WorldWideScience

Sample records for adenosine diphosphate ribose

  1. Frameshift mutations of poly(adenosine diphosphate-ribose) polymerase genes in gastric and colorectal cancers with microsatellite instability.

    Science.gov (United States)

    Kim, Min Sung; An, Chang Hyeok; Kim, Sung Soo; Yoo, Nam Jin; Lee, Sug Hyung

    2011-09-01

    Poly(adenosine diphosphate-ribose) polymerases consist of 16 members that modify nuclear proteins by building adenosine diphosphate-ribose polymers. Poly(adenosine diphosphate-ribose) polymerase 1, the prototype poly(adenosine diphosphate-ribose) polymerase, and some poly(adenosine diphosphate-ribose) polymerases are involved in many cellular processes including DNA damage response/repair, cell death, and inflammation. Inactivation of poly(adenosine diphosphate-ribose) polymerase proteins frequently enhances genomic instability and apoptosis inactivation, suggesting their roles in cancer development. However, genetic alterations of poly(adenosine diphosphate-ribose) polymerase genes have not been reported in cancers. In a public database, we found that poly(adenosine diphosphate-ribose) polymerase 1, poly(adenosine diphosphate-ribose) polymerase 11, poly(adenosine diphosphate-ribose) polymerase 14, poly(adenosine diphosphate-ribose) polymerase 15, tankyrase-1 (TNKS1), and tankyrase-2 (TNKS2) genes have mononucleotide repeats in coding DNA sequences. To see whether these genes are mutated in cancers with microsatellite instability, we analyzed the mononucleotide repeats in 30 gastric cancers with high microsatellite instability, 13 gastric cancers with low microsatellite instability, 45 gastric cancers with stable microsatellite instability, 40 colorectal cancers with high microsatellite instability, 14 colorectal cancers with low microsatellite instability, and 45 colorectal cancers with stable microsatellite instability by single-strand conformation polymorphism. We found poly(adenosine diphosphate-ribose) polymerase 14, TNKS1, and TNKS2 mutations in 8, 4, and 18 cancers, respectively. They were detected in cancers with high microsatellite instability but not in cancers with low microsatellite instability or stable microsatellite instability. The gastric cancers and colorectal cancers with high microsatellite instability harbored one or more mutations of the poly(adenosine

  2. Poly(Adenosine 5'-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy.

    Science.gov (United States)

    Drel, Viktor R; Xu, Weizheng; Zhang, Jie; Pavlov, Ivan A; Shevalye, Hanna; Slusher, Barbara; Obrosova, Irina G

    2009-12-01

    This study was aimed at evaluating the role for poly(ADP-ribose) polymerase (PARP) in early nephropathy associated with type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with one of two structurally unrelated PARP inhibitors, 1,5-isoquinolinediol (ISO) and 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15427), at 3 mg/kg(-1) x d(-1) ip and 30 mg/kg(-1) x d(-1), respectively, for 10 wk after the first 2 wk without treatment. PARP activity in the renal cortex was assessed by immunohistochemistry and Western blot analysis of poly(ADP-ribosyl)ated proteins. Variables of diabetic nephropathy in urine and renal cortex were evaluated by ELISA, Western blot analysis, immunohistochemistry, and colorimetry. Urinary albumin excretion was increased about 4-fold in diabetic rats, and this increase was prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-associated increase in poly(ADP-ribose) immunoreactivities in renal glomeruli and tubuli and poly(ADP-ribosyl)ated protein level. Renal concentrations of TGF-beta(1), vascular endothelial growth factor, endothelin-1, TNF-alpha, monocyte chemoattractant protein-1, lipid peroxidation products, and nitrotyrosine were increased in diabetic rats, and all these changes as well as an increase in urinary TNF-alpha excretion were completely or partially prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-induced up-regulation of endothelin (B) receptor, podocyte loss, accumulation of collagen-alpha1 (IY), periodic acid-Schiff-positive substances, fibronectin, and advanced glycation end-products in the renal cortex. In conclusion, PARP activation is implicated in multiple changes characteristic for early nephropathy associated with type 1 diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies.

  3. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  4. Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase.

    Science.gov (United States)

    Korkmaz-Icöz, Sevil; Radovits, Tamás; Loganathan, Sivakkanan; Li, Shiliang; Ruppert, Mihály; Benke, Kálmán; Brlecic, Paige; Szabó, Csaba; Karck, Matthias; Szabó, Gábor

    2017-05-01

    Heart transplantation is the standard treatment in end-stage heart failure and at shortage of cardiac allografts is its major limiting factor. Striving to optimize the use of this limited resource, the aspect that long distance procurement may increase the available donor pool must be taken into consideration. As poly(ADP-ribose)polymerase (PARP)-activation has been identified as a key pathway of reperfusion injury, we assessed the hypothesis that its inhibition would allow an extension of cold preservation time and protect the graft against ischaemia/reperfusion injury. Hearts from donor rats were explanted, stored in a preservation solution (Custodiol) at 4 °C for 4 h or 8 h, and heterotopically transplanted. A vehicle or the PARP-inhibitor, INO-1001 (5 mg/kg), was administered during the reperfusion period. We evaluated post-transplant graft function with a Millar micromanometer at different left-ventricular volumes. Additionally, in organ bath experiments the effect of PARP-inhibition on endothelium-dependent and -independent vasorelaxation was evaluated after long-term cold ischaemic storage/warm reperfusion. PARP-inhibition resulted in a better systolic functional recovery of grafts submitted to 4 h and 8 h ischaemia. Furthermore, INO-1001 decreased the left-ventricular end-diastolic pressure after 8 h of ischaemia. Coronary blood flow was significantly higher after PARP-inhibition in comparison to controls. Endothelium-dependent vasorelaxation was significantly better in the INO-1001-groups than in the vehicle-treated transplant groups. After 24-h hypothermic storage, treatment of aortic ring with INO-1001 during reoxygenation significantly improved endothelial dysfunction. By inhibiting the PARP activation, INO-1001 can protect the graft and endothelium from the injury that is caused by prolonged cold myocardial ischaemia/reperfusion, thereby improving post-transplant graft function.

  5. Adenosine diphosphate as an intracellular regulator of insulin secretion.

    Science.gov (United States)

    Nichols, C G; Shyng, S L; Nestorowicz, A; Glaser, B; Clement, J P; Gonzalez, G; Aguilar-Bryan, L; Permutt, M A; Bryan, J

    1996-06-21

    Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple the cellular metabolic state to electrical activity and are a critical link between blood glucose concentration and pancreatic insulin secretion. A mutation in the second nucleotide-binding fold (NBF2) of the sulfonylurea receptor (SUR) of an individual diagnosed with persistent hyperinsulinemic hypoglycemia of infancy generated KATP channels that could be opened by diazoxide but not in response to metabolic inhibition. The hamster SUR, containing the analogous mutation, had normal ATP sensitivity, but unlike wild-type channels, inhibition by ATP was not antagonized by adenosine diphosphate (ADP). Additional mutations in NBF2 resulted in the same phenotype, whereas an equivalent mutation in NBF1 showed normal sensitivity to MgADP. Thus, by binding to SUR NBF2 and antagonizing ATP inhibition of KATP++ channels, intracellular MgADP may regulate insulin secretion.

