WorldWideScience

Sample records for adenosine monophosphate

  1. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  2. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O;

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  3. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  4. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After aller

  5. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  6. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  7. Effects of plant extract neferine on cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in rabbit corpus cavernosum in vitro

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Ji-Hong Liu; Tao Wang; Heng-Jun Xiao; Chun-Ping Yin; Jun Yang

    2008-01-01

    Aim: To further investigate the relaxation mechanism of neferine (Nef), a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavernosum tissue in vitro. Methods: The effects of Nef on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were re-corded using125Ⅰ radioimmunoassay. Results: The basal concentration of cAMP in corpus cavernosum tissue was 5.67±0.97 pmol/mg. Nef increased the cAMP concentration in a dose-dependent manner (P 0.05). The accumulation of cAMP induced by prostaglandin E1(PGE1, a stimulator of cAMP production) was also augmented by Nef in a dose-dependent manner (P 0.05). Also,sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Nef (P > 0.05). Conclusion: Nef, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting phosphodiesterase activity.

  8. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  9. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    Zhanwei Zhang; Ting Zhang; Keli Dong

    2012-01-01

    At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected signifi-cantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippo-campus of the senescence-accelerated mouse.

  10. Protective effect of oral terfenadine and not inhaled ipratropium on adenosine 5 '-monophosphate-induced bronchoconstriction in patients with COPD

    NARCIS (Netherlands)

    Rutgers, [No Value; Koeter, GH; Van der Mark, TW; Postma, DS

    1999-01-01

    Background Inhalation of adenosine 5'-monophosphate (AMP) causes bronchoconstriction in patients with asthma and in many patients with chronic obstructive pulmonary disease (COPD). In asthma, AMP-induced bronchoconstriction has been shown to be determined mainly by release of mast cell mediators, an

  11. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S

    1995-01-01

    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  12. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-HongLIU; YangLI; Zheng-GuoCAO; Zhang-QunYE

    2003-01-01

    Aim: To study the influences of dibutyryl cyclic adenosine monophosphate (dbcAMP) and forskolin on human sperm motility in vitro. Methods: Semen samples, aseptically obtained by masturbation and prepared by swim-up technique from 20 fertile men, were incubated with different concenlrations of dbcAMP and forskolin at 37℃. Measurements were carried out after l0 min, 20 min, 30 min and 60 min incubation. Motility parameters were estimated by using an automatic analyzing system. Results: Treatment with dbcAMP or forskolin resulted in a significant increase in sperm motility and progressive motility. The larger the concenlrations of dbcAMP or forskolin,the greater the effect appeared. The straight linear velocity and curvilinear velocity were not affected by both agents.Conclusion: dbcAMP and forskolin increase the motility and progressive motility of human sperm in vitro. ( Asian J Androl 2003 Jun; 5: 113-115)

  13. Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A.

    Science.gov (United States)

    Ruderman, Neil B; Saha, Asish K

    2006-02-01

    The metabolic syndrome can be defined as a state of metabolic dysregulation characterized by insulin resistance, central obesity, and a predisposition to type 2 diabetes, dyslipidemia, premature atherosclerosis, and other diseases. An increasing body of evidence has linked the metabolic syndrome to abnormalities in lipid metabolism that ultimately lead to cellular dysfunction. We review here the hypothesis that, in many instances, the cause of these lipid abnormalities could be a dysregulation of the adenosine monophosphate-activated protein kinase (AMPK)/malonyl coenzyme A (CoA) fuel-sensing and signaling mechanism. Such dysregulation could be reflected by isolated increases in malonyl CoA or by concurrent changes in malonyl CoA and AMPK, both of which would alter intracellular fatty acid partitioning. The possibility is also raised that pharmacological agents and other factors that activate AMPK and/or decrease malonyl CoA could be therapeutic targets.

  14. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    Science.gov (United States)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  15. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    Science.gov (United States)

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  16. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  17. Effects of adenosine 5’monophosphate-activated protein kinase on europrotection induced by ischemic preconditioning

    Directory of Open Access Journals (Sweden)

    Yuan-ru-hua TIAN

    2015-06-01

    Full Text Available Objective To investigate the effects of adenosine 5'-monophosphate-activated protein kinase (AMPK and phosphated AMPK (pAMPK signals in ischemic preconditioning (IPC, and the effect of pharmacological intervention of AMPK on infarct size of the brain. Methods A brief (3min middle cerebral artery occlusion (MCAO was employed to induce IPC in male rat, and another 90-min MCAO was performed 4 or 72h later. The levels of AMPK and pAMPK were assessed after IPC. A pharmacological activator metformin, or inhibitor compound C of AMPK, was used to analyze the correlation of IPC to AMPK signaling in MCAO rats. Results The infarct size of total cerebral hemisphere and cortex was significantly decreased in MCAO animals by IPC for 72h (P0.05, n=6. The AMPK activator metformin can significantly reverse the protective effect of IPC (P<0.05, n=6. Conclusions The signals of AMPK and pAMPK play an important role in neuroprotective effect of IPC on cerebral ischemic injury. The neuroprotective effect of IPC may be associated with the down-regulation of pAMPK. DOI: 10.11855/j.issn.0577-7402.2015.05.07

  18. 5'-adenosine monophosphate-activated protein kinase and the metabolic syndrome.

    Science.gov (United States)

    Mor, Vijay; Unnikrishnan, M K

    2011-09-01

    Lifestyle changes such as physical inactivity combined with calorie-rich, low-fibre diets have triggered an explosive surge in metabolic syndrome, outlined as a cluster of heart attack risk factors such as insulin resistance, raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. By acting as a master-switch of energy homeostasis and associated pathophysiological phenomena, 5'-adenosine monophosphate-activated protein kinase (AMPK) appears to orchestrate the adaptive physiology of energy deficit, suggesting that the sedentary modern human could be suffering from chronic suboptimal AMPK activation. Addressing individual targets with potent ligands with high specificity may be inappropriate (it has not yielded any molecule superior to the sixty year old metformin) because this strategy cannot address a cluster of interrelated pathologies. However, spices, dietary supplements and nutraceuticals attenuate the multiple symptoms of metabolic syndrome in a collective and perhaps more holistic fashion with fewer adverse events. Natural selection could have favoured races that developed a taste for spices and dietary supplements, most of which are not only antioxidants but also activators of AMPK. The review will outline the various biochemical mechanisms and pathophysiological consequences of AMPK activation involving the cluster of symptoms that embrace metabolic syndrome and beyond. Recent advances that integrate energy homeostasis with a number of overarching metabolic pathways and physiological phenomena, including inflammatory conditions, cell growth and development, malignancy, life span, and even extending into environmental millieu, as in obesity mediated by gut microflora and others will also be outlined.

  19. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  20. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U; Gubler, H P; Engel, G; Huch, R; Huch, A

    1993-02-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists.

  1. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    Science.gov (United States)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  2. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway.

    Science.gov (United States)

    Wang, Chang; Ruan, Ting; Liu, Jiyan; He, Bin; Zhou, Qunfang; Jiang, Guibin

    2015-05-18

    Perfluorinated iodine alkanes (PFIs) are used widely in the organic fluorine industry. Increased production of PFIs has caused environmental health concerns. To evaluate the potential endocrine-disrupting effect of PFIs, we investigated the effects of perfluorooctyl iodide (PFOI) on steroidogenesis in human adrenocortical carcinoma cells (H295R). Levels of aldosterone, cortisol, 17β-estradiol, and testosterone were measured in H295R culture medium upon treatment with perfluorooctanoic acid (PFOA) and PFIs. Expression of 10 steroidogenic genes (StAR, HMGR, CYP11A1, 3βHSD2, 17βHSD, CYP17, CYP21, CYP11B1, CYP11B2, and CYP19) was measured by real-time polymerase chain reaction. Levels of cyclic adenosine monophosphate (cAMP) and adenylate cyclase (AC) activity were measured to understand the underlying mechanism of steroidogenic perturbations. Levels of production of aldosterone, cortisol, and 17β-estradiol were elevated significantly, and the level of testosterone generation decreased upon treatment with 100 μM PFOI. Similar to the effect induced by forskolin (AC activator), expression of all 10 genes involved in the synthesis of steroid hormones was upregulated significantly upon exposure to 100 μM PFOI. PFOA had no effect on steroid hormone production or steroidogenic gene expression even though it is highly structurally similar with PFOI. Therefore, the terminal -CF2I group in PFOI could be a critical factor for mediation of steroidogenesis. PFOI increased AC activity and cAMP levels in H295R cells, which implied an underlying mechanism for the disturbance of steroidogenesis. These data suggest that PFOI may act as an AC activator, thereby stimulating steroidogenesis by activating a cAMP signaling pathway.

  3. The role of renal adenosine 3',5'-monophosphate in the control of erythropoietin production.

    Science.gov (United States)

    Rodgers, G M; Fisher, J W; George, W J

    1975-01-01

    A regulatory role for adenosine 3',5'-monophosphate (cyclic AMP) in the production of the renal hormone rythropoietin following erythropoietic stimulation with cobaltous chloride hexahydrate is proposed. Studies in rates reveal a temporal relationship between renal cyclic AMP levels and plasma titers of erythropoietin. In addition, cobalt increases the activity of an erythropoietin-generating enzyme (renal erythropoietic factor) with maximal enzyme activity occurring after the rise in cyclic AMP levels but before the increase in erythropoietin titers. This increase in renal cyclic AMP is localized to the renal cortex. Cobalt stimulates renal cortical adenylate cyclase but has no effect on renal cyclic nucleotide phosphodiesterase. The addition of cyclic AMP (3 time 10-6 M) and a partially purified cyclic AMP-dependent protein kinase from rat kidney to an inactive preparation of renal erythropoietic factor increases the ability of renal erythropoietic factor to generate erythropoietin. Data from the polycythemic mouse assay, a bioassay used to quantitate erythropoietic activity of test substances, indicate that dibutyryl cyclic AMP is erythropoietically active with respect to its ability to increase radioactive-labelled iron (59Fe) incorporation into heme of newly formed red blood cells. Theophylline, which by itself is erythropoietically inactive, potentiated the erythropoietic effect of cobalt in polycythemic mice. These results suggest that cyclic AMP plays a significant role in the renal production of erythropoietin following cobalt administration. It is postulated that cobalt stimulates renal cortical adenyoate cyclase, thus increasing renal cyclic AMP levels. Cyclic AMP then activates a protein kinase which subsequently stimulates renal erythropoietic factor to generate erythropoietin. A similar cyclic AMP mechanism may be operative after erythropoietic stimulation by exposure to hypoxia or prostaglandin treatment.

  4. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    Science.gov (United States)

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  5. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    Science.gov (United States)

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  6. Hypothermia induced by adenosine 5'-monophosphate attenuates early stage injury in an acute gouty arthritis rat model.

    Science.gov (United States)

    Miao, Zhimin; Guo, Weiting; Lu, Shulai; Lv, Wenshan; Li, Changgui; Wang, Yangang; Zhao, Shihua; Yan, Shengli; Tao, Zhenyin; Wang, Yunlong

    2013-08-01

    To investigate whether the hypothermia induced by Adenosine 5'-Monophosphate (5'-AMP) could attenuate early stage injury in a rat acute gouty arthritis model. Ankle joint injection with monosodium urate monohydrate crystals (MSU crystals) in hypothermia rat model which was induced by 5'-AMP and then observe whether hypothermia induced by 5'-AMP could be effectively inhibit the inflammation on acute gouty arthritis in rats. AMP-induced hypothermia has protective effects on our acute gouty arthritis, which was demonstrated by the following criteria: (1) a significant reduction in the ankle swelling (p gouty arthritis model.

  7. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    Science.gov (United States)

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-08

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe3O4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe3O4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H2O2) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe3O4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe(2+)/Fe(3+) sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H2O2. Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe3O4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe3O4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe3O4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe3O4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe3O4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  8. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  9. [Concentration of prostaglandins and cyclic adenosine-3',5'-monophosphate in the tissues of rats].

    Science.gov (United States)

    Komissarenko, V P; Slavnov, V N; Epsheĭn, E V; Malinkovich, V D

    1977-04-01

    The content of prostaglandines (PG) and cyclic 3',5'-adenosine monphosphate (cAMP) was investigated in rat tissues by the radioisotopic method of competitive binding. Maximum quantities of both PG and cAMP were revealed in the same most actively functioning organs: the brain, incretory glands, small intestine. Fatty tissue showed minimum quantities of these substances. Results indicate a close functional relationship between the PG synthesis and adenylatecyclase activity in the body tissues.

  10. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Science.gov (United States)

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels.

  11. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  12. Hepatitis C virus core protein induces energy metabolism disorders of hepatocytes by down-regulation of silent mating type information regulation 2 homolog-1 and adenosine monophosphate-acti vated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    于建武

    2013-01-01

    Objective To study the role of silent mating type information regulation2homotog-1(SIRT1)-adenosine monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway in hepatitis C virus core protein(HCV-core)induced energy metabolism disorders

  13. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    Science.gov (United States)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  14. Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

    Science.gov (United States)

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.

  15. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Science.gov (United States)

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  16. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    Science.gov (United States)

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  17. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  18. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host.

    Science.gov (United States)

    Santander, Javier; Mitra, Arindam; Curtiss, Roy

    2011-12-01

    Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.

  19. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Directory of Open Access Journals (Sweden)

    Muslim Akmal

    2016-09-01

    Full Text Available Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A; KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells.

  20. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate

    Institute of Scientific and Technical Information of China (English)

    Jyun-Yi Wu; Chia-Hsin Chen; Li-Yin Yeh; Ming-Long Yeh; Chun-Chan Ting; Yan-Hsiung Wang

    2013-01-01

    Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J?cm22. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J?cm22 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J?cm22 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.

  1. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan

    2011-01-01

    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  2. Methacholine and adenosine 5'-monophosphate (AMP) responsiveness, and the presence and degree of atopy in children with asthma.

    Science.gov (United States)

    Suh, Dong I; Lee, Ju K; Kim, Chang K; Koh, Young Y

    2011-02-01

    The relationship between atopy and bronchial hyperresponsiveness (BHR), both key features of asthma, remains to be clarified. BHR is commonly evaluated by bronchial challenges using direct and indirect stimuli. The aim of this study was to investigate the degree of BHR to methacholine (direct stimulus) and adenosine 5'-monophosphate (AMP) (indirect stimulus) according to the presence and degree of atopy in children with asthma. We performed a retrospective analysis of data from 120 children presenting with a diagnosis of asthma. These children were characterized by skin-prick tests (SPTs), spirometry and bronchial challenges with methacholine and AMP. Atopy was defined by at least one positive reaction to SPTs, and its degree was measured using serum total IgE levels, number of positive SPTs and atopic scores (sum of graded wheal size). A provocative concentration causing a 20% decline in FEV(1) (PC(20) ) was determined for each challenge. Patients with atopy(n=94) had a significantly lower AMP PC(20) than non-atopic patients (n=26), whereas methacholine PC(20) was not different between the two groups. Among the patients with atopy, there was no association between methacholine PC(20) and any atopy parameter. In contrast, a significant association was found between AMP PC(20) and the degree of atopy reflected in serum total IgE, number of positive SPTs and atopic scores (anova trend test, p=0.002, 0.001, 0.003, respectively). AMP responsiveness was associated with the presence and degree of atopy, whereas such a relationship was not observed for methacholine responsiveness. These findings suggest that atopic status may be better reflected by bronchial responsiveness assessed by AMP than by methacholine.

  3. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  4. Evidence against mediation of adenosine-3',5'-cyclic monophosphate in the bud-inducing effect of cytokinins in moss protonemata

    Directory of Open Access Journals (Sweden)

    J. Scheneider

    2015-05-01

    Full Text Available Effects Oif adenosdne-3',5'-cyclic monophosphate (cAMP, N6,O2-dibuityryl adenosine-3',5'-cyclic monophosphate (DBcAMP, caffeine and theophylline on the bud-inducing activity of cytokinin in the protonema of two moss species, Ceratodon purpureus and Funaria hygrometrica were examined. The sub-stances have been found ineffective as gametophore bud inducers. Some synergism between cytokinin and cAMP or DBcAMP was observed with relation to the buds' growth, but this effect is nonspecific since it can be obtained with 5'-AMP or 5'-GMiP as well, The results seem to exclude the possibility of an involvement of cAMP as a second messenger in the mechanism of cytokinin action on morphogenetic processes in moss protonemata.

  5. Sevoflurane effects on cyclic adenosine monophosphate response element binding protein, phosphorylated cyclic adenosine monophosphate response element binding protein, and Livin expression in the cortex and hippocampus of a vascular cognitive impairment rat model

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Ling Dan; Xianlin Zhu

    2009-01-01

    BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia.OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA.METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours.MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze.RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P<0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P<0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham

  6. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  7. Effect of dietary fluorine from Araxá rock phosphate on the hepatic production of cyclic-adenosine monophosphate in broilers

    Directory of Open Access Journals (Sweden)

    Rezende M.J.M.

    1999-01-01

    Full Text Available The cyclic adenosine 3?, 5?-monophosphate (cAMP production was evaluated in liver thin sections of broiler chicks fed on a experimental diet containing bicalcium phosphate or Araxá rock phosphate (ARP as source of P, with a high content of fluorine, at different ages: from the first to the 42nd and from the 21st to the 42nd day of age. The intake of the ARP formulated diet starting from birth elicited an increase of cAMP production in broiler liver. However, when this diet was offered after the 21st day of age, the hepatic cAMP production in broilers was not significantly (P>0.05 affected, suggesting that the effect of high fluorine present in Araxá rock phosphate, on hepatic cAMP of broiler chicks depends on the age in which the experimental diet is started.

  8. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-12-01

    Full Text Available Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury.

  9. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study demonstrates, on the basis of several analyanalytical criteria, that the production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) is widespread among phytoplankton species. The production and release of CAMP varied markedly among different species grown under similar environmental conditions, and intraspecifically during the life cycle of a given algal species. This investigation marks the first time cAMP has been investigated in natural aquatic systems. An examination of epilimnetic lakewater samples from Lawrence Lake, a hardwater oligotrophic lake, and Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan, demonstrated that cAMP existed in both particulate-associated and dissolved forms in these systems.

  10. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    Science.gov (United States)

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results.

  11. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    Science.gov (United States)

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (Pmajor depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  12. 5′-Adenosine Monophosphate-Induced Hypothermia Attenuates Brain Ischemia/Reperfusion Injury in a Rat Model by Inhibiting the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Yi-Feng Miao

    2015-01-01

    Full Text Available Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5′-adenosine monophosphate (5′-AMP, a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5′-AMP-induced hypothermia (AIH may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9, interleukin-1 receptor (IL-1R, tumor necrosis factor receptor (TNFR, and Toll-like receptor (TLR protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL- positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5′-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  13. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    Science.gov (United States)

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures.

  14. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    Science.gov (United States)

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork.

  15. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study is an investigation into the occurrence and potential functions of cyclic adenosine 3':5'-monophosphate (cAMP), a potent and ubiquitous metabolic regulatory molecule in heterotrophic organisms, in phytoplankton and in natural aquatic communities. Laboratory-cultured phytoplankton were grown under both optimal and suboptimal nutrient regimes under constant temperature and illumination regimes. Cellular and extracellular cAMP production, characterized by a number of biochemical techniques, was correlated with growth rate dynamics, chlorophyll a synthesis, /sup 14/C-bicarbonate uptake, alkaline phosphatase activity, and heterocyst formation. The blue-green alga Anabaena flos-aquae was used as a model system in the examination of these metabolic variables. Additionally, this alga was used to test the effects of perturbation of cAMP levels on the aforementioned metabolic variables. Investigations on the occurrence and seasonal dynamics of cAMP in aquatic systems were conducted on Lawrence Lake, a hardwater oligotrophic lake, and on Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan. Putative cAMP from both systems was characterized by several biochemical techniques. Weekly sampling of particulate and dissolved cAMP in the epilimnia of both lakes was correlated with data on the rates of primary productivity, alkaline phosphatase activity, chlorophyll a synthesis and changes in phytoplankton community structure.

  16. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets.

    Science.gov (United States)

    Masiello, P; Novelli, M; Bombara, M; Fierabracci, V; Vittorini, S; Prentki, M; Bergamini, E

    2002-01-01

    This study intended to test the hypothesis that intracellular lipolysis in the pancreatic beta cells is implicated in the regulation of insulin secretion stimulated by nutrient secretagogues or cyclic adenosine monophosphate (cAMP) agonists. Indeed, although lipid signaling molecules were repeatedly reported to influence beta-cell function, the contribution of intracellular triglycerides to the generation of these molecules has remained elusive. Thus, we have studied insulin secretion of isolated rat pancreatic islets in response to various secretagogues in the presence or absence of 3,5-dimethylpyrazole (DMP), a water-soluble and highly effective antilipolytic agent, as previously shown in vivo. In vitro exposure of islets to DMP resulted in an inhibition (by approximately 50%) of the insulin release stimulated not only by high glucose, but also by another nutrient secretagogue, 2-ketoisocaproate, as well as the cAMP agonists 3-isobutyl-1-methylxanthine and glucagon. The inhibitory effect of DMP, which was not due to alteration of islet glucose oxidation, could be reversed upon addition of sn-1,2-dioctanoylglycerol, a synthetic diglyceride, which activates protein kinase C. The results provide direct pharmacologic evidence supporting the concept that endogenous beta-cell lipolysis plays an important role in the generation of lipid signaling molecules involved in the control of insulin secretion in response to both fuel stimuli and cAMP agonists.

  17. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation.

    Directory of Open Access Journals (Sweden)

    Kenji Ezoe

    Full Text Available Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK or 3-isobutyl-1-methylxanthine (IBMX to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.

  18. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    Science.gov (United States)

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  19. Globular adiponectin protects human umbilical vein endothelial cells against apoptosis through adiponectin receptor 1/adenosine monophosphate-activated protein kinase pathway

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-yu; ZHAO Min; YI Tong-ning; ZHANG Jin

    2011-01-01

    Background Endothelial dysfunction is a key event in the onset and progression of atherosclerosis in diabetic patients.Apoptosis may lead to endothelial dysfunction and contribute to vascular complications. However, no study has addressed apoptosis in human umbilical vein endothelial cells (HUVECs) induced by an intermittent high-glucose media and its association with adiponectin receptor 1 (adipoR1), adipoR2, or adenosine monophosphate (AMP)-activated protein kinase (AMPK).Methods HUVECs were cultured in continuous normal glucose (5.5 mmol/L), continuous high glucose (25 mmol/L),alternating normal and high glucose and mannitol. In the alternating normal and high-glucose media, HUVECs were treated under different conditions. First, cells were transfected with the adipoR1-specific small-interfering RNA (siRNA)and then stimulated with globular adiponectin (gAD). Second, cells were cultured in both gAD and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Third, cells were cultured in the AMPK inhibitor adenine-9-β-D-arabino-furanoside (araA), gAD, and in AICAR.Results HUVEC apoptosis increased more significantly in an intermittent high-glucose medium than in a constant high-glucose medium. HUVEC apoptosis induced by an intermittent high-glucose medium was inhibited when the cells were pretreated with 3 μg/ml gAD, which rapidly activated AMPK and adipoR1 in HUVECs. However, adipoR2 was not activated.Conclusions We found that adipoR1, not adipoR2, is involved in mediating intermittent high-concentration glucoseevoked apoptosis in endothelial cells. gAD activated AMPK through adipoR1, leads to the partial inhibition of HUVEC apoptosis. A fluctuating glucose medium is more harmful than a constant high-glucose medium to endothelial cells.

  20. Adenosine Monophosphate-Activated Protein Kinase Abates Hyperglycaemia-Induced Neuronal Injury in Experimental Models of Diabetic Neuropathy: Effects on Mitochondrial Biogenesis, Autophagy and Neuroinflammation.

    Science.gov (United States)

    Yerra, Veera Ganesh; Kumar, Ashutosh

    2017-04-01

    Impaired adenosine monophosphate kinase (AMPK) signalling under hyperglycaemic conditions is known to cause mitochondrial dysfunction in diabetic sensory neurons. Facilitation of AMPK signalling is previously reported to ameliorate inflammation and induce autophagic response in various complications related to diabetes. The present study assesses the role of AMPK activation on mitochondrial biogenesis, autophagy and neuroinflammation in experimental diabetic neuropathy (DN) using an AMPK activator (A769662). A769662 (15 and 30 mg/kg, i.p) was administered to Sprague-Dawley rats (250-270 g) for 2 weeks after 6 weeks of streptozotocin (STZ) injection (55 mg/kg, i.p.). Behavioural parameters (mechanical/thermal hyperalgesia) and functional characteristics (motor/sensory nerve conduction velocities (MNCV and SNCV) and sciatic nerve blood flow (NBF)) were assessed. For in vitro studies, Neuro2a (N2A) cells were incubated with 25 mM glucose to simulate high glucose condition and then studied for mitochondrial dysfunction and protein expression changes. STZ administration resulted in significant hyperglycaemia (>250 mg/dl) in rats. A769662 treatment significantly improved mechanical/thermal hyperalgesia threshold and enhanced MNCV, SNCV and NBF in diabetic animals. A769662 exposure normalised the mitochondrial superoxide production, membrane depolarisation and markedly increased neurite outgrowth of N2A cells. Further, AMPK activation also abolished the NF-κB-mediated neuroinflammation. A769662 treatment increased Thr-172 phosphorylation of AMPK results in stimulated PGC-1α-directed mitochondrial biogenesis and autophagy induction. Our study supports that compromised AMPK signalling in hyperglycaemic conditions causes defective mitochondrial biogenesis ultimately leading to neuronal dysfunction and associated deficits in DN and activation of AMPK can be developed as an attractive therapeutic strategy for the management of DN.

  1. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  2. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  3. Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress

    Indian Academy of Sciences (India)

    CHENCUI HUANG; KUN YU; HUIYANG HUANG; HAIHUI YE

    2016-12-01

    Adenosine monophosphate-activated protein kinase (AMPK), an important energy sensor, is crucial for organism survival under adverse conditions. In this study, the roles of this gene under cold stress in a warm-water mud crab, Scylla paramamosain was investigated. The full-length cDNA (SpAMPK) was 1884 bp and its open reading frame of 1566 bp was isolated and characterized. The expressions of SpAMPK detected by quantitative real-time PCR (qRT-PCR) in various tissues revealed that the highest expression was in the hepatopancreas. The profiles of SpAMPK gene in the hepatopancreas, chela muscleand gill were detected when the subadult crabs were exposed to the four temperature conditions of 10, 15, 20 and 25◦C. The results showed that the expression patterns of SpAMPK mRNA in the three tissues were significantly higher when crabs were exposed to 15◦C than the other three temperature treatments, while at 10◦C treatment, the SpAMPK mRNA was lowestamong the four temperature treatments. These findings suggested that the high expression of SpAMPK mRNA might initiate ATP-producing pathways to generate energy to cope with cold stress at 15◦C treatment, which was slightly below the range of optimum temperatures; while treatment at 10◦C, far lower than optima, the low expression of SpAMPK mRNA could reduce the energy expenditure and thus induce the crabs into cold anesthesia. The results of SpAMPK in this study might contribute to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain.

