  11. Quantitative phosphoproteomics dissection of 7TM receptor signaling using full and biased agonists

    DEFF Research Database (Denmark)

    Christensen, Gitte L; Kelstrup, Christian D; Lyngsø, Christina

    2010-01-01

    only activates the Gaq protein-independent signaling.e quantified more than ten thousand phosphorylation sites of which 1183 were regulated by Angiotensin II or its analogue SII Angiotensin II. 36% of the AT1R regulated phosphorylations were regulated by SII Angiotensin II. Analysis of phosphorylation...... into Angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Gaq protein-independent signaling and uncovers novel signaling......Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins, but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The Angiotensin II type 1 receptor (AT1R) is a prototypical 7TMR and an important...

  12. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists

    DEFF Research Database (Denmark)

    Christensen, Gitte L; Kelstrup, Christian D; Lyngsø, Christina

    2010-01-01

    (q)-dependent and -independent AT(1)R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity......Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT(1)R) is a prototypical 7TMR...... and quantity of Galpha(q) protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation...

  13. Therapeutic Effects of Melatonin Receptor Agonists on Sleep and Comorbid Disorders

    Directory of Open Access Journals (Sweden)

    Moshe Laudon

    2014-09-01

    Full Text Available Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5. Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions.

  14. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Molly R Belkin

    2017-09-01

    Full Text Available Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD.

  15. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung

    2007-01-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  16. Epac is required for exogenous and endogenous stimulation of adenosine A2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation.

    Science.gov (United States)

    Phosri, Sarawuth; Bunrukchai, Kwanchai; Parichatikanond, Warisara; Sato, Vilasinee H; Mangmool, Supachoke

    2018-01-10

    Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A 2 receptors (A 2 Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A 2 Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A 2B receptor (A 2B R) subtype. Stimulation of A 2B R exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A 2B R-mediated antifibrotic effects. Thus, A 2B R is one of the potential therapeutic targets against cardiac fibrosis.

  17. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms

    Czech Academy of Sciences Publication Activity Database

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan

    2015-01-01

    Roč. 97, Jul 2015 (2015), s. 27-39 ISSN 1043-6618 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * atypical agonists * xanomeline * activation mechanism Subject RIV: ED - Physiology Impact factor: 4.816, year: 2015

  18. Strategies to improve outcome after islet transplantation using the GLP-1 receptor agonist, extendin-4

    OpenAIRE

    Sharma, Amit

    2007-01-01

    Transplantation of pancreatic islets into the liver via the portal vein has emerged as a treatment option for patients with type I diabetes mellitus. However, loss of functional beta cell mass during isolation and following implantation is a major obstacle in obtaining good long-term results. Exendin-4, a glucagonlike peptide-1 (GLP-1) receptor agonist, improves glucose homeostasis in patients with diabetes. It also has anti-apoptotic and beta cell proliferative properties t...

  19. Maternal Characteristics of Women Exposed to Hypnotic Benzodiazepine Receptor Agonist during Pregnancy

    OpenAIRE

    Askaa, Bjarke; Jimenez-Solem, Espen; Enghusen Poulsen, Henrik; Traerup Andersen, Jon

    2014-01-01

    Background. There is little knowledge regarding the characteristics of women treated with hypnotic benzodiazepine receptor agonists (HBRAs) during pregnancy. In this large Danish cohort study, we characterize women exposed to HBRA during pregnancy. We determined changes in prevalence of HBRA use from 1997 to 2010 and exposure to HBRAs in relation to pregnancy. Methods. We performed a retrospective cohort study including 911,017 pregnant women in the period from 1997 to 2010. Information was r...

  20. Adenosine and preeclampsia.

    Science.gov (United States)

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  1. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum.

    Science.gov (United States)

    Moreno, Estefanía; Chiarlone, Anna; Medrano, Mireia; Puigdellívol, Mar; Bibic, Lucka; Howell, Lesley A; Resel, Eva; Puente, Nagore; Casarejos, María J; Perucho, Juan; Botta, Joaquín; Suelves, Nuria; Ciruela, Francisco; Ginés, Silvia; Galve-Roperh, Ismael; Casadó, Vicent; Grandes, Pedro; Lutz, Beat; Monory, Krisztina; Canela, Enric I; Lluís, Carmen; McCormick, Peter J; Guzmán, Manuel

    2018-04-01

    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A 2A receptor (A 2A R) and cannabinoid CB 1 receptor (CB 1 R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A 2A R and CB 1 R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A 2A R-CB 1 R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A 2A R-CB 1 R heteromers in the dorsal striatum. Specifically, our data unveil that the A 2A R-CB 1 R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.

  2. Beta-Adrenergic Receptors and Mechanisms in Asthma: The New Long-Acting Beta-Agonists

    Directory of Open Access Journals (Sweden)

    Robert G Townley

    1996-01-01

    Full Text Available The objective is to review β-adrenergic receptors and mechanisms in the immediate and late bronchial reaction in asthma and the new long-acting β-agonist. This will be discussed in light of the controversy of the potential adverse effect of regular use of long-acting β-agonists. We studied the effect of formoterol on the late asthmatic response (LAR and airway inflammation in guinea-pigs. Formoterol suppressed the LAR, antigen-induced airway inflammation and hyperresponsiveness, although isoproterenol failed to inhibit these parameters. β-Adrenergic hyporesponsiveness, and cholinergic and a- adrenergic hyperresponsiveness have been implicated in the pathogenesis of asthma. A decrease in β-adrenoreceptor function can result either from exogenously administered β-agonist or from exposure to allergens resulting in a late bronchial reaction. There is increasing evidence that eosinophils, macrophages, and lymphocytes which are of primary importance in the late bronchial reaction are also modulated by β2- adrenoreceptors. In functional studies of guinea-pig or human isolated trachea and lung parenchyma, PAF and certain cytokines significantly reduced the potency of isoproterenol to reverse methacholine- or histamine-induced contraction. The effect of glucocorticoids on pulmonary β-adrenergic receptors and responses suggests an important role for glucocorticoids to increase β-adrenergic receptors and responsiveness.

  3. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  4. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    Science.gov (United States)

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect

  5. Evaluation of Computational Docking to Identify Pregnane X Receptor Agonists in the ToxCast Database

    OpenAIRE

    Kortagere, Sandhya; Krasowski, Matthew D.; Reschly, Erica J.; Venkatesh, Madhukumar; Mani, Sridhar; Ekins, Sean

    2010-01-01

    Background The pregnane X receptor (PXR) is a key transcriptional regulator of many genes [e.g., cytochrome P450s (CYP2C9, CYP3A4, CYP2B6), MDR1] involved in xenobiotic metabolism and excretion. Objectives As part of an evaluation of different approaches to predict compound affinity for nuclear hormone receptors, we used the molecular docking program GOLD and a hybrid scoring scheme based on similarity weighted GoldScores to predict potential PXR agonists in the ToxCast database of pesticides...

  6. Triazolophostins: a library of novel and potent agonists of IP3 receptors

    OpenAIRE

    Vibhute, Amol M; Konieczny, Vera; Taylor, Colin William; Sureshan, Kana M

    2015-01-01

    IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of sy...

  7. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  8. Synthesis and SAR study of a novel series of dopamine receptor agonists

    DEFF Research Database (Denmark)

    Risgaard, R.; Jensen, M.; Jørgensen, M.

    2014-01-01

    The synthesis of a novel series of dopamine receptor agonists are described as well as their in vitro potency and efficacy on dopamine D and D receptors. This series was designed from pergolide and (4aR,10aR)-1-propyl-1,2,3,4,4a,5,10,10a-octahydro-benzo[g]quinolin-6-ol (PHBQ) and resulted in the ...... in the synthesis of (2R,4aR,10aR)-2-methylsulfanylmethyl-4-propyl-3,4,4a,5,10,10a-hexahydro-2H-naphtho[2,3-b][1,4]oxazin-9-ol (compound 27), which has a D and D receptor profile similar to that of the most recently approved drug for Parkinson's disease, rotigotine.......The synthesis of a novel series of dopamine receptor agonists are described as well as their in vitro potency and efficacy on dopamine D and D receptors. This series was designed from pergolide and (4aR,10aR)-1-propyl-1,2,3,4,4a,5,10,10a-octahydro-benzo[g]quinolin-6-ol (PHBQ) and resulted...