  6. A comprehensive comparative review of adenosine diphosphate receptor antagonists.

    Science.gov (United States)

    Oh, Erin Y; Abraham, Teena; Saad, Nasser; Rapp, Jonathan H; Vastey, Fabienne L; Balmir, Eric

    2012-02-01

    Thrombosis risk necessitates dual antiplatelet therapy with aspirin and an adenosine diphosphate (ADP) receptor antagonist, in patients who have acute coronary syndrome. Current guidelines emphasize the critical role of dual antiplatelet therapy in both medical management and invasive strategy, especially in patients undergoing percutaneous coronary intervention. With the availability of multiple ADP-receptor antagonists, it is crucial to select the most appropriate agent for each patient. The pertinent trials were identified through a MEDLINE search, in addition to a manual search from the articles retrieved. This review examines the differences between clopidogrel, prasugrel and ticagrelor in terms of their pharmacological/pharmacokinetic properties, clinical efficacy, drug interactions and safety parameters. Prasugrel and ticagrelor exhibit greater platelet inhibition and superior efficacy compared with clopidogrel, at the expense of higher bleeding risk. Prasugrel and ticagrelor should be preferred over clopidogrel in patients who are at a high risk of thrombotic events with low risk of bleeding. Additionally, these two agents may offer advantage over clopidogrel in those patients who might have risk for drug resistance due to CYP2C19 polymorphism. In selecting the ideal agent for patients, clinicians should tailor the antiplatelet regimen by considering individual risk factors and medication characteristics.

  7. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  8. Structural determinants of efficacy at A3 adenosine receptors: modification of the ribose moiety.

    Science.gov (United States)

    Gao, Zhan-Guo; Jeong, Lak Shin; Moon, Hyung Ryong; Kim, Hea Ok; Choi, Won Jun; Shin, Dae Hong; Elhalem, Eleonora; Comin, Maria J; Melman, Neli; Mamedova, Liaman; Gross, Ariel S; Rodriguez, Juan B; Jacobson, Kenneth A

    2004-03-01

    We have found previously that structural features of adenosine derivatives, particularly at the N6- and 2-positions of adenine, determine the intrinsic efficacy as A3 adenosine receptor (AR) agonists. Here, we have probed this phenomenon with respect to the ribose moiety using a series of ribose-modified adenosine derivatives, examining binding affinity and activation of the human A3 AR expressed in CHO cells. Both 2'- and 3'-hydroxyl groups in the ribose moiety contribute to A3 AR binding and activation, with 2'-OH being more essential. Thus, the 2'-fluoro substitution eliminated both binding and activation, while a 3'-fluoro substitution led to only a partial reduction of potency and efficacy at the A3 AR. A 5'-uronamide group, known to restore full efficacy in other derivatives, failed to fully overcome the diminished efficacy of 3'-fluoro derivatives. The 4'-thio substitution, which generally enhanced A3 AR potency and selectivity, resulted in 5'-CH2OH analogues (10 and 12) which were partial agonists of the A3 AR. Interestingly, the shifting of the N6-(3-iodobenzyl)adenine moiety from the 1'- to 4'-position had a minor influence on A3 AR selectivity, but transformed 15 into a potent antagonist (16) (Ki = 4.3 nM). Compound 16 antagonized human A3 AR agonist-induced inhibition of cyclic AMP with a K(B) value of 3.0 nM. A novel apio analogue (20) of neplanocin A, was a full A3 AR agonist. The affinities of selected, novel analogues at rat ARs were examined, revealing species differences. In summary, critical structural determinants for human A3 AR activation have been identified, which should prove useful for further understanding the mechanism of receptor activation and development of more potent and selective full agonists, partial agonists and antagonists for A3 ARs.

  9. Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus (Review)

    NARCIS (Netherlands)

    Valentine, N.; Laar, F.A. van de; Driel, M.L. van

    2012-01-01

    BACKGROUND: Cardiovascular disease (CVD) is the most prevalent complication of type 2 diabetes with an estimated 65% of people with type 2 diabetes dying from a cause related to atherosclerosis. Adenosine-diphosphate (ADP) receptor antagonists like clopidogrel, ticlopidine, prasugrel and ticagrelor

  10. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...... encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its......-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP...

  11. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J

    2016-01-01

    treated with percutaneous coronary intervention discharged alive on ADPri therapy from 233 United States TRANSLATE-ACS study (Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome) participating hospitals......BACKGROUND: Guidelines recommend the use of adenosine diphosphate receptor inhibitor (ADPri) therapy for 1 year postacute myocardial infarction; yet, early cessation of therapy occurs frequently in clinical practice. METHODS AND RESULTS: We examined 11 858 acute myocardial infarction patients...... ADPri cessation included physician-recommended discontinuation (54%), as well as patient self-discontinuation, because of cost (19%), medication side effects (9%), and procedural interruption (10%). Using a time-dependent covariate model, early cessation of ADPri therapy was associated with increased...

  12. Platelet adenosine diphosphate receptor antagonists: ticlopidine to ticagrelor—a long continuing journey

    Science.gov (United States)

    Kaul, Upendra; Mansoor, Aijaz H.

    2012-01-01

    Platelet aggregation plays a central role in the pathogenesis of atherothrombosis. Platelet adenosine diphosphate (ADP) receptor antagonists (ticlopidine, clopidogrel, prasugrel, and ticagrelor) are a major advance in the treatment of atherothrombotic diseases, especially acute coronary syndromes (ACS). Ticlopidine was the first thienopyridine introduced into clinical practice, but its potentially serious haematological side-effects limited its use and it was quickly eclipsed by clopidogrel. Clinical trials established aspirin plus clopidogrel as the standard dual anti-platelet therapy in patients with ACS and patients undergoing percutaneous coronary intervention (PCI) with stenting. Clopidogrel was found to have pharmacokinetic and pharmacodynamic limitations. Prasugrel is the next approved thienopyridine that has shown superior efficacy in ACS patients undergoing PCI in comparison to clopidogrel, although at the cost of a higher bleeding risk. Ticagrelor is the latest non-thienopyridine ADP receptor blocker that is potent, effective, reversible, and relatively safer as compared to clopidogrel. Both prasugrel and ticagrelor are more potent than clopidogrel. The data so far suggests that ticagrelor has a wider applicability in usage in patients with ACS as compared to prasugrel. Prasugrel however seems to be better tolerated. Search is on for newer more potent but safer anti-platelet agents. PMID:22572427

  13. Platelet adenosine diphosphate receptor antagonists: ticlopidine to ticagrelor-a long continuing journey.

    Science.gov (United States)