  4. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Yanling Sui; Zichun Zhao; Rong Liu; Bin Cai; Dongsheng Fan

    2014-01-01

    Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis-mutase 1 mutant (SOD1G93A) and wild-type (SOD1WT) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by lfow cytometry. Moreover, we evaluated the expression of the adenos-ine monophosphate-activated protein kinase (AMPK)α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1WT cells, SOD1G93A embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKαin SOD1G93A cells was higher than that in SOD1WT cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKαphosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1G93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.

  5. Ablation of adenosine monophosphate-activated protein kinaseα1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo

    Institute of Scientific and Technical Information of China (English)

    CAI Zhe-jun; DING Ye; ZHANG Miao; LU Qiu-lun; WU Sheng-nan; ZHU Huai-ping; SONG Ping; ZOU Ming-hui

    2016-01-01

    AIM:Atherosclerotic calcification is highly linked with plaque instability and cardiovascular events .Adenosine monophosphate-activated protein kinase ( AMPK) has been involved in the pathogenesis of various cardiovascular disease .The contributions of AMPKαsubunits to the development of atherosclerotic calcification in vivo remained unknown .We hypothesized that AMPKαsubunits may play a role in the development of atherosclerotic calcification .METHODS: Atherosclerotic calcification was generated by 24-week fed of western diet in ApoE-/-background mice .Calcification was evaluated in aortic roots and innominate arteries of ApoE-/-mice or in mice with dual deficiencies of ApoE and AMPKαsubunits globally ( AMPKα1 and AMPKα2 ) , or vascular smooth muscle cell ( VSMC)-specific or macrophage-specific knockout of AMPKα1 with atherosclerotic calcification pone diet . The mechanism of AMPKα1 in regulating Runx2 was further explored in human aortic VSMC .RESULTS: Ablation of AMPKα1 but not AMPKα2 in ApoE-/-background promoted atherosclerotic calcification with increased Runt -related transcription factor ( Runx2 ) expression in VSMC compared with ApoE-/-mice.Conversely, chronic administration of metformin, which activated AMPK, markedly reduced ath-erosclerotic calcification and Runx2 expression in ApoE-/-mice but had less effects in ApoE-/-/AMPKα1 -/-mice.Furthermore, VSMC-but not macrophage-specific deficiency of AMPKα1 in ApoE-/-background promoted atherosclerotic calcification in vivo com-pared with the controls .AMPKα1 silencing in human aortic VSMC prevented Runx 2 from proteasome degradation to trigger osteoblastic differentiation of VSMC .Conversely , activation of AMPK led to Runx 2 instability by inducing its small ubiquitin-like modifier modifi-cation (SUMOylation).Protein inhibitor of activated STAT-1 (PIAS1), the SUMO E3-ligase of Runx2, was directly phosphorylated by AMPKα1 at serine 510, to enhance its SUMO E3-ligase activity.Ablation of PIAS1

  6. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    Science.gov (United States)

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and lysozyme activity as a marker of immune functions for red sea bream, which is also inline with the most of the growth and health performance parameters of fish under present experimental conditions.

  7. Inhibition of thyrotropin-stimulated adenosine 3',5'-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein.

    Science.gov (United States)

    Berman, M I; Thomas, C G; Nayfeh, S N

    1986-01-01

    Addition of N6-(L-2-phenylisopropyl)-adenosine (PIA) to cultured FRTL-5 rat thyroid cells led to a concentration-dependent inhibition of TSH-stimulated cAMP formation. Half-maximal inhibition was attained with approximately 0.5 nM PIA. Forskolin and cholera toxin-stimulated cAMP production were also inhibited by PIA. 3-Isobutyl-methylxanthine inhibited the effect of PIA. These results are consistent with the presence of inhibitory adenosine receptors (Ri). Ri-sites were further demonstrated by the binding of 3H-cyclohexyl-adenosine to FRTL-5 plasma membranes. High (Kd = 0.50 +/- 0.07 nM) and low affinity (Kd = 5.95 +/- 2.33 nM) binding sites were observed. Pretreatment of FRTL-5 cells with pertussis, but not cholera, toxin effectively antagonized the inhibitory effects of PIA on cAMP production. ADP-ribosylation of FRTL-5 membranes with [32P]-NAD in the presence of cholera or pertussis toxin specifically labeled a 45,000 and 41,000 Mr species, respectively, which correspond to the alpha subunit of the stimulatory and inhibitory guanine nucleotide regulatory proteins. These results demonstrate that PIA inhibits TSH-stimulated cAMP production via Ri-sites on FRTL-5 thyroid cells. PIA appears to exert its inhibitory effects through the inhibitory guanine nucleotide regulatory protein.

  8. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  9. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli.

    Science.gov (United States)

    Goldenbaum, P E; Broman, R L; Dobrogosz, W J

    1970-09-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per mug of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of beta-galactosidase synthesis. This repression does not occur if adenosine 3',5'-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli.

  10. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state.

    Science.gov (United States)

    Taibi, N; Dupont, J; Bouguermouh, Z; Froment, P; Ramé, C; Anane, A; Amirat, Z; Khammar, F

    2017-03-01

    In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.

  11. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    Science.gov (United States)

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.

  12. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    Science.gov (United States)

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  13. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

    Science.gov (United States)

    Cameron, Kimberly O; Kung, Daniel W; Kalgutkar, Amit S; Kurumbail, Ravi G; Miller, Russell; Salatto, Christopher T; Ward, Jessica; Withka, Jane M; Bhattacharya, Samit K; Boehm, Markus; Borzilleri, Kris A; Brown, Janice A; Calabrese, Matthew; Caspers, Nicole L; Cokorinos, Emily; Conn, Edward L; Dowling, Matthew S; Edmonds, David J; Eng, Heather; Fernando, Dilinie P; Frisbie, Richard; Hepworth, David; Landro, James; Mao, Yuxia; Rajamohan, Francis; Reyes, Allan R; Rose, Colin R; Ryder, Tim; Shavnya, Andre; Smith, Aaron C; Tu, Meihua; Wolford, Angela C; Xiao, Jun

    2016-09-08

    Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.

  14. Post-Meal Responses of Elongation Factor 2 (eEF2 and Adenosine Monophosphate-Activated Protein Kinase (AMPK to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Donald K. Layman

    2012-11-01

    Full Text Available Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2. This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0 or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270, 80:40:40 mg leucine, isoleucine, and valine (Leu80, 2.63 g carbohydrates (CHO2.6, 1 g carbohydrates (CHO1.0, or water (Sham control. Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0, but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to

  15. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  16. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    Science.gov (United States)

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  17. Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Gu Junfei; Ye Shandong; Wang Shan; Sun Wenjia; Hu Yuanyuan

    2014-01-01

    Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB),monocyte chemoattractant protein-1 (MCP-1),intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).Methods MCs were cultured in the medium with normal concentration glucose (group NG,5.6 mmol/L),high concentration glucose (group HG,25 mmol/L) and different concentrations of metformin (group M1,M2,M3).After 48-hour exposure,the supernatants and MCs were collected.The expression of NF-κB,MCP-1,ICAM-1,and TGF-β1 mRNA was analyzed by real time polymerase chain reaction.Westem blotting was used to detect the expression of AMPK,phospho-Thr-172 AMPK (p-AMPK),NF-κB p65,MCP-1,ICAM-1,and TGF-β1 protein.Results After stimulated by HG,the expression of NF-κB,MCP-1,ICAM-1,TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05).Both genes and protein expression of NF-κB,MCP-1,ICAM-1,TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05).The expression of p-AMPK increased with the rising of metformin concentration,presenting the opposite trend,while the level of total-AMPK protein was unchanged with exposure to HG or metformin.Conlusion Metformin can suppress the expression of NF-κB,MCP-1,ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation,which may partlv contribute to its reno-protection.

  18. Rosuvastatin increases extracellular adenosine formation in humans in vivo: a new perspective on cardiovascular protection.

    OpenAIRE

    Meijer, P; Oyen, W.J.G.; Dekker, D.; Broek, P.H.H. van den; Wouters, C.W.; Boerman, O.C.; Scheffer, G. J.; Smits, P; Rongen, G.A.P.J.M.

    2009-01-01

    OBJECTIVE: Statins may increase extracellular adenosine formation from adenosine monophosphate by enhancing ecto-5'-nucleotidase activity. This theory was tested in humans using dipyridamole-induced vasodilation as a read-out for local adenosine formation. Dipyridamole inhibits the transport of extracellular adenosine into the cytosol resulting in increased extracellular adenosine and subsequent vasodilation. In addition, we studied the effect of statin therapy in a forearm model of ischemia-...

  19. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  20. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac).

    Science.gov (United States)

    Vitali, E; Peverelli, E; Giardino, E; Locatelli, M; Lasio, G B; Beck-Peccoz, P; Spada, A; Lania, A G; Mantovani, G

    2014-03-05

    In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.

  1. Cyclic 3′,5′-Adenosine Monophosphate and N-Acetyl-glucosamine-6-Phosphate as Regulatory Signals in Catabolite Repression of the lac Operon in Escherichia coli1

    Science.gov (United States)

    Goldenbaum, Paul E.; Broman, Rodney L.; Dobrogosz, Walter J.

    1970-01-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per μg of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of β-galactosidase synthesis. This repression does not occur if adenosine 3′,5′-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli. PMID:4319836

  2. Ethologically based resolution of D2-like dopamine receptor agonist-versus antagonist-induced behavioral topography in dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa "knockout" mutants congenic on the C57BL/6 genetic background.

    Science.gov (United States)

    Nally, Rachel E; Kinsella, Anthony; Tighe, Orna; Croke, David T; Fienberg, Allen A; Greengard, Paul; Waddington, John L

    2004-09-01

    Given the critical role of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32) in the regulation of dopaminergic function, DARPP-32-null mutant mice congenic on the inbred C57BL/6 strain for 10 generations were examined phenotypically for their ethogram of responsivity to the selective D2-like receptor agonist RU 24213 (N-n-propyl-N-phenylethyl-p-3-hydroxyphenylethylamine) and the selective D2-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-methylaminobenzamide), using procedures that resolve all topographies of behavior in the natural repertoire. After vehicle challenge, levels of sniffing and rearing seated were reduced in DARPP-32 mutants; the injection procedure seems to constitute a "stressor" that reveals phenotypic effects of DARPP-32 deletion not apparent under natural conditions. Topographical effects of 0.3 to 10.0 mg/kg RU 24213, primarily induction of sniffing and ponderous locomotion with accompanying reductions in rearing, grooming, sifting and chewing, were not altered to any material extent in DARPP-32-null mice. However, topographical effects of 0.005 to 0.625 mg/kg YM 09151-2, namely, reduction in sniffing, locomotion, rearing, grooming, and chewing but not sifting, were essentially absent in DARPP-32 mutants. Thus, the D2-like receptor agonist-mediated ethogram was essentially conserved, whereas major elements of the corresponding D2-like receptor antagonist-mediated ethogram were essentially absent in DARPP-32-null mice. This suggests some relationship between 1) extent of tonic dopaminergic activation of DARPP-32 mechanisms and 2) compensatory mechanisms consequent to the developmental absence of DARPP-32, which may emerge to act differentially on individual elements of the DARPP-32 system. Critically, the present data indicate that phenotypic effects of a given gene deletion using an agonist acting on the system disrupted cannot be generalized to a

  3. [Isolation of inosine-5'-monophosphate from fish muscles].

    Science.gov (United States)

    Tugaĭ, V A; Akulin, V N; Epshteĭn, L M

    1987-01-01

    Conditions for transformation of tissue adenosine-5'-monophosphate (AMP) into inosine-5'-monophosphate (IMP) with the aid of endogenic AMP-aminohydrolase are developed resting on the studied properties of AMP-aminohydrolase (EC 3.5.4.6) from saltwater fish muscles (one of the enzymes participating in the nucleotide metabolism). Sorption of the nucleotide is performed on the activated charcoals A gamma-3 A gamma-5 which eluate IMP from acid solutions. It reduces the process of isolation, permits application of the acid wash solutions to remove salts; the alkaline ethyl alcohol-aid elution at the subsequent stages accelerates the process of nucleotide concentration by means of vacuum evaporation. The suggested approaches allow developing a simple method of IMP production from fish tissues which diminishes the cost of preparation.

  4. 5'-腺苷磷酰硫酸激酶及其R68K突变体对5'-腺苷-磷酸3'羟基的磷酸化%Phosphorylation of 3'-hydroxyl Group of 5'-adenosine Monophosphate by Adenosine 5'-phosphosulfate Kinase and Its R68K Mutant

    Institute of Scientific and Technical Information of China (English)

    杨洋; 黄园波; 马建辉; 孙梅好

    2013-01-01

    Sulfur,an essential element for all organisms,plays its biological roles mainly with valence starus of-2 and +6.Intracellular sulfate activating,first step for the assimilation of sulfate,includes biosynthesis of adenosine 5'-phosphosulfate (APS)catalyzed by ATP sulfurylase (ATPS) with side product pyrophosphate (PPi) and the subsequent phosphorylation of APS by adenosine 5'-phosphosulfate kinase(APSK) to form 3'-phosphoadenosine 5'-phosphosulfate (PAPS),the universal sulfuryl group donor.Although the mechanism of APS phosphorylation by APSK had been reported in detail,it remains to be elucidated that if the APS analogue-AMP could be phosphorylated by APSK.Preliminary studies showed that AMP could be phosphorylated by APSK with product 3'-phosphcadenosine 5'-phosphate (PAP).Structural analysis indicated that R68 would form hydrogen bonds with oxygen on phosphate and sulfate to stabilize the binding of APS.Shortening R group by R68K mutation would weaken the interaction to sulfate,strengthen interaction to phosphoate,and possibly discriminate APS from AMP.Our results clearly demonstrated that optimized substrate for APSK turned to AMP from APS,with 5 times enhancement of catalytic efficiency and binding affinity.R68K was also further successfully used as coupling enzymes to keep PAP concentration constant and eliminate product AMP in solution to facilitate the initial rate measurements for PAP hydrolysis activity catalyzed by yeast 3',5'-bisphosphate nucleotidase (YND).R68K was proved to be an alternating coupling enzyme to facilitate characterization of AMP producing enzymes.%硫作为生命活动的必需元素,主要以-2价和+6价发挥生物学功能.硫的同化代谢包括胞内活化、转移以及还原等反应.其活化是同化代谢的关键反应,包括ATP硫酸化酶(ATP sulfurylase,ATPS)催化硫酸盐与ATP反应生成腺苷-5'-磷酰硫酸(adenosine 5'-phosphosulfate,APS)和焦磷酸(pyrophosphate,PPi)以及腺苷-5'-磷酰硫酸激酶(adenosine 5

  5. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  6. 牙龈卟啉单胞菌合成环二腺苷酸的高效液相色谱-串联质谱法定性分析%Qualitative analysis of bis-(3’-5’)-cyclic dimeric adenosine monophosphate ofPorphyromonas gingivalis by high per-formance liquid chromatography coupled with mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    谭咏梅; 杨小军; 杜娟; 赵望泓; 陈晓丹; 侯晋

    2016-01-01

    目的:定性检测牙龈卟啉单胞菌(P. gingivalis)是否能产生细菌信号分子环二腺苷酸(c-di-AMP),为探索其在P. gingivalis生命代谢以及牙周炎免疫中的作用奠定基础。方法以P. gingivalis标准菌株ATCC33277为实验菌株,抽提细菌内核酸物质作为样品,配置c-di-AMP标准品,通过高效液相色谱-串联质谱法(HPLC-MS/MS)和高效液相色谱法(HPLC)对样品进行验证。结果 HPLC-MS/MS检出限按照信噪比(S/N)3∶1计算,c-di-AMP标准品出峰的保留时间为7.49 min,P. gingivalis提取物样品在保留时间为8.82 min时有目标峰出现(大于3 S/N)。HPLC检测结果表明,P. gingivalis核酸提取物样品及c-di-AMP标准品均在15.7 min处出现目标峰,且二者的紫外吸收光谱相同。结论牙龈卟啉单胞菌核酸提取物中含有c-di-AMP,牙龈卟啉单胞菌可以合成产生c-di-AMP。%Objective To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3’-5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. Methods P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Results Based on the signal/noise (S/N) for 3∶1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N>3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances presented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. Conclusion The nucleic

  7. AMPKα2基因克隆及其野生型和突变型真核表达载体的构建%Cloning of activating adenosine monophosphate-activated protein kinase alpha 2 subunit gene and construction of its wild-type and mutant eukaryotic expression vectors

    Institute of Scientific and Technical Information of China (English)

    罗招凡; 李芳萍; 丁鹤林; 程桦

    2009-01-01

    背景:实验表明,通过激活单磷酸腺苷激活的蛋白激酶(AMP-Activated Protein Kinase, AMPK)α2可以增加胰岛素的敏感性和骨骼肌葡萄糖的摄取,其有望成为预防和治疗2型糖尿病的新的生理和药理作用靶点.目的:克隆人的AMPKα2基因,并构建其野生型和突变型真核表达载体.设计:单一样本观察.时间及地点:实验于2007-04/2008-01在中山大学附属第二医院临床分子生物实验室完成.材料:QuikChange Ⅱ Site-Directed Mutagenesis Kit为Stratagene公司产品.真核表达载体pcDNA3.1(+),大肠杆菌DH5α为实验室保存.人骨胳肌组织来源于中山大学附属第二医院手术截肢患者,获患者知情同意,新鲜取材后液氮冷冻.方法:采用反转录一聚合酶链反应技术从人骨骼肌扩增AMPKα2基因,并将其克隆到T载体,通过测序对其进行鉴定.采用Quickchange定点诱变试剂盒对AMPKα2基因进行体外定点诱变,并将其野生和突变的编码基因亚克隆到真核表达载体pcDNA3.1中,通过酶切和测序进行鉴定.主要观察指标:①目的基因的克隆.②定点诱变.③真核表达质粒的构建.结果:成功克隆了AMPKα2基因,大小约1 700 bp,与已发表的AMPKα2同源性为99%,GenBank录入号EF056019.成功将AMPKα2第45位Lysine(AAA)突变为Arginine(AGA),成功构建了野生型和突变型pcDNA-AMPK α2重组质粒.结论:实验成功克隆了AMPKα2基因,构建了其野生型和突变型真核表达载体.%BACKGROUND: The experimental results showed that insulin sensitivity and glucose uptake in skeletal muscle could be improved by activating adenosine monophosphate-activated protein kinase a2 (AMPKα2). AMPKa2 is expected to become a new physiological and pharmacological target for the prevention and treatment of type 2 diabetes mellitus. OBJECTIVE: To clone human AMPKa2 subunit gene and to construct its wild-type and mutant eukaryotic expression vectors. DESIGN: A single sample observation

  8. Role of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein in neuronal signal transmission and integration%多巴胺和环磷酸腺苷调节的磷酸蛋白在神经元信号传递及整合中的地位

    Institute of Scientific and Technical Information of China (English)

    刘凤莲

    2005-01-01

    目的:阐明多巴胺和环磷酸腺苷调节的磷酸蛋白在神经元信号传递及整合中的中心作用,为神经系统疾病的治疗和功能恢复提供基础研究的假说理论.资料来源:应用计算机检索Medline数据库1980-01/2004-12的相关文献,检索词为"DARPP-32"和"role',限定文章语言种类为英文.同时计算机检索中国期刊全文数据库和万方数据库1980-01/2004-12的相关文献,检索词为"磷酸蛋白,作用",限定文章种类为中文.资料选择:对所选择的98篇资料进行初审,选取与目的有直接关系的文章,纳入标准:①随机对照试验.②专著中的章节.排除重复性研究和Meta分析.资料提炼:共收集到29篇关于多巴胺和环磷酸腺苷调节的磷酸蛋白的研究原著、综述和书籍文献.根据其相应的结果和讨论进行资料概括、综合和提炼.资料综合:①ARPP-32蛋白是脑内新纹状体等重要核团的神经元内存在的一种具有多方面信息调节与整合作用的蛋白质.②多巴胺、谷氨酸等神经递质与相应受体结合后,使多巴胺和环磷酸腺苷调节的磷酸蛋白的34-苏氨酸等磷酸化状态发生改变,继之影响磷酸酯酶Ⅰ、磷酸酯酶2B等重要磷酸酯酶的活性,从而使神经元内从各种途径获取的信息得以整合,神经元的生理功能及其控制的行为发生改变.③多巴胺和环磷酸腺苷调节的磷酸蛋白的功能与多种神经递质及其受体密切相关.④多巴胺和环磷酸腺苷调节的磷酸蛋白的功能可用基因敲除技术进行探究.结论:多巴胺和环磷酸腺苷调节的磷酸蛋白在复杂的神经元信号传递和整合过程中居于中心位置.对多巴胺和环磷酸腺苷调节的磷酸蛋白的研究也将为神经系统疾病如帕金森症、亨廷顿症、精神分裂症及吸毒成瘾等治疗和康复提供有效的依据和手段.%OBJECTIVE: To elucidate the central role of dopamine-and cyclic adenosine 3 ',5

  9. The Role of Adenosine Signaling in Headache: A Review

    Directory of Open Access Journals (Sweden)

    Nathan T. Fried

    2017-03-01

    Full Text Available Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP production or 5' AMP-activated protein kinase (AMPK activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine.

  10. 辛伐他汀抑制肝星状细胞活化及其对腺苷酸活化蛋白激酶活性的影响%Simvastatin inhibits activation of hepatic stellate cells and promotes activation of adenosine monophosphate activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    曹伟; 闫蕾; 王玮; 赵彩彦

    2012-01-01

    the underlying molecular mechanism ofthe cholesterol-blocking drug,simvastatin,in treating nonalcoholic fatty liver fibrosis.Method A rat model of nonalcoholic fatty liver fibrosis was established by feeding Wistar rats a fat-rich diet.After treatment with simvastatin (4 mg/kg/day),liver histological specimens were stained with hematoxylin-eosin and Masson's trichrome for microscopic analysis.Expression of adenosine monophosphate-activated protein kinase-alpha (AMPKα) was evaluated by reverse transcription-polymerase chain reaction (RT-PCR; for mRNA) and Western blotting (protein).The levels of serum total cholesterol (TC),triglycerides (TG),alanine aminotransferase (ALT),aspartate aminotransferase (AST),and tumor necrosis factor-alpha (TNFa) were measured by standard biochemical assays.The human hepatic stellate cell line,LX-2 (quiescent or activated),was treated with transforming growth factor-beta l (TGF-β1) alone,simvastatin alone,or TGF-β1 +simvastatin.RT-PCR and Western blotting were used to determine changes in AMPKα mRNA and protein expression,respectively.Results In the rat model of nonalcoholic fatty liver fibrosis,the extent of pathological changes in hepatic tissues correlated with severity of disease progression.The levels of serum TC,TG,ALT,AST and TNFα were increased significantly in model rats (vs.healthy controls; all,P< 0.01).AMPKα mRNA expression and activity was significantly decreased in model rats (vs.healthy controls; P< 0.01 and P< 0.05,respectively).Simvastatin,treatment significantly improved all of these parameters in model rats (vs.untreated model rats; all,P< 0.05).In vitro simvastatin treatment of human HSCs significantly increased AMPKα activity (quiescent LX-2:0.93 -0.10 vs.0.72±0.09,activated LX-2:0.72±0.10 vs.0.54±0.10,q=7.00,6.00; all,P<0.01),decreased a-smooth muscle actin expression (mRNA:0.30±0.02 vs.0.36±0.02,protein:0.30±0.03 vs.0.38±0.02,q=11.245,11.216; all,P<0.01),and decreased collagen I expression

  11. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S

    2009-01-01

    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  12. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    Science.gov (United States)

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  13. Effects of IL-4 and IL-13 on adenosine receptor expression and responsiveness of the human mast cell line 1

    NARCIS (Netherlands)

    Versluis, Mieke; Postma, Dirkje S.; Timens, Wim; Hylkema, Machteld N.

    2008-01-01

    Background: Inhalation of adenosine-5'-monophosphate (AMP) causes bronchoconstriction in asthma but not in healthy subjects. Bronchoconstriction upon AMP inhalation is thought to occur by histamine release and subsequent binding to receptors on airway smooth muscle cells. Methods: To explain enhance

  14. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  15. Inhibition by adenosine of histamine and leukotriene release from human basophils.

    Science.gov (United States)

    Peachell, P T; Lichtenstein, L M; Schleimer, R P

    1989-06-01

    Adenosine inhibited the release of histamine and leukotriene C4 (LTC4) from immunologically-activated basophils in a dose-dependent manner. Structural congeners of adenosine also attenuated the elaboration of these two mediators from stimulated basophils and a rank order of potency for the inhibition was observed following the sequence 2-chloroadenosine greater than or equal to N-ethylcarboxamidoadenosine (NECA) greater than adenosine greater than or equal to R-phenylisopropyladenosine (R-PIA) greater than or equal to S-PIA. These same nucleosides modulated the generation of LTC4 more potently than the release of histamine. A number of methylxanthines, which are antagonists of cell surface adenosine receptors, reversed the inhibition by adenosine and its congeners of the release of both histamine and LTC4 to varying extents. Dipyridamole and nitrobenzylthioinosine (NBTI), agents that block the intracellular uptake of adenosine, antagonized the inhibition of histamine release by adenosine (and 2-chloroadenosine) but failed to reverse the attenuation of LTC4 generation by the nucleoside. These same uptake blockers were unable to antagonize the inhibitory effects of NECA on either histamine or LTC4 release. In purified basophils, NECA and R-PIA, and in that order of decreasing reactivity, increased total cell cyclic adenosine monophosphate (cAMP) levels and inhibited the stimulated release of mediators. In total, these results suggest that the basophil possesses a cell surface adenosine receptor which, on the basis of both pharmacological and biochemical criteria, most closely conforms to an A2/Ra-like receptor. However, in addition to an interaction at the cell surface, studies with agents that block the intracellular uptake of adenosine suggest that the nucleoside may also exert intracellular effects when countering the release of histamine (but not LTC4).

  16. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH+) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer...

  17. Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media.

    Science.gov (United States)

    Sahoo, Jashobanta; Arunachalam, Rajendran; Subramanian, Palani S; Suresh, Eringathodi; Valkonen, Arto; Rissanen, Kari; Albrecht, Markus

    2016-08-08

    Coordinatively unsaturated double-stranded helicates [(H2 L)2 Eu2 (NO3 )2 (H2 O)4 ](NO3 )4 , [(H2 L)2 Tb2 (H2 O)6 ](NO3 )6 , and [(H2 L)2 Tb2 (H2 O)6 ]Cl6 (H2 L=butanedioicacid-1,4-bis[2-(2-pyridinylmethylene)hydrazide]) are easily obtained by self-assembly from the ligand and the corresponding lanthanide(III) salts. The complexes are characterized by X-ray crystallography showing the helical arrangement of the ligands. Co-ligands at the metal ions can be easily substituted by appropriate anions. A specific luminescence response of AMP in presence of ADP, ATP, and other anions is observed. Specificity is assigned to the perfect size match of AMP to bridge the two metal centers and to replace quenching co-ligands in the coordination sphere.

  18. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  19. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-01-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01). PMID:8385975

  20. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-03-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01).