  9. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  10. Preparation and first evaluation of [{sup 18}F]FE-SUPPY: a new PET tracer for the adenosine A{sub 3} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wadsak, Wolfgang [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Shanab, Karem [Dept. of Drug and Natural Product Synthesis, Faculty of Life Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Ettlinger, Dagmar E. [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Haeusler, Daniela [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Sindelar, Karoline [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Lanzenberger, Rupert R. [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Spreitzer, Helmut [Dept. of Drug and Natural Product Synthesis, Faculty of Life Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Viernstein, Helmut [Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Keppler, Bernhard K. [Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria)]|[Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhouser@meduniwien.ac.at

    2008-01-15

    Introduction: Changes of the adenosine A{sub 3} receptor subtype (A3AR) expression have been shown in a variety of pathologies, especially neurological and affective disorders, cardiac diseases and oncological and inflammation processes. Recently, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE-SUPPY) was presented as a high-affinity ligand for the A3AR with good selectivity. Our aims were the development of a suitable labeling precursor, the establishment of a reliable radiosynthesis for the fluorine-18-labeled analogue [{sup 18}F]FE-SUPPY and a first evaluation of [{sup 18}F]FE-SUPPY in rats. Methods: [{sup 18}F]FE-SUPPY was prepared in a feasible and reliable manner by radiofluorination of the corresponding tosylated precursor. Biodistribution was carried out in rats, and organs were removed and counted. Autoradiography was performed on rat brain slices in the presence or absence of 2-Cl-IB-MECA. Results: Overall yields and radiochemical purity were sufficient for further preclinical and clinical applications. The uptake pattern of [{sup 18}F]FE-SUPPY found in rats mainly followed the described mRNA distribution pattern of the A3AR. Specific uptake in brain was demonstrated by blocking with a selective A3AR agonist. Conclusion: We conclude that [{sup 18}F]FE-SUPPY has the potential to serve as the first positron emission tomography tracer for the A3AR.

  11. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    Science.gov (United States)

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  12. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption.

    Science.gov (United States)

    Cornelis, Marilyn C; El-Sohemy, Ahmed; Campos, Hannia

    2007-07-01

    Caffeine is the most widely consumed stimulant in the world, and individual differences in response to its stimulating effects may explain some of the variability in caffeine consumption within a population. We examined whether genetic variability in caffeine metabolism [cytochrome P450 1A2 (CYP1A2) -163A-->C] or the main target of caffeine action in the nervous system [adenosine A(2A) receptor (ADORA2A) 1083C-->T] is associated with habitual caffeine consumption. Subjects (n=2735) were participants from a study of gene-diet interactions and risk of myocardial infarction who did not have a history of hypertension. Genotype frequencies were examined among persons who were categorized according to their self-reported daily caffeine intake, as assessed with a validated food-frequency questionnaire. The ADORA2A, but not the CYP1A2, genotype was associated with different amounts of caffeine intake. Compared with persons consuming caffeine/d, the odds ratios for having the ADORA2A TT genotype were 0.74 (95% CI: 0.53, 1.03), 0.63 (95% CI: 0.48, 0.83), and 0.57 (95% CI: 0.42, 0.77) for those consuming 100-200, >200-400, and >400 mg caffeine/d, respectively. The association was more pronounced among current smokers than among nonsmokers (P for interaction = 0.07). Persons with the ADORA2A TT genotype also were significantly more likely to consume less caffeine (ie, caffeine consumption increases. This observation provides a biologic basis for caffeine consumption behavior and suggests that persons with this genotype may be less vulnerable to caffeine dependence.

  13. Differential Modulation of GABAA and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma

    Directory of Open Access Journals (Sweden)

    Xujiao Zhou

    2017-12-01

    Full Text Available Presynaptic modulation of γ-aminobutyric acid (GABA release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR agonist promotes retinal ganglion cell (RGC survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA. The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.

  14. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    Science.gov (United States)

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  16. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  17. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  18. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  19. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate......-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode...... of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines a1T206 and c2T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important a1H101 and the N-methyl group near a1Y159, a1T206, and a1Y209. We present a binding mode...

  20. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Directory of Open Access Journals (Sweden)

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  1. The electrophysiological effects of the serotonin 1A receptor agonist buspirone in emotional face processing.

    Science.gov (United States)

    Bernasconi, Fosco; Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Vollenweider, Franz X

    2015-04-01

    Emotional face processing is critically modulated by the serotonergic system, and serotonin (5-HT) receptor agonists impair emotional face processing. However, the specific contribution of the 5-HT1A receptor remains poorly understood. Here we investigated the spatiotemporal brain mechanisms underpinning the modulation of emotional face processing induced by buspirone, a partial 5-HT1A receptor agonist. In a psychophysical discrimination of emotional faces task, we observed that the discrimination fearful versus neutral faces were reduced, but not happy versus neutral faces. Electrical neuroimaging analyses were applied to visual evoked potentials elicited by emotional face images, after placebo and buspirone administration. Buspirone modulated response strength (i.e., global field power) in the interval 230-248ms after stimulus onset. Distributed source estimation over this time interval revealed that buspirone decreased the neural activity in the right dorsolateral prefrontal cortex that was evoked by fearful faces. These results indicate temporal and valence-specific effects of buspirone on the neuronal correlates of emotional face processing. Furthermore, the reduced neural activity in the dorsolateral prefrontal cortex in response to fearful faces suggests a reduced attention to fearful faces. Collectively, these findings provide new insights into the role of 5-HT1A receptors in emotional face processing and have implications for affective disorders that are characterized by an increased attention to negative stimuli. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  2. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  3. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  5. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  6. Endomorphin-2: a biased agonist at the μ-opioid receptor.

    Science.gov (United States)

    Rivero, Guadalupe; Llorente, Javier; McPherson, Jamie; Cooke, Alex; Mundell, Stuart J; McArdle, Craig A; Rosethorne, Elizabeth M; Charlton, Steven J; Krasel, Cornelius; Bailey, Christopher P; Henderson, Graeme; Kelly, Eamonn

    2012-08-01

    Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the μ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.

  7. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    Science.gov (United States)

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  8. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone, secreted in response to ingestion of nutrients, and has important effects on several of the pathophysiological features of type 2 diabetes (T2D). The effects include potentiation of insulin secretion, suppression of glucagon secretion...... effects. This review gives an overview of the clinical data on GLP-1R agonists that have been compared in head-to-head studies and focuses on relevant differences between the compounds. Highlighting these similarities and differences could be beneficial for physicians in choosing the best treatment......, slowing of gastric emptying and suppression of appetite. In circulation, GLP-1 has a half-life of approximately 2min due to rapid degradation by the enzyme dipeptidyl peptidase 4 (DPP-4). Because of this short half-life GLP-1 receptor (GLP-1R) agonists, resistant to degradation by DPP-4 have been...

  9. Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2008-01-01

    Full Text Available Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH, the endogenous activator of the liver X receptor (LXR, significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2. In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.

  10. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.; Tanguay, Robert L.

    2018-04-01

    There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000 significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.

  11. Agonistic effects of a monoclonal antibody specific for the interleukin-2 receptor

    International Nuclear Information System (INIS)

    Eardley, D.D.; Makrides, V.

    1986-01-01

    Interleukin-2 (IL-2) mediated immune responses can be blocked by monoclonal antibodies to the IL-2 receptor. The monoclonal antibody, M720, is defined as specific for the IL-2 receptor because it blocks 35 S-IL-2 binding to Con A blasts, reacts with lymphoblasts but not resting splenocytes, and inhibits IL-2 induced proliferation to mitogen, antigen, or allogeneic stimuli. Under appropriate culture conditions, the IL-2 receptor-specific antibody can act like IL-2 in that it will induce proliferation in T cells in the absence of additional antigen or mitogen. This agonistic effect is dependent on time, dose of antibody, and requires fetal calf serum (FCS) in the media. Because the FCS is not mitogenic by itself, the authors propose that the FCS components act as incomplete mitogen to induce appearance of IL-2 receptors but lack a factor which would push the majority of the cells into the S phase of the cell cycle. This factor is usually IL-2, but in the authors experiments, the IL-2 receptor-specific antibody can provide the same stimulus. These data indicate that factors like FCS can induce IL-2 receptors, but without additional IL-2 or receptor triggering, the cells will not proceed through the synthetic and proliferative phases of cell growth

  12. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia.

    Science.gov (United States)

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M; McCullough, Louise; Andreasson, Katrin

    2008-06-20

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE(2) receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE(2) EP2, EP3, and EP4 receptors, would reduce brain injury in the murine middle cerebral artery occlusion-reperfusion (MCAO-RP) model. Administration of misoprostol, at the time of MCAO or 2h after MCAO, resulted in significant rescue of infarct volume at 24 and 72h. Immunocytochemistry demonstrated dynamic regulation of the EP2 and EP4 receptors during reperfusion in neurons and endothelial cells of cerebral cortex and striatum, with limited expression of EP3 receptor. EP3-/- mice had no significant changes in infarct volume compared to control littermates. Moreover, administration of misoprostol to EP3+/+ and EP3-/- mice showed similar levels of infarct rescue, indicating that misoprostol protection was not mediated through the EP3 receptor. Taken together, these findings suggest a novel function for misoprostol as a protective agent in cerebral ischemia acting via the PGE(2) EP2 and/or EP4 receptors.