    Kaul, Upendra; Mansoor, Aijaz H

    2012-01-01

    Platelet aggregation plays a central role in the pathogenesis of atherothrombosis. Platelet adenosine diphosphate (ADP) receptor antagonists (ticlopidine, clopidogrel, prasugrel, and ticagrelor) are a major advance in the treatment of atherothrombotic diseases, especially acute coronary syndromes (ACS). Ticlopidine was the first thienopyridine introduced into clinical practice, but its potentially serious haematological side-effects limited its use and it was quickly eclipsed by clopidogrel. Clinical trials established aspirin plus clopidogrel as the standard dual anti-platelet therapy in patients with ACS and patients undergoing percutaneous coronary intervention (PCI) with stenting. Clopidogrel was found to have pharmacokinetic and pharmacodynamic limitations. Prasugrel is the next approved thienopyridine that has shown superior efficacy in ACS patients undergoing PCI in comparison to clopidogrel, although at the cost of a higher bleeding risk. Ticagrelor is the latest non-thienopyridine ADP receptor blocker that is potent, effective, reversible, and relatively safer as compared to clopidogrel. Both prasugrel and ticagrelor are more potent than clopidogrel. The data so far suggests that ticagrelor has a wider applicability in usage in patients with ACS as compared to prasugrel. Prasugrel however seems to be better tolerated. Search is on for newer more potent but safer anti-platelet agents. Copyright © 2012 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  14. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    Directory of Open Access Journals (Sweden)

    Brans Alain

    2007-08-01

    Full Text Available Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP, in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried out from thiamine diphosphate (ThDP and ADP or ATP by a soluble high molecular mass nucleotidyl transferase. We partially purified this enzyme and characterized some of its functional properties. The enzyme activity had an absolute requirement for divalent metal ions, such as Mn2+ or Mg2+, as well as for a heat-stable soluble activator present in bacterial extracts. The enzyme has a pH optimum of 6.5–7.0 and a high Km for ThDP (5 mM, suggesting that, in vivo, the rate of AThTP synthesis is proportional to the free ThDP concentration. When ADP was used as the variable substrate at a fixed ThDP concentration, a sigmoid curve was obtained, with a Hill coefficient of 2.1 and an S0.5 value of 0.08 mM. The specificity of the AThTP synthesizing enzyme with respect to nucleotide substrate is restricted to ATP/ADP, and only ThDP can serve as the second substrate of the reaction. We tentatively named this enzyme ThDP adenylyl transferase (EC 2.7.7.65. Conclusion This is the first demonstration of an enzyme activity transferring a nucleotidyl group on thiamine diphosphate to produce AThTP. The existence of a mechanism for the enzymatic synthesis of this compound is in agreement with the hypothesis of a non-cofactor role for thiamine derivatives in living cells.

  15. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... an increase in KM for ribose 5-phosphate in the presence of at least one of the divalent metal ions Mg2+, Mn2+, Co2+, or Cd2+, with the most dramatic changes revealed by the D220E and D220F enzymes in the presence of Co2+ and the D221A enzyme in the presence of Mn2+ or Co2+. The D220F and D221A enzymes both...... showed large decreases in Vapp in the presence of the various divalent metal ions, except for the D221A enzyme in the presence of Co2+. Vapp of the D220E enzyme was similar to that of the wild-type enzyme in the presence of Mg2+, Mn2+, or Cd2+, whereas the Vapp was increased in the presence of Co2+. Vapp...

  16. Comparative pharmacokinetics and pharmacodynamics of platelet adenosine diphosphate receptor antagonists and their clinical implications.

    Science.gov (United States)

    Floyd, Christopher N; Passacquale, Gabriella; Ferro, Albert

    2012-07-01

    Over the last two decades or more, anti-platelet therapy has become established as a cornerstone in the treatment of patients with ischaemic cardiovascular disease, since such drugs effectively reduce arterial thrombotic events. The original agent used in this context was aspirin (acetylsalicylic acid) but, with the advent of adenosine diphosphate (ADP) receptor antagonists, the use of dual anti-platelet therapy has resulted in further improvement in cardiovascular outcomes when compared with aspirin alone. The first group of platelet ADP receptor antagonists to be developed was the thienopyridine class, which comprise inactive pro-drugs that require in vivo metabolism to their active metabolites before exerting their inhibitory effect on the P2Y(12) receptor. Clopidogrel has been the principal ADP receptor antagonist in use over the past decade, but is limited by variability in its in vivo inhibition of platelet aggregation (IPA). The pharmacokinetics of clopidogrel are unpredictable due to their vulnerability to multiple independent factors including genetic polymorphisms. Expression of the 3435T/T genetic variant encoding the MDR1 gene for the P-glycoprotein efflux transporter results in a significantly reduced maximum drug concentration and area under the plasma concentration-time curve as intestinal absorption of clopidogrel is reduced; and the expression of the mutant *2 allele of CYP2C19 results in similar pharmacokinetic effects as the two cytochrome P450 (CYP)-mediated steps required for the production of the active metabolite of clopidogrel are impaired. These variable pharmacokinetics lead to erratic pharmacodynamics and cannot reliably be overcome with increased dosing. Both prasugrel, a third-generation thienopyridine, and ticagrelor, a cyto-pentyl-triazolo-pyrimidine, have more predictable pharmacokinetics and enhanced pharmacodynamics than clopidogrel. Neither appears to be affected by the same genetic polymorphisms as clopidogrel; prasugrel requires

  17. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats.

    Science.gov (United States)

    Castellino, Francis J; Chapman, Michael P; Donahue, Deborah L; Thomas, Scott; Moore, Ernest E; Wohlauer, Max V; Fritz, Braxton; Yount, Robert; Ploplis, Victoria; Davis, Patrick; Evans, Edward; Walsh, Mark

    2014-05-01

    Coagulopathy in traumatic brain injury (CTBI) is a well-established phenomenon, but its mechanism is poorly understood. Various studies implicate protein C activation related to the global insult of hemorrhagic shock or brain tissue factor release with resultant platelet dysfunction and depletion of coagulation factors. We hypothesized that the platelet dysfunction of CTBI is a distinct phenomenon from the coagulopathy following hemorrhagic shock. We used thrombelastography with platelet mapping as a measure of platelet function, assessing the degree of inhibition of the adenosine diphosphate (ADP) and arachidonic acid (AA) receptor pathways. First, we studied the early effect of TBI on platelet inhibition by performing thrombelastography with platelet mapping on rats. We then conducted an analysis of admission blood samples from trauma patients with isolated head injury (n = 70). Patients in shock or on clopidogrel or aspirin were excluded. In rats, ADP receptor inhibition at 15 minutes after injury was 77.6% ± 6.7% versus 39.0% ± 5.3% for controls (p injury in patients with isolated head trauma. This phenomenon is observed in the absence of hemorrhagic shock or multisystem injury. Thus, TBI alone is shown to be sufficient to induce a profound platelet dysfunction.