  1. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    Science.gov (United States)

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  2. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5’-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris, semiaquatic (Lontra longicaudis annectens and terrestrial (Sus scrofa

    Directory of Open Access Journals (Sweden)

    Myrna eBarjau Perez-Milicua

    2015-07-01

    Full Text Available Aquatic and semiaquatic mammals have the capacity of breath hold (apnea diving. Northern elephant seals (Mirounga angustirostris have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens can hold their breath for about 30 sec. Such periods of apnea may result in reduced oxygen concentration (hypoxia and reduced blood supply (ischemia to tissues. Production of adenosine 5’-triphosphate (ATP requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa, are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal (n=11, semiaquatic (neotropical river otter (n=4 and terrestrial (domestic pig (n=11. Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT was determined by spectrophotometry, and activity of inosine 5’-monophosphate dehydrogenase (IMPDH and the concentration of hypoxanthine (HX, inosine 5’-monophosphate (IMP, adenosine 5’-monophosphate (AMP, adenosine 5’-diphosphate (ADP, ATP, guanosine 5’-diphosphate (GDP, guanosine 5’-triphosphate (GTP, and xanthosine 5’-monophosphate (XMP were determined by high-performance liquid chromatography (HPLC. The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise, aquatic and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  3. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  4. Adenosine improves cardiomyocyte respiratory efficiency.

    Science.gov (United States)

    Babsky, A M; Doliba, M M; Doliba, N M; Osbakken, M D

    1998-01-01

    The role of adenosine on the regulation of mitochondrial function has been studied. In order to evaluate this the following experiments were done in isolated rat cardiomyocites and mitochondria using polarographic techniques. Cardiomyocyte oxygen consumption (MVO2) and mitochondrial respiratory function (State 3 and State 4, respiratory control index, and ADP/O ratio) were evaluated after exposure to adenosine. Cardiomyocyte MVO2 was significantly lower in cells previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) than in cells not exposed to adenosine (control). Addition of dipyridamole (10 microM) or 8-(p-Sulfophenyl) theophylline (50 microM) to cardiomyocytes before adenosine incubation prevented the adenosine-induced changes in MVO2. Mitochondria obtained from isolated perfused beating heart previously perfused with adenosine (10 microM, 30 min heart perfusion) also resulted in significant increases in ADP/O and respiratory control index compared to matching control. Mitochondria isolated from cardiomyocytes previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) resulted in a significant increase in mitochondrial ADP/O ratio compared to control. Adenosine-induced decrease in cardiomyocyte MVO2 may be related to an increase in efficiency of mitochondrial oxidative phosphorylation, and more economical use of oxygen, which is necessary for survival under ischemic stress.

  5. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate.

    Science.gov (United States)

    Dhaliwal, Balvinder; Ren, Jingshan; Lockyer, Michael; Charles, Ian; Hawkins, Alastair R; Stammers, David K

    2006-08-01

    The crystal structure of Staphylococcus aureus cytidine monophosphate kinase (CMK) in complex with cytidine 5'-monophosphate (CMP) has been determined at 2.3 angstroms resolution. The active site reveals novel features when compared with two orthologues of known structure. Compared with the Streptococcus pneumoniae CMK solution structure of the enzyme alone, S. aureus CMK adopts a more closed conformation, with the NMP-binding domain rotating by approximately 16 degrees towards the central pocket of the molecule, thereby assembling the active site. Comparing Escherichia coli and S. aureus CMK-CMP complex structures reveals differences within the active site, including a previously unreported indirect interaction of CMP with Asp33, the replacement of a serine residue involved in the binding of CDP by Ala12 in S. aureus CMK and an additional sulfate ion in the E. coli CMK active site. The detailed understanding of the stereochemistry of CMP binding to CMK will assist in the design of novel inhibitors of the enzyme. Inhibitors are required to treat the widespread hospital infection methicillin-resistant S. aureus (MRSA), currently a major public health concern.

  6. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya

    2010-02-01

    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  7. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  8. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    Science.gov (United States)

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  9. Some neural effects of adenosin.

    Science.gov (United States)

    Haulică, I; Brănişteanu, D D; Petrescu, G H

    1978-01-01

    The possible neural effects of adenosine were investigated by using electrophysiological techniques at the level of some central and peripheral synapses. The evoked potentials in the somatosensorial cerebral cortex are influenced according to both the type of administration and the level of the electrical stimulation. While the local application does not induce significant alterations, the intrathalamic injections and the perfusion of the IIIrd cerebral ventricle do change the distribution of activated units at the level of different cortical layers especially during the peripheral stimulation. The frequency of spontaneous miniature discharges intracellularly recorded in the neuromuscular junction (mepp) is significantly depressed by adenosine. This effect is calcium- and dose-dependent. The end plate potentials (EPP) were also depressed. The statistical binomial analysis of the phenomenon indicated that adenosine induces a decrease if the presynaptic pool of the available transmitter. The data obtained demonstrate a presynaptic inhibitory action of adenosine beside its known vascular and metaholic effects.

  10. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.

    Science.gov (United States)

    Zhou, Ling; Xue, XiaoFeng; Zhou, JinHui; Li, Yi; Zhao, Jing; Wu, LiMing

    2012-09-12

    To obtain insight into the metabolic regulation of adenosine 5'-triphosphate (ATP) in royal jelly and to determine whether ATP and its catabolites can be used as objective parameters to evaluate the freshness and quality of royal jelly (RJ), a rapid ultraperformance liquid chromatography (UPLC) method has been developed for feasible separation and quantitation of ATP and its catabolites in RJ, namely, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx). The analytes in the sample were extracted using 5% precooled perchloric acid. Chromatographic separation was performed on a Waters Acquity UPLC system with a Waters BEH Shield RP18 column and gradient elution based on a mixture of two solvents: solvent A, 50 mM phosphate buffer (pH 6.5); and solvent B, acetonitrile. The recoveries were in the range of 86.0-102.3% with RSD of no more than 3.6%. The correlation coefficients of six analytes were high (r(2) ≥ 0.9988) and within the test ranges. The limits of detection and quantification for the investigated compounds were lower, at 0.36-0.68 and 1.22-2.30 mg/kg, respectively. The overall intra- and interday RSDs were no more than 1.8%. The developed method was successfully applied to the analysis of the analytes in samples. The results showed that ATP in RJ sequentially degrades to ADP, AMP, IMP, HxR, and Hx during storage.

  11. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  12. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Lange, Bernd M. (Pullman, WA)

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  13. Characterization of inosine monophosphate dehydrogenase from Staphylococcus aureus ATCC12600 and its involvement in biofilm formation

    Directory of Open Access Journals (Sweden)

    S. Yeswanth

    2013-10-01

    Full Text Available Background: In Staphylococcus aureus purine metabolism plays a crucial role in the formation of biofilm which is a key pathogenic factor. The present study is aimed in the characterization of inosine monophosphate dehydrogenase (IMPDH from Staphylococcus aureus ATCC 12600. Methods: IMPDH gene was amplified using primers designed from IMPDH gene sequence of S. aureus reported in the database. Then polymerase chain reaction (PCR product was cloned in the Sma I site of M13mp18 and expressed in Escherichia coli JM109. The recombinant IMPDH (rIMPDH was overexpressed with 1 mM isopropyl beta-D-1- thiogalactopyranoside (IPTG; Michaelis constant (Km, maximum enzyme velocity (Vmax and catalytic constant (Kcat of expressed IMPDH were determined. Results: The enzyme kinetics of IMPDH grown under aerobic conditions showed a Km of 43.71±1.56 µM, Vmax of 0.247±0.84/µM/mg/min and Kcat of 2.74±0.015/min while in anaerobic conditions the kinetics showed Km of 42.81±3.154/ µM, Vmax of 0.378±0.036 µM/mg/min and Kcat of 4.78±0.021 /min, indicating elevated levels of IMPDH activity under anaerobic conditions. Three-folds increased activity in the presence of 1 mM adenosine triphosphate (ATP correlated with biofilm formation. The kinetics of pure rIMPDH were close to the native IMPDH of S. aureus ATCC12600 and the enzyme showed single band in sodium dodecyl sulphate polyacrylamide gel electrophoresis with a molecular weight of 53 KDa. Conclusions: Elevated activity of IMPDH was observed in S. aureus grown under anaerobic conditions and this was correlated with the biofilm formation indicating the linkage between purine metabolism and pathogenesis.

  14. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.

    Science.gov (United States)

    Gorla, Suresh Kumar; Kavitha, Mandapati; Zhang, Minjia; Chin, James En Wai; Liu, Xiaoping; Striepen, Boris; Makowska-Grzyska, Magdalena; Kim, Youngchang; Joachimiak, Andrzej; Hedstrom, Lizbeth; Cuny, Gregory D

    2013-05-23

    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.

  15. Regulation of adenosine levels during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Stephanie CHU; Wei XIONG; Dali ZHANG; Hanifi SOYLU; Chao SUN; Benedict C ALBENSI; Fiona E PARKINSON

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events,and attenuates the excitotoxic neuronal injury.Adenosine is produced both intracellularly and extracellularly,and nucleoside transport proteins transfer adenosine across plasma membranes.Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption,cellular release of ATP,metabolism of extracellular ATP (and other adenine nucleotides),adenosine influx,adenosine efflux and adenosine metabolism.Recent studies have used genetically modified mice to investigate the relative contributions of intra-and extracellular pathways for adenosine formation.The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase.From these studies,we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures,but not in hippocampal slices or in vivo mice exposed to ischemic conditions.

  16. Assay of adenosine 3',5' cyclic monophosphate by stimulation of protein kinase: a method not involving radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Handa, A.K.; Bressan, R.A.

    1980-03-01

    In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many /sup 32/P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of (..gamma..-/sup 32/P)ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of (..gamma..-/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: (ATP) = (ATP)/sub 0/ e/sup -(cAMP)kt/. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the potein kinase stimulation assay based on transfer of (/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.

  17. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone production, suggesting that the effect of leptin on steroidogenesis in granulosa cells is receptor dependent. In summary, leptin acts through the MAPK pathway to downregulate cAMP-induced StAR protein expression and progesterone production in immortalized human granulosa cells. These results suggest a possible mechanism by which gonadal steroidogenesis could be suppressed in obese women.

  18. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild......-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P

  19. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr...

  20. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    Science.gov (United States)

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  1. Pathologic overproduction: the bad side of adenosine.

    Science.gov (United States)

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, increased by hypoxia, ischemia and tissue damage that mediates a number of physiopathological effects by interacting with four G-protein-coupled receptors, identified as A1 , A2A , A2B , and A3 . Physiological and acutely-increased adenosine is associated with beneficial effects mostly including vasodilation and decrease of inflammation. In contrast chronic overproduction of adenosine occurs in important pathological states, where long lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review we describe and critically discuss the pathologic overproduction of adenosine analysing when, where and how adenosine exerts its detrimental effects through the body.

  2. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  3. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  4. Adenosine, Energy Metabolism, and Sleep

    Directory of Open Access Journals (Sweden)

    Tarja Porkka-Heiskanen

    2003-01-01

    Full Text Available While the exact function of sleep remains unknown, it is evident that sleep was developed early in phylogenesis and represents an ancient and vital strategy for survival. Several pieces of evidence suggest that the function of sleep is associated with energy metabolism, saving of energy, and replenishment of energy stores. Prolonged wakefulness induces signs of energy depletion in the brain, while experimentally induced, local energy depletion induces increase in sleep, similarly as would a period of prolonged wakefulness. The key molecule in the induction of sleep appears to be adenosine, which induces sleep locally in the basal forebrain.

  5. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y.; DiPiero, A.; Lockette, W.

    1986-03-01

    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  6. Poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith coupled to high-performance liquid chromatography for the determination of adenosine phosphates in royal jelly.

    Science.gov (United States)

    Liu, Dan; Zhang, Tianbin; Cheng, Yechun; Jia, Qiong

    2014-07-01

    A polymer monolith microextraction method coupled with high-performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused-silica capillaries using thermal initiation free-radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linker, cyclohexanol, and 1-dodecanol as the porogen. N-Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate-co-ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high-performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9-104.7% when applied to the determination of the adenosines in five royal jelly samples.

  7. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    Science.gov (United States)

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    Science.gov (United States)

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  9. Repeated administration of adenosine increases its cardiovascular effects in rats.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  10. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor.

    Science.gov (United States)

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin

    2016-03-01

    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications.

  11. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver].

    Science.gov (United States)

    Kolos, I K; Makarchikov, A F

    2014-01-01

    In animals, thiamine monophosphate (TMP) is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levamisole in uncompetitive manner with K1 of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase.

  12. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  13. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    Science.gov (United States)

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  14. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    Science.gov (United States)

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  15. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  16. Adenosine stress protocols for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  17. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  18. Modulation and metamodulation of synapses by adenosine.

    Science.gov (United States)

    Ribeiro, J A; Sebastião, A M

    2010-06-01

    The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.

  19. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Directory of Open Access Journals (Sweden)

    Kubilay Oransay

    2014-01-01

    Full Text Available Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist, 8-(-3-chlorostyryl-caffeine (CSC; A 2a receptor antagonist, or dimethyl sulfoxide (DMSO administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl adenine (EHNA; inhibitor of adenosine deaminase and S-(4-Nitrobenzyl-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport. After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP, heart rate (HR,  QRS duration and QT interval were evaluated. Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group. Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.

  20. Squalenoyl nucleoside monophosphate nanoassemblies: new prodrug strategy for the delivery of nucleotide analogues.

    Science.gov (United States)

    Caron, Joachim; Reddy, L Harivardhan; Lepêtre-Mouelhi, Sinda; Wack, Séverine; Clayette, Pascal; Rogez-Kreuz, Christine; Yousfi, Rahima; Couvreur, Patrick; Desmaële, Didier

    2010-05-01

    4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.

  1. The role of adenosine in Alzheimer's disease.

    Science.gov (United States)

    Rahman, Anisur

    2009-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  2. Adenosine: An immune modulator of inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  3. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    Science.gov (United States)

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H2S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria.

  4. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  5. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-10-01

    Full Text Available Zr(IV can form phosphate and Zr(IV (–PO32−–Zr4+– complex owing to the high affinity between Zr(IV with phosphate. Zr(IV can induce the aggregation of gold nanoparticles (AuNPs, while adenosine triphosphate(ATP can prevent Zr(IV-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRAsensor for ATP have been developed using AuNPs based on the high affinity between Zr(IVwith ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV. After the addition of ATP, ATP reacts with Zr(IV and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV, ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945 with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  6. The alterations in adenosine nucleotides and lactic acid levels in striated muscles following death with cervical dislocation or electric shock.

    Science.gov (United States)

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Bakan, Ebubekir; Kök, Ahmet Nezih; Kocoglu, Hasan

    2003-01-01

    In this study, changes in adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid levels in masseter, triceps, and quadriceps muscles obtained from right and left sides of Spraque-Dawley rats following two different types of death were investigated. The samples were taken immediately and 120 minutes after death occurred either by cervical dislocation or electric shock. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than that of samples obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in masseter muscles of the rats killed with electric shock. When the rats killed with cervical dislocation and with electric shock were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of electric shock, ATP is consumed faster because of immediate contractions during death, resulting in a faster rigor mortis. This finding was confirmed with higher lactic acid levels in muscles of the rats killed with electric shock than the other group. In the cervical dislocation and electric shock group rats, ATP decreased in different levels in the three different muscle types mentioned above, being much decline in masseter in cervical dislocation and in quadriceps in electric shock group. This may be caused by low mass and less glycogen storage of masseter and by near localisation of electrode to quadriceps. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  7. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    OpenAIRE

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  8. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    Science.gov (United States)

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  9. Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats

    Institute of Scientific and Technical Information of China (English)

    Hai-chun MA; Yan-fen WANG; Chun-sheng FENG; Hua ZHAO; Shuji DOHI

    2005-01-01

    Aim: To investigate the antinociceptive effect of adenosine agonist Rphenylisopropyl-adenosine (R-PIA) given to conscious rats by intracerebroventricular (ICV) and intrathecal (IT), and identify the effect of R-PIA on minimum alveolar concentration (MAC) of halothane with pretreatment of A1 receptor an tagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or K+ channel blocker 4-aminopyridine (4-AP). Methods: Sprague-Dawley rats were implanted with 24 gauge stainless steel guide cannula using stereotaxic apparatus and ICV method, and an IT catheter (PE-10, 8.5 cm) was inserted into the lumbar subarachnoid space, while the rats were under pentobarbital anesthesia. After one week of recovery from surgery, rats were randomly assigned to one of the following protocols: MAC of halothane, or tail-flick latency. All measurements were performed after R-PIA (0.8-2.0 μg) microinjection into ICV and IT with or without pretreatment of DPCPX or 4-AP. Results: Microinjection of adenosine agonist R PIA in doses of 0.8-2.0 μg into ICV and IT produced a significant dose- and time dependent antinociceptive action as reflected by increasing latency times and ICV administration of adenosine agonist R-PIA (0.8 μg) reducing halothane anes thetic requirements (by 29%). The antinociception and reducing halothane requirements effected by adenosine agonist R-PIA was abolished by DPCPX and 4-AP. Conclusion: ICV and IT administration of adenosine agonist R-PIA produced an antinociceptive effect in a dose-dependent manner and decreased hal othane MAC with painful stimulation through activation of A1 receptor subtype, and the underlying mechanism involves K+ channel activation.

  10. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  11. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  12. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  13. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  14. Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma.

    Science.gov (United States)

    Zhang, Jun-qing; Yao, Qing-he; Kuang, Yong-qin; Ma, Yuan; Yang, Li-bin; Huang, Hai-dong; Cheng, Jing-ming; Yang, Tao; Liu, En-yu; Liang, Liang; Fan, Ke-xia; Zhao, Kai; Xia, Xun; Gu, Jian-wen

    2014-10-01

    Our aim was to investigate the expression of micro-RNA-200b (miR-200b) and cAMP-responsive element-binding protein 1 (CREB-1) in astrocytoma and its efficacy for predicting outcome. Both miR-200b and CREB-1 messenger RNA expression was measured in 122 astrocytomas and 30 nonneoplastic brain specimens by quantitative real-time polymerase chain reaction. Expression of miR-200b was significantly lower in astrocytoma than in nonneoplastic brain (P RNA expression was significantly elevated in the tumors (P < .001). Both miR-200b down-regulation and CREB-1 up-regulation were significantly associated with advanced pathologic grade (P = .002 and P = .006, respectively). Low miR-200b expression correlated negatively with Karnofsky performance score (P = .03), and high CREB-1 expression correlated positively with mean tumor diameter (P = .03). By Kaplan-Meier analysis, low miR-200b, high CREB-1, and coexistence of abnormal miR-200b and CREB-1 expression (low miR-200b/high CREB-1) were predictive of shorter progression-free survival and overall survival in both grade III and grade IV astrocytoma. By multivariate analysis, only low miR-200b/high CREB-1 expression was an independent prognostic factor for poor prognosis in astrocytoma of advanced grade. Both miR-200b and CREB-1 may play important cooperative roles in the progression of human astrocytoma. The efficacy of miR-200b and CREB-1 together as a predictor of prognosis in astrocytoma patients is shown for the first time.

  15. Action of cyclic adenosine 3',5' monophosphate on L-14C-leucine incorporation in a system of rough microsomes from bovine thyroid gland.

    Science.gov (United States)

    Wägar, G

    1976-01-01

    The effect of cAMP and varying concentrations of potassium (18-72 mM) on the incorporation of L-14C-leucine into TCA-precipitable protein was studied in a cell-free system comprising rough thyroid microsomes. cAMP (2mM) alone or in combination with theopylline increased the incorporation of leucine into ribosome-bound (after DOC treatment) and extra-vesicular material, but had no significant effect on the DOC-released intravesicular material. Increase of the K+ concentration from 18 mM to 72 mM affected the incorporation of leucine into the microsomal compartments in much the same way as cAMP did. The effect of cAMP and potassium seems to be due in partly to enhanced activation of amino acids, since in a system of pH5 fraction and cell sap, both cAMP and K+ increased the incorporation of 14C-leucine into cold TCA-precipitable material. Experiments with 14C-leucyl-tRNA as a marker suggest that the effect of cAMP and K+ is a consequence not only of increased activation of amino acids, but also of increased binding of activated amino acyl-tRNA to ribosomes.

  16. Parathyroid hormone induces transcription of collagenase in rat osteoblastic cells by a mechanism using cyclic adenosine 3',5'-monophosphate and requiring protein synthesis

    Science.gov (United States)

    Scott, D. K.; Brakenhoff, K. D.; Clohisy, J. C.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    Collagenase is synthesized and secreted by rat osteoblastic cells in response to PTH. We have previously demonstrated that this effect involves a substantial increase in collagenase mRNA via transcription. Northern blots and nuclear run-on assays were performed to further investigate the induction of collagenase by PTH in the rat osteoblastic cell line UMR 106-01. Detectable amounts of collagenase mRNA were not apparent until 2 h of PTH treatment, showed the greatest abundance at 4 h, and declined to approximately 30% of maximum by 8 h. The changes in the rate of transcription of the collagenase gene in response to PTH paralleled and preceded the changes in the steady state mRNA levels. After an initial lag period of about 1 h, collagenase transcription rates increased from very low levels to a maximal response at 2 h, returning to about 50% of maximum by 10 h. The increased transcriptional rate of the collagenase gene was found to be dependent on the concentration of PTH, with a half-maximal response at approximately 7 x 10(-10) M rat PTH-(1-34) and a maximal effect with a dose of 10(-8) M. The PTH-mediated induction of collagenase transcriptional activity was completely abolished by cycloheximide, while transcription of the beta-actin gene was unaffected by the translation inhibitor. These data suggest that a protein factor(s) is required for PTH-mediated transcriptional induction of collagenase. Since PTH increases intracellular levels of several potential second messengers, agents that mimic these substances were employed to determine which signal transduction pathway is predominant in the PTH-mediated stimulation of collagenase transcription.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  18. Transcriptional regulation of inhibin beta B messenger ribonucleic acid levels in TM.4 or primary rat Sertoli cells by 8-bromo-cyclic adenosine monophosphate.

    Science.gov (United States)

    Najmabadi, H; Rosenberg, L A; Yuan, Q X; Reyaz, G; Bhasin, S

    1993-04-01

    FSH, a major regulator of inhibin production in the testis, is believed to exert its effects via cAMP second messenger system. Inhibin alpha-subunit gene appears to be regulated by cAMP and has a palindromic cAMP response element sequence TGACGTCA. However, the regulation of the inhibin beta B-subunit gene by cAMP has been less clear. It has been assumed that beta B may not be regulated by cAMP, based mainly on observations that FSH stimulates only alpha, not beta B, mRNA levels, and that the 5'-up-stream regulatory region of the beta B gene does not contain the classical cAMP response element. However, we have observed that 8-bromo-cAMP stimulates beta B mRNA levels in both primary Sertoli (approximately 2-fold) and TM.4 cells (approximately 5-fold). We examined whether this cAMP-induced increase in beta B mRNA levels is the result of increased transcription or altered mRNA stability. Data from nuclear run-on assays demonstrate about a 2-fold increase in relative mRNA synthesis rates in primary Sertoli-cells and about a 4- to 5-fold increase in TM.4 cells. Transfection studies in TM.4 and JEG.3 cell lines with beta B:luciferase chimeric reporter gene constructs containing 1.5 kilobases of the beta B 5'-up-stream regulatory region revealed marked cAMP induction of reporter gene activity in both cell types.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  20. Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase

    OpenAIRE

    Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Gregory D Cuny

    2009-01-01

    Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole ...

  1. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    Science.gov (United States)

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.

  2. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  3. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  4. Electroacupuncture improves neuropathic pain Adenosine,adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously

    Institute of Scientific and Technical Information of China (English)

    Wen Ren; Wenzhan Tu; Songhe Jiang; Ruidong Cheng; Yaping Du

    2012-01-01

    Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals.When acupuncture was applied in a rat model,adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine,which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process.Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture.The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves.In neuropathic pain,there is upregulation of P2X purinoceptor 3(P2X3)receptor expression in dorsal root ganglion neurons.Conversely,the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated.The pathways upon which electroacupuncture appear to act are interwoven with pain pathways,and electroacupuncture stimuli converge with impulses originating from painful areas.Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

  5. Comorbidities in Neurology: Is Adenosine the Common Link?

    Science.gov (United States)

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  6. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    1997-01-01

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of ad

  7. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  8. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  9. Temporal variations of adenosine metabolism in human blood.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  10. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a respons...... activation from changes in vascular adenosine concentration, a characteristic that is ideally suited for the role of renal adenosine as a paracrine factor in the control of glomerular function.......Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a response...... that has been suggested to be an organ-specific version of metabolic control designed to restrict organ perfusion when transport work increases. However, the vasoconstriction elicited by an intravenous infusion of adenosine is only short lasting, being replaced within 1-2 min by vasodilatation. It appears...

  11. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    Science.gov (United States)

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  12. Adenosine and Preexcitation Variants: Reappraisal of Electrocardiographic Changes.

    Science.gov (United States)

    Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo

    2016-07-01

    Intravenous adenosine is a short-acting blocker of the atrioventricular node that has been used to unmask subtle or latent preexcitation, and also to enable catheter ablation in selected patients with absent or intermittent preexcitation. Depending on the accessory pathway characteristics, intravenous adenosine may produce specific electrocardiographic changes highly suggestive of the preexcitation variant. Herein, we view different ECG responses to this pharmacological test in various preexcitation patterns that were confirmed by electrophysiological studies. Careful analysis of electrocardiographic changes during adenosine test, with emphasis on P-delta interval, preexcitation degree, and atrioventricular block, can be helpful to diagnose the preexcitation variant/pattern.

  13. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    Science.gov (United States)

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  14. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Yáñez, L; Vidrio, S; Díaz-Muñoz, M

    1995-02-01

    Adenosine proved to be an effective hepatoprotector increasing the survival rate of rats receiving lethal doses of CCl4. Searching for the mechanism of action, we found that adenosine transiently prevents the necrotic liver damage associated to an acute CCl4 treatment. The antilipoperoxidative action of the nucleoside was evidenced by a decrease of TBA-reactive products and the diene conjugates elicited by the hepatotoxin. Adenosine's protective effect was demonstrated by reverting the decrease of cytochrome P-450 while preserved intact the activity of the microsomal enzyme glucose-6-phosphatase. CCl4 promoted an increase in the oxidant stress through an enhancement in oxidized glutathione levels. This action was also completely counteracted by the nucleoside. Adenosine was unable to prevent CCl4 activation and, even, increased .CCl3 formation in the presence of PBN in vivo. However, in the presence of the nucleoside, irreversible binding of 14CCl4 to the microsomal lipid fraction of the treated animals was decreased. These results suggest that adenosine protective action might be exerted at the level of the propagation reaction following CCl4 activation. Two possible mechanisms were associated to the nucleoside protection: (1) the peroxide-metabolyzed enzymes, GSH-per, showed a marked increase after 30 minutes of adenosine treatment, which was potentiated by the hepatotoxin, suggesting an important role of this enzyme in the nucleoside's action; (2) the adenosine catabolism induced an increase in uric acid level, and allopurinol, a purine metabolism inhibitor, prevented such elevation as well as the antilipoperoxidative action of adenosine and the increase of GSH-per associated with the nucleoside treatment. These facts strongly suggest that the protective effect elicited by adenosine is not a direct one, but rather is related to its catabolic products, such as uric acid, which has been recognized as a free radical scavenger.

  15. Inhibition of uptake of adenosine into human blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Trieschnigg, A.C.