  13. Efficacy and Safety of GLP-1 Receptor Agonists for Type 2 Diabetes Mellitus Treatment: Systematic Review

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    2016-04-01

    Full Text Available Introduction: Glucagon-like peptide analogues are a new class of drugs used in the treatment of type 2 diabetes mellitus that mimic the endogenous hormone glucagon-like peptide 1. Glucagon-like peptide 1 regulates glucose levels by stimulating glucose-dependent insulin secretion, suppressing glucagon secretion, delayed gastric emptying and promoting satiety. The individualized treatment of type 2 diabetes mellitus, using various glucagon--like peptide receptor agonists, has recently been described and the interest related to these drugs continues to grow. Objectives: To review the efficacy and safety of glucagon-like peptide 1 agonists in patients with inadequately controlled type 2 diabetes mellitus on metformin alone, highlighting their added value in therapeutic use comparatively to second line oral therapies used in type 2 diabetes mellitus. Methods: Studies were obtained from electronic searches of The Cochrane Library and PubMed. Randomized controlled trials were selected if they were at least 8 weeks in duration; compared a glucagon-like peptide 1 analogue with an oral anti-diabetic agent in patients experiencing inadequate glycemic control with metformin monotherapy; and reported hemoglobin A1c data in non-pregnant adults with type 2 diabetes mellitus. Results: Of 72 potentially relevant articles identified, 23 were retrieved for detailed evaluation and 10 met the inclusion criteria. The majority of glucagon-like peptide 1 agonists showed equivalent or superior efficacy than most active comparators for reducing hemoglobin A1c, with a greater proportion of patients achieving hemoglobin A1c <7%. Glucagon-like peptide 1 agonists also showed extra-glycemic effects such as weight loss and the reduction of important cardiovascular parameters. Side effects included gastrointestinal complications, mainly nausea, vomiting and diarrhea. The incidence of hypoglycemia was less common for this class of agents. Conclusion: Glucagon-like peptide 1

  14. The effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine, and antagonists yohimbine and efaroxan, on the spinal cholinergic receptor system in the rat

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2004-01-01

    Cholinergic agonists produce spinal antinociception via mechanisms involving an increased release of intraspinal acetylcholine. The cholinergic receptor system interacts with several other receptor types, such as alpha2-adrenergic receptors. To fully understand these interactions, the effects...... of various receptor ligands on the cholinergic system must be investigated in detail. This study was initiated to investigate the effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine and the alpha2-adrenergic receptor antagonists yohimbine and efaroxan on spinal cholinergic receptors......, all ligands possessed affinity for nicotinic receptors. Clonidine and yohimbine binding was best fit to a one site binding curve and rilmenidine and efaroxan to a two site binding curve. The present study demonstrates that the tested alpha2-adrenergic receptor ligands affect intraspinal acetylcholine...

  15. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Directory of Open Access Journals (Sweden)

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  16. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  17. Differential activation of G-proteins by μ-opioid receptor agonists

    Science.gov (United States)

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  18. Ghrelin receptor (GHS-R1A) agonists show potential as interventive agents during aging.

    Science.gov (United States)

    Smith, Roy G; Sun, Yuxiang; Jiang, Hong; Albarran-Zeckler, Rosie; Timchenko, Nikolai

    2007-11-01

    Administration of an orally active agonist (MK-0677) of the growth hormone secretagogue receptor (GHS-R1a) to elderly subjects restored the amplitude of endogenous episodic growth hormone (GH) release to that of young adults. Functional benefits include increased lean mass and bone density and modest improvements in strength. In old mice, a similar agonist partially restored function to the thymus and reduced tumor cell growth and metastasis. Treatment of old mice with the endogenous GHS-R1a agonist ghrelin restored a young liver phenotype. The mechanism involves inhibition of cyclin D3:cdk4/cdk6 activity and increased protein phosphatase-2A (PP2A) activity in liver nuclei, which stabilizes the dephosphorylated form of the transcription factor C/EBPalpha preventing the age-dependent formation of the C/EBPalpha-Rb-E2F4-Brm nuclear complex. By inhibiting formation of this complex, repression of E2F target genes is de-repressed and C/EBPalpha regulated expression of Pepck, a regulator of gluconeogenesis, is normalized, thereby restoring a young liver phenotype. In the brain, aging is associated with decline in dopamine function. We investigated the potential neuromodulatory role of GHS-R1a on dopamine action. Neurons were identified in the hippocampus, cortex, substantia nigra, and ventral tegmental areas that coexpressed GHS-R1a and dopamine receptor subtype-1 (D1R). Cell culture studies showed that, in the presence of ghrelin and dopamine, GHS-R and D1R form heterodimers, which modified G-protein signal transduction resulting in amplification of dopamine signaling. We speculate that aging is associated with deficient endogenous ghrelin signaling that can be rescued by intervention with GHS-R1a agonists to improve quality of life and maintain independence.

  19. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay

    Directory of Open Access Journals (Sweden)

    Lo SH

    2016-08-01

    Full Text Available Shih-Hsiang Lo,1,2 Kai-Chung Cheng,3 Ying-Xiao Li,3,4 Chin-Hong Chang,4,5 Juei-Tang Cheng,4,6 Kung-Shing Lee7,8 1Division of Cardiology, Department of Internal Medicine, Zhongxing Branch of Taipei City Hospital, 2Department of History and Geography, University of Taipei, Taipei, Taiwan; 3Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; 4Department of Medical Research, 5Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, 6Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, 7Department of Surgery, Pingtung Hospital, 8Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan Background: G-protein-coupled bile acid receptor 1, also known as TGR5 is known to be involved in glucose homeostasis. In animal models, treatment with a TGR5 agonist induces incretin secretion to reduce hyperglycemia. Betulinic acid, a triterpenoid present in the leaves of white birch, has been introduced as a selective TGR5 agonist. However, direct activation of TGR5 by betulinic acid has not yet been reported. Methods: Transfection of TGR5 into cultured Chinese hamster ovary (CHO-K1 cells was performed to establish the presence of TGR5. Additionally, TGR5-specific small interfering RNA was employed to silence TGR5 in cells (NCI-H716 cells that secreted incretins. Uptake of glucose by CHO-K1 cells was evaluated using a fluorescent indicator. Amounts of cyclic adenosine monophosphate and glucagon-like peptide were quantified using enzyme-linked immunosorbent assay kits. Results: Betulinic acid dose-dependently increases glucose uptake by CHO-K1 cells transfected with TGR5 only, which can be considered an alternative method instead of radioligand binding assay. Additionally, signals coupled to TGR5 activation are also

  20. Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats.

    Science.gov (United States)

    Chauhan, G; Ray, K; Sahu, S; Roy, K; Jain, V; Wadhwa, M; Panjwani, U; Kishore, K; Singh, S B

    2016-11-19

    Sleep deprivation (SD) upsurges intracellular levels of adenosine, impairs adult neuronal cell proliferation (NCP) and cognition while caffeine, a non-selective adenosine A1 receptor (A1R) antagonist improves cognition and adult NCP during SD. We examined the selective antagonistic effects of adenosine A1R using 8-cyclopentyl-1,3-dimethylxanthine (8-CPT) on impairment of spatial reference memory and adult NCP during 48h SD. Adult male Sprague Dawley rats were sleep deprived for 48h, using an automatic cage vibrating stimulus based on animal activity. Spatial reference memory was tested as a measure of cognitive performance employing Morris Water Maze. Rats were given 8-CPT dissolved in 50% dimethyl sulfoxide (DMSO), twice daily (10mg/kg, i.p.) along with 5-bromo-2-deoxyuridine (BrdU) (50mg/kg/day, i.p.). The rats treated with 8-CPT showed significantly short mean latency and path-length to reach the platform compared to the SD rats. Consistent with these findings, 8-CPT-treated group was found to have significantly increased the number of BrdU, Ki-67 and doublecortin (DCX) positive cells. However, no significant difference was seen in NeuN expression in the Dentate Gyrus (DG). Brain-derived neurotropic factor (BDNF) expression in the DG and CA1 region was observed to decrease significantly after SD and be rescued by 8-CPT treatment. Furthermore, latency to reach platform showed a negative correlation with number of BrdU, DCX type-1 cells and BDNF expression in DG. Thus, it may be concluded that treatment with 8-CPT, an adenosine A1R antagonist during SD mitigates SD induced decline in spatial reference memory and adult NCP possibly via up regulation of BDNF levels in DG and CA1 regions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    Science.gov (United States)

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  2. The effect of various opiate receptor agonists on the seizure threshold in the rat. Is dynorphin an endogenous anticonvulsant?

    Science.gov (United States)

    Przewłocka, B; Stala, L; Lasoń, W; Przewłocki, R

    1983-01-01

    The effects of various opiate receptor agonists on the seizure threshold after an intravenous infusion of pentylenetetrazol were investigated in rats. The mu- and epsilon-receptor agonists, morphine (20-40 micrograms) and beta-endorphin (5-10 micrograms) show proconvulsant properties towards clonic and tonic seizures. The delta-receptor agonist (D-Ala2,D-Leu5-enkephalin, DADL 5-40 micrograms) and alpha-neoendorphin (20-40 micrograms) show pro- and anticonvulsant properties towards clonic and tonic seizures, respectively. Anticonvulsant properties of DADL are possibly due to its action on the spinal cord, since after the intrathecal injection this effect is still observed. Similarities between DADL and alpha-neoendorphin suggest that they may act through the same receptor. The kappa-receptor agonist dynorphin A (5-20 micrograms) and its degradation-resistant analogue D-Arg-dynorphin1-13 (10 micrograms) show significant anticonvulsant properties. Our present results suggest that the kappa-receptor agonist dynorphin may act physiologically as an endogenous anticonvulsant, in contrast to other opioid peptides.