  18. Diadenosine diphosphate (Ap₂A) delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA pathway.

    Science.gov (United States)

    Pliyev, Boris K; Dimitrieva, Tatyana V; Savchenko, Valery G

    2014-10-01

    Diadenosine polyphosphates have been shown to inhibit neutrophil apoptosis, but mechanisms of the antiapoptotic effect are not known. Diadenosine diphosphate (Ap2A) is the simplest naturally occurring diadenosine polyphosphate, and its effect on neutrophil apoptosis has not previously been investigated. Here we report that Ap2A delays spontaneous apoptosis of human neutrophils, and the effect is reversed by the adenosine A2A receptor antagonists SCH442416 and ZM241385. Ap2A induced an elevation of intracellular cAMP and the elevation was blocked by the adenosine A2A receptor antagonists. The antiapoptotic effect of Ap2A was abrogated by 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Together, these results demonstrate that Ap2A delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA signaling axis.

  19. Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus.

    Science.gov (United States)

    Valentine, Nyoli; Van de Laar, Floris A; van Driel, Mieke L

    2012-11-14

    Cardiovascular disease (CVD) is the most prevalent complication of type 2 diabetes with an estimated 65% of people with type 2 diabetes dying from a cause related to atherosclerosis. Adenosine-diphosphate (ADP) receptor antagonists like clopidogrel, ticlopidine, prasugrel and ticagrelor impair platelet aggregation and fibrinogen-mediated platelet cross-linking and may be effective in preventing CVD. To assess the effects of adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (issue 2, 2011), MEDLINE (until April 2011) and EMBASE (until May 2011). We also performed a manual search, checking references of original articles and pertinent reviews to identify additional studies. Randomised controlled trials comparing an ADP receptor antagonist with another antiplatelet agent or placebo for a minimum of 12 months in patients with diabetes. In particular, we looked for trials assessing clinical cardiovascular outcomes. Two review authors extracted data for studies which fulfilled the inclusion criteria, using standard data extraction templates. We sought additional unpublished information and data from the principal investigators of all included studies. Eight studies with a total of 21,379 patients with diabetes were included. Three included studies investigated ticlopidine compared to aspirin or placebo. Five included studies investigated clopidogrel compared to aspirin or a combination of aspirin and dipyridamole, or compared clopidogrel in combination with aspirin to aspirin alone. All trials included patients with previous CVD except the CHARISMA trial which included patients with multiple risk factors for coronary artery disease. Overall the risk of bias of the trials was low. The mean duration of follow-up ranged from 365 days to 913 days.Data for diabetes patients on all-cause mortality, vascular

  20. Comparison of cationic propyl gallate and adenosine diphosphate for the measurement of aspirin effectivity with optical aggregometry.

    Science.gov (United States)

    Motovska, Zuzana; Sujanova, Zdenka; Wimmerova, Sona; Ardo, Jan; Skrakova, Marcela; Widimsky, Petr

    2007-10-01

    To compare the newer inductor of platelet aggregation cationic propyl gallate (CPG) with adenosine diphosphate (ADP) for the examination of aspirin (ASA) effectivity with optical aggregometry. In total,116 patients were prospectively enrolled with a stable cardiovascular disease, taking ASA 100 mg/day for >or=1 month. The control group consisted of 62 healthy volunteers. A platelet aggregation was investigated by optical aggregometry (aggregometer LASER 4x; BIO ART, Sint-Katelijne-Waver, Belgium). CPG and ADP were added as aggregating agents. The measured parameters were CPG-slope (%/min) and ADP max (%). Using the CPG-slope values from the control group, the CPG-slope cut-off value was determined to define a laboratory ASA-noneffectively treated patient. The values from control group followed a normal distribution (Shapiro-Wilk test). We calculated the cut-off value using the 1-tailed 95% confidence interval. The CPG-slope cut-off value was 79 %/min for an ASA-effectively treated patient. We marked the patients as laboratory ASA-noneffective treated when the CPG-slope was >79%/min. In the same way we defined the cut-off value for ADP-max. We identified the aspirin treatment as ineffective when the value of ADP-max was >62%. The values of CPG-slope and ADP-max were in close correlation in the group of patients treated with aspirin with a highly significant correlation index (r=0.671, Peffectively treated patients (42%, 88.2%, 59.2%, and 42.1%, respectively). The detected differences were not statistically significant. Cationic propyl gallate is an optimal inductor for optical aggregometry to monitor laboratory effectiveness of aspirin therapy in routine clinical pratice. The determined high prevalence of laboratory aspirin ineffectiveness highlights the clinical importance of the problem. This study brings attention to the importance of controlling cardiovascular risk factors.

  1. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: Formation of adenosine and kinetin.

    Science.gov (United States)

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2017-01-15

    To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    Science.gov (United States)

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  3. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  4. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells

    OpenAIRE

    de Murcia, Josiane Ménissier; Niedergang, Claude; Trucco, Carlotta; Ricoul, Michèle; Dutrillaux, Bernard; Mark, Manuel; Oliver, F Javier; Masson, Murielle; Dierich, Andrée; LeMeur, Marianne; Walztinger, Caroline; Chambon, Pierre; de Murcia, Gilbert

    1997-01-01

    Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP−/− mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensi...

  5. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  6. Cluster-randomized clinical trial examining the impact of platelet function testing on practice: the treatment with adenosine diphosphate receptor inhibitors: longitudinal assessment of treatment patterns and events after acute coronary syndrome prospective open label antiplatelet therapy study.

    Science.gov (United States)

    Wang, Tracy Y; Henry, Timothy D; Effron, Mark B; Honeycutt, Emily; Hess, Connie N; Zettler, Marjorie E; Cohen, David J; Baker, Brian A; Berger, Peter B; Anstrom, Kevin J; Angiolillo, Dominick J; Peterson, Eric D

    2015-06-01

    Little is known about how clinicians use platelet function testing to guide choice and dosing of adenosine diphosphate receptor inhibitor (ADPri) therapy in routine community practice. The Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome (ACS)-Prospective, Open Label, Antiplatelet Therapy Study (TRANSLATE-POPS) was a cluster-randomized trial in which 100 hospitals were assigned access to no-cost platelet function testing versus usual care for acute myocardial infarction patients treated with percutaneous coronary intervention. In both arms, ADPri treatment decisions were left up to the care team. The primary end point was the frequency of ADPri therapy adjustment before discharge. Secondary end points included 30-day rates of major adverse cardiovascular events and Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries-defined bleeding events. Platelet function testing was performed in 66.9% of patients treated in intervention sites versus 1.4% of patients in usual care sites. Intervention arm patients were more likely to have ADPri therapy adjustment than usual care patients (14.8% versus 10.5%, P=0.004; odds ratio 1.68, 95% confidence interval 1.18-2.40); however, there were no significant differences in 30-day major adverse cardiovascular events (4.8% versus 5.4%, P=0.73; odds ratio 0.94, 95% confidence interval 0.66-1.34) or bleeding (4.3% versus 4.2%, P=0.33; odds ratio 0.86, 95% confidence interval 0.55-1.34). One-year outcomes were also not significantly different between groups. An as-treated analysis showed higher incidence of ADPri therapy adjustment among intervention arm patients who received platelet function testing than untested usual care arm (16.4% versus 10.2%, P<0.0001), but no significant differences in major adverse cardiovascular events or bleeding. TRANSLATE-POPS found that when clinicians routinely used

  7. Unplanned Inpatient and Observation Rehospitalizations After Acute Myocardial Infarction: Insights From the Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome (TRANSLATE-ACS) Study.