    1980-01-01

    Adenosine transport into human blood platelets is mediated by two independent systems with different affinities. Both systems transport only purine nucleosides and no pyrimidine nucleosides. In experiments with differently substituted purine nucleosides, purines and analogues, differences in carrier

  16. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    OpenAIRE

    Kathryn Victoria Whitmore; Hubert Bobby Gaspar

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidenc...

  17. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Science.gov (United States)

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-01-01

    Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523

  18. The A3 adenosine receptor: history and perspectives.

    Science.gov (United States)

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  19. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Directory of Open Access Journals (Sweden)

    Nedeljkovic Milan

    2003-06-01

    Full Text Available Abstract Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  20. 1-(beta-D-Erythrofuranosyl)adenosine.

    Science.gov (United States)

    Kline, Paul C; Zhao, Hongqiu; Noll, Bruce C; Oliver, Allen G; Serianni, Anthony S

    2010-04-01

    The title compound, also known as beta-erythroadenosine, C(9)H(11)N(5)O(3), (I), a derivative of beta-adenosine, (II), that lacks the C5' exocyclic hydroxymethyl (-CH(2)OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is (O)T(1)-E(1) (C1'-exo, east), with pseudorotational parameters P and tau(m) of 114.4 and 42 degrees, respectively. In contrast, the P and tau(m) values are 170.1 and 46 degrees, respectively, in (IB), consistent with a (2)E-(2)T(3) (C2'-endo, south) conformation. The N-glycoside conformation is syn (+sc) in (IA) and anti (-ac) in (IB). The crystal structure, determined to a resolution of 2.0 A, of a cocrystal of (I) bound to the enzyme 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near-ideal (O)E (east) conformation (P = 90 degrees and tau(m) = 42 degrees) and the base in an anti (-ac) conformation.

  1. Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch.

    Science.gov (United States)

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Kachler, Sonja; Falgner, Nico; Marucci, Gabriella; Thomas, Ajiroghene; Cristalli, Gloria; Volpini, Rosaria; Klotz, Karl-Norbert

    2014-01-15

    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N(6)-position. In contrast, the adenosine-5'-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5'-substituents on ligand-target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation.

  2. Osmium (VI) complexes of the 3', 5'-dinucleoside monophosphates, ApU and UpA.

    Science.gov (United States)

    Daniel, F B; Behrman, E J

    1976-02-10

    The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.

  3. Corticosteroid-Responsive Pulmonary Toxicity Associated with Fludarabine Monophosphate: A Case Report

    Directory of Open Access Journals (Sweden)

    Milda Rudzianskiene

    2012-12-01

    Full Text Available Fludarabine monophosphate is an effective drug for the treatment of lymphoid malignancies. Myelosuppression, opportunistic infections, and autoimmune hemolytic anemia are the most common side effects of fludarabine. Herein we report a 55-year-old female that presented with fever and dyspnea after completing her third cycle of FMD (fludarabine, mitoxantrone, and dexamethasone chemotherapy for stage IV non-Hodgkin follicular lymphoma. Chest X-ray revealed bilateral pneumofibrotic changes and chest CT showed bilateral diffuse interstitial changes with fibrotic alterations. No evidence of infectious agents was noted. The patient had a reduced carbon monoxide transfer factor (45%. Her symptoms and radiographic findings resolved following treatment with prednisolone. The literature contains several cases of fludarabine-associated interstitial pulmonary toxicity that responded to steroid therapy. Fludarabine-induced pulmonary toxicity is reversible with cessation of the drug and administration of glucocorticosteroids.

  4. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P. (TGRI); (Toronto)

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  5. Role of A3 adenosine receptor in diabetic neuropathy.

    Science.gov (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  6. Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Myocardial perfusion associates with clinical syndromes and prognosis.Adenosine could improve myocardial perfusion of acute myocardial infarction within 6 hours,but few data are available on late perfusion of myocardial infarction (MI).This study aimed at quantitatively evaluating the value of intracoronary adenosine improving myocardial perfusion in late reperfused MI with myocardial contrast echocardiography(MCE).Methods Twenty-six patients with anterior wall infarcts were divided randomly into 2 groups:adenosine group(n=12) and normal saline group(n=14).Their history of myocardial infarction was about 3-12 weeks.Adenosine or normalsaline was given when the guiding wire crossed the lesion through percutaneous coronary intervention(PCI),then the balloon was dilated and stent(Cypher/Cypher select)was implanted at the lesion.Contrast pulse sequencing MCE with Sonovue contrast via the coronary route was done before PCI and 30 minutes after PCI.Video densitometry and contrast filled-blank area were calculated with the CUSQ off-line software.Heart function and cardiac events were followed up within 30 days.Results Perfusion in the segments of the criminal occlusive coronary artery in the adenosine group was better than that in the saline group(5.71±0.29 vs 4.95±1.22,P<0.05).Ischemic myocardial segment was deminished significantly afterPCI,but the meliorated area was bigger in the adenosine group than in the saline group((1.56±0.60)cm2 vs(1.02±0.56) cm2,P<0.05).The video densitometry in critical segments was also improved significantly in the adenosine group (5.53±0.36 vs 5.26±0.35,P<0.05).Left ventricular ejection fraction(LVEF)was improved in all patients after PCI,but EF was not significant between the two groups((67±6)% vs(62±7)%,P>0.05).There was no in-hospital or 30-day major adverse cardiac event(MACE)in the adenosine group but 3 MACE in the saline group in 30 days after PCI.Conclusions Adenosine could improve myocardial microvascular

  7. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    Science.gov (United States)

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  8. Correlation between blood adenosine metabolism and sleep in humans.

    Science.gov (United States)

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  9. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  10. Development of coronary vasospasm during adenosine-stress myocardial perfusion CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Aeo; Kwon, Woon Jeong [Dept. of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2015-06-15

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  11. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  12. Adenosine A(3) receptor-induced CCL2 synthesis in cultured mouse astrocytes

    NARCIS (Netherlands)

    Wittendorp, MC; Boddeke, HWGM; Biber, K

    2004-01-01

    During neuropathological conditions, high concentrations of adenosine are released, stimulating adenosine receptors in neurons and glial cells. It has recently been shown that stimulation of adenosine receptors in glial cells induces the release of neuroprotective substances such as NGF, S-100beta,

  13. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  14. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    Science.gov (United States)

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  15. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases.

    Science.gov (United States)

    Bucurenci, N; Sakamoto, H; Briozzo, P; Palibroda, N; Serina, L; Sarfati, R S; Labesse, G; Briand, G; Danchin, A; Bărzu, O; Gilles, A M

    1996-02-02

    CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.

  16. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  17. Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies.

    Science.gov (United States)

    Maksimenko, Andrei; Caron, Joachim; Mougin, Julie; Desmaële, Didier; Couvreur, Patrick

    2015-03-30

    Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP). This amphiphilic conjugate self-organized in water into unilamellar vesicles with a mean diameter of 100 nm. In this study the antitumor efficacy of SQdFdC-MP nanoassemblies (NAs) on chemoresistant and chemosensitive pancreatic adenocarcinoma models have been investigated. Cell viability assays showed that SQdFdC-MP NAs displayed higher antiproliferative and cytotoxic effects, particularly in chemoresistant pancreatic tumor cells. In in vivo studies, SQdFdC-MP NAs decreased significantly the growth (∼70%) of human MiaPaCa2 xenografts, also preventing tumor cell invasion, whereas native dFdC did not display any anticancer activity when tumor growth inhibition was only 35% with SQdFdC NAs. These results correlated with a reduction of Ki-67 antigen and the induction of apoptosis mediated by caspase-3 activation in tumor cells. These findings demonstrated the feasibility of utilizing SQdFdC-MP NAs to make tumor cells more sensitive to gemcitabine and thus providing an efficient new therapeutic alternative for pancreatic adenocarcinoma.

  18. PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS OF INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) ACTIVITY IN MMF-TREATED HCT RECIPIENTS

    Science.gov (United States)

    Li, Hong; Mager, Donald E.; Sandmaier, Brenda M.; Storer, Barry E.; Boeckh, Michael J.; Bemer, Meagan J.; Phillips, Brian R.; Risler, Linda J.; McCune, Jeannine S.

    2014-01-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplant (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNC) at five time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in the pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic/dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory Emax model with an IC50 = 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, non-relapse mortality, and overall mortality. In conclusion, a pharmacokinetic/dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  19. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

  20. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    Science.gov (United States)

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (pACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  1. Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase

    Science.gov (United States)

    Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Cuny, Gregory D.

    2010-01-01

    Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole containing ether CpIMPDH inhibitors are described. A structure-activity relationship study revealed that a small alkyl group on the alpha-position of the ether was required with the (R)-enantiomer significantly more active than the (S)-enantiomer. Electron-withdrawing groups in the 3- and/or 4-positions of the pendent phenyl ring were best and conversion of the quinoline containing inhibitors to quinoline-N-oxides retained inhibitory activity both in the presence and absence of bovine serum albumin. The 1,2,3-triazole CpIMPDH inhibitors provide new tools for elucidating the role of IMPDH in C. parvum and may serve as potential therapeutics for treating cryptosporidiosis. PMID:19624136

  2. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling.

    Science.gov (United States)

    Sato, Masayuki J; Kuwayama, Hidekazu; van Egmond, Wouter N; Takayama, Airi L K; Takagi, Hiroaki; van Haastert, Peter J M; Yanagida, Toshio; Ueda, Masahiro

    2009-04-21

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent pathway is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

  3. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.

    Science.gov (United States)

    Jaskulski, Léia; Rosado, Leonardo A; Rostirolla, Diana C; Timmers, Luis F S M; de Souza, Osmar N; Santos, Diogenes S; Basso, Luiz A

    2013-08-01

    Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.

  4. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Chong, Y.; Hwang, I.; D' Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  5. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  6. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  7. No role of interstitial adenosine in insulin-mediated vasodilation

    DEFF Research Database (Denmark)

    Dela, F; Stallknecht, B

    1999-01-01

    The mechanisms behind the vasodilatory effect of insulin are not fully understood, but nitric oxide plays an important role. We have investigated the possibility that insulin mediates vasodilatation in the human skeletal muscle via an increase in extracellular adenosine concentrations. In eight h...

  8. CD39/adenosine pathway is involved in AIDS progression.

    Directory of Open Access Journals (Sweden)

    Maria Nikolova

    2011-07-01

    Full Text Available HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25(high FoxP3+CD127(low T cells (Treg play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS.

  9. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  10. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  11. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX c

  12. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    Science.gov (United States)

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  13. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    Science.gov (United States)

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  14. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats.

    Science.gov (United States)

    Kitagawa, Hisashi; Mori, Atsushi; Shimada, Jun; Mitsumoto, Yasuhide; Kikuchi, Tetsuro

    2002-04-01

    Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.

  15. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  16. Changes of nitric oxide synthase and cyclic guanosine monophosphate in form deprivation myopia in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    WU Jie; LIU Qiong; YANG Xiao; YANG Hui; WANG Xin-mei; ZENG Jun-wen

    2007-01-01

    Background The form deprivation(FD)reduces spatial contrasts and induces myopia. Nitric oxide and cyclic guanosine monophosphate(cGMP)are involved in visual signal transmission.This study investigated changes in nitric oxide synthase(NOS)activity and cGMP concentration in ocular tissues in acute and chronic form deprivation myopia.Methods Guinea pigs had one eye covered by translucent glass for 7,14 or 21 days.Untreated litter mates were used as controls.NOS activity and cGMP concentrations in the retinal,choroidal and scleral tissues of FD eyes and controleyes were analyzed by radioimmunoassay after various durations of FD.The expression of NOS subtypes was identified by immunohistochemistry.Results Myopia was successfully induced in FD eyes after 14 days.Compared with control groups,the retinal NOS activity and cGMP concentrations in the FD eyes significantly increased after 14 and 21 days while the retinal NOS activity in the FD eyes was transiently suppressed by 7 days of FD.The NOS activity and cGMP concentrations of choroid and sclera in the FD eyes were higher than in the control groups at 21 days.The three isoenzymes of nitric oxide synthase were detected in the ocular tissues of guinea pigs.Conclusions The NOS activity and cGMP concentrations were upregulated after chronic FD and the retinal NOS activity was transiently suppressed at acute FD.The function of elevated NOS activity may be mediated by cGMP.

  17. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase[OPEN

    Science.gov (United States)

    Niehaus, Thomas D.; Hasnain, Ghulam; Gidda, Satinder K.; Nguyen, Thuy N.D.; Anderson, Erin M.; Brown, Greg; Yakunin, Alexander F.; de Crécy-Lagard, Valérie; Gregory, Jesse F.

    2016-01-01

    To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470. Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms. PMID:27677881

  18. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  19. Adenosine receptor control of cognition in normal and disease.

    Science.gov (United States)

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  20. High-throughput assay of adenosine in fermentation broth based on enzyme catalysis%酶法高通量测定发酵液中的腺苷含量

    Institute of Scientific and Technical Information of China (English)

    李宁; 董会娜; 祖昕; 张大伟; 吴勇杰

    2015-01-01

    腺苷是合成阿糖腺苷、腺苷酸(AMP)、三磷酸腺苷(ATP)的主要原料,是一种重要的医药原料.目前,微生物发酵生产腺苷越来越受到重视,会产生大量的发酵液样品需要检测.基于腺苷脱氨酶(ADA)建立了一种快速、高通量检测发酵液腺苷的方法.实验结果表明,响应面方法优化检测试剂浓度为碳酸钠-碳酸氢钠34.20mmol/L-27.40 mmol/L,亚硝基铁氰化钠3.35 g/L,次氯酸钠的有效氯为0.172 5%,百里香酚6.64 g/L.该方法检测灵敏,检测限为0.025~6 mmol/L,能够满足发酵检测和高通量筛选的需要.%Adenosine is the main raw material for the production of vidarabine,adenosine monophosphate (AMP) and adenosinetriphosphate (ATP).Adenosine is also an important pharmaceutical raw materials.At present,microbial fermentation production of adenosoine will produce large amounts of fermentation samples to be detected A rapid high -throughput method for detecting adenosine in fermentation broth based on adenosine deaminase (ADA)was estabished.Using response surface model analysis to determine the optimum concentration of four substances,the results showed sodium carbonate-sodium bicarbonate 34.20 mmol/L-27.40 mmol/L,sodium nitropmssid 3.35 g/L,the effective chlorine of sodium hypochlorite 0.172 5%,thymol 6.64 g/L.The limit of detection was between 0.025 mmo1/L and 6 mmo1/L,this method is sensitive and can meet the needs of the fermentation detection and high-throughput screening.

  1. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    Science.gov (United States)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  2. Expression of human adenosine deaminase in murine hematopoietic cells.

    Science.gov (United States)

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  3. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    Science.gov (United States)

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  4. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Science.gov (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  5. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    Science.gov (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  6. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    OpenAIRE

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  7. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  8. Adenosine receptors in post-mortem human brain.

    Science.gov (United States)

    James, S; Xuereb, J H; Askalan, R; Richardson, P J

    1992-01-01

    1. Adenosine A2-like binding sites were characterized in post-mortem human brain membranes by examining several compounds for their ability to displace [3H]-CGS 21680 (2[p-(2 carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) binding. 2. Two A2-like binding sites were identified in the striatum. 3. The more abundant striatal site was similar to the A2a receptor previously described in rat striatum, both in its pharmacological profile and striatal localization. 4. The less abundant striatal site had a pharmacological profile similar to that of the binding site characterized in the other brain regions examined. This was intermediate in character between A1 and A2 and may represent another adenosine receptor subtype. 5. The co-purification of [3H]-CGS 21680 binding during immunoisolation of human striatal cholinergic membranes was used to assess the possible cholinergic localization of A2-like binding sites in the human striatum. Only the more abundant striatal site co-purified with cholinergic membranes. This suggests that this A2a-like site is present on cholinergic neurones in the human striatum.

  9. Elevated nitric oxide and 3',5' cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    C(i)ntia Siqueira; Miguel Carneiro de Moura; Ana J(u)lia Pedro; Paula Rocha

    2008-01-01

    AIM: To evaluate whether serum levels of nitric oxide (NO') and plasma levels of cyclic guanosine monophosphate (Cgmp) and total glutathione (GSH) are altered in patients with alcoholic cirrhosis and to examine their correlation with the severity of liver disease.METHODS: Twenty-six patients with alcoholic liver cirrhosis were studied. Serum levels of NO· and plasma levels of cGMP and GSH were measured in 7 patients with compensated alcoholic cirrhosis (Child-Pugh A) and 19 patients with advanced cirrhosis (Child-Pugh B and C).The model for end-stage liver disease (MELD) score was evaluated. Sixteen healthy volunteers served as controls.Liver enzymes and creatinine levels were also tested.RESULTS: NO· and cGMP levels were higher in patients with Child-Pugh B and C cirrhosis than in Child-Pugh A cirrhosis or controls (NO·: 21.70 ± 8.07 vs 11.70 ± 2.74; 21.70 ± 8.07 vs 7.26 ± 2.47 μmol/L, respectively;P < 0.001) and (cGMP: 20.12 ± 6.62 vs 10.14 ± 2.78;20.12 ± 6.62 vs 4.95 ± 1.21 pmol/L, respectively; P <0.001). Total glutathione levels were lower in patients with Child-Pugh B and C cirrhosis than in patients with Child-Pugh A cirrhosis or controls (16.04 ± 6.06 vs 23.01 ± 4.38 or 16.04 ± 6.06 vs 66.57 ± 26.23 μmol/L,respectively; P < 0.001). There was a significant correlation between NO· and cGMP levels in all patients with alcoholic cirrhosis. A significant negative correlation between reduced glutathione/glutathione disulfide and the MELD score was found in all cirrhotic patients. CONCLUSION: Our results suggest a role for oxidative stress in alcoholic liver cirrhosis, which is more significant in decompensated patients with higher levels of NO· and cGMP and lower GSH levels than in compensated and control patients. Altered mediator levels in decompensated patients may influence the hemodynamic changes in and progression of liver disease.

  10. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  11. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  12. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  13. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  14. Interaction between Intrathecal Gabapentin and Adenosine in the Formalin Test of Rats

    OpenAIRE

    Yoon, Myung Ha; Choi, Jeong Il; Park, Heon Chang; Bae, Hong Beom

    2004-01-01

    Spinal gabapentin and adenosine have been known to display an antinociceptive effect. We evaluated the nature of the interaction between gabapentin and adenosine in formalin-induced nociception at the spinal level. Male Sprague-Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, 50 µL) into the hindpaw. After examination of the effects of gabapentin and adenosine, the resulting interaction was investigated with isobolographic and f...

  15. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    OpenAIRE

    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  16. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R.J.

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  17. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    Science.gov (United States)

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P thick hair in Caucasian men with AGA as well as in Japanese men and women.

  18. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    Science.gov (United States)

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..

  19. A novel procedure for purification of uridine 5'-monophosphate based on adsorption methodology using a hyper-cross-linked resin.

    Science.gov (United States)

    Wu, Jinglan; Zhu, Hui; Liu, Yanan; Zhou, Jingwei; Zhuang, Wei; Jiao, Pengfei; Ke, Xu; Ying, Hanjie

    2015-05-01

    The conventional ion exchange process used for recovery of uridine 5'-monophosphate (UMP) from the enzymatic hydrolysate of RNA is environmentally harmful and cost intensive. In this work, an innovative benign process, which comprises adsorption technology and use of a hyper-cross-linked resin as a stationary phase is proposed. The adsorption properties of this kind of resin in terms of adsorption equilibrium as well as kinetics were evaluated. The influences of the operating conditions, i.e., initial UMP concentration, feed flow rate, and bed height on the breakthrough curves of UMP in the fixed bed system were investigated. Subsequently, a chromatographic column model was established and validated for the prediction of the experimentally attained breakthrough curves of UMP and the main impurity component (phosphate ion) with a real enzymatic hydrolysate of RNA as a feed mixture. At the end of this paper, the crystallization of UMP was carried out. The purity of the final product (uridine 5'-monophosphate disodium, UMPNa2) of over 99.5 % was obtained.

  20. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    Science.gov (United States)

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  1. Effect of phentolamine on the hyperemic response to adenosine in patients with microvascular disease.

    Science.gov (United States)

    Aarnoudse, Wilbert; Geven, Maartje; Barbato, Emanuele; Botman, Kees-joost; De Bruyne, Bernard; Pijls, Nico H J

    2005-12-15

    For accurate measurement of the fractional flow reserve (FFR) of the myocardium, the presence of maximum hyperemia is of paramount importance. It has been suggested that the hyperemic effect of the conventionally used hyperemic stimulus, adenosine, could be submaximal in patients who have microvascular dysfunction and that adding alpha-blocking agents could augment the hyperemic response in these patients. We studied the effect of the nonselective alpha-blocking agent phentolamine, which was administered in addition to adenosine after achieving hyperemia, in patients who had microvascular disease and those who did not. Thirty patients who were referred for percutaneous coronary intervention were selected. Of these 30 patients, 15 had strong indications for microvascular disease and 15 did not. FFR was measured using intracoronary adenosine, intravenous adenosine, and intracoronary papaverine before and after intracoronary administration of the nonselective alpha blocker phentolamine. In patients who did not have microvascular disease, no differences in hyperemic response to adenosine were noted, whether or not alpha blockade was given before adenosine administration; FFR levels before and after phentolamine were 0.76 and 0.75, respectively, using intracoronary adenosine (p = 0.10) and 0.75 and 0.74, respectively, using intravenous adenosine (p = 0.20). In contrast, in patients who had microvascular disease, some increase in hyperemic response was observed after administration of phentolamine; FFR levels decreased from 0.74 to 0.70 using intracoronary adenosine (p = 0.003) and from 0.75 to 0.72 using intravenous adenosine (p = 0.04). Although statistically significant, the observed further decrease in microvascular resistance after addition of phentolamine was small and did not affect clinical decision making in any patient. In conclusion, when measuring FFR, routinely adding an alpha-blocking agent to adenosine does not affect clinical decision making.

  2. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Science.gov (United States)

    Nguyen, Michael D; Lee, Scott T; Ross, Ashley E; Ryals, Matthew; Choudhry, Vishesh I; Venton, B Jill

    2014-01-01

    Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6)-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  3. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  4. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  5. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  6. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    Science.gov (United States)

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  7. Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate.

    OpenAIRE

    Saito, D.; Ueeda, M; Abe, Y.; Tani, H; Nakatsu, T.; Yoshida, H.; Haraoka, S; Nagashima, H

    1986-01-01

    Intravenous adenosine triphosphate rapidly terminated all 11 episodes of paroxysmal supraventricular tachycardia in 10 patients. Eight patients reported side effects but these resolved within 20 seconds and did not require treatment. Adenosine triphosphate is a suitable agent for the rapid termination of paroxysmal supraventricular tachycardia.

  8. The ischemic preconditioning effect of adenosine in patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Berglund Margareta

    2009-11-01

    Full Text Available Abstract Introduction In vivo and in vitro evidence suggests that adenosine and its agonists play key roles in the process of ischemic preconditioning. The effects of low-dose adenosine infusion on ischemic preconditioning have not been thoroughly studied in humans. Aims We hypothesised that a low-dose adenosine infusion could reduce the ischemic burden evoked by physical exercise and improve the regional left ventricular (LV systolic function. Materials and methods We studied nine severely symptomatic male patients with severe coronary artery disease. Myocardial ischemia was induced by exercise on two separate occasions and quantified by Tissue Doppler Echocardiography. Prior to the exercise test, intravenous low-dose adenosine or placebo was infused over ten minutes according to a randomized, double blind, cross-over protocol. The LV walls were defined as ischemic if a reduction, no increment, or an increment of Results PSV increased from baseline to maximal exercise in non-ischemic walls both during placebo (P = 0.0001 and low-dose adenosine infusion (P = 0.0009. However, in the ischemic walls, PSV increased only during low-dose adenosine infusion (P = 0.001, while no changes in PSV occurred during placebo infusion (P = NS. Conclusion Low-dose adenosine infusion reduced the ischemic burden and improved LV regional systolic function in the ischemic walls of patients with exercise-induced myocardial ischemia, confirming that adenosine is a potential preconditioning agent in humans.

  9. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  10. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2012-07-07

    Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg mL(-1) CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.

  11. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects

    DEFF Research Database (Denmark)

    Birk, S; Petersen, K.A.; Kruuse, Christina Rostrup

    2005-01-01

    been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design...

  12. Different Modulating Effects of Adenosine on Neonatal and Adult Polymorphonuclear Leukocytes

    Directory of Open Access Journals (Sweden)

    Pei-Chen Hou

    2012-01-01

    Full Text Available Polymorphonuclear leukocytes (PMNs are the major leukocytes in the circulation and play an important role in host defense. Intact PMN functions include adhesion, migration, phagocytosis, and reactive oxygen species (ROS release. It has been known for a long time that adenosine can function as a modulator of adult PMN functions. Neonatal plasma has a higher adenosine level than that of adults; however, little is known about the modulating effects of adenosine on neonatal PMNs. The aim of this study was to investigate the effects of adenosine on neonatal PMN functions. We found that neonatal PMNs had impaired adhesion, chemotaxis, and ROS production abilities, but not phagocytosis compared to adult PMNs. As with adult PMNs, adenosine could suppress the CD11b expressions of neonatal PMNs, but had no significant suppressive effect on phagocytosis. In contrast to adult PMNs, adenosine did not significantly suppress chemotaxis and ROS production of neonatal PMNs. This may be due to impaired phagocyte reactions and a poor neonatal PMN response to adenosine. Adenosine may not be a good strategy for the treatment of neonatal sepsis because of impaired phagocyte reactions and poor response.

  13. Adenosine signaling and the energetic costs of induced immunity.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  14. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Kathryn Victoria Whitmore

    2016-08-01

    Full Text Available Adenosine deaminase (ADA deficiency is best known as a form of severe combined immunodeficiency (SCID which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.

  15. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  16. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    Science.gov (United States)

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  17. Adenosine Amine Congener as a Cochlear Rescue Agent

    Directory of Open Access Journals (Sweden)

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  18. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  19. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  20. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... muscle blood flow on average to 40 +/- 7 ml. min(-1) per 100g(-1) of muscle and an aggregate value of 2.3 +/- 0.6 L * min(-1) for the whole thigh musculature. Adenosine also induced a substantial change in blood flow distribution within individuals. Muscle blood flow during adenosine infusion...

  1. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia;

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular...

  2. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  3. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Institute of Scientific and Technical Information of China (English)

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  4. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Science.gov (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  5. Brain-natriuretic peptide and cyclic guanosine monophosphate as biomarkers of myxomatous mitral valve disease in dogs

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Falk, Bo Torkel; Teerlink, Tom;

    2011-01-01

    Elevations in the plasma concentrations of natriuretic peptides correlate with increased severity of myxomatous mitral valve disease (MMVD) in dogs. This study correlates the severity of MMVD with the plasma concentrations of the biomarkers N-terminal fragment of the pro-brain-natriuretic peptide...... (NT-proBNP) and its second messenger, cyclic guanosine monophosphate (cGMP). Furthermore, the l-arginine:asymmetric dimethylarginine (ADMA) ratio was measured as an index of nitric oxide availability. The study included 75 dogs sub-divided into five groups based on severity of MMVD as assessed...... by clinical examination and echocardiography. Plasma NT-proBNP and cGMP concentrations increased with increasing valve dysfunction and were significantly elevated in dogs with heart failure. The cGMP:NT-proBNP ratio decreased significantly in dogs with heart failure, suggesting the development of natriuretic...