  3. Adenosine A1 receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Geissler, E.

    2007-01-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A 1 and A 2A adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A 1 receptor (A 1 AR) in the modulation of vigilance states. The A 1 AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A 1 AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A 2A adenosine receptor (A 2A AR) is also assumed. The distinct functions of the A 1 and A 2A receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A 1 receptor antagonist, 8-cyclopentyl-3-(3- 18 Ffluoropropyl)- 1-propylxanthine ( 18 F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A 1 AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A 1 receptors in human sleep regulation, combining 18 F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A 1 AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered 18 F-CPFPX binding. Moreover, it was investigated whether radioligand uptake might be influenced by caffeine, since

  4. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors.

    Science.gov (United States)

    Antonioli, Luca; Pellegrini, Carolina; Fornai, Matteo; Tirotta, Erika; Gentile, Daniela; Benvenuti, Laura; Giron, Maria Cecilia; Caputi, Valentina; Marsilio, Ilaria; Orso, Genny; Bernardini, Nunzia; Segnani, Cristina; Ippolito, Chiara; Csóka, Balázs; Németh, Zoltán H; Haskó, György; Scarpignato, Carmelo; Blandizzi, Corrado; Colucci, Rocchina

    2017-12-01

    Adenosine A 2B receptors (A 2B R) regulate several enteric functions. However, their implication in the pathophysiology of intestinal dysmotility associated with high-fat diet (HFD)-induced obesity has not been elucidated. We investigated the expression of A 2B R in mouse colon and their role in the mechanisms underlying the development of enteric dysmotility associated with obesity. Wild-type C57BL/6J mice were fed with HFD (60% kcal from fat) or normocaloric diet (NCD; 18% kcal from fat) for 8 weeks. Colonic A 2B R localization was examined by immunofluorescence. The role of A 2B R in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). In NCD mice, A 2B R were predominantly located in myenteric neurons; in HFD animals, their expression increased throughout the neuromuscular layer. Functionally, the A 2B R antagonist MRS1754 enhanced electrically induced NK 1 -mediated tachykininergic contractions in LMPs from HFD mice, while it was less effective in tissues from NCD mice. The A 2B receptor agonist BAY 60-6583 decreased colonic tachykininergic contractions in LMPs, with higher efficacy in preparations from obese mice. Both A 2B R ligands did not affect contractions elicited by exogenous substance P. Obesity is related with a condition of colonic inflammation, leading to an increase of A 2B R expression. A 2B R, modulating the activity of excitatory tachykininergic nerves, participate to the enteric dysmotility associated with obesity.

  5. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  6. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.

    Science.gov (United States)

    Day, Yuan-Ji; Huang, Liping; Ye, Hong; Li, Li; Linden, Joel; Okusa, Mark D

    2006-03-01

    A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.

  7. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor.

    Directory of Open Access Journals (Sweden)

    Xiaojing Cong

    Full Text Available Atomistic descriptions of the μ-opioid receptor (μOR noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP and hydromorphone (HMP, are investigated using molecular dynamics (MD simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.

  8. Design of Glucagon-Like Peptide-1 Receptor Agonist for Diabetes Mellitus from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Tang

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a promising target for diabetes mellitus (DM therapy and reduces the occurrence of diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4. We tried to design small molecular drugs for GLP-1 receptor agonist from the world's largest traditional Chinese medicine (TCM Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-deglucosylchikusetsusaponin IV, for further molecular dynamics (MD simulation. GLP-1 was assigned as the control compound. Based on the results of root mean square deviation (RMSD, solvent accessible surface (SAS, mean square deviation (MSD, Gyrate, total energy, root mean square fluctuation (RMSF, matrices of smallest distance of residues, database of secondary structure assignment (DSSP, cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that could be GLP-1 receptor agonists.

  9. Diindolylmethane Derivatives: Potent Agonists of the Immunostimulatory Orphan G Protein-Coupled Receptor GPR84.

    Science.gov (United States)

    Pillaiyar, Thanigaimalai; Köse, Meryem; Sylvester, Katharina; Weighardt, Heike; Thimm, Dominik; Borges, Gleice; Förster, Irmgard; von Kügelgen, Ivar; Müller, Christa E

    2017-05-11

    The G i protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and β-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC 50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC 50 41.3 nM). In β-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.

  10. Palovarotene, a novel retinoic acid receptor gamma agonist for the treatment of emphysema.

    Science.gov (United States)

    Hind, Matthew; Stinchcombe, Sian

    2009-11-01

    Emphysema is characterized by the destruction of alveoli and alveolar ducts within the lungs. Retinoid signaling is believed to play a role in alveologenesis, with the retinoic acid receptor gamma thought to be required for alveolar formation. Based on this hypothesis, Roche Holding AG is developing palovarotene (R-667, RO-3300074), a selective retinoic acid receptor gamma agonist for the treatment of emphysema. In small animal studies, palovarotene was claimed to reverse the structural, functional and inflammatory features of cigarette smoke-induced emphysema. Phase I clinical trials of palovarotene in patients with emphysema demonstrated that the drug is well tolerated, with improvements observed in markers of emphysema progression. Unlike all-trans retinoic acid, the pharmacokinetic profile of palovarotene appears to be dose-proportional. At the time of publication, a phase II, placebo-controlled trial was ongoing, and was expected to report prospective measurements of exercise, gas transfer and lung densitometry endpoints. The development of a selective retinoic acid receptor gamma agonist for the treatment of emphysema represents the first of a new class of small-molecule regenerative therapies that may prove useful for the treatment of destructive or age-related lung disease.

  11. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects ...

  12. The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat

    NARCIS (Netherlands)

    Bosman, D. K.; van den Buijs, C. A.; de Haan, J. G.; Maas, M. A.; Chamuleau, R. A.

    1991-01-01

    Two benzodiazepine-receptor partial inverse agonists (Ro 15-4513, Ro 15-3505) and one benzodiazepine-receptor antagonist (flumazenil) were administered to rats with hepatic encephalopathy due to acute liver ischemia. Significant improvement (P less than 0.002) of both the clinical grade of hepatic

  13. Preventing or attenuating amphotericin B nephrotoxicity with dopamine receptor agonists: a literature review

    Directory of Open Access Journals (Sweden)

    Iman Karimzadeh

    2016-09-01

    Full Text Available Nephrotoxicity is generally considered as the most clinically significant and dose-limiting adverse reaction of amphotericin B. Currently, only the clinical effectiveness of salt loading and administering lipid formulations of amphotericin B have been clearly demonstrated to prevent its nephrotoxicity. In this review, we collected the published data related to dopamine receptor agonists in preventing amphotericin B nephrotoxicity. A literature search was conducted by the relevant keywords like ‘‘amphotericin B”, “nephrotoxicity’’, and ‘‘dopamine’’in databases such as Scopus, Medline, Embase and ISI Web of Knowledge. Four relevant articles were considered. Results of all the 3 experimental studies demonstrated that co-administration of dopamine (0.5-10 μg/kg/min as continuous intravenous infusion, SK&F R-105058, a prodrug of fenoldopam (10 mg/kg twice daily, orally or fenoldopam, a relatively selective dopamine receptor type 1 agonist, (0.5 or 1 μg/kg/min as continuous intravenous infusion can at least significantly mitigate the decrease in creatinine clearance caused by amphotericin B. Furthermore, fenoldopam and SK&F R-105058 can also protect against or delay amphotericin B-induced tubular damage. In contrast, the only clinical trial published until now found that simultaneous continuous intravenous infusion of low dose dopamine (3 μg/kg/min had no beneficial effect on the incidence, severity and time onset of developing amphotericin B-induced nephrotoxicity in autologous bone marrow transplant and leukemia patients. Considering the lack of beneficial effects in different settings such as acute kidney injury of any cause, negative results of the only clinical trial, and risk of significant adverse reactions, continuous intravenous infusion of low dose dopamine (1-3 μg/kg/min or selective dopamine receptor type 1 agonists (e.g., fenoldopam currently appears to have no promising clinical role in preventing or attenuating

  14. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Elling, Christian E; Schwartz, Thue W

    2002-01-01

    -melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect......An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha...... affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained...

  15. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  16. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.

    2015-01-01

    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21...... to the TXA2 receptor was determined by TBXA2R Arrestin Biosensor Assay. Mouse mesenteric arteries were mounted in wire myographs, and responses to increasing concentrations of C21 (1nM- 10muM) were recorded during submaximal contractions with 0.1muM U46619 (TXA2 analogue) or 1muMphenylephrine. To control for......AT2-receptor specificity, arteries were pre-incubated with the AT2-receptor antagonist PD123319 (10muM), or mesenteric arteries from AT2-receptor knock-out (AT2R-/y) mice were used. An inhibitory effect of C21 (100nM - 10muM) on U46619 (0,3muM) induced platelet aggregation was examined in whole human...