    Science.gov (United States)

    Hess, Connie N; Wang, Tracy Y; McCoy, Lisa A; Messenger, John C; Effron, Mark B; Zettler, Marjorie E; Henry, Timothy D; Peterson, Eric D; Fonarow, Gregg C

    2016-02-02

    Previous studies examining early readmission after acute myocardial infarction have focused exclusively on inpatient readmissions. However, from a patient's perspective, any unplanned inpatient or observation rehospitalization after acute myocardial infarction represents a significant event; these unplanned rehospitalizations have not been well characterized. We examined all patients with acute myocardial infarction treated with percutaneous coronary intervention and discharged alive from 233 hospitals in the Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome (TRANSLATE-ACS) study from 2010 to 2012. Our primary outcome was unplanned rehospitalizations (inpatient or observation status) within 30 days after discharge. We identified factors associated with unplanned rehospitalizations using multivariable logistic regression. Among 12 312 patients, 1326 (10.8%) had 1483 unplanned rehospitalizations within 30 days of the index event: 1028 (69.3%) were inpatient readmissions, and 455 (30.7%) were observation stays. The majority of unplanned rehospitalizations (72%) were for cardiovascular reasons. Variation in hospital rates of 30-day unplanned rehospitalization ranged from 5.4% to 20.0%, with a median of 10.7%. After multivariable modeling, the factors most strongly associated with unplanned rehospitalization were baseline quality of life and depression, followed by index hospital length of stay. Early unplanned rehospitalizations are common after acute myocardial infarction, and close to one third were classified as an observation stay. Predischarge and postdischarge assessments of overall, not just cardiovascular, health and strategies to optimize patient functional status may help to reduce unplanned rehospitalizations. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01088503. © 2015 American Heart Association, Inc.

  8. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  9. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  10. Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteomewide ADP-Ribose Acceptor Sites.

    Science.gov (United States)

    Bilan, Vera; Leutert, Mario; Nanni, Paolo; Panse, Christian; Hottiger, Michael O

    2017-02-07

    Protein adenosine diphosphate (ADP)-ribosylation is a physiologically and pathologically important post-translational modification. Recent technological advances have improved analysis of this complex modification and have led to the discovery of hundreds of ADP-ribosylated proteins in both cultured cells and mouse tissues. Nevertheless, accurate assignment of the ADP-ribose acceptor site(s) within the modified proteins identified has remained a challenging task. This is mainly due to poor fragmentation of modified peptides. Here, using an Orbitrap Fusion Tribrid mass spectrometer, we present an optimized methodology that not only drastically improves the overall localization scores for ADP-ribosylation acceptor sites but also boosts ADP-ribosylated peptide identifications. First, we systematically compared the efficacy of higher-energy collision dissociation (HCD), electron-transfer dissociation with supplemental collisional activation (ETcaD), and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation methods when determining ADP-ribose acceptor sites within complex cellular samples. We then tested the combination of HCD and EThcD fragmentation, which were employed in a product-dependent manner, and the unique fragmentation properties of the ADP-ribose moiety were used to trigger targeted fragmentation of only the modified peptides. The best results were obtained with a workflow that included initial fast, high-energy HCD (Orbitrap, FT) scans, which produced intense ADP-ribose fragmentation ions. These potentially ADP-ribosylated precursors were then selected and analyzed via subsequent high-resolution HCD and EThcD fragmentation. Using these resulting high-quality spectra, we identified a xxxxxxKSxxxxx modification motif where lysine can serve as an ADP-ribose acceptor site. Due to the appearance of serine within this motif and its close presence to the lysine, further analysis revealed that serine serves as a new ADP-ribose acceptor site

  11. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  12. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  13. D-ribose--an additive with caffeine.

    Science.gov (United States)

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  14. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1999-01-01

    Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Δprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2...

  15. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP...

  16. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells

    Science.gov (United States)

    de Murcia, Josiane Ménissier; Niedergang, Claude; Trucco, Carlotta; Ricoul, Michèle; Dutrillaux, Bernard; Mark, Manuel; Oliver, F. Javier; Masson, Murielle; Dierich, Andrée; LeMeur, Marianne; Walztinger, Caroline; Chambon, Pierre; de Murcia, Gilbert

    1997-01-01

    Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP−/− mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body γ-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP−/− cells displayed a high sensitivity to MNU exposure: a G2/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery. PMID:9207086

  17. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  18. Bis(4-methoxybenzylammonium dihydrogen diphosphate

    Directory of Open Access Journals (Sweden)

    Adel Elboulali

    2013-02-01

    Full Text Available In the title compound, 2C8H12NO+·H2P2O72−, the linked PO4 groups of the diphosphate anion are almost eclipsed and the P—O—P angle is 134.45 (7°. In the crystal, infinite ribbons of H2P2O72− anions propagate in [100], being linked by strong O—H...O hydrogen bonds. The 4-methoxybenzylammonium cations bond to the diphosphate chains by N—H...O and C—H...O links, and are themselves linked by C—H...π interactions.

  19. Adenosine A

    National Research Council Canada - National Science Library

    Vallon, Volker; Schroth, Jana; Satriano, Joseph; Blantz, Roland C; Thomson, Scott C; Rieg, Timo

    2009-01-01

    ...'). Here, experiments were performed in adenosine A receptor knockout mice (A R-/-), which lack an immediate TGF response, to determine whether A Rs are essential for early diabetic hyperfiltration and the salt paradox. Methods...

  20. Could serum antibody to poly(ADP-ribose) and/or histone H1 be marker for senile dementia of Alzheimer type?

    Science.gov (United States)

    Kanai, Yoshiyuki; Akatsu, Hiroyasu; Iizuka, Hideki; Morimoto, Chikao

    2007-08-01

    Poly(ADP-ribosyl)ation has been focused on ischemic injury in the brain in relation to Alzheimer's disease (AD). We have measured IgG antibodies against poly adenosine diphosphate-ribose (pADPR) as well as histone H1 (H1) in 26 patients with either AD or with senile dementia of Alzheimer type (SDAT), and found that 80.7% (21/26) were positive for anti-pADPR IgG antibodies. Anti-H1 IgG antibodies were less positive (57.6%) (15/26) than anti-pADPR IgG antibodies, however, titers of both antibodies were well correlated (r = 0.768). Meanwhile, similar studies on 32 patients with systemic lupus erythematosus (SLE) who were positive for anti-pADPR antibody showed poor correlation (r = 0.184) and the difference in the correlation was statistically significant (r dementia patients. Together with the findings that major subclass in dementia is both IgG1 and IgG2 and that in SLE was IgG2, the mode of production of anti-pADPR antibody in AD and SDAT is under different regulation mechanisms from that in SLE. Given the evidence that major target for ADP-ribosylation is H1 molecule, the association between anti-pADPR and anti-H1 in AD/SDAT makes sense and supports the concept that modification of proteins renders them immunogenic. Whatever the regulation is, parallel assay of two antibodies above would be of use not only for monitoring the disease process but also as a prodrome for possible subsets of SDAT and AD.