  6. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  7. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Science.gov (United States)

    2010-02-26

    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health.../092,292, entitled ``A3 Adenosine Receptor Antagonists,'' filed July 10, 1998 , PCT Application PCT/US99/ 15562, entitled''A3 Adenosine Receptor Antagonists,'' filed July 2, 1999 , U.S. Patent...

  8. Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in the ribulose monophosphate cycle methylotroph Arthrobacter P1

    NARCIS (Netherlands)

    Levering, P.R.; Dijkhuizen, Lubbert

    1986-01-01

    In the facultative methylotroph Arthrobacter P1 the enzyme transaldolase plays an important role in both the pentose phosphate pathway and in the ribulose monophosphate cycle of formaldehyde fixation. Among gluconate-negative mutants of Arthrobacter P1 strains occurred which also were unable to grow

  9. Magnetic and electronic transport properties of the monophosphate tungsten bronze (PO 2) 4(WO 3) 2 m, m = 2

    Science.gov (United States)

    Teweldemedhin, Z. S.; Ramanujachary, K. V.; Greenblatt, M.

    1991-11-01

    Large plate-like dark-brown crystals of monophosphate tungsten bronze (PO 2) 4(WO 3) 2 m, m = 2 or PWO 5 were prepared by reacting stoichiometric mixtures of P 2O 5, WO 3, and W at 1200°C. The temperature dependence of electrical resistivity along each of the three unique crystallographic axes of a single crystal shows semiconducting behavior down to 50 K with an activation energy of ˜0.084 eV. The room temperature resistivitity along the direction of corner sharing WO 6 octahedra is 5 × 10 -3 Ω · cm and about one to two orders of magnitude lower than along other unique directions, which implies quasi one-dimensional behavior. The magnetization study made on a batch of crystals in the temperature range of 2 to 300 K is indicative of antiferromagnetic ordering with a maximum at 15 K. An earlier theoretical study on the band electronic structure of (PO 2) 4(WO 3) 4 predicted both localized and delocalized electrons in narrow and dispersive bands, respectively. The observed magnetic moment of PWO 5 is consistent with the theoretical prediction, but the observed semiconductivity behavior is not. The difference in the observed electronic transport properties of PWO 5 from that of theoretically predicted behavior, as well as the anomalous magnetic and transport properties compared to the higher members of the series of the monophosphate tungsten bronzes {(PO 2) 4(WO 3) 2 m, m = 4, 6}, is discussed in terms of the unique structure of PWO 5.

  10. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    Science.gov (United States)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  11. Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5'-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia.

    Science.gov (United States)

    Abraham, E; Arcaroli, J; Shenkar, R

    2001-01-01

    Acute lung injury is frequently associated with sepsis or blood loss and is characterized by a proinflammatory response and infiltration of activated neutrophils into the lungs. Hemorrhage or endotoxemia result in activation of cAMP response element-binding protein (CREB) and NF-kappa B in lung neutrophils as well as increased expression of proinflammatory cytokines, such as TNF-alpha and macrophage-inflammatory peptide-2, by these cells. Activation of the extracellular regulated kinase (ERK) pathway occurs in stress responses and is involved in CREB activation. In the present experiments, hemorrhage or endotoxemia produced increased activation of mitogen-activated protein kinase kinase (MEK)1/2 and ERK2 (p42), but not of ERK1 (p44), in lung neutrophils. ERK1, ERK2, and MEK1/2 were not activated in peripheral blood neutrophils after hemorrhage or endotoxemia. Inhibition of xanthine oxidase led to further increase in the activation of MEK1/2 and ERK2 in lung neutrophils after hemorrhage, but not after endotoxemia. Alpha-adrenergic blockade before hemorrhage resulted in increased activation in lung neutrophils of MEK1/2, ERK1, ERK2, and CREB, but decreased activation of NF-kappa B. In contrast, alpha-adrenergic blockade before endotoxemia was associated with decreased activation of MEK1/2, ERK2, and CREB, but increased activation of NF-kappa B. Beta-adrenergic blockade before hemorrhage did not alter MEK1/2 or ERK1 activation in lung neutrophils, but decreased activation of ERK2 and CREB, while increasing activation of NF-kappa B. Beta-adrenergic inhibition before endotoxemia did not affect activation of MEK1/2, ERK1, ERK2, CREB, or NF-kappa B. These data indicate that the pathways leading to lung neutrophil activation after hemorrhage are different from those induced by endotoxemia.

  12. Developmental and Diurnal Dynamics of Pax4 Expression in the Mammalian Pineal Gland: Nocturnal Down-Regulation Is Mediated by Adrenergic-Cyclic Adenosine 3′,5′-Monophosphate Signaling

    OpenAIRE

    Rath, Martin F.; Michael J Bailey; Kim, Jong-So; Ho, Anthony K.; Gaildrat, Pascaline; Coon, Steven L.; Møller, Morten; Klein, David C.

    2008-01-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In ...

  13. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    Science.gov (United States)

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.

  14. Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

    Directory of Open Access Journals (Sweden)

    Jung-Hae Shin

    2015-10-01

    Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits [Ca2+]i mobilization in thrombin–platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

  15. EFFECT OF 5'-ADENOSINE MONOPHOSPHATE-INDUCED HYPOTHEMIA ON RATS WITH ACUTE PANCREATITIS%5'-磷酸腺苷诱导低温治疗大鼠急性胰腺炎的效果

    Institute of Scientific and Technical Information of China (English)

    张爱华; 王云龙; 侯琳; 李媛

    2014-01-01

    目的 探讨5'-磷酸腺苷(5'-AMP)诱导的低温对L-精氨酸诱导的大鼠急性胰腺炎的影响.方法 将72只Wistar大鼠随机分为对照组(C组)、急性胰腺炎组(AP组)、5'-AMP低温预防组(Pre-AMP组)、5'-AMP低温治疗组(Post-AMP组).对照组腹腔注射1 mL/kg体质量生理盐水;AP组、Pre-AMP组和Post-AMP组分两次腹腔注射2.5 g/kg体质量L-精氨酸制备AP模型;Pre-AMP组制备AP模型前1h腹腔注射0.500 g/kg体质量的5'-AMP,Post-AMP组制备AP模型后1h腹腔注射0.500 g/kg体质量的5CAMP.在第2次注射L-精氨酸后3、6和12h每组各取6只大鼠,取眼静脉丛血及胰腺组织.应用ELISA法测定血清中肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)、白细胞介素6(IL-6)和血清淀粉酶表达水平,苏木精-伊红(HE)染色观察胰腺组织损伤情况.结果 不同5'-AMP注射剂量大鼠体温变化曲线显示,在5'-AMP注射剂量为0.500 g/kg体质量时,达到的低温状态最理想.ELISA结果显示,与对照组比较,AP组大鼠血清中TNF-α、IL-1β、IL-6和血清淀粉酶浓度均显著升高;与AP组相比,Pre-AMP组和Post-AMP组血清中TNF-α、IL-1β、IL-6和血清淀粉酶浓度均降低,差异均有显著性(F=30.01~606.65,q=3.21~59.97,P<0.05).病理结果显示,AP组大鼠出现胰腺间质水肿、炎症细胞浸润、出血等现象,而Pre-AMP组和Post-AMP组相应现象明显减轻.结论 5'-AMP诱导的低温能显著抑制急性胰腺炎所致炎症反应,保护胰腺组织免受L-精氨酸诱导的急性损伤.

  16. Effects of pyridoxine on a high-fat diet-induced reduction of cell proliferation and neuroblast differentiation depend on cyclic adenosine monophosphate response element binding protein in the mouse dentate gyrus.

    Science.gov (United States)

    Yoo, Dae Young; Kim, Woosuk; Yoo, Ki-Yeon; Nam, Sung Min; Chung, Jin Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2012-08-01

    In this study, we challenged pyridoxine to mice fed a high-fat diet (HFD) and investigated the effects of pyridoxine on HFD-induced phenotypes such as blood glucose, reduction of cell proliferation and neuroblast differentiation in the dentate gyrus using Ki67 and doublecortin (DCX), respectively. Mice were fed a commercially available low-fat diet (LFD) as control diet or HFD (60% fat) for 8 weeks. After 5 weeks of LFD or HFD treatment, 350 mg/kg pyridoxine was administered for 3 weeks. The administration of pyridoxine significantly decreased body weight in the HFD-treated group. In addition, there were no significant differences in hepatic histology and pancreatic insulin-immunoreactive (-ir) and glucagon-ir cells of the HFD-treated group after pyridoxine treatment. In the HFD-fed group, Ki67-positive nuclei and DCX-ir neuroblasts were significantly decreased in the dentate gyrus compared with those in the LFD-fed mice. However, the administration of pyridoxine significantly increased Ki67-positive nuclei and DCX-ir neuroblasts in the dentate gyrus in both LFD- and HFD-fed mice. In addition, the administration of pyridoxine significantly increased the protein levels of glutamic acid decarboxylase 67 (GAD67) and brain-derived neurotrophic factor (BDNF) and the immunoreactivity of phosphorylated cyclic AMP response element binding protein (pCREB) compared with the vehicle-treated LFD- and HFD-fed mice. In contrast, the administration of pyridoxine significantly decreased HFD-induced malondialdehyde (MDA) levels in the hippocampus. These results showed that pyridoxine supplement reduced the HFD-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus via controlling the levels of GAD67, pCREB, BDNF, and MDA.

  17. Cyst fluid from a murine model of polycystic kidney disease stimulates fluid secretion, cyclic adenosine monophosphate accumulation, and cell proliferation by Madin-Darby canine kidney cells in vitro.

    Science.gov (United States)

    Yamaguchi, T; Nagao, S; Takahashi, H; Ye, M; Grantham, J J

    1995-03-01

    Cyst fluids from subjects with autosomal dominant polycystic kidney disease (ADPKD) cause polarized monolayers of MDCK cells to secrete fluid toward the apical compartment in vitro. To determine the extent to which secretagogue accumulation may be a general feature of polycystic diseases, cyst fluid from mice with a slowly progressive form of hereditary PKD (DBA/2FG-pcy/pcy) was added to polarized MDCK monolayers. Basolateral application of cyst fluids (diluted with culture medium to 15% final concentration) from 13 different animals 16 to 35 weeks old increased the fluid secretion rate from a baseline of 0.023 +/- 0.003 to 0.111 +/- 0.017 microL/cm2/h (P matricies.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling

    DEFF Research Database (Denmark)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So;

    2009-01-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed...... in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels...... occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found...

  19. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    Science.gov (United States)

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity.

  20. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways.

    Science.gov (United States)

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W; Edin, Matthew L; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A; Zeldin, Darryl C; Wang, Dao Wen

    2007-05-01

    We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.

  1. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  2. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  3. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    Science.gov (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  4. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    Science.gov (United States)

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  5. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.

    Science.gov (United States)

    Mugford, Sarah G; Matthewman, Colette A; Hill, Lionel; Kopriva, Stanislav

    2010-01-04

    In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability.

  6. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  7. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Science.gov (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  8. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana;

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− chann...

  9. Ion-Pairing Liquid Chromatography Coupled with Mass Spectrometry for the Simultaneous Determination of Nucleosides and Nucleotides%离子对液相色谱-质谱应用于核苷和核苷酸的同时测定

    Institute of Scientific and Technical Information of China (English)

    蔡宗苇; 钱天秀; 杨斯敏

    2004-01-01

    Adenosine and its corresponding nucleotides adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate ( ADP ) and adenosine 5'-triphos-phate (ATP) are important biomolecules that provide energy and substrates for various cellular bio-chemical processes. There have been strong

  10. Role of adenosine A2b receptor overexpression in tumor progression.

    Science.gov (United States)

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  11. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  12. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  13. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  14. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  15. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    Science.gov (United States)

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  16. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    OpenAIRE

    Popov, Serguei G.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles

    2011-01-01

    AIM: To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.

  17. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    ) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... exercise intensity in the QF muscle group. Adenosine seems to play a role in muscle BF heterogeneity even in the absence of changes in bulk BF at low and moderate one-leg intermittent isometric exercise intensities.......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  18. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    Science.gov (United States)

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  19. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    Science.gov (United States)

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc.

  20. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.

  1. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  2. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase

    Science.gov (United States)

    Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav

    2011-01-01

    Thymidine monophosphate kinase (TMPKmt) is an essential enzyme for nucleotide metabolism in Mycobacterium tuberculosis, and thus an attractive target for novel antituberculosis agents. In this work, we have explored the chemical space around the 2',3'-bicyclic thymidine nucleus by designing and in silico screening of a virtual focused library selected via structure based methods to identify more potent analogs endowed with favorable ADME-related properties. In all the library members we have exchanged the ribose ring of the template with a cyclopentane moiety that is less prone to enzymatic degradation. In addition, we have replaced the six-membered 2',3'-ring by a number of five-membered and six-membered heterocyclic rings containing alternative proton donor and acceptor groups, to exploit the interaction with the carboxylate groups of Asp9 and Asp163 as well as with several cationic residues present in the vicinity of the TMPKmt binding site. The three-dimensional structure of the TMPKmt complexed with 5-hydroxymethyl-dUMP, an analog of dTMP, was employed to develop a QSAR model, to parameterize a scoring function specific for the TMPKmt target and to select analogues which display the highest predicted binding to the target. As a result, we identified a small highly focused combinatorial subset of bicyclic thymidine analogues as virtual hits that are predicted to inhibit the mycobacterial TMPK in the submicromolar concentration range and to display favorable ADME-related properties.

  3. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis.

    Science.gov (United States)

    Sharma, Indra Mani; Prakash, Sunita; Dhanaraman, Thillaivillalan; Chatterji, Dipankar

    2014-10-01

    We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

  4. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers.

    Science.gov (United States)

    Eisenhuth, Ralf; Richert, Clemens

    2009-01-02

    5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.

  5. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    Science.gov (United States)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  6. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    Science.gov (United States)

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.

  7. Simultaneous liquid chromatographic assessment of thiamine, thiamine monophosphate and thiamine diphosphate in human erythrocytes: a study on alcoholics.

    Science.gov (United States)

    Mancinelli, Rosanna; Ceccanti, Mauro; Guiducci, Maria Soccorsa; Sasso, Guido Francesco; Sebastiani, Gemma; Attilia, Maria Luisa; Allen, John Paul

    2003-06-15

    An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (Pthiamine was established in the study of alcohol related problems.

  8. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  9. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  10. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilator...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow.......BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... effect remain unanswered. METHODS AND RESULTS: The interstitial adenosine concentration was determined in the vastus lateralis muscle of healthy humans via dialysis probes inserted in the muscle. The probes were perfused with buffer, and the dialysate samples were collected at rest and during graded knee...

  11. Localization of Adenosine Triphosphatase Activity on the Chloroplast Envelope in Tendrils of Pisum sativum1

    Science.gov (United States)

    Sabnis, Dinkar D.; Gordon, Mildred; Galston, Arthur W.

    1970-01-01

    When samples of pea tendril tissue were incubated in the Wachstein-Meisel medium for the demonstration of adenosine triphosphatases, deposits of lead reaction product were localized between the membranes of the chloroplast envelope. The presence of Mg2+ was necessary for adenosine triphosphatase activity, and Ca2+ could not substitute for this requirement. Varying the pH of incubation to 5.5 or 9.4 inhibited enzyme activity, as did the addition of p-chloromercuribenzoic acid or N-ethylmaleimide. The adenosine triphosphatase was apparently inactivated or degraded when the plants were grown in the dark for 24 hours prior to incubation. The enzyme was substrate-specific for adenosine triphosphate; no reaction was obtained with adenosine diphosphate, uridine triphosphate, inosine triphosphate, p-nitrophenyl phosphate, and sodium β-glycerophosphate. Sites of nonspecific depositions of lead are described. The adenosine triphosphatase on the chloroplast envelope may be involved in the light-induced contraction of this organelle. Images PMID:4245003

  12. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    Science.gov (United States)

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.

  13. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Institute of Scientific and Technical Information of China (English)

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  14. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  15. Synthèse et fonctionnalisation de 2-thiohydantoïnes : interaction et inhibition des nucléosides monophosphate kinases

    OpenAIRE

    Gosling, Sandrine

    2011-01-01

    New therapeutical compounds determination requires the formation of a library of molecules and their screening on specific biological targets. The aim of this project was to design new inhibitors targeting nucléoside monophosphate kinases (NMPK) based on in situ dynamic combinatorial chemistry. These molecules were synthesized by ligation between analogues of phosphate acceptors and donors on which reactive functions were introduced. The topic of this PhD was to develop the ATP mimetics using...

  16. Study of orotidine 5'-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation.

    Science.gov (United States)

    Jamshidi, Shirin; Jalili, Seifollah; Rafii-Tabar, Hashem

    2015-01-01

    Catalytic mechanism of orotidine 5'-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30 ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5'-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5'-monophosphate (OMP), and 6-phosphonouridine 5'-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC.

  17. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    Science.gov (United States)

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  18. Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles.

    Science.gov (United States)

    Tian, Jing; Zeng, Xiao; Xie, Xiaoji; Han, Sanyang; Liew, Oi-Wah; Chen, Yei-Tsung; Wang, Lianhui; Liu, Xiaogang

    2015-05-27

    Growing interest in lanthanide-doped nanoparticles for biological and medical uses has brought particular attention to their safety concerns. However, the intrinsic toxicity of this new class of optical nanomaterials in biological systems has not been fully evaluated. In this work, we systematically evaluate the long-term cytotoxicity of lanthanide-doped nanoparticles (NaGdF4 and NaYF4) to HeLa cells by monitoring cell viability (mitochondrial activity), adenosine triphosphate (ATP) level, and cell membrane integrity (lactate dehydrogenase release), respectively. Importantly, we find that ligand-free lanthanide-doped nanoparticles induce intracellular ATP deprivation of HeLa cells, resulting in a significant decrease in cell viability after exposure for 7 days. We attribute the particle-induced cell death to two distinct cell death pathways, autophagy and apoptosis, which are primarily mediated via the interaction between the nanoparticle and the phosphate group of cellular ATP. The understanding gained from the investigation of cytotoxicity associated with lanthanide-doped nanoparticles provides keen insights into the safe use of these nanoparticles in biological systems.

  19. In Vitro Functional Study of Rice Adenosine 5'-Phosphosulfate Kinase

    Institute of Scientific and Technical Information of China (English)

    WANG De-zhen; CHEN Guo-guo; LU Lu-jia; JIANG Zhao-jun; RAO Yu-chun; SUN Mei-hao

    2016-01-01

    Sulfate can be activated by ATP sulfurylase and adenosine 5'-phosphosulfate kinase (APSK)in vivo. Recent studies suggested that APSK inArabidopsis thaliana regulated the partition between APS reduction and phosphorylation and its activity can be modulated by cellular redox status. In order to study regulation of APSK in rice (OsAPSK),OsAPSK1 gene was cloned and its activity was analyzed. OsAPSK1 C36 and C69 were found to be the conserved counterparts of C86 and C119, which involved in disulfide formation in AtAPSK.C36A/C69A OsAPSK1 double mutation was made by site directed mutagenesis. OsAPSK1 and its mutant were prokaryotically over-expressed and purified, and then assayed for APS phosphorylation activity. OsAPSK1 activity was depressed by oxidized glutathione, while the activity of its mutantwas not. Further studies in the case that oxidative stress will fluctuatein vivo3'-phosphoadenosine-5'-phosphosulfate content, and all APSK isoenzymes have similar regulation patterns are necessary to be performed.

  20. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Holloway Cameron J

    2010-11-01

    Full Text Available Abstract Introduction Adenosine is the most widely used vasodilator stress agent for Cardiovascular Magnetic Resonance (CMR perfusion studies. With the standard dose of 140 mcg/kg/min some patients fail to demonstrate characteristic haemodynamic changes: a significant increase in heart rate (HR and mild decrease in systolic blood pressure (SBP. Whether an increase in the rate of adenosine infusion would improve peripheral and, likely, coronary vasodilatation in those patients is unknown. The aim of the present study was to assess the tolerance and safety of a high-dose adenosine protocol in patients with inadequate haemodynamic response to the standard adenosine protocol when undergoing CMR perfusion imaging. Methods 98 consecutive patients with known or suspected coronary artery disease (CAD underwent CMR perfusion imaging at 1.5 Tesla. Subjects were screened for contraindications to adenosine, and an electrocardiogram was performed prior to the scan. All patients initially received the standard adenosine protocol (140 mcg/kg/min for at least 3 minutes. If the haemodynamic response was inadequate (HR increase Results All patients successfully completed the CMR scan. Of a total of 98 patients, 18 (18% did not demonstrate evidence of a significant increase in HR or decrease in SBP under the standard adenosine infusion rate. Following the increase in the rate of infusion, 16 out of those 18 patients showed an adequate haemodynamic response. One patient of the standard infusion group and two patients of the high-dose group developed transient advanced AV block. Significantly more patients complained of chest pain in the high-dose group (61% vs. 29%, p = 0.009. On multivariate analysis, age > 65 years and ejection fraction Conclusions A substantial number of patients do not show adequate peripheral haemodynamic response to standard-dose adenosine stress during perfusion CMR imaging. Age and reduced ejection fraction are predictors of inadequate

  1. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    Science.gov (United States)

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  2. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    DEFF Research Database (Denmark)

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  3. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  4. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P muscular activity increases the interstitial concentrations...... of bradykinin and adenosine in both skeletal muscle and the connective tissue around its adjacent tendon. These findings support a role for bradykinin and adenosine in exercise-induced hyperaemia in skeletal muscle and suggest that bradykinin and adenosine are potential regulators of blood flow in peritendinous...

  5. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    Science.gov (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  6. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  7. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  8. Ameliorative effect of adenosine on hypoxia-reoxygenation injury in LLC-PK1, a porcine kidney cell line.

    Science.gov (United States)

    Yonehana, T; Gemba, M

    1999-06-01

    We studied the effects of adenosine on injury caused by hypoxia and reoxygenation in LLC-PK1 cells. Lactate dehydrogenase and gamma-glutamyltranspeptidase were released from cells exposed to hypoxia for 6 hr and then reoxygenation for 1 hr. The addition of adenosine at 100 microM to the medium before hypoxia began significantly decreased enzyme leakage into medium during both hypoxia and reoxygenation. The adenosine A1-receptor agonist, R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA), at the concentration of 100 microM, did not affect enzyme release, but the adenosine A2-receptor agonist 2-p-[2-car-boxyethyl]phenethyl-amino-5'-N-ethylcarboxamido-adenosi ne hydrochloride (CGS 21680) at the concentration of 100 nM, suppressed the injury caused by hypoxia and reoxygenation. There were decreases in cAMP contents and ATP levels in LLC-PK1 cells injured by hypoxia and reoxygenation. Adenosine (100 microM) restored ATP levels in the cells during reoxygenation. With adenosine, the intracellular cAMP level was increased prominently during reoxygenation. These results suggest that adenosine protects LLC-PK1 cells from injury caused by hypoxia and reoxygenation by increasing the intracellular cAMP level via adenosine A2 receptor.

  9. Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution.

    Science.gov (United States)

    Pletinckx, J; Steyaert, J; Zegers, I; Choe, H W; Heinemann, U; Wyns, L

    1994-02-22

    Glu58 is known to participate in phosphodiester transesterification catalyzed by the enzyme RNase T1. For Glu58 RNase T1, an altered mechanism has been proposed in which His40 replaces Glu58 as the base catalyst [Steyaert, J., Hallenga, K., Wyns, L., & Stanssens, P. (1990) Biochemistry 29, 9064-9072]. Glu58Ala Rnase T1 has been cocrystallized with guanosine 2'-monophosphate (2'-GMP). The crystals are of space group P2(1), with one molecule per asymmetric unit (a = 32.44 A, b = 49.64 A, c = 26.09 A, beta = 99.17 degrees). The three-dimensional structure of the enzyme was determined to a nominal resolution of 1.9 A, yielding a crystallographic R factor of 0.178 for all X-ray data. Comparison of this structure with wild-type structures leads to the following conclusions. The minor changes apparent in the tertiary structure can be explained by either the mutation of Glu58 or by the change in the space group. In the active site, the extra space available through the mutation of Glu58 is occupied by the phosphate group (after a reorientation) and by a solvent molecule replacing a carboxylate oxygen of Glu58. This solvent molecule is a candidate for participation in the altered mechanism of this mutant enzyme. Following up on a study of conserved water sites in RNase T1 crystallized in space group P2(1)2(1)2(1) [Malin, R., Zielenkiewicz, P., & Saenger, W. (1991) J. Mol. Biol. 266, 4848-4852], we investigated the hydration structure for four different packing modes of RNase T1.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    Science.gov (United States)

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  11. Thiamine diphosphate in whole blood, thiamine and thiamine monophosphate in breast-milk in a refugee population.

    Directory of Open Access Journals (Sweden)

    Wolfgang Stuetz

    Full Text Available BACKGROUND: The provision of high doses of thiamine may prevent thiamine deficiency in the post-partum period of displaced persons. METHODOLOGY/PRINCIPAL FINDINGS: The study aimed to evaluate a supplementation regimen of thiamine mononitrate (100 mg daily at the antenatal clinics in Maela refugee camp. Women were enrolled during antenatal care and followed after delivery. Samples were collected at 12 weeks post partum. Thiamine diphosphate (TDP in whole blood and thiamine in breast-milk of 636 lactating women were measured. Thiamine in breast-milk consisted of thiamine monophosphate (TMP in addition to thiamine, with a mean TMP to total thiamine ratio of 63%. Mean whole blood TDP (130 nmol/L and total thiamine in breast-milk (755 nmol/L were within the upper range reported for well-nourished women. The prevalence of women with low whole blood TDP (<65 nmol/L was 5% and with deficient breast-milk total thiamine (<300 nmol/L was 4%. Whole blood TDP predicted both breast-milk thiamine and TMP (R(2 = 0.36 and 0.10, p<0.001. A ratio of TMP to total thiamine ≥63% was associated with a 7.5 and 4-fold higher risk of low whole blood TDP and deficient total breast-milk thiamine, respectively. Routine provision of daily 100 mg of thiamine mononitrate post-partum compared to the previous weekly 10 mg of thiamine hydrochloride resulted in significantly higher total thiamine in breast-milk. CONCLUSIONS/SIGNIFICANCE: Thiamine supplementation for lactating women in Maela refugee camp is effective and should be continued. TMP and its ratio to total thiamine in breast-milk, reported for the first time in this study, provided useful information on thiamine status and should be included in future studies of breast-milk thiamine.

  12. Multiple Decay Mechanisms and 2D‐UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine‐Uracil Monophosphate

    Science.gov (United States)

    Li, Quansong; Giussani, Angelo; Segarra‐Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A.; Mukamel, Shaul; Roca‐Sanjuán, Daniel

    2016-01-01

    Abstract The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm−1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  13. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    Science.gov (United States)

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.

  14. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    Science.gov (United States)

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.