  17. Treatment of type 2 diabetes by free Fatty Acid receptor agonists

    DEFF Research Database (Denmark)

    Watterson, Kenneth R; Hudson, Brian D; Ulven, Trond

    2014-01-01

    been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand...... was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti...

  18. The melatonin receptor agonist ramelteon effectively treats insomnia and behavioral symptoms in autistic disorder.

    Science.gov (United States)

    Kawabe, Kentaro; Horiuchi, Fumie; Oka, Yasunori; Ueno, Shu-Ichi

    2014-01-01

    Children with autism spectrum disorders (ASD), including autistic disorder, frequently suffer from comorbid sleep problems. An altered melatonin rhythm is considered to underlie the impairment in sleep onset and maintenance in ASD. We report three cases with autistic disorder in whom nocturnal symptoms improved with ramelteon, a selective melatonin receptor agonist. Insomnia and behavior, assessed using the Clinical Global Impression-Improvement Scale, improved in two cases with 2 mg ramelteon and in the third case with 8 mg ramelteon. Our findings demonstrate that ramelteon is effective not only for insomnia, but for behavioral problems as well, in patients with autistic disorder.

  19. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  20. Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors

    OpenAIRE

    Atack, John R; Hutson, Peter H; Collinson, Neil; Marshall, George; Bentley, Graham; Moyes, Christopher; Cook, Susan M; Collins, Ian; Wafford, Keith; McKernan, Ruth M; Dawson, Gerard R

    2005-01-01

    α3IA (6-(4-pyridyl)-5-(4-methoxyphenyl)-3-carbomethoxy-1-methyl-1H-pyridin-2-one) is a pyridone with higher binding and functional affinity and greater inverse agonist efficacy for GABAA receptors containing an α3 rather than an α1, α2 or α5 subunit. If doses are selected that minimise the occupancy at these latter subtypes, then the in vivo effects of α3IA are most probably mediated by the α3 subtype.α3IA has good CNS penetration in rats and mice as measured using a [3H]Ro 15-1788 in vivo bi...

  1. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  2. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration.

    Science.gov (United States)

    Vaczy, A; Reglodi, D; Somoskeoy, T; Kovacs, K; Lokos, E; Szabo, E; Tamas, A; Atlasz, T

    2016-10-01

    A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.

  3. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.

    Science.gov (United States)

    Zhang, Xue-Qing; Even-Or, Orli; Xu, Xiaoyang; van Rosmalen, Mariska; Lim, Lucas; Gadde, Suresh; Farokhzad, Omid C; Fisher, Edward A

    2015-01-28

    Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, it is demonstrated that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs are engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR is significantly more effective than free GW3965 at inducing LXR-target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Additionally, the NPs elicit negligible lipogenic gene stimulation in the liver. Using the Ldlr (-/-) mouse model of atherosclerosis, abundant colocalization of fluorescently labeled NPs within plaque macrophages following systemic administration is seen. Notably, six intravenous injections of NP-LXR over 2 weeks markedly reduce the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular and Therapeutic Characterization of Anti-ectodysplasin A Receptor (EDAR) Agonist Monoclonal Antibodies*

    Science.gov (United States)

    Kowalczyk, Christine; Dunkel, Nathalie; Willen, Laure; Casal, Margret L.; Mauldin, Elizabeth A.; Gaide, Olivier; Tardivel, Aubry; Badic, Giovanna; Etter, Anne-Lise; Favre, Manuel; Jefferson, Douglas M.; Headon, Denis J.; Demotz, Stéphane; Schneider, Pascal

    2011-01-01

    The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC50 of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments. PMID:21730053

  5. Identification of Natural Compound Carnosol as a Novel TRPA1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Chenxi Zhai

    2014-11-01

    Full Text Available The transient receptor potential ankyrin 1 (TRPA1 cation channel is one of the well-known targets for pain therapy. Herbal medicine is a rich source for new drugs and potentially useful therapeutic agents. To discover novel natural TRPA1 agonists, compounds isolated from Chinese herbs were screened using a cell-based calcium mobilization assay. Out of the 158 natural compounds derived from traditional Chinese herbal medicines, carnosol was identified as a novel agonist of TRPA1 with an EC50 value of 12.46 µM. And the agonistic effect of carnosol on TRPA1 could be blocked by A-967079, a selective TRPA1 antagonist. Furthermore, the specificity of carnosol was verified as it showed no significant effects on two other typical targets of TRP family member: TRPM8 and TRPV3. Carnosol exhibited anti-inflammatory and anti-nociceptive properties; the activation of TRPA1 might be responsible for the modulation of inflammatory nociceptive transmission. Collectively, our findings indicate that carnosol is a new anti-nociceptive agent targeting TRPA1 that can be used to explore further biological role in pain therapy.

  6. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Weiterová, Lenka

    2013-01-01

    Roč. 62, č. 3 (2013), s. 305-311 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : ELEVATING EXTRACELLULAR ADENOSINE * COLONY-STIMULATING FACTOR * HEMATOPOIETIC PROGENITOR CELLS Subject RIV: BO - Biophysics Impact factor: 1.487, year: 2013

  7. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  8. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET

    DEFF Research Database (Denmark)

    Ettrup, Anders; Palner, Mikael; Gillings, Nic

    2010-01-01

    PET brain imaging of the serotonin 2A (5-hydroxytryptamine 2A, or 5-HT(2A)) receptor has been widely used in clinical studies, and currently, several well-validated radiolabeled antagonist tracers are used for in vivo imaging of the cerebral 5-HT(2A) receptor. Access to 5-HT(2A) receptor agonist...... PET tracers would, however, enable imaging of the active, high-affinity state of receptors, which may provide a more meaningful assessment of membrane-bound receptors. In this study, we radiolabel the high-affinity 5-HT(2A) receptor agonist 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-[(11)C-OCH(3......)]methoxybenzyl)ethanamine ((11)C-CIMBI-5) and investigate its potential as a PET tracer....

  9. Involvement of the Retinoid X Receptor Ligand in the Anti-Inflammatory Effect Induced by Peroxisome Proliferator-Activated Receptor Agonist In Vivo

    Directory of Open Access Journals (Sweden)

    Atsuki Yamamoto

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptor γ (PPARγ forms a heterodimeric DNA-binding complex with retinoid X receptors (RXRs. It has been reported that the effect of the PPAR agonist is reduced in hepatocyte RXR-deficient mice. Therefore, it is suggested that the endogenous RXR ligand is involved in the PPARγ agonist-induced anti-inflammatory effect. However, the participation of the RXR ligand in the PPARγ-induced anti-inflammatory effect is unknown. Here, we investigated the influence of RXR antagonist on the anti-inflammatory effect of PPARγ agonist pioglitazone in carrageenan test. In addition, we also examined the influence of PPAR antagonist on the anti-inflammatory effect induced by RXR agonist NEt-3IP. The RXR antagonist suppressed the antiedema effect of PPARγ agonist. In addition, the anti-inflammatory effect of RXR agonist was suppressed by PPARγ antagonist. PPARγ agonist-induced anti-inflammatory effects were reversed by the RXR antagonist. Thus, we showed that the endogenous RXR ligand might contribute to the PPARγ agonist-induced anti-inflammatory effect.

  10. Chronic exposure to dopamine agonists affects the integrity of striatal D2 receptors in Parkinson's patients

    Directory of Open Access Journals (Sweden)

    Marios Politis

    2017-01-01

    Full Text Available We aimed to investigate the integrity and clinical relevance of striatal dopamine receptor type-2 (D2R availability in Parkinson's disease (PD patients. We studied 68 PD patients, spanning from early to advanced disease stages, and 12 healthy controls. All participants received one [11C]raclopride PET scan in an OFF medication condition for quantification of striatal D2R availability in vivo. Parametric images of [11C]raclopride non-displaceable binding potential were generated from the dynamic [11C]raclopride scans using implementation of the simplified reference tissue model with cerebellum as the reference tissue. PET data were interrogated for correlations with clinical data related to disease burden and dopaminergic treatment. PD patients showed a mean 16.7% decrease in caudate D2R and a mean 3.5% increase in putaminal D2R availability compared to healthy controls. Lower caudate [11C]raclopride BPND correlated with longer PD duration. PD patients on dopamine agonist treatment had 9.2% reduced D2R availability in the caudate and 12.8% in the putamen compared to PD patients who never received treatment with dopamine agonists. Higher amounts of lifetime dopamine agonist therapy correlated with reduced D2Rs availability in both caudate and putamen. No associations between striatal D2R availability and levodopa treatment and dyskinesias were found. In advancing PD the caudate and putamen D2R availability are differentially affected. Chronic exposure to treatment with dopamine agonists, but no levodopa, suppresses striatal D2R availability, which may have relevance to output signaling to frontal lobes and the occurrence of executive deficits, but not dyskinesias.

  11. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.