  1. Capillary electrophoresis of adenosine phosphates using boron-doped diamond electrodes

    Science.gov (United States)

    Firmansyah, B. D.; Ivandini, T. A.; Gunlazuardi, J.

    2017-04-01

    A capillary electrophoresis coupled with electrochemical detection using boron-doped diamond electrode was developed for simultaneous detection of adenosine phosphates, i.e. adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP). In phosphate buffer solution pH 7, these three adenosine phosphates have similar oxidation potentials at around +0.9 V (vs. Ag/AgCl), which indicated that the oxidation occurred at the same moiety. Capillary electrophoresis, which was then performed using fused silica capillary (dia. 0.05 mm) at an applied potential of 10 KV can separate ATP, ADP and AMP with the retention times of 848 s, 1202 s, and 1439 s, respectively. Linear calibration curves with the limits of detection of 0.59 μM, 0.56 μM and 1.78 μM, respectively, can be achieved, suggested that capillary electrophoresis with electrochemical detector is promising for simultaneous detection of adenosine phosphates.

  2. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  3. Arabidopsis thaliana isoprenyl diphosphate synthases produce the C25 intermediate geranylfarnesyl diphosphate.

    Science.gov (United States)

    Nagel, Raimund; Bernholz, Carolin; Vranová, Eva; Košuth, Ján; Bergau, Nick; Ludwig, Steve; Wessjohann, Ludger; Gershenzon, Jonathan; Tissier, Alain; Schmidt, Axel

    2015-12-01

    Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short-chain all-trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10 ), farnesyl diphosphate (FDP, C15 ) or geranylgeranyl diphosphate (GGDP, C20 ). In the genome of Arabidopsis thaliana, 15 trans-product-forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC-MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25 ) instead of GGDP as their major product in enzyme assays performed in vitro. Over-expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N-terminal to the first aspartate-rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20 ) as a product and a larger R group (Met) resulting in GFDP (C25 ). © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Adenosine dysfunction in epilepsy

    Science.gov (United States)

    Boison, Detlev

    2011-01-01

    Extracellular levels of the brain’s endogenous anticonvulsant and neuroprotectant adenosine largely depend on an astrocyte-based adenosine cycle, comprised of ATP release, rapid degradation of ATP into adenosine, and metabolic reuptake of adenosine through equilibrative nucleoside transporters and phosphorylation by adenosine kinase (ADK). Changes in ADK expression and activity therefore rapidly translate into changes of extracellular adenosine, which exerts its potent anticonvulsive and neuroprotective effects by activation of pre- and postsynaptic adenosine A1 receptors. Increases in ADK increase neuronal excitability, whereas decreases in ADK render the brain resistant to seizures and injury. Importantly, ADK was found to be overexpressed and associated with astrogliosis and spontaneous seizures in rodent models of epilepsy, as well as in human specimen resected from patients with hippocampal sclerosis and temporal lobe epilepsy. Several lines of evidence indicate that overexpression of astroglial ADK and adenosine deficiency are pathological hallmarks of the epileptic brain. Consequently, adenosine augmentation therapies constitute a powerful approach for seizure prevention, which is effective in models of epilepsy that are resistant to conventional antiepileptic drugs. The adenosine kinase hypothesis of epileptogenesis suggests that adenosine dysfunction in epilepsy undergoes a biphasic response: An acute surge of adenosine that can be triggered by any type of injury might contribute to the development of astrogliosis via adenosine receptor –dependent and –independent mechanisms. Astrogliosis in turn is associated with overexpression of ADK, which was shown to be sufficient to trigger spontaneous recurrent electrographic seizures. Thus, ADK emerges as a promising target for the prediction and prevention of epilepsy. PMID:22700220

  5. Motesanib diphosphate in progressive differentiated thyroid cancer

    DEFF Research Database (Denmark)

    Sherman, Steven I; Wirth, Lori J; Droz, Jean-Pierre

    2008-01-01

    BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet-derived gr......BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet......-derived growth-factor receptor, and KIT. METHODS: In an open-label, single-group, phase 2 study, we treated 93 patients who had progressive, locally advanced or metastatic, radioiodine-resistant differentiated thyroid cancer with 125 mg of motesanib diphosphate, administered orally once daily. The primary end...... point was an objective response as assessed by an independent radiographic review. Additional end points included the duration of the response, progression-free survival, safety, and changes in serum thyroglobulin concentration. RESULTS: Of the 93 patients, 57 (61%) had papillary thyroid carcinoma...

  6. Adenosine and dialysis hypotension

    NARCIS (Netherlands)

    Franssen, CMF

    In this issue, Imai et al. report the results of a double-blind placebo-controlled study on the effect of an adenosine A1 receptor antagonist, FK352, on the incidence of dialysis hypotension in hypotension-prone patients. This Commentary discusses the use of selective adenosine A1 receptor

  7. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation.

    Science.gov (United States)

    Schmidt, Axel; Gershenzon, Jonathan

    2007-11-01

    The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.

  8. Inhibitory effect of added adenosine diphosphate on palmitate oxidation in mitochondria from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, N.

    1986-05-01

    It is generally accepted that fatty acids are poor substrates for the oxidation in brain because plasma fatty acids do not traverse the blood-brain barrier. However, a regional difference in the barrier suggests that fatty acids are available for oxidation. Why most of fatty acids are not oxidized is not certain. For this reason, regulation of oxidation of (1-/sup 14/C)palmitate (pal) in rat brain has been studied in nonsynaptic mitochondria (mit) prepared by use of Ficoll/sucrose density gradient. The authors found two contrasting oxidations with respect to ATP concentration; Type A at 2 mM and Type B at 0.5 mM. The rate of Type A was 50% of the level of B. Type A was inhibited by high levels of L-carnitine (car) and Mg/sup 2 +/. Added ADP inhibited Type A, but stimulated B. Addition of carboxyatractyloside was stimulatory for Type A, but inhibitory for B. The rate of Type A showed a downward curvature with increasing protein concentration while that of B showed a linear relationship. Addition of NH/sub 4//sup +/ to Type A stimulated the rate and reduced the inhibitory effects of both added ADP and high levels of car. These results suggest that under the normal level of ATP, the carnitine-dependent transport of pal is inhibited (thereby resulting in the inhibition in pal oxidation) by the transport of ADP into mit mediated by the ATP-ADP translocase, but that the inhibition is not observed under the specified conditions or regions where ATP levels are low or ammonia levels are high.

  9. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Young-Min Son

    2017-01-01

    Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

  10.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia

    2013-01-01

    myocardial IS and whether this correlated to t-PA release or improvements in hemodynamic responses. Hemodynamic variables and t-PA were measured in 22 pigs before, during, and after 45 min of left anterior coronary artery occlusion. During reperfusion, the pigs were randomized to 240 min of intracoronary...