  15. CSF ADENOSINE DEAMINASE (ADA ACTIVITY IN PATIENTS WITH MENINGITIS

    Directory of Open Access Journals (Sweden)

    Justin

    2016-05-01

    Full Text Available Meningitis is inflammation of the meninges (pia, arachnoid and dura mater covering the brain and the spinal cord. ADA is an enzyme in the purine salvage pathway which is found in abundance in active T-lymphocytes. Hence, an attempt was made to estimate the CSF ADA level in patients with suspected meningitis and throw light on its use in differentiating the various types of meningitis. AIMS AND OBJECTIVES To estimate the level of CSF adenosine deaminase level in different types of meningitis. To assess its usefulness in differentiating the various types (bacterial, viral and tuberculous of meningitis. MATERIALS AND METHODS The study was conducted at the medical wards of Govt. Rajaji Hospital, Madurai, a prospective analytical study from a period of April 2012 to September 2012. OBSERVATION AND RESULTS Tuberculous meningitis occurred more in the age group of 21–40 years. Bacterial meningitis was seen mainly in patients < 20 years of age. Viral meningitis was seen in all age groups. CSF ADA level was highest in tuberculous meningitis, the mean value being 24.5 U/L. The mean value of ADA in bacterial meningitis was 4.54 U/L and viral meningitis patients had lowest mean ADA value of 2.65 U/L. CONCLUSION In our study, 50 patients with meningitis admitted in Government Rajaji Hospital from April 2012 to September 2012 were evaluated. Meningitis predominantly affected people in the age group of 20-40 years in our study with a male: female ratio of 1.9:1. Cases of tuberculous meningitis constituted 48% of the study group and bacterial and viral meningitis were 26% each. CSF protein values were higher and sugar values lower in patients with tuberculous and bacterial meningitis. CSF cell counts were higher in patients with bacterial meningitis.

  16. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    Science.gov (United States)

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications.

  17. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  18. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  19. Pulmonary Vascular Capacitance as a Predictor of Vasoreactivity in Idiopathic Pulmonary Arterial Hypertension Tested by Adenosine

    Directory of Open Access Journals (Sweden)

    Shafie

    2015-09-01

    Full Text Available Background Acute pulmonary vasoreactivity testing has been recommended in the diagnostic work-up of patients with idiopathic pulmonary arterial hypertension (IPAH. Pulmonary arteriolar capacitance (Cp approximated by stroke volume divided by pulmonary pulse pressure (SV/PP is considered as an independent predictor of mortality in patients with IPAH. Objectives We sought to evaluate any differences in baseline and adenosine Cp between vasoreactive and non-vasoreactive IPAH patients tested with adenosine. Patients and Methods Fourteen patients with IPAH and a vasoreactive adenosine vasoreactivity testing according to the ESC guidelines were compared with 24 IPAH patients with nonreactive adenosine test results. Results There were no statistical significant differences between the two groups regarding NYHA class, body surface area, heart rate, and systemic blood pressure during right heart catheterization. Hemodynamic study showed no statistical significant differences in cardiac output/Index, mean pulmonary artery pressure, pulmonary vascular resistance, and baseline Cp between the two groups. There was a statistical significant but weak increase in adenosine Cp in vasoreactive group compared to non-reactive group (P = 0.04. Multivariable analysis showed an association between Cp and vasoreactivity (Beta = 2, P = 0.04, OR = 0.05 (95%CI = 0.003 - 0.9. Conclusions Cp could be considered as an index for the prediction of vasoreactivity in patients with IPAH. Prediction of long-term response to calcium channel blockers in patients with IPAH and a positive vasoreactive test by this index should be addressed in further studies.

  20. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    Science.gov (United States)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  1. Circadian variations of adenosine level in blood and liver and its possible physiological significance.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Díaz-Muñoz, M; Villalobos, R; Glender, W; Vidrio, S; Suárez, J; Yañez, L

    1983-09-12

    The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.

  2. Role of nitric oxide and adenosine in the onset of vasodilation during dynamic forearm exercise.

    Science.gov (United States)

    Casey, Darren P; Mohamed, Essa A; Joyner, Michael J

    2013-02-01

    We tested the hypothesis that nitric oxide (NO) and adenosine contribute to the onset of vasodilation during dynamic forearm exercise. Twenty-two subjects performed rhythmic forearm exercise (20 % of maximum) during control and NO synthase (NOS) inhibition (N (G)-monomethyl-L-arginine; L-NMMA) trials. A subset of subjects performed a third trial of forearm exercise during combined inhibition of NOS and adenosine (aminophylline; n = 9). Additionally, a separate group of subjects (n = 7) performed rhythmic forearm exercise during control, inhibition of adenosine alone and combined inhibition of adenosine and NOS. Forearm vascular conductance (FVC; ml min(-1) · 100 mmHg(-1)) was calculated from blood flow and mean arterial pressure (mmHg). The onset of vasodilation was assessed by calculating the slope of the FVC response for every duty cycle between baseline and steady state, and the number of duty cycles (1-s contraction/2-s relaxation) to reach steady state. NOS inhibition blunted vasodilation at the onset of exercise (11.1 ± 0.8 vs. 8.5 ± 0.6 FVC units/duty cycle; P Vasodilation was blunted further with combined inhibition of NOS and adenosine (7.5 ± 0.6 vs. 6.2 ± 0.8 FVC units/duty cycle; P vasodilation during dynamic forearm exercise.

  3. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    Directory of Open Access Journals (Sweden)

    Nilüfer Yıldırım Poyraz

    2014-10-01

    Full Text Available Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI. The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD, was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10 who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6% experienced adenosine-related side-effects (group 1; flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS test without any side-effects (group 2. Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects.

  4. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    DEFF Research Database (Denmark)

    Zhao, Xin; Sun, X Y; Erlinge, D;

    2000-01-01

    Neurohormonal changes in congestive heart failure (CHF) include an enhanced peripheral sympathetic nerve activity which results in increased release of noradrenaline, neuropeptide Y and ATP. To examine if such changes in CHF would modulate peripheral pre- and postsynaptic receptors of ATP and its...... effects mediated by the endothelial P2Y receptors are unaffected in CHF. Moreover, the adenosine-mediated inhibitory effects on heart rate and blood pressure were also attenuated in the CHF rats. The most important changes in adenosine and P2-receptor function induced by ischaemic CHF were the reduced...... pressor effect mediated by the P2X receptor and the increased heart rate due to an attenuated inhibitory effect of adenosine....

  5. Role of adenosine in the antiepileptic effects of deep brain stimulation

    Science.gov (United States)

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  6. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  7. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    Science.gov (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  8. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    Institute of Scientific and Technical Information of China (English)

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.

  9. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  10. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Science.gov (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  11. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  12. Mechanism of the Orotidine 5’-Monophosphate Decarboxylase-Catalyzed Reaction: Importance of Residues in the Orotate Binding Site†

    Science.gov (United States)

    Iiams, Vanessa; Desai, Bijoy J.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.

    2011-01-01

    The reaction catalyzed by orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by exceptional values for the rate enhancement [kcat/knon = 7.1 × 1016] and catalytic proficiency [(kcat/KM)/knon = 4.8 × 1022 M−1]. Although a stabilized vinyl carbanion/carbene intermediate is located on the reaction coordinate, the structural strategies by which the reduction in the activation energy barrier is realized remain incompletely understood. This laboratory recently reported that “substrate destabilization” by Asp 70 in the OMPDC from Methanothermobacter thermoautotrophicus (MtOMPDC) lowers the activation energy barrier by ~5 kcal/mol (contributing ~2.7 × 103 to the rate enhancement) [K. K. Chan, B. M. Wood, A. A. Fedorov, E. V. Fedorov, H. J. Imker, T. L. Amyes, J. P. Richard, S. C. Almo, and J. A. Gerlt (2009) Biochemistry 48, 5518–31]. We now report that substitutions of hydrophobic residues in a pocket proximal to the carboxylate group of the substrate (Ile 96, Leu 123, and Val 155) with neutral hydrophilic residues decrease the value of kcat by as much as 400-fold but have minimal effect on the value of kex for exchange of H6 of the FUMP product analog with solvent deuterium; we hypothesize that this pocket destabilizes the substrate by preventing hydration of the substrate carboxylate group. We also report that substitutions for Ser 127 that is proximal to O4 of the orotate ring decrease the value of kcat/KM, with the S127P substitution that eliminates hydrogen-bonding interactions with O4 producing a 2.5 × 106-fold reduction in the value of kcat/KM; this effect is consistent with delocalization of the negative charge of the carbanionic intermediate on O4 to produce an anionic carbene intermediate and thereby provide a structural strategy for stabilization of the intermediate. These observations provide additional information on the identities of the active site residues that contribute to the rate enhancement and, therefore, insights into the

  13. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping

    NARCIS (Netherlands)

    Kuijpers, Dirkjan; Prakken, Niek H.; Vliegenthart, Rozemarijn; van Dijkman, Paul R. M.; van der Harst, Pim; Oudkerk, Matthijs

    2016-01-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are

  14. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG

    2009-01-01

    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  15. Separation of effects of adenosine on energy metabolism from those on cyclic AMP in rat thymic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nordeen, S.K.; Young, D.A.

    1977-08-10

    In rat thymic lymphocytes incubated for 2 h without exogenous energy-providing substrate, adenosine may be substituted for glucose as a means of maximally restoring energy metabolism and those cellular functions whose rates are sensitive to small changes in the energy balance, such as protein synthesis and uridine utilization for RNA synthesis. Since effects of adenosine in thymocytes and other cells have frequently been attributed to changes in cyclic AMP, this report investigates its possible involvement in these glucose-like restorative actions of adenosine. Although the same range of doses of adenosine effective at raising cyclic AMP also elicit roughly parallel stimulations of protein synthesis and uridine utilization, further results dissociate the restorative actions from those on cyclic AMP. (a) Other purine nucleosides mimic the glucose-like actions of adenosine without increasing cyclic AMP; (b) conversely, prostaglandin E/sub 1/ mimics the cyclic AMP response without restoring energy metabolism or energy-dependent functions; and (c) potentiation of the cyclic AMP response, either by inhibiting phosphodiesterase or adenosine deaminase, does not enhance the restorative response to a range of doses of adenosine. Finally, cyclic AMP-mediated glycogenolysis cannot account for the glucose-like effects since addition of adenosine increases, not decreases, levels of glycogen.

  16. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  17. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  18. A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch.

    Science.gov (United States)

    Xie, Qingyun; Zhao, Fulin; Liu, Hongrui; Shan, Yanke; Liu, Fei

    2015-07-02

    Cyclic diguanylate monophosphate (c-di-GMP) is an important second messenger that regulates a variety of complex physiological processes involved in motility, virulence, biofilm formation and cell cycle progression in several bacteria. Herein we report a simple label-free and self-assembled RNA riboswitch-based biosensor for sensitive and selective detection of c-di-GMP. The detectable concentration range of c-di-GMP is from 50 nM to 1 μM with a detection limit of 50 nM.

  19. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    Directory of Open Access Journals (Sweden)

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  20. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  1. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells

    OpenAIRE

    Kurtz, Courtney C.; Drygiannakis, Ioannis; Naganuma, Makoto; Feldman, Sanford; Bekiaris, Vasileios; Linden, Joel; Ware, Carl F.; Ernst, Peter B.

    2014-01-01

    Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A2A adenosine receptor (A2AAR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A2AAR−/− mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A2AAR controls. Comparison of T cell subsets in wild-type and A2AAR−/− mice revealed differences in markers associated wit...

  2. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  3. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    NARCIS (Netherlands)

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.

    2011-01-01

    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  4. The Safety of an Adenosine A(1)-Receptor Antagonist, Rolofylline, in Patients with Acute Heart Failure and Renal Impairment Findings from PROTECT

    NARCIS (Netherlands)

    Teerlink, John R.; Iragui, Vicente J.; Mohr, Jay P.; Carson, Peter E.; Hauptman, Paul J.; Lovett, David H.; Miller, Alan B.; Pina, Ileana L.; Thomson, Scott; Varosy, Paul D.; Zile, Michael R.; Cleland, John G. F.; Givertz, Michael M.; Metra, Marco; Ponikowski, Piotr; Voors, Adriaan A.; Davison, Beth A.; Cotter, Gad; Wolko, Denise; DeLucca, Paul; Salerno, Christina M.; Mansoor, George A.; Dittrich, Howard; O'Connor, Christopher M.; Massi, Barry M.

    2012-01-01

    Background: Adenosine exerts actions in multiple organ systems, and adenosine receptors are a therapeutic target in many development programmes. Objective: The aim of this analysis was to evaluate the safety of rolofylline, an adenosine A(1)-receptor antagonist, in patients with acute heart failure.

  5. Production of adenosine from extracellular ATP at the striatal cholinergic synapse.

    Science.gov (United States)

    James, S; Richardson, P J

    1993-01-01

    The components of the ectonucleotidase pathway at the immunoaffinity-purified striatal cholinergic synapse have been studied. The ecto-ATPase (EC 3.6.1.15) had a Km of 131 microM, whereas the ecto-ADPase (EC 3.6.1.6) had a Km of 58 microM, was Ca(2+)-dependent, and was inhibited by the ATP analogue 5'-adenylylimidodiphosphate (AMPPNP). The ecto-5'-nucleotidase (EC 3.1.3.5) had a Km of 21 microM, was inhibited by AMPPNP and alpha,beta-methylene ADP, and by a specific antiserum. The Vmax values of the ATPase, ADPase, and 5'-nucleotidase enzymes present at this synapse were in a ratio of 30:14:1. Very little ecto-adenylate kinase activity was detected on these purified synapses. The intraterminal 5'-nucleotidase enzyme, which amounted to 40% of the total 5'-nucleotidase activity, was inhibited by AMPPNP, alpha,beta-methylene ADP, and the antiserum, and also had the same kinetic properties as the ectoenzyme. The time course of ATP degradation to adenosine outside the nerve terminals showed a delay, followed by a period of sustained adenosine production. The delay in adenosine production was proportional to the initial ATP concentration, was a consequence of feedforward inhibition of the ADPase and 5'-nucleotidase, and was inversely proportional to the ecto-5'-nucleotidase activity. The function and characteristics of this pathway and the central role of 5'-nucleotidase in the regulation of extraterminal adenosine concentrations are discussed.

  6. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation

    Science.gov (United States)

    Kiese, Katharina; Jablonski, Janos; Boison, Detlev; Kobow, Katja

    2016-01-01

    The ubiquitous metabolic intermediary and nucleoside adenosine is a “master regulator” in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression. PMID:27812320

  7. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong

    2011-01-01

    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  8. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics.

    Science.gov (United States)

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D

    2016-04-01

    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain.

  9. A3 Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve.

    Science.gov (United States)

    González-Fernández, Estíbaliz; Sánchez-Gómez, María Victoria; Pérez-Samartín, Alberto; Arellano, Rogelio O; Matute, Carlos

    2014-02-01

    Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage.

  10. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria;

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1) re...

  11. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency

    NARCIS (Netherlands)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hoenig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E.; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M.; Boelens, Jaap; Davies, E. Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H. Bobby

    2012-01-01

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed o

  12. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  13. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  14. Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors.

    Science.gov (United States)

    Partovi, Dara; Frerking, Matthew

    2006-11-01

    Kainate receptors are widely reported to regulate the release of neurotransmitter in the CNS, but the mechanisms involved remain controversial. Previous studies have found that the kainate receptor agonist ATPA, which selectively activates Glu(K5)-containing kainate receptors, depresses glutamate release at Schaffer-collateral synapses in the hippocampus. In the present study, we provide pharmacological evidence that this depressant effect is mediated by Glu(K5)-containing heteromers, but is distinct from a similar depressant effect engaged by the kainate receptor agonist domoate. The depressant effect of ATPA is insensitive to antagonists for GABA(A), GABA(B), and adenosine receptors, and is also unaffected by lowering the release probability by reducing extracellular calcium. However, the effect of ATPA is partly occluded by prior activation of GABA(B) receptors and completely occluded by prior activation of adenosine receptors, suggesting a mechanistic convergence of heteromeric Glu(K5) kainate receptor signaling with GABA(B) receptors and adenosine receptors. The effects of domoate are partially occluded by both adenosine and GABA(B) receptor agonists, indicating at least a partial convergence of Glu(K5)-lacking kainate receptor signaling with these other pathways. The depressant effect of ATPA is not blocked by inhibition of serine/threonine protein kinases. These results suggest that ATPA and domoate inhibit glutamate release through mechanisms that converge with those of classical metabotropic receptor agonists, although they do so through different receptors.

  15. REDUCTION OF ADENOSINE-A1-RECEPTORS IN THE PERFORANT PATHWAY TERMINAL ZONE IN ALZHEIMER HIPPOCAMPUS

    NARCIS (Netherlands)

    JAARSMA, D; SEBENS, JB; KORF, J

    1991-01-01

    The cells of origin of the perforant pathway are destroyed in Alzheimer's disease (AD). In rat the adenosine A1-receptors are specifically localized on the perforant path terminals in the molecular layer of the dentate gyrus. In the present study the density of A1-receptors in the hippocampus of Alz

  16. REPRODUCTIVE CONDITION, GLOMERULAR ADENOSINE DIPHOSPHATASE ACTIVITY, AND PLATELET-AGGREGATION IN THE RAT - EFFECT OF ENDOTOXIN

    NARCIS (Netherlands)

    VISSCHER, CA; FAAS, MM; BAKKER, WW; SCHUILING, GA

    1993-01-01

    In experiment A, the activity of the glomerular antithrombotic enzyme adenosine diphosphatase (ADPase) and the sensitivity of this enzyme for endotoxin (1.0 mug/kg BW) in various reproductive conditions of female rats were studied through use of enzyme histochemical methods. In experiment B, the eff

  17. Allosteric modulators affect the internalization of human adenosine A1 receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; Hout, G. van den; Roerink, S.F.; Grip, W.J. de; IJzerman, A.P.; Beukers, M.W.

    2005-01-01

    To study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressi

  18. Determination of Adenosine Triphosphate on Marine Particulates:Synthesis of Methods for Use on OTEC Samples

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Anthony T.; Hartwig, Eric O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  19. Determination of adenosine triphosphate on marine particulates: synthesis of methods for use on OTEC samples

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.T.; Hartwig, E.O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  20. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  1. Therapeutic efficacy of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) against organophosphate intoxication

    NARCIS (Netherlands)

    Bueters, T.J.H.; Groen, B.; Danhof, M.; IJzerman, A.P.; Helden, H.P.M. van

    2002-01-01

    The objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun (O-ethyl-N-dimethylphosphoramidocyanidate), sarin (

  2. The effect of ticlopidine administration to humans on the binding of adenosine diphosphate to blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Schiphorst, M.E.

    1980-01-01

    Administration of Ticlopidine to human volunteers resulted in a prolonged bleeding time and decreased or absent aggregation of platelets with collagen and epinephrine. Adenosine diphosphate (ADP) induced platelet aggregation was initiated by a normal shape change, but the rate of the first wave of a

  3. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia?

    LENUS (Irish Health Repository)

    Espinoza, Jimmy

    2012-02-01

    OBJECTIVE: Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN: This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS: Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 +\\/- 0.09 mumol\\/L) than in normal pregnancies (0.52 +\\/- 0.06 mumol\\/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 +\\/- 0.15 mumol\\/L), but not with normal UADV (0.58 +\\/- 0.14 mumol\\/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION: Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.

  4. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    Science.gov (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  5. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients

    NARCIS (Netherlands)

    I. Brigida (Immacolata); A.V. Sauer (Aisha); F. Ferrua (Francesca); S. Giannelli (Stefania); S. Scaramuzza (Samantha); V. Pistoia (Valentina); M.C. Castiello (Maria Carmina); B.H. Barendregt (Barbara); M.P. Cicalese (Maria Pia); F. Casiraghi (Federica); C. Brombin (Chiara); J. Puck (Jennifer); K. Muller (Karin); L.D. Notarangelo (Luigi Daniele); D. Montin (Davide); J.M. van Montfrans (Joris); M.G. Roncarolo (Maria Grazia); E. Traggiai (Elisabetta); J.J.M. van Dongen (Jacques); M. van der Burg (Mirjam); A. Aiuti (Alessandro)

    2014-01-01

    textabstractBackground Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) g

  6. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    Science.gov (United States)

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  7. Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats.

    Science.gov (United States)

    Tofovic, S P; Zacharia, L; Carcillo, J A; Jackson, E K

    2001-09-01

    The purpose of this study was to investigate in vivo the effects of modulating the adenosine system on endotoxin-induced release of cytokines and changes in heart performance and neurohumoral status in early, profound endotoxemia in rats. Time/pressure variables of heart performance and blood pressure were recorded continuously, and plasma levels of tumor necrosis factor alpha (TNFalpha), interleukin 1-beta (IL-1beta), plasma renin activity (PRA), and catecholamines were determined before and 90 min after administration of endotoxin (30 mg/kg of lipopolysaccharide, i.v.). Erythro-9[2-hydroxyl-3-nonyl] adenine (EHNA; an adenosine deaminase inhibitor) had no effects on measured time-pressure variables of heart performance under baseline conditions and during endotoxemia, yet significantly attenuated endotoxin-induced release of cytokines and PRA. Pretreatment with the non-selective adenosine receptor antagonist DPSPX not only prevented the effects of EHNA but also increased the basal release of cytokines and augmented PRA. At baseline, caffeine (a non-selective adenosine receptor antagonist) increased HR, +dP/dtmax, heart rate x ventricular pressure product (HR x VPSP) and +dP/dtmax normalized by pressure (+dP/dtmax/VPSP), and these changes persisted during endotoxemia. Caffeine attenuated endotoxin-induced release of cytokines and augmented endotoxin-induced increases in plasma catecholamines and PRA. Pretreatment with propranolol abolished the effects of caffeine on heart performance and neurohumoral activation during the early phase of endotoxemia. 6N-cyclopentyladenosine (CPA; selective A1 adenosine receptor agonist) induced bradicardia and negative inotropic effects, reduced work load (i.e., decreased HR, VPSP, +dP/dtmax, +dP/dtmax/VPSP and HR x VPSP) and inhibited endotoxin-induced tachycardia and renin release. CGS 21680 (selective A2A adenosine receptor agonist) decreased blood pressure under basal condition but did not potentiate decreases in blood pressure

  8. Modulatory effect of adenosine receptors on the ascending and descending neural reflex responses of rat ileum

    Directory of Open Access Journals (Sweden)

    Schusdziarra Volker

    2002-12-01

    Full Text Available Abstract Background Adenosine is known to act as a neuromodulator by suppressing synaptic transmission in the central and peripheral nervous system. Both the release of adenosine within the small intestine and the presence of adenosine receptors on enteric neurons have been demonstrated. The aim of the present study was to characterize a possible involvement of adenosine receptors in the modulation of the myenteric reflex. The experiments were carried out on ileum segments 10 cm in length incubated in an single chambered organ bath, and the reflex response was initiated by electrical stimulation (ES. Results ES caused an ascending contraction and a descending relaxation followed by a contraction. All motility responses to ES were completely blocked by tetrodotoxin, indicating that they are mediated by neural mechanisms. Atropine blocked the contractile effects, whereas the descending relaxation was significantly increased. The A1 receptor agonist N6-cyclopentyladenosine increased the ascending contraction, whereas the ascending contraction was reduced by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Activation of the A1 receptor further reduced the descending relaxation and the latency of the peristaltic reflex. The A2B receptor antagonist alloxazine increased ascending contraction, whereas descending relaxation remained unchanged. For A2A and A3 receptors, we found contradictory effects of the agonists and antagonists, thus there is no clear physiological role for these receptors at this time. Conclusions This study suggests that the myenteric ascending and descending reflex response of the rat small intestine is modulated by release of endogenous adenosine via A1 receptors.

  9. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    Science.gov (United States)

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  10. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics.

    Science.gov (United States)

    Urry, Emily; Landolt, Hans-Peter

    2015-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.

  11. Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

    Directory of Open Access Journals (Sweden)

    da Luz Protásio

    2006-02-01

    Full Text Available Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE. Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004, with good correlation between measurements (r = 0.91; p 2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

  12. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150.

    Directory of Open Access Journals (Sweden)

    Magali Rolland-Turner

    Full Text Available BACKGROUND: Administration of endothelial progenitor cells (EPC represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS: EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS: Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001. CXCR4 expression at the cell surface was also increased. This effect involved the A(2B receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION: Adenosine increases the migration of EPC. The mechanism involves A(2B receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These

  13. Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine

    Institute of Scientific and Technical Information of China (English)

    Ming-xia WANG; Lei-ming REN

    2006-01-01

    Aim: To study the growth inhibitory and apoptotic effects of adenosine triphosphate (ATP) and adenosine (ADO) on human gastric carcinoma (HGC)-27 cells in vitro and the mechanisms related to the actions of ATP and ADO. Methods: MTT assay was used to determine the reduction of cell viability. The morphological changes of HGC-27 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange/ethidium bromide double-stained cells. The internucleosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell-cycle analysis after treatment with ATP or ADO was determined by flow cytometry. Results: ATP, ADO and the intermediate metabolites, ADP and AMP, and the agonist of purinergic receptors, reduced cell viability of HGC-27 cells at doses of 0.3 and 1.0 mmol·L-1. The distribution of cell cycle phase and proliferation index (PI) value of HGC-27 cells changed when exposed to ATP or ADO at the concentrations of 0.1,0.3 and 1 mmol/L for 48 h. ATP and ADO both altered the distribution of cell cycle phase via Go/G1-phase arrest and significantly decreased PI value. Under light microscope, the tumor cells exposed to 0.3 mmol·L-1 ATP or ADO displayed morphological changes of apoptosis; a ladder-like pattern of DNA fragmentation obtained from HGC-27 cells treated with 0.1-1 mmol·L-1 ATP or ADO appeared in agarose gel electrophoresis; ATP and ADO induced the apoptosis of HGC-27 cells in a dose-dependent manner at concentrations between 0.03-1 mmol·L-1. The maximum apoptotic rate of HGC-27 cells exposed to ATP or ADO for 48 h was 13.53% or 15.9%, respectively. HGC-27 cell death induced by ATP or ADO was significantly inhibited by dipy-ridamole (10 mmol·L-1), an inhibitor of adenosine transporter, but was not affected by aminophylline, a broad inhibitor of PI receptors and pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetrasodium salt (30 nmol·L-1), a non-selective antagonist of P2

  14. Behavior of the monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} (m=4 and 6) in electrochemical lithium insertion

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Rodriguez, F.E.; Martinez-de la Cruz, A.; Lopez Cuellar, E. [Division de Estudios de Posgrado, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, NL (Mexico)

    2006-10-06

    The electrochemical lithium insertion process has been studied in the family of monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m}, where m=4 and 6. Structural changes in the pristine oxides were followed as lithium insertion proceeded. Through potentiostatic intermittent technique, the different processes which take place in the cathode during the discharge of the cell were analysed. The nature of the bronzes Li{sub x}(PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} formed was determined by in situ X-ray diffraction experiments. These results have allowed establishment of a correlation with the reversible/irreversible processes detected during the electrochemical lithium insertion. Measurements of resistivity showed that upon lithium insertion, the metallic pristine oxides become insulating. (author)

  15. Electronic band structure and Fermi surfaces of the quasi-two-dimensional monophosphate tungsten bronze, P4W12O44

    Science.gov (United States)

    Paul, S.; Ghosh, A.; Sato, T.; Sarma, D. D.; Takahashi, T.; Wang, E.; Greenblatt, M.; Raj, S.