    Science.gov (United States)

    Niu, Ai-Qin; Xie, Liang-Jun; Wang, Hui; Zhu, Bing; Wang, Sheng-Qi

    2016-01-01

    Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML) methods. The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists.

  12. Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian

    2013-01-01

    The free fatty acid receptor 1 (FFA1, also known as GPR40) mediates enhancement of glucose-stimulated insulin secretion and is emerging as a new target for the treatment of type 2 diabetes. Several FFA1 agonists are known, but the majority of these suffer from high lipophilicity. We have previously...... reported the FFA1 agonist 3 (TUG-424). We here describe the continued structure-activity exploration and optimization of this compound series, leading to the discovery of the more potent agonist 40, a compound with low lipophilicity, excellent in vitro metabolic stability and permeability, complete oral...

  13. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    Science.gov (United States)

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. Copyright © 2016 IBRO. All rights reserved.

  14. New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists.

    Science.gov (United States)

    Yea, Christopher M; Allan, Christine E; Ashworth, Doreen M; Barnett, James; Baxter, Andy J; Broadbridge, Janice D; Franklin, Richard J; Hampton, Sally L; Hudson, Peter; Horton, John A; Jenkins, Paul D; Penson, Andy M; Pitt, Gary R W; Rivière, Pierre; Robson, Peter A; Rooker, David P; Semple, Graeme; Sheppard, Andy; Haigh, Robert M; Roe, Michael B

    2008-12-25

    Vasopressin (AVP) is a hormone that stimulates an increase in water permeability through activation of V2 receptors in the kidney. The analogue of AVP, desmopressin, has proven an effective drug for diseases where a reduction of urine output is desired. However, its peptidic nature limits its bioavailability. We report herein the discovery of potent, nonpeptidic, benzylurea derived agonists of the vasopressin V2 receptor. We describe substitutions on the benzyl group to give improvements in potency and subsequent modifications to the urea end group to provide improvements in solubility and increased oral efficacy in a rat model of diuresis. The lead compound 20e (VA106483) is reported for the first time and has been selected for clinical development.

  15. Molecular interaction of a potent nonpeptide agonist with the chemokine receptor CCR8

    DEFF Research Database (Denmark)

    Jensen, Pia C; Nygaard, Rie; Thiele, Stefanie

    2007-01-01

    Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist......, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation......-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268...

  16. An Oral Selective Alpha-1A Adrenergic Receptor Agonist Prevents Doxorubicin Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Ju Youn Beak, PhD

    2017-02-01

    Full Text Available Summary: Alpha-1 adrenergic receptors (α1-ARs play adaptive and protective roles in the heart. Dabuzalgron is an oral selective α1A-AR agonist that was well tolerated in multiple clinical trials of treatment for urinary incontinence, but has never been used to treat heart disease in humans or animal models. In this study, the authors administered dabuzalgron to mice treated with doxorubicin (DOX, a widely used chemotherapeutic agent with dose-limiting cardiotoxicity that can lead to heart failure (HF. Dabuzalgron protected against DOX-induced cardiotoxicity, likely by preserving mitochondrial function. These results suggest that activating cardiac α1A-ARs with dabuzalgron, a well-tolerated oral agent, might represent a novel approach to treating HF. Key Words: alpha adrenergic receptors, anthracyclines, cardioprotection, catecholamines, heart failure

  17. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    Directory of Open Access Journals (Sweden)

    Niu AQ

    2016-07-01

    for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. Conclusion: These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists. Keywords: estrogen receptor subtype β, selective estrogen receptor modulators, quantitative structure-activity relationship models, machine learning approach

  18. Recent Advances in GLP-1 Receptor Agonists for Use in Diabetes Mellitus.

    Science.gov (United States)

    McBrayer, Dominic N; Tal-Gan, Yftah

    2017-09-01

    Preclinical Research Mimetics of Glucagon-like peptide 1 (GLP-1) represent a useful alternative or complementary treatment choice to insulin in the treatment of diabetes mellitus. The lack of hypoglycemia as a side effect when GLP-1 receptor agonists are used along with the tendency of these therapeutic agents to prevent or even reduce weight gain makes them valuable targets in therapy development. However, native GLP-1 and many of its early analogues have very short half-lives, requiring repeated treatment to maintain therapeutic levels. As all current treatments are injected subcutaneously, a large focus has been made on trying to extend the half-lives of GLP-1 analogues while retaining bioactivity. Most success in this regard has been achieved with the use of peptide-protein fusions, which are not as well suited for oral administration. However, recent work focused on the development of non-fusion peptides with increased half-lives that may be more appropriate for oral administration. This minireview discusses the structural characteristics of past and present analogues as well as the recent work conducted toward developing novel GLP-1 receptor agonists. Drug Dev Res 78 : 292-299, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Antibodies against the melanocortin-4 receptor act as inverse agonists in vitro and in vivo.

    Science.gov (United States)

    Peter, Jean-Christophe; Nicholson, Janet R; Heydet, Déborah; Lecourt, Anne-Catherine; Hoebeke, Johan; Hofbauer, Karl G

    2007-06-01

    Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.

  20. Novel retinoic acid receptor alpha agonists for treatment of kidney disease.

    Directory of Open Access Journals (Sweden)

    Yifei Zhong

    Full Text Available Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs: RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1 in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN. Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.

  1. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome.

    Science.gov (United States)

    Lamos, Elizabeth Mary; Malek, Rana; Davis, Stephen N

    2017-04-01

    Polycystic ovarian syndrome (PCOS) affects many women of child-bearing age and is characterized by hyperandrogenism, ovulatory and metabolic dysfunction. A primary treatment goal is weight reduction. The weight loss effects of glucagon-like peptide-1 receptor agonists (GLP-1RA), previously demonstrated in diabetic and obese non-diabetic patients, offer a unique opportunity to expand the medical options available to PCOS patients. Areas covered: Available clinical trials of glucagon-like peptide-1 receptor agonist therapy in PCOS were reviewed. Literature was searched from PubMed using appropriate search terms up to November 2016. Expert commentary: The available studies of GLP-1 RA therapy in the treatment of excess body weight in women with PCOS demonstrate that exenatide and liraglutide are effective in weight reduction either as monotherapy or in combination with metformin. A few studies showed that androgens may be modestly decreased and menstrual frequency may be increased. Eating behavior may be improved with liraglutide therapy. Glucose parameters are generally improved. GLP-1RAs were well-tolerated, with nausea being the most significant adverse side effect. Barriers to utilization may be the short duration studies, lack of familiarity of the medication, the route of administration (injection) and the variable outcomes on ovulation and hyperandrogenism.

  2. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane...... (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects...

  3. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

    DEFF Research Database (Denmark)

    Trauelsen, Mette; Rexen Ulven, Elisabeth; Hjorth, Siv A

    2017-01-01

    therefore binds in a very different mode than generally believed. Importantly, an empty side-pocket is identified next to the succinate binding site. All this information formed the basis for a substructure-based search query, which, combined with molecular docking, was used in virtual screening of the ZINC...... database to pick two serial mini-libraries of a total of only 245 compounds from which sub-micromolar, selective GPR91 agonists of unique structures were identified. The best compounds were backbone-modified succinate analogs in which an amide-linked hydrophobic moiety docked into the side-pocket next...

  4. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke.

    Directory of Open Access Journals (Sweden)

    Masahiko Ichijo

    Full Text Available Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1 on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia.In C57Bl/6 mice (n = 133 subjected to unilateral common carotid occlusion (CCAO and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (i.p. injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day; sham surgery and daily i.p. injection for 7 days of SEW2871 after surgery; LtCCAO and daily i.p. injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg; LtCCAO and daily i.p. injection of DMSO for 7 days after surgery; and sham surgery and daily i.p. injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO 7 days after the treatment termination. Neurological functions 1 hour, 1, 4, and 7 days and infarction volume 7 days after pMCAO were evaluated.In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries increased after

  5. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    Science.gov (United States)

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses.

    Science.gov (United States)

    Machado, Nuno J; Simões, Ana Patrícia; Silva, Henrique B; Ardais, Ana Paula; Kaster, Manuella P; Garção, Pedro; Rodrigues, Diana I; Pochmann, Daniela; Santos, Ana Isabel; Araújo, Inês M; Porciúncula, Lisiane O; Tomé, Ângelo R; Köfalvi, Attila; Vaugeois, Jean-Marie; Agostinho, Paula; El Yacoubi, Malika; Cunha, Rodrigo A; Gomes, Catarina A

    2017-03-01

    Caffeine prophylactically prevents mood and memory impairments through adenosine A 2A receptor (A 2A R) antagonism. A 2A R antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A 2A R density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A 2A R agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A 2A R antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A 2A R controlling synaptic glutamatergic function.