  11. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  12. Adenosine receptor ligands on cancer therapy: A review of Patent Literature.

    Science.gov (United States)

    Diniz, Carmen; Sousa, Joana Beatriz; Fresco, Paula; Goncalves, Jorge

    2017-11-07

    Adenosine is a purine, with an adenine group and a ribose sugar, formed endogenously by ATP catabolism both intracellularly and extracellularly. Among the medicinal features of adenosine and of its receptors (A1, A2A, A2B and A3), anticancer activity has been an intense field of research. The anticancer potential of adenosine receptor ligands has been brought forefront of research and evidenced in innumerous research articles and patents. The present review focuses on the patent literature from 2002 onwards (2002-2017). Patents were searched and downloaded from the open access patent data bases and available online. A significant number of patents (65) have been published on adenosine receptor ligands claiming anticancer activity, or presenting new methods of preparation or of treatment thereof from 2002-2017 (May). From these, 35 were published highlighting the promising attributes of compounds/methods to fight cancer. Most of the compounds act as adenosine A3 receptor agonists, while others act as antagonists for the other adenosine receptor subtypes. The signaling events triggered by activation of adenosine A3 receptor or by blockade of adenosine A1, A2A and A2B receptors can reverse an environment pro-cancer to an anti-cancer in the body. The promising anticancer effects mediated by adenosine receptor ligands put them in the forefront as new drug candidates. The present compilation can be worthy to medicinal chemists, pharmacologists, biochemists and other researchers focusing on the putative anticancer activity of adenosine receptor ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP{sub 2}O{sub 7}) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP{sub 2}O{sub 7} surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  14. Chemoenzymatic synthesis of the alarm pheromone (+)-verbenone from geranyl diphosphate.

    Science.gov (United States)

    Yoosuf-Aly, Zulfa; Faraldos, Juan A; Miller, David J; Allemann, Rudolf K

    2012-07-18

    The enzyme-guided asymmetric synthesis of (+)-verbenone from geranyl diphosphate in a simple two-step, one pot transformation highlights the potential of chemoenzymatic procedures for the generation of high-value terpenoids.

  15. Role of Adenosine Signaling on Pentylenetetrazole-Induced Seizures in Zebrafish

    Science.gov (United States)

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Schaefer, Isabel da Costa; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2015-01-01

    Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5′nucleotidase inhibitor adenosine 5′-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5′-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish. PMID:25560904

  16. Daily supplementation of D-ribose shows no therapeutic benefits in the MHC-I transgenic mouse model of inflammatory myositis.

    Directory of Open Access Journals (Sweden)

    William Coley

    Full Text Available BACKGROUND: Current treatments for idiopathic inflammatory myopathies (collectively called myositis focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1, leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. RESULTS: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. CONCLUSIONS: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.

  17. Rat cardiac myocyte adenosine transport and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  18. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis.

    Science.gov (United States)

    Berthelot, Karine; Estevez, Yannick; Deffieux, Alain; Peruch, Frédéric

    2012-08-01

    Even if the isopentenyl diphosphate (IPP) isomerases have been discovered in the 50s, it is only in the last decade that the genetical, enzymatical, structural richness and cellular importance of this large family of crucial enzymes has been uncovered. Present in all living kingdoms, they can be classified in two subfamilies: type 1 and type 2 IPP isomerases, which show clearly distinct characteristics. They all perform the regulatory isomerization of isopentenyl diphosphate into dimethylallyl diphosphate, a key rate-limiting step of the terpenoid biosynthesis, via a protonation/deprotonation mechanism. Due to their importance in the isoprenoid metabolism and the increasing interest of industry devoted to terpenoid production, it is foreseen that the biotechnological development of such enzymes should be under intense scrutiny in the near future. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Genetics Home Reference: adenosine deaminase 2 deficiency

    Science.gov (United States)

    ... Twitter Home Health Conditions Adenosine deaminase 2 deficiency Adenosine deaminase 2 deficiency Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized ...

  20. A review on the chemical synthesis of pyrophosphate bonds in bioactive nucleoside diphosphate analogs.

    Science.gov (United States)

    Xu, Zhihong

    2015-09-15

    Currently, there is an ongoing interest in the synthesis of nucleoside diphosphate analogs as important regulators in catabolism/anabolism, and their potential applications as mechanistic probes and chemical tools for bioassays. However, the pyrophosphate bond formation step remains as the bottleneck. In this Digest, the chemical synthesis of the pyrophosphate bonds of representative bioactive nucleoside diphosphate analogs, i.e. phosphorus-modified analogs, nucleoside cyclic diphosphates, and nucleoside diphosphate conjugates, will be described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Quantitative determination of isopentenyl diphosphate in cultured mammalian cells.

    Science.gov (United States)

    Tong, Huaxiang; Kuder, Craig H; Wasko, Brian M; Hohl, Raymond J

    2013-02-01

    Isopentenyl diphosphate (IPP), an intermediate of the isoprenoid biosynthetic pathway (IBP), has several important biological functions, yet a method to determine its basal level has not been described. Here, we describe a nonradioactive and sensitive analytical method to isolate and specifically quantify IPP from cultured mammalian cells. This method applies an enzymatic coupling reaction to determine intracellular concentrations of IPP. In this reaction, geranylgeranyl diphosphate synthase catalyzes the formation of geranylgeranyl diphosphate (GGPP) from IPP and farnesyl diphosphate (FPP). Subsequently, geranylgeranyl protein transferase I conjugates GGPP with a fluorescently labeled peptide. The geranylgeranylated peptide can be quantified by high-performance liquid chromatography (HPLC) with a fluorescence detector, thereby allowing for IPP quantification. The detection lower limit of the fluorescence-labeled geranylgeranyl peptide is approximately 5 pg (~0.017 pmol). This method was used to examine the effects of IBP inhibitors such as lovastatin and zoledronate on intracellular levels of IPP. Inhibition of hydroxymethylglutaryl coenzyme A reductase (HMGCR) by lovastatin (50 nM) decreases IPP levels by 78% and 53% in K562 and MCF-7 cells, respectively. Whereas zoledronic acid (10 μM) increased IPP levels 12.6-fold when compared with untreated cells in the K562 cell line, an astonishing 960-fold increase was observed in the MCF-7 cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The role of aristolochene synthase in diphosphate activation.