    2014-02-01

    The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around \\Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q_1 and q_2 , which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties.

  16. Comparison of adenosine stress and dobutamine stress by real-time myocardial contrast echocardiography in detecting myocardium ischemia in dogs

    Institute of Scientific and Technical Information of China (English)

    XING Yan-qiu; HOU Bo-wen; ZHANG Yun; LIU Xiang-qun; GAO Hai-qing

    2009-01-01

    spectively. Conclusions Even small distal infarcts can be detected by RTPI; peri-infarct ischemia can be accurately recognized by RTPI during stress; adenosine and dobutamine stress appear equally reliable in the RTPI evaluation of peri-infarct ischemia.

  17. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  18. Ischemic preconditioning protects post-ischemic renal function in anesthetized dogs: role of adenosine and adenine nucleotides

    Institute of Scientific and Technical Information of China (English)

    Fan-zhu LI; Shoji KIMURA; Akira NISHIYAMA; Matlubur RAHMAN; Guo-xing ZHANG; Youichi ABE

    2005-01-01

    Aim: To investigate the effects of renal ischemic preconditioning (IPC) on both renal hemodynamics and the renal interstitial concentrations of adenosine and adenine nucleotides induced by ischemia-reperfusion injury.Methods: Renal hemodynamics responses to ischemia-reperfusion injury in mongrel dog models were determined with or without multiple brief renal ischemic preconditioning treatments, as well as the adenosine A1 receptor antagonist (KW-3902),respectively.The renal interstitial concentrations of adenosine and adenine nucleotides in response to ischemia-reperfusion injury, either following 1-3 cycles of IPC or not, were measured simultaneously using microdialysis sampling technology.Results: One 10-min IPC, adenosine A1 receptor antagonist (KW3902) also shortened the recovery time of renal blood flow (RBF) and urine flow (UF), as well as mean blood pressure (BP).Advanced renal IPC attenuated the increment of adenosine and adenine nucleotides, as well as recovery time during the 60-min reperfusion which followed the 60-min renal ischemia.All of these recovery times were dependent on the cycles of 10-min IPC.The renal interstitial concentrations of adenosine and adenine nucleotides increased and decreased during renal ischemia and reperfusion, respectively.Conclusion: A significant relativity in dog models exists between the cycles of 10-min renal IPC and the recovery time of BP, UF, and RBF during the 60-min renal reperfusion following 60-min renal ischemia, respectively.Renal IPC can protect against ischemiareperfusion injury and the predominant effect of endogenous adenosine induced by prolonged renal ischemia; renal adenosine A1 receptor activation during the renal ischemia-reperfusion injury is detrimental to renal function.

  19. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.

    Science.gov (United States)

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2012-09-01

    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  20. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine

    Directory of Open Access Journals (Sweden)

    Carolin Franziska Reichert

    2016-02-01

    Full Text Available The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system.

  1. Synthesis and Pharmacological Evaluation of Modified Adenosines Joined to Mono-Functional Platinum Moieties

    Directory of Open Access Journals (Sweden)

    Stefano D'Errico

    2014-07-01

    Full Text Available The synthesis of four novel platinum complexes, bearing N6-(6-amino-hexyladenosine or a 1,6-di(adenosin-N6-yl-hexane respectively, as ligands of mono-functional cisplatin or monochloro(ethylendiamineplatinum(II, is reported. The chemistry exploits the high affinity of the charged platinum centres towards the N7 position of the adenosine base system and a primary amine of an alkyl chain installed on the C6 position of the purine. The cytotoxic behaviour of the synthesized complexes has been studied in A549 adenocarcinomic human alveolar basal epithelial and MCF7 human breast adenocarcinomic cancer cell lines, in order to investigate their effects on cell viability and proliferation.

  2. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    Science.gov (United States)

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  3. CD73-Generated Adenosine: Orchestrating the Tumor-Stroma Interplay to Promote Cancer Growth

    Directory of Open Access Journals (Sweden)

    Bertrand Allard

    2012-01-01

    Full Text Available Despite the coming of age of cancer immunotherapy, clinical benefits are still modest. An important barrier to successful cancer immunotherapy is that tumors employ a number of mechanisms to facilitate immune escape, including the production of anti-inflammatory cytokines, the recruitment of regulatory immune subsets, and the production of immunosuppressive metabolites. Significant therapeutic opportunity exists in targeting these immunosuppressive pathways. One such immunosuppressive pathway is the production of extracellular adenosine by CD73, an ectonucleotidase overexpressed in various types of cancer. We hereafter review the biology of CD73 and its role in cancer progression and metastasis. We describe the role of extracellular adenosine in promoting tumor growth through paracrine and autocrine action on tumor cells, endothelial cells, and immune cells.

  4. Interaction of Divalent Metal Ions with the Adenosine Triphosphate Measured Using Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The interaction of adenosine triphosphate with divalent metal ions is important in biochemical functions. The effects of pH and metal ions Mg2+, Ca2+, Zn2+, Mn2+, and Co2+ on the chemical shift of the phosphate group of ATP have been studied using Nuclear Magnetic Resonance. The chemical shift of the β-phosphate of ATP is the most sensitive to pH. Ca2+ and Mg2+ bind with the α- and β-phosphate groups of ATP. Zn2+ binds to the adenosine ring hydrogen as well as to phosphate. The paramagnetic ions Mn2+ and Co2+ do not cause chemical shifts of the phosphate or proton peak. Mn2+ and Co2+ broaden the resonance peak only.

  5. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  6. A Case of Hypogammaglobulinemia with Enteroviral Meningoencephalitis, Associated with Increased Adenosine Deaminase in Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Alborizi Abdolvahab

    2009-06-01

    Full Text Available We describe the development of enterovirus meningoencephalitis associated with increased adenosine deaminase in cerebrospinal fluid of a 12-year-old boy, a known case of hypogamaglobulinemia despite monthly replacement of IVIg.The patient was referred to our center with fever, headache and vomiting for 10 days. CSF analysis was compatible with aseptic meningoencephalitis but high CSF protein (>200mg/dl and high level of adenosine deaminase in CSF (30IU/L were against the diagnosis of simple viral meningoencephalitis. Nested PCR of CSF for entrovirus was positive. Treatment with daily high-dose IVIg was commenced, with significant clinical improvement. For patients with increased ADA and lymphocytic pleocytosis in CSF, differential diagnoses should include enteroviral meningitis. Antibodies, although crucial, cannot on their own prevent enteroviral infection in some hypogamaglbulinemic patients.

  7. Adenosine kinase deficiency with neurodevelopemental delay and recurrent hepatic dysfunction: A case report

    Science.gov (United States)

    Shakiba, Marjan; Mahjoub, Fatemeh; Fazilaty, Hassan; Rezagholizadeh, Fereshteh; Shakiba, Arghavan; Ziadlou, Maryam; Gahl, William A.; Behnam, Babak

    2016-01-01

    Hypermethioninemia may be benign, present as a nonspecific sign of nongenetic conditions such as liver failure and prematurity, or a severe, progressive inborn error of metabolism. Genetic causes of hypermethioninemia include mitochondrial depletion syndromes caused by mutations in the MPV17 and DGUOK genes and deficiencies of cystathionine β-synthase, methionine adenosyltransferase types I and III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase, citrin, fumarylacetoacetate hydrolase, and adenosine kinase. Here we present a 3-year old girl with a history of poor feeding, irritability, respiratory infections, cholestasis, congenital heart disease, neurodevelopmental delay, hypotonia, sparse hair, facial dysmorphisms, liver dysfunction, severe hypermethioninemia and mild homocystinemia. Genetic analysis of the adenosine kinase (ADK) gene revealed a previously unreported variant (c.479–480 GA>TG) resulting in a stop codon (p.E160X) in ADK. A methionine-restricted diet normalized the liver function test results and improved her hypotonia. PMID:27500280

  8. Differential effects of the adenosine A1 receptor agonist adenosine amine congener on renal, femoral and carotid vascular conductance in preterm fetal sheep.

    Science.gov (United States)

    Booth, Lindsea C; Tummers, Leonie; Jensen, Ellen C; Barrett, Carolyn J; Malpas, Simon C; Gunn, Alistair J; Bennet, Laura

    2008-11-01

    1. Adenosine A(1) receptor activation is critical for endogenous neuroprotection from hypoxia-ischaemia, raising the possibility that treatment with A(1) receptor agonists may be an effective physiological protection strategy for vulnerable preterm infants. However, the A(1) receptor can mediate unwanted systemic effects, including vasoconstriction of the afferent glomerular arteriole. There is limited information on whether this occurs at doses that improve cerebral perfusion in the immature brain. 2. Therefore, in the present study, we examined whether infusion of the selective A(1) receptor agonist adenosine amine congener (ADAC) is associated with reduced renal perfusion in chronically instrumented preterm (0.7 gestation) fetal sheep. In the present study, ADAC was given in successive doses of 2.5, 5.0 and 15.0 microg, 45 min apart. 3. Treatment with ADAC was associated with a marked reduction in renal vascular conductance (and blood flow), whereas carotid conductance was increased and there was no significant effect on femoral conductance. In contrast with the stable effects of increasing ADAC dose on vascular conductance, there was a significant dose-related fall in fetal heart rate and blood pressure. 4. In conclusion, these short-term data support the concern that A(1) receptor agonist infusion can selectively impair renal perfusion, even at low doses.

  9. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  10. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    Science.gov (United States)

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-01

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis.

  11. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  12. Effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on ocular blood flow in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2007-02-27

    Previously, we reported that a relatively selective adenosine A(2A) receptor agonist 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) elicited ocular hypotension in rabbits (Journal of Pharmacological Sciences 2005;97:501-509). In the present study, we investigated the effect of 2-CN-Ado on ocular blood flow in rabbit eyes. An intravitreal injection of 2-CN-Ado increased ocular blood flow, measured by a non-contact laser flowmeter. 2-CN-Ado-induced increase in ocular blood flow was accompanied with the retinal vasodilation. The increase in ocular blood flow was inhibited by an adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, but not by an adenosine A(2B) receptor antagonist alloxazine or an adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The repetitive applications of topical 2-CN-Ado twice a day for 7 days produced a persistent increase in ocular blood flow with ocular hypotension. These results suggest that 2-CN-Ado increases the ocular blood flow mainly via adenosine A(2A) receptor, and that the topical application of 2-CN-Ado for several days not only increases the ocular blood flow but also prolong ocular hypotension, indicating that 2-CN-Ado may be a useful lead compound for the treatment of ischemic retinal diseases such as glaucoma.

  13. Value of the adenosine test for diagnosis of dual AV nodal physiology in patients with AV nodal reentrant tachycardia

    Institute of Scientific and Technical Information of China (English)

    周斌全; 胡申江; 鲁端; 王建安

    2002-01-01

    Objectives: This study was aimed at assessing the value of the adenosine test for noninvasive diagnosis of dual AV nodal physiology(DAVNP) in patients with AV nodal reentrant tachycardia (AVNRT). Methods: 53 patients with paroxysmal supraventricular tachycardia (PSVT) were given incremental doses of adenosine intravenously during sinus rhythm before electrophysiological study. The adenosine test was repeated on a subset of 18 patients with AVNRT after radiofrequency catheter ablation. Results: Sudden increments of PR interval of more than 60 msec between two consecutive beats were observed in 26(83.9%) of 31 patients with typical AVNRT and 2 (9.1%) of 22 patients with AVRT and AT (P<0.01). The maximal PR increment between 2 consecutive beats in the AVNRT group(105±45ms) was significantly greater than that in the AVRT and AT group (20±13ms) (P<0.01).In postablation adenosine test, DAVNP was eliminated in all 8 patients who underwent slow pathway abolition that EPS showed the slow pathway disappeared and 4 of 10 patients who underwent slow pathway modification that EPS showed the slow pathway persisted. Six of 10 patients who exhibited persistent duality showed a marked reduction in the number of beats conducted in the slow pathway after adenosine injection(P<0.01).Conclusions: Administration of adenosine during sinus rhythm may be a useful bedside test for diagnosis of DAVNP in high percentage of patients with typical AVNRT and additionally for evaluating the effects of radiofrequency ablation.

  14. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  15. Adenosine kinase inhibition protects against cranial radiation-induced cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Munjal M Acharya

    2016-06-01

    Full Text Available Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting, however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK. Adult rats exposed to cranial irradiation (10 Gy showed significant declines in performance of hippocampal-dependent cognitive function tasks (novel place recognition, novel object recognition, and contextual fear conditioning 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the fear conditioning task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP. Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection also against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS

  16. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat

    Science.gov (United States)

    2008-11-01

    not temperate, conditions after administration of a dopamine reuptake inhib- itor in humans (52) and improved thermoregulation in rats after...acute nutritional adenosine antagonist (caffeine and quercetin) administration on endurance exercise performance in the heat. An underlying assumption...both achieved with a small (0.6 mg/kg) intracerebroventricular dose of caffeine, while the same intraperitoneal dose had no effects. It remains

  17. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response.

    Science.gov (United States)

    Novakova, Milena; Dolezal, Tomas

    2011-03-11

    Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.

  18. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    OpenAIRE

    Montiel-Equihua, C. A.; Thrasher, A. J.; Gaspar, H B

    2009-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. P...

  19. Adenosine Preconditioning versus Ischemic Preconditioning in Patients undergoing Off-Pump Coronary Artery Bypass (OPCAB

    Directory of Open Access Journals (Sweden)

    SeyedKhalil Forouzannia

    2015-10-01

    Full Text Available Background: During off-pump coronary artery bypass (OPCAB, the heart is subjected to ischemic and reperfusion injury. Preconditioning is a mechanism that permits the heart to tolerate myocardial ischemia. The aim of this study was to compare the effects of Adenosine preconditioning with ischemic preconditioning on the global ejection fraction (EF in patients undergoing OPCAB.Methods: In this single-blind, randomized controlled trial, sixty patients undergoing OPCAB were allocated into three equally-numbered groups through simple randomization: Adenosine group, ischemic group, and control group. The patients in the Adenosine group received an infusion of Adenosine. In the ischemic group, ischemic preconditioning was induced by the temporary occlusion of the left anterior descending coronary artery twice for a 2-minute period, followed by 3-minute reperfusion before bypass grafting of the first coronary vessel. The control group received an intravenous infusion of 0.9% saline. Blood samples at different times were sent for the measurement of creatine kinase isoenzyme MB (CK-MB and cardiac troponin I (cTnI. We also recorded electrocardiographic indices and clinical parameters, including postoperative use of inotropic drugs and preoperative and postoperative EF.Results: History of myocardial infarction, hyperlipidemia, diabetes mellitus, kidney disease, preoperative arrhythmias, and utilization of postoperative inotrope was the same between the three groups. The incidence of postoperative arrhythmias was not significant between the three groups. Also, there were no significant differences in preoperative and postoperative EF and the serum levels of enzymes (cTnI and CK-MB between the groups.Conclusion: Based on the findings of this study, there was no significant difference in the postoperative EF between the groups. Although the incidence of arrhythmias was higher in the ischemic preconditioning group than in the other groups, the difference

  20. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    Science.gov (United States)

    2015-02-01

    functional and histological changes asso ciated with diabetic nephropathy in wild type diabetic mice but not in the A2AAR−/− diabetic mice (Awad et al...the beginning of streptozotocin induced diabetes at the age of eight weeks. This treatment , previously demonstrated to increase free adenosine levels in...and it was not affected by ABT 702 treatment Blood glucose levels were higher in diabetic mice compared with non diabetic groups and they were not

  1. Synthesis and characterization of chemically anchored adenosine with PHEMA grafted gold nanoparticles

    Science.gov (United States)

    Bach, Long Giang; Islam, Md. Rafiqul; Jeong, Yeon Tae; Gal, Yeong Soon; Lim, Kwon Taek

    2012-01-01

    The synthesis of chemically anchored adenosine with biocompatible poly(2-hydroxylethyl methacrylate) grafted gold nanoparticles (Ado-i-PHEMA-g-AuNPs) was realized by employing a simple strategy. Disulfide-containing poly(2-hydroxylethyl methacrylate) (DT-PHEMA) was initially synthesized by atom transfer radical polymerization (ATRP). The formation of DT-PHEMA was confirmed by 1H-NMR and FT-IR. The molecular weight and molecular weight distribution were found to be 9.6 kg/mol and 1.40 from GPC analysis. DT-PHEMA was subsequently used for the synthesis of PHEMA-g-AuNPs by a grafting to protocol. The grafting of DT-PHEMA on the surface of AuNPs was confirmed by FT-IR, TGA, XPS, and EDX analyses. The particle size of the PHEMA-g-AuNPs was found to be ca. 5.0 nm from HR-TEM analysis. Boronic acid was used for functionalization of PHEMA-g-AuNPs, which was then subjected for covalent immobilization with adenosine via strong interaction between free hydroxyl groups of adenosine and boronic acid. Characterization and properties of the Ado-i-PHEMA-g-AuNPs were investigated by taking advantage from FT-IR, XPS, EDX, and UV-visible spectroscopy. The Ado-i-PHEMA-g-AuNPs nanocomposite exhibits a surface plasmon resonance peak at 586 nm which is red shifted from AuNPs (521 nm), indicating significant changes of surface property upon PHEMA-adenosine immobilization onto the surface of AuNPs.

  2. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  3. Effects of an induced adenosine deaminase deficiency on T-cell differentiation in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.W.

    1985-10-15

    Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF.

  4. P2X receptors regulate adenosine diphosphate release from hepatic cells.

    Science.gov (United States)

    Chatterjee, Cynthia; Sparks, Daniel L

    2014-12-01

    Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

  5. Electrophysiologic effects of adenosine triphosphate on rabbit sinoatrial node pace maker cells via P1 receptors

    Institute of Scientific and Technical Information of China (English)

    RENLei-Ming; LIJun-Xia; SHIChen-Xia; ZHAODing

    2003-01-01

    AIM: To study the electrophysiologic effects of adenosine triphosphate (ATP) on rabbit sinoatrial node pacemakercells and the receptors related with the action of ATP. METHODS: Intracellular microelectrode method was usedto record the parameters of action potential (AP) in the rabbit sinoatrial nodes. RESULTS: ATP (0.1-3 mmol/L)decreased the rate of pacemaker firing (RPF) by 16 %-43 % and velocity of diastolic depolarization (VDD) by 33 %-67 %, increased the amplitude of AP (APA) by 6 %-9 % and maximal rate of depolarization (Vmax) by 30 %-76 %,shortened APD50 by 7 %-12 % and APD90 by 6.3 %-9 %, concentration-dependently. The effects of ATP, adenos-ine (Ado), and adenosine diphosphate at the same concentration on AP were not different from each other significantly.Neither uridine triphosphate nor, α,β-methylene ATP had significant electrophysiologic effects on the sinoatrialnode of rabbits. Both the electrophysiologic effects of ATP and Ado on pacemaker cells were inhibited by P1receptor antagonist aminophylline 0.1 mmol/L (P0.05). CONCLUSION: There are nofunctional P2X1 and P2Y2 receptors on pacemaker cells of the rabbit sinoatrial nodes, and the electrophysiologiceffects of ATP in the rabbit sinoatrial node pacemaker cells are mediated via P1 receptors by Ado degraded fromATP.

  6. Effect of caffeine and adenosine on G2 repair: mitotic delay and chromosome damage.

    Science.gov (United States)

    González-Fernández, A; Hernández, P; López-Sáez, J F

    1985-04-01

    Proliferating plant cells treated during the late S period with 5-aminouracil (AU), give the typical response that DNA-damaging agents induce, characterized by: an important mitotic delay, and a potentiation of the chromosome damage by caffeine post-treatment. The study of labelled prophases, after a tritiated thymidine pulse, allowed evaluation of the mitotic delay induced by AU as well as its reversion by caffeine, while chromosome damage was estimated by the percentage of anaphases and telophases showing chromosomal aberrations. Post-treatment with adenosine alone has shown no effect on mitotic delay or chromosomal damage. However, when cells after AU were incubated in caffeine plus adenosine, the chromosome damage potentiation was abolished without affecting the caffeine action on mitotic delay. As a consequence, we postulate that caffeine could have two effects on G2 cells with damaged DNA: the first, to cancel their mitotic delay and the second to inhibit some DNA-repair pathway(s). Only this last effect could be reversed by adenosine.

  7. Identification and function of adenosine A3 receptor in afferent arterioles.

    Science.gov (United States)

    Lu, Yan; Zhang, Rui; Ge, Ying; Carlstrom, Mattias; Wang, Shaohui; Fu, Yiling; Cheng, Liang; Wei, Jin; Roman, Richard J; Wang, Lei; Gao, Xichun; Liu, Ruisheng

    2015-05-01

    Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.

  8. N-ethyl-carboxamide adenosine inhibits perioral dyskinesias induced by sulpiride + SKF 38393 in rabbits.

    Science.gov (United States)

    Caporali, M G; Scotti de Carolis, A; Popoli, P

    1992-11-13

    A pattern of perioral dyskinesia was induced in adult male rabbits by concomitant stimulation of dopamine D1 receptors (SKF 38393) and blockade of dopamine D2 receptors (sulpiride). Rabbits treated with sulpiride (6 and 12.5 mg/kg i.v.) then, 90 min thereafter, with SKF 38393 (0.1, 1 and 10 mg/kg i.v.) showed a pattern of perioral dyskinesia characterized by compulsive and repetitive sniffing, licking and vacuous chewing. These effects were completely prevented by the administration of N-ethylcarboxamide adenosine (NECA), an A2 > A1 adenosine receptor agonist. The present results confirm that perioral dyskinesia is dependent on the activation of dopamine D1 receptors. They also show that, in order to induce perioral dyskinesia in rabbits, a concomitant blockade of dopamine D2 receptors is required. Finally, the antagonistic effect of NECA on the appearance of perioral movements confirms that adenosine receptors play a key role in the control of dopamine-mediated effects.

  9. Role of nitric oxide in adenosine-induced vasodilation in humans

    Science.gov (United States)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (Pvasodilation is not mediated by nitric oxide in the human forearm.

  10. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  11. Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available BACKGROUND: Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2 or hypoxic (2% O(2 conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist had no affects on heart function, whereas DPCPX (A1AR-specific antagonist had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/- had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos. CONCLUSIONS/SIGNIFICANCE: These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of

  12. Pooled comparison of regadenoson versus adenosine for measuring fractional flow reserve and coronary flow in the catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stolker, Joshua M., E-mail: jstolker@yahoo.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Lim, Michael J., E-mail: limmj@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Shavelle, David M., E-mail: david.shavelle@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Morris, D. Lynn, E-mail: morrisdl@einstein.edu [Albert Einstein Medical Center, 5501 Old York Rd, Philadelphia, PA 19141 (United States); Angiolillo, Dominick J., E-mail: dominick.angiolillo@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Guzman, Luis A., E-mail: luis.guzman@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Kennedy, Kevin F., E-mail: kfkennedy@saint-lukes.org [Saint Luke' s Mid America Heart Institute, 4401 Wornall Road, Kansas City, MO 64111 (United States); Weber, Elizabeth, E-mail: eweber1@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zareh, Meena, E-mail: meena.zareh@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Neumayr, Robert H., E-mail: robneumayr@gmail.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zenni, Martin M., E-mail: martin.zenni@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States)

    2015-07-15

    Background: Adenosine is the gold standard for augmenting coronary flow during fractional flow reserve (FFR) testing of intermediate coronary stenoses. However, intravenous infusion is time-consuming and intracoronary injection is subject to variability. Regadenoson is a newer adenosine alternative administered as a single intravenous bolus during nuclear stress testing, but its efficacy and safety during FFR testing have been evaluated only in small, single-center studies. Methods: We pooled data from 5 academic hospitals, in which patients undergoing clinically-indicated FFR prospectively underwent comparison of intravenous adenosine infusion (140–175 mcg/kg/min) versus regadenoson bolus (400 mcg). Hemodynamics and symptoms with adenosine were recorded until maximal hyperemia occurred, and after returning to baseline hemodynamics, regadenoson was administered and monitoring was repeated. In a subset of patients with coronary flow data, average peak velocity (APV) at the distal flow sensor was recorded. Results: Of 149 patients enrolled, mean age was 59 ± 9 years, 76% were male, and 54% underwent testing of the left anterior descending artery. Mean adenosine-FFR and regadenoson-FFR were identical (0.82 ± 0.10) with excellent correlation of individual values (r = 0.96, p < 0.001) and no difference in patient-reported symptoms. Four patients (2.6%) had discrepancies between the 2 drugs for the clinical decision-making cutoff of FFR ≤ 0.80. Coronary flow responses to adenosine and regadenoson were similar (APV at maximal hyperemia 36 cm/s for both, p = 0.81). Conclusions: Regadenoson single-bolus administration has comparable FFR, symptoms, and coronary flow augmentation when compared with standard intravenous adenosine infusion. With its greater ease of administration, regadenoson may be a more “user-friendly” option for invasive ischemic testing.

  13. Effects of AMP579 and adenosine on L-type Ca2+ current in isolated rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiong WANG; Bo-wei WU; Dong-mei WU

    2005-01-01

    Aim: To compare the effects of AMP579 and adenosine on L-type Ca2+ current (ICa- L) in rat ventricular myocytes and explore the mechanism by which AMP579 acts on ICa-L. Methods: ICa-L was recorded by patch-clamp technique in whole-cell configuration. Results: Adenosine (10 nmol/L to 50 μmol/L) showed no effect on basal ICa- L, but it inhibited the ICa-L induced by isoproterenol 10 nmol/L in a concen tration-dependent manner with the IC50 of 13.06 μmol/L. Similar to adenosine,AMP579 also showed an inhibitory effect on the ICa-L induced by isoproterenol.AMP579 and adenosine (both in 10 μmol/L) suppressed isoproterenol-induced ICa-L by 11.1% and 5.2%, respectively. In addition, AMP579 had a direct inhibitory effect on basal ICa-L in a concentration-dependent manner with IC50 (1.17 μmol/L).PD116948 (30 μmol/L), an adenosine A1 receptor blocker, showed no action on the inhibitory effect of AMP579 on basal ICa-L. However, GF109203X (0.4 μmol/L), a special protein kinase C (PKC) blocker, could abolish the inhibitory effect of AMP579 on basal ICa-L. So the inhibitory effect of AMP579 on basal ICa-L was induced through activating PKC, but not linked to adenosine A1 receptor. Conclusion:AMP579 shows a stronger inhibitory effect than adenosine on the ICa-L induced by isoproterenol. AMP579 also has a strong inhibitory effect on basal ICa-L in rat ventricular myocytes. Activation of PKC is involved in the inhibitory effect of AMP579 on basal ICa-L at downstream-mechanism.

  14. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors.