  7. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Hiromasa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Nomiyama, Takashi, E-mail: tnomiyama@fukuoka-u.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Fujitani, Yoshio; Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan)

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  8. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    International Nuclear Information System (INIS)

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-01-01

    Research highlights: → Exendin-4 reduces neointimal formation after vascular injury in a mouse model. → Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. → Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. → Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  9. Suppression of the cough reflex by α2-adrenergic receptor agonists in the rabbit

    Science.gov (United States)

    Cinelli, Elenia; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2013-01-01

    The α2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80–120 μg/kg) or tizanidine (150–300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG. PMID:24400133

  10. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  11. The pharmacological rationale for combining muscarinic receptor antagonists and beta-adrenoceptor agonists in the treatment of airway and bladder disease

    NARCIS (Netherlands)

    Dale, Philippa R.; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R.; Charlton, Steven J.; Pieper, Michael P.; Michel, Martin C.

    Muscarinic receptor antagonists and beta-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and beta-adrenoceptors are physiological antagonists for

  12. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    International Nuclear Information System (INIS)

    Mizuno, Masaki; Kimura, Yuichi; Tokizawa, Ken; Ishii, Kenji; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishiwata, Kiichi

    2005-01-01

    We examined the densities of adenosine A 2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX), a newly developed radioligand for mapping adenosine A 2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A 2A receptors was evaluated as the distribution volume of [ 11 C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [ 11 C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [ 11 C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g -1 ; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g -1 , respectively). These results indicate that the densities of adenosine A 2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  13. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.

    Science.gov (United States)

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O

    2013-01-01

    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  14. New 2-alkynyl derivatives of the acyclic nucleoside 9-(2,3-dihydroxypropyl)adenine and their 6-guanidinopurine counterparts as potential effectors of adenosine receptors

    Czech Academy of Sciences Publication Activity Database

    Česnek, Michal; Holý, Antonín; Masojídková, Milena

    2003-01-01

    Roč. 68, č. 11 (2003), s. 2201-2218 ISSN 0010-0765 R&D Projects: GA AV ČR IBS4055109; GA MŠk OC D13.20 Institutional research plan: CEZ:AV0Z4055905 Keywords : adenosine receptors * alkynes * purines Subject RIV: CC - Organic Chemistry Impact factor: 1.041, year: 2003

  15. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Šefc, L.; Dušek, L.; Vacek, Antonín; Holá, Jiřina; Hoferová, Zuzana; Štreitová, Denisa

    2010-01-01

    Roč. 86, č. 8 (2010), s. 649-656 ISSN 0955-3002 R&D Projects: GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : ionising radiation * hematopoiesis * adenosine A3 receptors Subject RIV: BO - Biophysics Impact factor: 1.861, year: 2010

  16. Radiation Dosimetry of a Novel Adenosine A(2A) Receptor Radioligand [C-11]Preladenant Based on PET/CT Imaging and Ex Vivo Biodistribution in Rats

    NARCIS (Netherlands)

    Zhou, Xiaoyun; Elsinga, Philip H.; Khanapur, Shivashankar; Dierckx, Rudi A. J. O.; de Vries, Erik F. J.; de Jong, Johan R.

    [C-11]Preladenant was developed as a novel adenosine A(2A) receptor PET radioligand. The aim of this study was to determine the radiation dosimetry of [C-11]preladenant and to investigate whether dosimetry estimation based on organ harvesting can be replaced by positron emission tomography

  17. Synthesis and characterization of [{sup 76}Br]-labeled high-affinity A{sub 3} adenosine receptor ligands for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kiesewetter, Dale O. [Positron Emission Tomography Radiochemistry Group, NIBIB, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States)], E-mail: dk7k@nih.gov; Lang Lixin; Ma Ying; Bhattacharjee, Abesh Kumar [Positron Emission Tomography Radiochemistry Group, NIBIB, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Gao, Zhan-Guo; Joshi, Bhalchandra V.; Melman, Artem; Castro, Sonia de; Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2009-01-15

    Introduction: Bromine-76-radiolabeled analogues of previously reported high-affinity A{sub 3} adenosine receptor (A{sub 3}AR) nucleoside ligands have been prepared as potential radiotracers for positron emission tomography. Methods: The radiosyntheses were accomplished by oxidative radiobromination on the N{sup 6}-benzyl moiety of trimethyltin precursors. Biodistribution studies of the kinetics of uptake were conducted in awake rats. Results: We prepared an agonist ligand {l_brace}[{sup 76}Br](1'S,2'R,3'S,4'R,5'S)-4'-{l_brace}2-chloro-6-[(3-bromophenylmethyl)amino] purin-9-yl{r_brace}-1'-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2',3'-diol (MRS3581){r_brace} in 59% radiochemical yield with a specific activity of 19.5 GBq/{mu}mol and an antagonist ligand {l_brace}[{sup 76}Br](1'R,2'R,3'S,4'R,5'S)-4'-(6-(3-bromobenzylamino) -2-chloro-9H-purin-9-yl)bicyclo[3.1.0]hexane-2',3'-diol (MRS5147){r_brace} in 65% radiochemical yield with a specific activity of 22 GBq/{mu}mol. The resultant products exhibited the expected high affinity (K{sub i}{approx}0.6 nM) and specific binding at the human A{sub 3}AR in vitro. Biodistribution studies in the rat showed uptake in the organs of excretion and metabolism. The antagonist MRS5147 exhibited increasing uptake in testes, an organ that contains significant quantities of A{sub 3}AR, over a 2-h time course, which suggests the presence of a specific A{sub 3}AR retention mechanism. Conclusion: We were able to compare uptake of the [{sup 76}Br]-labeled antagonist MRS5147 to [{sup 76}Br]agonist MRS3581. The antagonist MRS5147 shows increasing uptake in the testes, an A{sub 3}AR-rich tissue, suggesting that this ligand may have promise as a molecular imaging agent.

  18. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  19. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals

  20. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  1. An overview of once-weekly glucagon-like peptide-1 receptor agonists--available efficacy and safety data and perspectives for the future

    DEFF Research Database (Denmark)

    Madsbad, S; Kielgast, U; Asmar, M

    2011-01-01

    Incretin-based therapies, such as the injectable glucagon-like peptide-1 (GLP-1) receptor agonists and orally administered dipeptidyl peptidase-4 (DPP-4) inhibitors, have recently been introduced into clinical practice. At present, the GLP-1 receptor agonists need to be administered once or twice...

  2. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    International Nuclear Information System (INIS)

    Burris, K.D.; Breeding, M.; Sanders-Bush, E.

    1991-01-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD

  3. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites

    International Nuclear Information System (INIS)

    Forman, S.A.; Miller, K.W.

    1989-01-01

    The relationship between the high-affinity procaine channel inhibition site and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid 86 Rb + quenched-flux assays at 4 degree C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with α-bungarotoxin (α-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations alone, AChR undergoes one phase of inactivation in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting ACh concentrations rapid inactivation complete in 30-75 ms is followed by fast desensitization at the same k d observed without procaine. The dependence of k r on [procaine] is consistent with a bimolecular association between procaine and its AChR site. Inhibition of AChR function by mixtures of procaine plus self-inhibiting concentrations of ACh or suberyldicholine was studied by reducing the level of α-BTX block in vesicles. The data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and k r 's dependence on [ACh] in channel-activating range closely parallels that of 86 Rb + flux response to ACh

  4. Role and development of GLP-1 receptor agonists in the management of diabetes

    Directory of Open Access Journals (Sweden)

    Chee W Chia

    2009-05-01

    Full Text Available Chee W Chia, Josephine M EganNational Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, USAAbstract: Glucagon-like peptide-1 (GLP-1 is a hormone secreted from enteroendocrine L cells of the intestine in response to food. Exogenous GLP-1 administration at pharmacological doses results in many effects that are beneficial for treating type 2 diabetes, these include: (1 an increase in insulin secretion from β cells; (2 a suppression of glucagon secretion from α cells in the presence of hyperglycemia but not hypoglycemia; (3 a delay in gastric emptying and gut motility which in turns delays absorption of ingested nutrients and dampens post-prandial glucose excursion; and (4 an increase in the duration of postprandial satiety therefore suppressing appetite and decreasing food intake which eventually leads to weight loss. However, GLP-1 is subject to rapid enzymatic degradation, and therefore, not suitable for long-term treatment. A synthetic enzyme-resistant GLP-1 receptor agonist that reproduces the biological effects of GLP-1 is in use and more are under development. This review aims at providing a summary of the properties of GLP-1 and the development of GLP-1-based therapies for treatment of diabetes.Keywords: incretin, GLP-1, GLP-1R agonist, diabetes

  5. Proton pump inhibitor Lansoprazole is a nuclear Liver X Receptor agonist

    Science.gov (United States)

    Cronican, Andrea A.; Fitz, Nicholas F.; Pham, Tam; Fogg, Allison; Kifer, Brionna; Koldamova, Radosveta; Lefterov, Iliya

    2010-01-01

    The liver X receptors (LXRα and LXRβ) are transcription factors that control the expression of genes primarily involved in cholesterol metabolism. In brain, in addition to normal neuronal function, cholesterol metabolism is important for APP proteolytic cleavage, secretase activities, Aβ aggregation and clearance. Particularly significant in this respect is the LXR mediated transcriptional control of APOE, which is the only proven risk factor for late onset Alzheimer’s disease. Using a transactivation reporter assay for screening pharmacologically active compounds and off patent drugs we identified the Proton Pump Inhibitor Lansoprazole as an LXR agonist. In secondary screens and counter-screening assays, it was confirmed that Lansoprazole directly activates LXR, increases the expression of LXR target genes in brain-derived human cell lines, and increases Abca1 and Apo-E protein levels in primary astrocytes derived from wild type but not LXRα/β double knockout mice. Other PPIs activate LXR as well, but the efficiency of activation depends on their structural similarities to Lansoprazole. The identification of widely used, drug with LXR agonist-like activity opens the possibility for systematic preclinical testing in at least two diseases – Alzheimer’s disease and atherosclerosis. PMID:20060385

  6. Agonistic activity of tamoxifen, a selective estrogen-receptor modulator (SERM), on arthritic ovariectomized mice

    Science.gov (United States)

    Silva, L.A.S.; Felix, F.B.; Araujo, J.M.D.; Souza, E.V.; Camargo, E.A.; Grespan, R.