    Science.gov (United States)

    Gonca, Ersöz; Darıcı, Faruk

    2015-01-01

    Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid with anti-inflammatory activity mediated by enhancing adenosine signaling. As the adenosine A1 receptor activation confers protection against ischemia/reperfusion (I/R)-induced ventricular arrhythmias, we hypothesized that CBD may have antiarrhythmic effect through the activation of adenosine A1 receptor. Cannabidiol has recently been shown to suppress ischemia-induced ventricular arrhythmias. We aimed to research the effect of CBD on the incidence and the duration of I/R-induced ventricular arrhythmias and to investigate the role of adenosine A1 receptor activation in the possible antiarrhythmic effect of CBD. Myocardial ischemia and reperfusion was induced in anesthetized male rats by ligating the left anterior descending coronary artery for 6 minutes and by loosening the bond at the coronary artery, respectively. Cannabidiol alone was given in a dose of 50 µg/kg, 10 minutes prior to coronary artery occlusion and coadministrated with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) in a dose of 100 µg/kg, 15 minutes prior to coronary artery occlusion to investigate whether the antiarrhythmic effect of CBD is modified by the activation of adenosine A1 receptors. The experimental groups were as follows: (1) vehicle control (n = 10), (2) CBD (n = 9), (3) DPCPX (n = 7), and (4) CBD + DPCPX group (n = 7). Cannabidiol treatment significantly decreased the incidence and the duration of ventricular tachycardia, total length of arrhythmias, and the arrhythmia scores compared to control during the reperfusion period. The DPCPX treatment alone did not affect the incidence and the duration of any type of arrhythmias. However, DPCPX aborted the antiarrhythmic effect of CBD when it was combined with it. The present results demonstrated that CBD has an antiarrhythmic effect against I/R-induced arrhythmias, and the antiarrhythmic effect of CBD may be mediated through the activation of adenosine

  15. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa;

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  16. Cancer chemoprevention by an adenosine derivative in a model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats.

    Science.gov (United States)

    Velasco-Loyden, Gabriela; Pérez-Martínez, Lidia; Vidrio-Gómez, Susana; Pérez-Carreón, Julio Isael; Chagoya de Sánchez, Victoria

    2017-02-01

    Hepatocellular carcinoma is one of the most common cancers, and approximately 80% develop from cirrhotic livers. We have previously shown that the aspartate salt of adenosine prevents and reverses carbon tetrachloride-induced liver fibrosis in rats. Considering the hepatoprotective role of this adenosine derivative in fibrogenesis, we were interested in evaluating its effect in a hepatocarcinogenesis model induced by diethylnitrosamine in rats, where multinodular cancer is preceded by cirrhosis. Rats were injected with diethylnitrosamine for 12 weeks to induce cirrhosis and for 16 weeks to induce hepatocarcinogenesis. Groups of rats were treated with aspartate salt of adenosine from the beginning of carcinogen administration for 12 or 18 weeks total, and another group received the compound from weeks 12 to 18. Fibrogenesis was estimated and the proportion of preneoplastic nodules and tumors was measured. The apoptotic and proliferation rates in liver tissues were evaluated, as well as the expression of cell signaling and cell cycle proteins participating in hepatocarcinogenesis. The adenosine derivative treatment reduced diethylnitrosamine-induced collagen expression and decreased the proportion of nodules positive for the tumor marker γ-glutamyl transferase. This compound down-regulated the expression of thymidylate synthase and hepatocyte growth factor, and augmented the protein level of the cell cycle inhibitor p27; these effects could be part of its chemopreventive mechanism. These findings suggest a hepatoprotective role of aspartate salt of adenosine that could be used as a therapeutic compound in the prevention of liver tumorigenesis as described earlier for hepatic fibrosis.

  17. Effect of adenosine on the supramolecular architecture and activity of 5-fluorouracil

    Science.gov (United States)

    Singh, Udai P.; Kashyap, Sujata; Singh, Hari Ji; Mishra, Bhupesh Kumar; Roy, Partha; Chakraborty, Ajanta

    2012-04-01

    The reactions of adenosine (Ad) with 5-halouracils (5XU where X = F for 1, Cl for 2, Br for 3 and I for 4) resulted in the formation of co-crystals 1-4 in monoclinic with P21 space group. Despite of great variation in the halo substituent at the 5th position of the uracil, each structure contains the same number and same type of non-covalent interactions i.e., primary N-H⋯N, N-H⋯O, O-H⋯N, O-H⋯O hydrogen bonds and secondary C-H⋯O and X⋯O interactions within these motifs as well as with neighboring molecules. As compared to Ad the size of cavity increases in co-crystal 1 to accommodate the 5FU as a guest. With the variation of halogen from fluoro to iodo on the uracil, the orientation of the molecules remains the same with a slight difference in the dihedral angle in all the co-crystals 1-4. This study demonstrates that hydrogen-bonded interactions between adenosine and halouracils provide a supramolecular assembly to these co-crystals. Computational studies illustrate that the size of the halo substituents on uracil has no effect on the hydrogen bond interaction energy. It further reveals that the orientation of molecules remain same in both solid phase as well as in the gaseous phase. The antitumor and DNA cleavage activity studies show that the antitumor activity of 5-fluorouracil against MCF-7 breast cancer decreases in the presence of adenosine.

  18. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    Science.gov (United States)

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  19. Cerebral A{sub 1} adenosine receptors (A{sub 1}AR) in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Boy, Christian [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Meyer, Philipp T. [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Kircheis, Gerald; Haussinger, Dieter [University of Duesseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Duesseldorf (Germany); Holschbach, Marcus H.; Coenen, Heinz H. [Research Centre Juelich, Institute of Nuclear Chemistry, Juelich (Germany); Herzog, Hans; Elmenhorst, David [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); Kaiser, Hans J. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Zilles, Karl [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); C. and O. Vogt Institute of Brain Research, Duesseldorf (Germany); Bauer, Andreas [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University of Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-03-15

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A{sub 1} adenosine receptors (A{sub 1}AR), is likely to be involved. The present study investigates changes of cerebral A{sub 1}AR binding in cirrhotic patients by means of positron emission tomography (PET) and [{sup 18}F]CPFPX, a novel selective A{sub 1}AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B{sub max}/K{sub D}). Cortical and subcortical regions showed lower A{sub 1}AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%). Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A{sub 1}AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A{sub 1}AR density or affinity, as well as blockade of the A{sub 1}AR by endogenous adenosine or exogenous xanthines. (orig.)

  20. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.

    Science.gov (United States)

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi

    2016-12-01

    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.

  1. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    DEFF Research Database (Denmark)

    Ilie, A; Ciocan, D; Constantinescu, A O

    2009-01-01

    . Several lines of evidence suggest that BS reflects an impairment of neocortical connectivity. Here we tested in vivo whether synaptic depression by adenosine A1 receptor (A1R) activation contributes to BS patterns following GCI. Male Wistar rats were subjected to 1, 5 or 10 min of GCI using a "four...... of post-ischemic BS patterns following brief ischemic episodes. It is likely that synaptic depression by post-ischemic A1R activation functionally disrupts the connectivity within the cortical networks to an extent that promotes BS patterns....

  2. Estimation of adenosine triphosphate utilization of rat mast cells during and after anaphylactic histamine secretion

    DEFF Research Database (Denmark)

    Johansen, Torben

    1990-01-01

    Determination of the cellular content of adenosine triphosphate (ATP) and the rate of ATP-synthesis were used to estimate the cellular utilization of ATP in relation to anaphylactic histamine secretion. There was an increased rate of oxidative ATP-synthesis and a decreased cellular ATP content...... during the time period of histamine secretion and immediately after its completion. During secretion the additional ATP-utilization above the basal level of ATP-synthesis was 0.51 pmol/10(3) cells. 2.5 min after cell activation, the rate of additional ATP-utilization was 0.30 pmol/10(3) cells...

  3. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    Science.gov (United States)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  4. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    OpenAIRE

    2014-01-01

    Parkinson’s disease (PD) is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R) with adenosine A2A receptor (A2AR) (forming D2R-A2AR oligomers) – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a...

  5. Diagnostic Value of Adenosine Deaminase and Its Isoforms in Type II Diabetes Mellitus

    OpenAIRE

    Bagher Larijani; Ramin Heshmat; Mina Ebrahimi-Rad; Shohreh Khatami; Shirin Valadbeigi; Reza Saghiri

    2016-01-01

    Background and Aims. In the present study, we have investigated the activity of adenosine deaminase (ADA) as a diagnostic marker in type 2 (or II) diabetes mellitus (T2DM). Design and Methods. The deaminase activity of ADA1 and ADA2 was determined in serum from 33 patients with type 2 (or II) diabetes mellitus and 35 healthy controls. We also determined the proportion of glycated hemoglobin (HbA1c). Results. Our results showed significant differences between total serum ADA (tADA) and ADA2 ac...

  6. [An adenosine triphosphate bioluminescence assay for detecting the number of living cells].

    Science.gov (United States)

    Liu, S; Peng, Z; Wang, H; Lou, J; He, B; Tang, Q; Qiu, D

    2000-06-01

    The method for detecting the number of living cells was studied. Using an adenosine triphosphate (ATP) bioluminescence assay, the present authors reported a perfect linear relationship between lg ATP concentrations and lg luminescence counts (r = 0.9963) as well as a relationship between lg number of cells and lg ATP luminescence counts (r = 0.9922). The detectable cells ranged from 10(2) to 10(6) cells/ml, the coefficients of variation 1-3%. This method is simple, accurate and sensitive and has a high reproducibility.

  7. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    OpenAIRE

    Brans Alain; Makarchikov Alexander F; Bettendorff Lucien

    2007-01-01

    Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP), in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried o...

  8. Dyspnea and Wheezing after Adenosine Injection in a Patient with Eosinophilic Bronchitis

    Directory of Open Access Journals (Sweden)

    Rodrigo Cartin-Ceba

    2009-01-01

    Full Text Available A 58-year-old nonsmoker female was referred for evaluation of chronic cough of 13 months duration. After an initial work-up, the patient was diagnosed to have chronic cough due to eosinophilic bronchitis. The diagnostic work-up for eosinophilic bronchitis and bronchial biopsy is discussed. Eosinophilic bronchitis is differentiated from asthma. In addition, the patient developed dyspnea, flushing, and wheezing after the administration of adenosine during a cardiac stress test in spite of a negative methacholine challenge. This indirect stimulus of airway hyperresponsiveness suggests the possible involvement of mast cells in eosinophilic bronchitis.

  9. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    these could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell......, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in the acini...

  10. Stimulation of NTS A1 adenosine receptors differentially resets baroreflex control of regional sympathetic outputs.

    Science.gov (United States)

    Scislo, Tadeusz J; Ichinose, Tomoko K; O'Leary, Donal S

    2008-01-01

    Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits

  11. Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms

    OpenAIRE

    Yu, Liqun; Shen, Hai-Ying; Coelho, Joana E.; Araújo, Inês M.; HUANG, QING-YUAN; Day, Yuan-Ji; Rebola, Nelson; Canas, Paula M.; Rapp, Erica Kirsten; Ferrara, Jarrod; Taylor, Darcie; Müller, Christa E.; Linden, Joel; Cunha, Rodrigo A.; Chen, Jiang-Fan

    2008-01-01

    To investigate whether the motor and neuroprotective effects of adenosine A2A receptor (A2AR) antagonists are mediated by distinct cell types in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease.We used the forebrain A2AR knock-out mice coupled with flow cytometric analyses and intracerebroventricular injection to determine the contribution of A2ARs in forebrain neurons and glial cells to A2AR antagonist-mediated motor and neuroprotective effects.The selecti...

  12. The use of online heart-cutting high-performance liquid chromatography coupled with linear ion trap mass spectrometry in the identification of impurities in vidarabine monophosphate.

    Science.gov (United States)

    Wang, Hang; Xu, Tongzhou; Yuan, Jiaojian

    2017-02-17

    It is difficult to identify unknown impurities in nucleotide analogues by mass spectrometry because mass-spectrometry-incompatible mobile phases need to be used to separate the major ingredient from impurities. In this study, vidarabine monophosphate was selected, and unknown impurities were identified by online heart-cutting two-dimensional high-performance liquid chromatography and linear ion trap mass spectrometry. The one-dimensional reversed-phase column was filled with a mobile phase containing nonvolatile salt. In two-dimensional high-performance liquid chromatography, we used an Acclaim Q1 column with volatile salt, and the detection wavelength was 260 nm. The mass spectrum was scanned in positive- and negative-ion mode. The online heart-cutting and online demineralization technique ensured that the mobile phase was compatible with mass spectrometry; seven impurities were identified by MS(2) and MS(3) fragments. The mass fragmentation patterns of these impurities were investigated. The two isomers were semiprepared and complemented by nuclear magnetic resonance. The results were further compared with those of normal-phase high-performance liquid chromatography with mass spectrometry. The online heart-cutting two-dimensional high-performance liquid chromatography with mass spectrometry was superior in identifying more impurities. The method solves the problem of incompatibility between the mobile phase and mass spectrometry, so it is suitable for identifying unknown impurities. This method may also be used for investigating impurities in other nucleotide analogues.

  13. Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ma, Tianle; Li, An [National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China); Chen, Xiaochun; Chen, Yong; Xie, Jingjing [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Wu, Jinglan, E-mail: yinghanjie@njut.edu.cn [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ying, Hanjie [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China)

    2013-08-10

    Highlights: • Solubility of 5′-CMPNa{sub 2} in different systems was measured the first time. • Experimental data were correlated by CNIBS/Redlich–Kister model and Apelblat model. • Good agreement has been observed between the calculated and the experimental data. • Enthalpy and entropy were calculated by the van’t Hoff equation and Gibbs equation. - Abstract: The solubility of disodium cytidine 5′-monophosphate (5′-CMPNa{sub 2}) in methanol + water and ethanol + water binary mixtures was measured experimentally at the temperatures ranging from 288.15 to 313.15 K. The results showed that the solubility of 5′-CMPNa{sub 2} increased with the increasing of temperature and the mole fraction of water in different binary mixtures. The (CNIBS)/Redlich–Kister model and the semi-empirical Apelblat model were applied for the prediction of the experimental data. Both models could give satisfactory simulation results. In addition, the thermodynamic properties of the dissolution process such as Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation and the Gibbs equation. The results indicated that the dissolution process was endothermic.

  14. Structural Basis of Differential Ligand Recognition by Two Classes of bis-(3-5)-cyclic Dimeric Guanosine Monophosphate-binding Riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    K Smith; C Shanahan; E Moore; A Simon; S Strobel

    2011-12-31

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.

  15. 从RNA酶解液中分离5'-尿苷酸%Separation of Uridine 5'-Monophosphate from the Enzymatic Degradation Solution of RNA

    Institute of Scientific and Technical Information of China (English)

    李德莹; 丁庆豹

    2011-01-01

    采用2根强酸性阳离子交换柱、1根弱碱性阴离子交换柱和1根强碱性阴离子交换柱进行4柱串联,可以从RNA酶解液中分离得到5'-尿苷酸,而不混有其它核苷酸,并对离子交换树脂种类、树脂量、洗脱剂等作了进一步研究.结果表明,采用4柱串联分离5'-尿苷酸,其总收率达到92.1%、结晶纯度达到86%以上.%Uridine 5'-monophosphate(UMP) could be separated from the enzymatic degradation solution of RNA with two strong acid cation exchange columns, one weak base anionic exchange column and one strong alkali anionic exchange column. UMP Obtained was not contaminated with other three ribonucleotides. The total yield of UMP achieved 92. 1% and the purity of UMP crystal reached above 86%. The type of ion exchange resin, resin amount and eluent were further studied.

  16. Symmetry and twins in the monophosphate tungsten bronze series (P02)4(W03)2m (2 < or = m < or = 14)

    Science.gov (United States)

    Roussel; Labbe; Groult

    2000-06-01

    Monophosphate tungsten bronze with pentagonal tunnels (PO2)4(WO3)2m are low-dimensional materials with charge density wave (CDW)-type electron instabilities. Two forms of the structure can thus be expected for all the members of the series: a low-temperature form (LT) corresponding to the CDW state and a high-temperature form (HT) corresponding to a normal metallic state. The HT form is described here for m = 9 and compared with that of the m = 5 and m = 7 counterparts. It is shown that a systematic twin phenomenon must be taken into account for HT members because of two possible configurations of the tilting mode of WO6 octahedra, The structure is also compared with that of m = 10, which exhibits the modulated CDW-LT form at room temperature. Owing to two possible polarization directions of the segments built of m WO6 octahedra, a twin phenomenon is also encountered in the LT forms. A review of all the structures known at present (m = 2, 4, 5, 6, 7, 8, 9, 10, 12) leads us to propose a structural law based on the building mode of W06 octahedra in W03-type slabs to explain the symmetry changes observed between even and odd members of the series.

  17. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

    Science.gov (United States)

    GAO, Hanchao; ZHAO, Chengjiang; XIANG, Xi; LI, Yong; ZHAO, Yanli; LI, Zesong; PAN, Dengke; DAI, Yifan; HARA, Hidetaka; COOPER, David K.C.; CAI, Zhiming; MOU, Lisha

    2016-01-01

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications. PMID:27725344

  18. Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study

    Directory of Open Access Journals (Sweden)

    Bours Martijn JL

    2007-06-01

    Full Text Available Abstract Background It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also. Methods By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC. Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine. As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg and 1 h (50 mg before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage or adenosine (1 g per dosage were administered via enteric-coated hydroxypropyl methylcellulose (HPMC capsules with Eudragit© L30D-55. Results Median urinary lactulose/rhamnose excretion ratio (g/g in the control condition was 0.032 (interquartile range: 0.022–0.044. Compared to the

  19. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    Science.gov (United States)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  20. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    Science.gov (United States)

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  1. Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia.

    Directory of Open Access Journals (Sweden)

    Mei Cui

    Full Text Available Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC or 6 days (E6d HPC. Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC. Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1. An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection.

  2. Non-additive modulation of synaptic transmission by serotonin, adenosine, and cholinergic modulators in the sensory thalamus

    Directory of Open Access Journals (Sweden)

    Ya-Chin eYang

    2015-03-01

    Full Text Available The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subjective to the actions of more than just one neuromodulator, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that either monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, combinations of different modulators tend to produce non-additive effect, not predictable based on the action of one single modulator. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an enriched sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep state, respectively. In contrast, concomitant adenosine and monoamine would lead to a markedly deprived (and high-pass filtered sensory flow, and thus the dramatic decrease of monoamine may constitute the essential demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be essential for the understanding of network responsiveness in different vigilance states.

  3. Synergistic myoprotection of L-arginine and adenosine in a canine model of global myocardial ischaemic reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    DU Lei; DIAN Ke; CHEN Hui-jiao; AN Qi; JIA Meng-xing; YANG Ping-liang; WANG Wei; DENG Shuo-zeng; LIU Jin

    2007-01-01

    Background Endogenous nitric oxide and adenosine increase simultaneously to keep the balance of energy demand and supply when the oxygen supply is insufficient, which suggests that nitric oxide and adenosine might exert a synergistic myoprotection during tissue hypoxia. In this study, we tested this hypothesis utilizing a canine model of prolonged global myocardial ischaemic reperfusion injury.Methods In this double blind, controlled study, the hearts of 24 anaesthetized mongrel dogs were arrested for 2 hours with aortic cross clamping and blood cardioplegia. The treatment groups were those supplemented with 2 mmol/L L-arginine (ARG), supplemented with 1 mmol/L adenosine (ADO), ARG + ADO supplemented with both, and no supplementation (control) (n=6 in each group). Haemodynamics, biochemical indices, adenosine triphosphate (ATP) content and myeloperoxidase activities of myocardium were determined to evaluate myocardial injury. Statistical comparison was performed by two way ANOVA.Results Although the requirements for inotropic supports were higher, the cardiac outputs were lower in control group than in ARG, ADO and the combination groups. Plasma cardiac troponin I levels were higher and the areas of hydropic changes were larger in control group than in ARG and ADO groups. Combination of arginine and adenosine provided further myoprotection with respect to better cardiac performance, lower release of cardiac troponin I, and smaller areas of hydropic changes compared with ARG and ADO groups. ATP content was higher, but myeloperoxidase activities of myocardium were significantly lower in the combination group than in control, ARG and ADO groups (P<0.05).Conclusions Combination of L-arginine and adenosine provides synergistic myoprotection in a canine model of global myocardial ischaemia. Thus, the combination is recommended when the heart is exposed to a prolonged ischaemia during cardiac surgery.

  4. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    Science.gov (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  5. Value of the adenosine test for diagnosis of dual AV nodal physiology in patients with AV nodal reentrant tachycardia

    Institute of Scientific and Technical Information of China (English)

    周斌全; 胡申江; 等

    2002-01-01

    Objectives:This study was aimed at assessing the value of the adenosine test for noninvasive diagnosis of dual AV nodal physiology(DAVNP) in patients with AV nodal reentrant tachycardia(VANRT).Methods:53 patients with paroxysmal supraventricular tachycardia(PSVT) were given incremental doses of adenosine intravenously during sinus rhythm before electrophysiological study.The adenosine test was repeated on a subset of 18 patients with AVNRT after radiofrequency catheter ablation.Results:Sudden increments of PR interval of more than 60 msec between two consecutive beats were observed in 26(83.9%) of 31 patients with typical AVNRT and 2(9.1%) of 22 patients with AVRT and AT(P<0.01),The maximal PR increment between 2 consecutive beats in the AVNRT group(105±45ms) was significantly greater than that in the AVRT and AT group[(20±13ms) (P<0.01),In postablation adenosine test,DAVNP was eliminated in all 8 patients who underwent slow pathway abolition that EPS showed the slow pathway disappeared and 4 of 10 patients who underwent slow pathway modification that EPS showed the slow pathway disappeared and 4 of 10 patients who underwent slow pathway modification that EPS whosed the slow pathway persisted.Six of 10 patients whw exhibited persistent duality showed a marked reduction in the number of beats conducted in the slow pathway after adenosine injection(P<0.01),COnclusions:Administration of adenosine during sinus rhythm may be a useful bedside test for diagnosis of DAVNP in high percentage of patients with typical AVNRT and additionally for evaluating the effects of radiofrequency ablation.

  6. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine.

    Science.gov (United States)

    van der Walt, M M; Terre'Blanche, G

    2017-01-05

    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  7. PET imaging to measure therapy-related occupancy and disease-induced changes of expression of adenosine A1 receptors in the rodent brain

    NARCIS (Netherlands)

    Paul, Souman

    2014-01-01

    Rol van adenosine A1 receptor in de vroege fase van encefalitis Adenosine A1 receptoren (A1R) spelen een belangrijke rol bij de bescherming van hersencellen tijdens de vroege fase van hersenontsteking (encefalitis) bij ratten en mogelijk ook bij mensen. Dat concludeert Souman Paul in zijn proefschri

  8. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury

    NARCIS (Netherlands)

    Ramakers, B.P.C.; Riksen, N.P.; Broek, P.H.H. van den; Franke, B.; Peters, W.H.M.; Hoeven, J.G. van der; Smits, P.; Pickkers, P.

    2011-01-01

    INTRODUCTION: Preclinical studies have shown that the endogenous nucleoside adenosine prevents excessive tissue injury during systemic inflammation. We aimed to study whether endogenous adenosine also limits tissue injury in a human in vivo model of systemic inflammation. In addition, we studied whe

  9. The Quintiles Prize Lecture 2004: The identification of the adenosine A2B receptor as a novel therapeutic target in asthma

    Science.gov (United States)

    Holgate, Stephen T

    2005-01-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A2 receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A2 receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A2B subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A2B receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A2B receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  10. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma.

    Science.gov (United States)

    Holgate, Stephen T

    2005-08-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A(2) receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A(2) receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A(2B) subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A(2B) receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A(2B) receptor antagonists as a new therapeutic approach to this disease.

  11. Adenosine receptors located in the NTS contribute to renal sympathoinhibition during hypotensive phase of severe hemorrhage in anesthetized rats.

    Science.gov (United States)

    Scislo, Tadeusz J; O'Leary, Donal S

    2006-11-01

    Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.

  12. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    Science.gov (United States)

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  13. The synthesis of a series of adenosine A3 receptor agonists.

    Science.gov (United States)

    Broadley, Kenneth J; Burnell, Erica; Davies, Robin H; Lee, Alan T L; Snee, Stephen; Thomas, Eric J

    2016-04-12

    A series of 1'-(6-aminopurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamides that were characterised by 2-dialkylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl substituents on N6 of interest for screening as selective adenosine A3 receptor agonists, have been synthesised. This work involved the synthesis of 2-dialkylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridines and analogues that were coupled with the known 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The oxazolo[4,5-b]pyridines were synthesized by regioselective functionalisation of 2,4-dimethylpyridine N-oxides. The regioselectivities of these reactions were found to depend upon the nature of the heterocycle with 2-dimethylamino-5,7-dimethyloxazolo[4,5-b]pyridine-N-oxide undergoing regioselective functionalisation at the 7-methyl group on reaction with trifluoroacetic anhydride in contrast to the reaction of 4,6-dimethyl-3-hydroxypyridine-N-oxide with acetic anhydride that resulted in functionalisation of the 6-methyl group. To optimise selectivity for the A3 receptor, 5-aminomethyl-7-bromo-2-dimethylamino-4-[(3-methylisoxazol-5-yl)methoxy]benzo[d]oxazole was synthesised and coupled with the 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The products were active as selective adenosine A3 agonists.

  14. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease.

    Science.gov (United States)

    Nishat, Shamama; Khan, Luqman A; Ansari, Zafar M; Basir, Seemi F

    2016-01-01

    Cardiovascular complications are one of the major factors for early mortality in the present worldwide scenario and have become a major challenge in both developing and developed nations. It has thus become of immense importance to look for different therapeutic possibilities and treatments for the growing burden of cardiovascular diseases. Recent advancements in research have opened various means for better understanding of the complication and treatment of the disease. Adenosine receptors have become tool of choice in understanding the signaling mechanism which might lead to the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular complications by altering the expression of A3R. This review focuses towards the therapeutic potential of A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular disorder.

  15. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    Science.gov (United States)

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  16. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  17. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor.

    Science.gov (United States)

    Wu, Mark N; Ho, Karen; Crocker, Amanda; Yue, Zhifeng; Koh, Kyunghee; Sehgal, Amita

    2009-09-02

    Caffeine is one of the most widely consumed stimulants in the world and has been proposed to promote wakefulness by antagonizing function of the adenosine A2A receptor. Here, we show that chronic administration of caffeine reduces and fragments sleep in Drosophila and also lengthens circadian period. To identify the mechanisms underlying these effects of caffeine, we first generated mutants of the only known adenosine receptor in flies (dAdoR), which by sequence is most similar to the mammalian A2A receptor. Mutants lacking dAdoR have normal amounts of baseline sleep, as well as normal homeostatic responses to sleep deprivation. Surprisingly, these mutants respond normally to caffeine. On the other hand, the effects of caffeine on sleep and circadian rhythms are mimicked by a potent phosphodiesterase inhibitor, IBMX (3-isobutyl-1-methylxanthine). Using in vivo fluorescence resonance energy transfer imaging, we find that caffeine induces widespread increase in cAMP levels throughout the brain. Finally, the effects of caffeine on sleep are blocked in flies that have reduced neuronal PKA activity. We suggest that chronic administration of caffeine promotes wakefulness in Drosophila, at least in part, by inhibiting cAMP phosphodiesterase activity.

  18. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    Science.gov (United States)

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  19. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    Science.gov (United States)

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  20. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Directory of Open Access Journals (Sweden)

    Claudia A Montiel-Equihua

    2009-12-01

    Full Text Available Claudia A Montiel-Equihua, Adrian J Thrasher, H Bobby GasparCentre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, UKAbstract: The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID and especially adenosine deaminase (ADA-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.Keywords: adenosine deaminase, severe combined immunodeficiency, gene therapy, hematopoietic stem cell, retrovirus, clinical trial