    2017-01-01

    Arthritis is positively associated with the decline of sex hormones, especially estrogen. Tamoxifen (TMX) is a selective estrogen receptor modulator, possessing agonist or antagonistic activity in different tissues. Thus, the objective of this study was to investigate the effect of TMX on the zymosan-induced arthritis model. Female Swiss normal and ovariectomized (OVX) mice were divided into groups and treated for five days with TMX (0.3, 0.9 or 2.7 mg/kg) or 17-β-estradiol (E2, 50 µg/kg). On the fifth day, arthritis was induced and 4 h later, leukocyte migration into joint cavities was evaluated. The neutrophil migration in OVX animals, but not in normal mice, treated with TMX (all tested doses) was significantly decreased compared with mice that received the vehicle (P≤0.05). Similarly, this effect was also demonstrated in the E2-treated group. Therefore, the present study demonstrates that TMX presented agonist effects in inhibiting neutrophil migration and preventing arthritis progression in OVX mice. PMID:29160416

  7. Vitamin D Receptor Agonists Target CXCL10: New Therapeutic Tools for Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Sabino Scolletta

    2013-01-01

    Full Text Available Understanding the many biological extraskeletal actions of vitamin D has increased in the past decades. Indeed, vitamin D and analogue molecules, besides the classical actions on bone metabolism, exert several beneficial effects on metabolic homeostasis, heart-cardiovascular, brain, and muscle physiological functions, throughout the interaction with the specific vitamin D receptor (VDR. In particular, VDR agonists powerfully control innate and adaptive immune system with favorable effects on human health. VDR ligands act as immunomodulators that are potent enough to retain anti-inflammatory effects, even though the mechanism underlying those effects is not yet fully elucidated. VDR agonists exert a significant suppression of inflammatory processes switching the immune response from T helper 1 (Th1 to T helper 2 (Th2 dominance and counteracting the self-enhancing inflammatory loop between immune and resident cells, especially by cytokine release impairment. Those molecules are able, indeed, to reduce the release of the interferon (IFN-induced 10 kDa protein IP-10/CXCL10, a powerful chemokine driving Th1-mediated inflammation. Based on their features, VDR ligands show the potentiality to be included in immunosuppressive regimens, aimed to control auto- and alloimmune Th1-driven overreactivity, occurring, for example, in autoimmune disease or graft rejection.

  8. Clinical assessment of drug-drug interactions of tasimelteon, a novel dual melatonin receptor agonist.

    Science.gov (United States)

    Ogilvie, Brian W; Torres, Rosarelis; Dressman, Marlene A; Kramer, William G; Baroldi, Paolo

    2015-09-01

    Tasimelteon ([1R-trans]-N-[(2-[2,3-dihydro-4-benzofuranyl] cyclopropyl) methyl] propanamide), a novel dual melatonin receptor agonist that demonstrates specificity and high affinity for melatonin receptor types 1 and 2 (MT1 and MT2 receptors), is the first treatment approved by the US Food and Drug Administration for Non-24-Hour Sleep-Wake Disorder. Tasimelteon is rapidly absorbed, with a mean absolute bioavailability of approximately 38%, and is extensively metabolized primarily by oxidation at multiple sites, mainly by cytochrome P450 (CYP) 1A2 and CYP3A4/5, as initially demonstrated by in vitro studies and confirmed by the results of clinical drug-drug interactions presented here. The effects of strong inhibitors and moderate or strong inducers of CYP1A2 and CYP3A4/5 on the pharmacokinetics of tasimelteon were evaluated in humans. Coadministration with fluvoxamine resulted in an approximately 6.5-fold increase in tasimelteon's area under the curve (AUC), whereas cigarette smoking decreased tasimelteon's exposure by approximately 40%. Coadministration with ketoconazole resulted in an approximately 54% increase in tasimelteon's AUC, whereas rifampin pretreatment resulted in a decrease in tasimelteon's exposure of approximately 89%. © 2015 The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  9. In Vivo Protection against Strychnine Toxicity in Mice by the Glycine Receptor Agonist Ivermectin

    Directory of Open Access Journals (Sweden)

    Ahmed Maher

    2014-01-01

    Full Text Available The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg. Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  10. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Daniel Todd

    Full Text Available Huntington's disease (HD is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.

  11. Triazolophostins: a library of novel and potent agonists of IP3 receptors.

    Science.gov (United States)

    Vibhute, Amol M; Konieczny, Vera; Taylor, Colin W; Sureshan, Kana M

    2015-06-28

    IP3 receptors are channels that mediate the release of Ca(2+) from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.

  12. QSAR of adenosine receptor antagonists. Part 3: Exploring physicochemical requirements for selective binding of 1,2,4-triazolo[5,1-i]purine derivatives with human adenosine A3 receptor subtype.

    Science.gov (United States)

    Roy, Kunal; Leonard, J Thomas; Sengupta, Chandana

    2004-07-16

    Considering potential of selective adenosine A3 receptor antagonists in the development of prospective therapeutic agents, an attempt has been made to explore selectivity requirements of 1,2,4-triazolo[5,1-i]purine derivatives for binding with cloned human adenosine A3 receptor subtype. In this study, partition coefficient (logP) values of the molecules (calculated by Crippen's fragmentation method) and Wang-Ford charges of the common atoms of the triazolopurine nucleus (calculated from molecular electrostatic potential surface of energy minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best equation describing A3 binding affinity [n=29, Q2=0.796, Ra2=0.853, R2=0.874, R=0.935, s=0.342, F=41.5 (df 4,24), SDEP=0.396] showed parabolic relation with logP (optimum value being 4.134). Further, it was found that an aromatic substituent conjugated with the triazole nucleus should be present at R2 position for A3 binding affinity. Again, high negative charges on N2 and N4 are conducive to the binding affinity. While exploring selectivity requirements of the compounds for binding with A3 receptor over that with A2A receptor, the selectivity relation [n=23, Q2=0.909, Ra2=0.918, R2=0.933, R=0.966, s=0.401, F=62.4 (df 4,18), SDEP=0.412] showed that an aromatic R2 substituent conjugated with the triazole nucleus contributes significantly to the selectivity. Again, presence of a 4-substituted-phenyl ring (except 4-OH-phenyl and 4-CH3-phenyl) at R2 position also increases selectivity. Further, charge difference between N2 and N11 (negative charge on the former should be higher and that on the latter should be less) contributes significantly to the selectivity. In addition, negative charge on N7 is conducive while presence of substituents like propyl, butyl, pentyl or phenyl at R1 position is detrimental for the A3 selectivity.

  13. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Science.gov (United States)

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  14. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Science.gov (United States)

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  15. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy

    2011-01-01

    molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability......A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...

  16. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Østergaard, L; Frandsen, Christian S.; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases...... satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other...... gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA....

  17. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    2010-09-01

    Full Text Available GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.

  18. Angiotensin II Type 2 Receptor Agonist Experts Sustained Neuroprotective Effects In Aged Rats

    DEFF Research Database (Denmark)

    Sumners, Colin; Isenberg, Jacob; Harmel, Allison

    2016-01-01

    OBJECTIVE: The renin angiotensin system is a promising target for stroke neuroprotection and therapy through activation of angiotensin type II receptors (AT2R). The selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exhibit neuroprotection and improve stroke outcomes...... in preclinical studies, effects that likely involve neurotropic actions. However, these beneficial actions of C21 have not been demonstrated to occur beyond 1 week post stroke. The objective of this study was to determine if systemic administration of C21 would exert sustained neuroprotective effects in aged...... min), 24 h, and 48 h after stroke. Infarct size was assessed by magnetic resonance imaging at 21 days post MCAO. Animals received blinded neurological exams at 4 h, 24 h, 72 h, 7d, 14d, and 21d post-MCAO. RESULTS: Systemic treatment with C21 after stroke significantly improved neurological function...

  19. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation

    Directory of Open Access Journals (Sweden)

    Francesco Di Virgilio

    2018-02-01

    Full Text Available The P2X7 receptor (P2X7R is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b