    Science.gov (United States)

    Faraldos, Juan A; Gonzalez, Veronica; Allemann, Rudolf K

    2012-03-28

    Analysis of the role of amino acids involved in diphosphate binding in the Michaelis complex of aristolochene synthase from P. roqueforti (PR-AS) reveals mechanistic details about leaving group (PPi) activation and the nature of the active site acid. This journal is © The Royal Society of Chemistry 2012

  3. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  4. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    Science.gov (United States)

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant

  5. Impaired Erectile Function in CD73-deficient Mice with Reduced Endogenous Penile Adenosine Production

    Science.gov (United States)

    Wen, Jiaming; Dai, Yingbo; Zhang, Yujin; Zhang, Weiru; Kellems, Rodney E.; Xia, Yang

    2012-01-01

    Introduction Adenosine has been implicated in normal and abnormal penile erection. However, a direct role of endogenous adenosine in erectile physiology and pathology has not been established. Aim To determine the functional role of endogenous adenosine production in erectile function. Methods CD73-deficient mice (CD73−/−) and age-matched wild-type (WT) mice were used. Some WT mice were treated with alpha, beta-methylene adenosine diphosphate (ADP) (APCP), a CD73-specific inhibitor. High-performance liquid chromatography was used to measure adenosine levels in mouse penile tissues. In vivo assessment of intracorporal pressure (ICP) normalized to mean arterial pressure (MAP) in response to electrical stimulation (ES) of the cavernous nerve was used. Main Outcome Measurement The main outcome measures of this study were the in vivo assessment of initiation and maintenance of penile erection in WT mice and mice with deficiency in CD73 (ecto-5′-nucleotidase), a key cell-surface enzyme to produce extracellular adenosine. Results Endogenous adenosine levels were elevated in the erected state induced by ES of cavernous nerve compared to the flaccid state in WT mice but not in CD73−/− mice. At cellular levels, we identified that CD73 was highly expressed in the neuronal, endothelial cells, and vascular smooth muscle cells in mouse penis. Functionally, we found that the ratio of ES-induced ICP to MAP in CD73−/− mice was reduced from 0.48 ± 0.03 to 0.33 ± 0.05 and ES-induced slope was reduced from 0.30 ± 0.13 mm Hg/s to 0.15 ± 0.05 mm Hg/s (both P penile erection. PMID:21595838

  6. Ribose utilization by the human commensal Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Pokusaeva, Karina; Neves, Ana Rute; Zomer, Aldert; O'Connell-Motherway, Mary; MacSharry, John; Curley, Peter; Fitzgerald, Gerald F; van Sinderen, Douwe

    2010-05-01

    Growth of Bifidobacterium breve UCC2003 on ribose leads to the transcriptional induction of the rbsACBDK gene cluster. Generation and phenotypic analysis of an rbsA insertion mutant established that the rbs gene cluster is essential for ribose utilization, and that its transcription is likely regulated by a LacI-type regulator encoded by rbsR, located immediately upstream of rbsA. Gel mobility shift assays using purified RbsR(His) indicate that the promoter upstream of rbsABCDK is negatively controlled by RbsR(His) binding to an 18 bp inverted repeat and that RbsR(His) binding activity is modulated by D-ribose. The rbsK gene of the rbs operon of B. breve UCC2003 was shown to specify a ribokinase (EC 2.7.1.15), which specifically directs its phosphorylating activity towards D-ribose, converting this pentose sugar to ribose-5-phosphate. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies.

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-02-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.

  8. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  9. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  10. The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494.

    Science.gov (United States)

    Rimaux, T; Vrancken, G; Vuylsteke, B; De Vuyst, L; Leroy, F

    2011-09-01

    The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catabolism occurred in any of the L. sakei strains tested. A detailed kinetic analysis of inosine and adenosine catabolism in the presence of arginine by L. sakei CTC 494, a fermented-meat starter culture, was performed. It showed that nucleoside catabolism occurred as a mixed-acid fermentation in a pH range (pH 5.0 to 6.5) relevant for sausage fermentation. This resulted in the production of a mixture of acetic acid, formic acid, and ethanol from ribose, while the nucleobase (hypoxanthine and adenine in the case of fermentations with inosine and adenosine, respectively) was excreted into the medium stoichiometrically. This indicates that adenosine deaminase activity did not take place. The ratios of the different fermentation end products did not vary with environmental pH, except for the fermentation with inosine at pH 5.0, where lactic acid was produced too. In all cases, no other carbon-containing metabolites were found; carbon dioxide was derived only from arginine catabolism. Arginine was cometabolized in all cases and resulted in the production of both citrulline and ornithine. Based on these results, a pathway for inosine and adenosine catabolism in L. sakei CTC 494 was presented, whereby both nucleosides are directly converted into their nucleobase and ribose, the latter entering the heterolactate pathway. The present study revealed that the pentose moiety (ribose) of the nucleosides inosine and adenosine is an effective fermentable substrate for L. sakei. Thus, the ability to use these energy sources offers a competitive advantage for this species in a meat environment.

  11. The Pentose Moiety of Adenosine and Inosine Is an Important Energy Source for the Fermented-Meat Starter Culture Lactobacillus sakei CTC 494▿

    Science.gov (United States)

    Rimaux, T.; Vrancken, G.; Vuylsteke, B.; De Vuyst, L.; Leroy, F.

    2011-01-01

    The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catabolism occurred in any of the L. sakei strains tested. A detailed kinetic analysis of inosine and adenosine catabolism in the presence of arginine by L. sakei CTC 494, a fermented-meat starter culture, was performed. It showed that nucleoside catabolism occurred as a mixed-acid fermentation in a pH range (pH 5.0 to 6.5) relevant for sausage fermentation. This resulted in the production of a mixture of acetic acid, formic acid, and ethanol from ribose, while the nucleobase (hypoxanthine and adenine in the case of fermentations with inosine and adenosine, respectively) was excreted into the medium stoichiometrically. This indicates that adenosine deaminase activity did not take place. The ratios of the different fermentation end products did not vary with environmental pH, except for the fermentation with inosine at pH 5.0, where lactic acid was produced too. In all cases, no other carbon-containing metabolites were found; carbon dioxide was derived only from arginine catabolism. Arginine was cometabolized in all cases and resulted in the production of both citrulline and ornithine. Based on these results, a pathway for inosine and adenosine catabolism in L. sakei CTC 494 was presented, whereby both nucleosides are directly converted into their nucleobase and ribose, the latter entering the heterolactate pathway. The present study revealed that the pentose moiety (ribose) of the nucleosides inosine and adenosine is an effective fermentable substrate for L. sakei. Thus, the ability to use these energy sources offers a competitive advantage for this species in a meat environment

  12. Adenosine-Associated Delivery Systems

    Science.gov (United States)

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  13. Quantitative determination of geranyl diphosphate levels in cultured human cells.

    Science.gov (United States)

    Holstein, Sarah A; Tong, Huaxiang; Kuder, Craig H; Hohl, Raymond J

    2009-11-01

    Geranyl diphosphate (GPP), a 10-carbon isoprenoid, is a key intermediate in the isoprenoid biosynthetic pathway. This pathway, in addition to leading to sterol synthesis, results in the synthesis of farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP), which serve as substrates for protein isoprenylation reactions. Basal levels of GPP in mammalian cells previously have been undetectable. Here we present a novel, sensitive, nonradioactive method which allows for measurement of GPP in mammalian cells. This methodology involves extraction of isoprenoids from cultured cells followed by enzymatic conjugation of GPP to a fluorescent dansylated-peptide via farnesyl transferase and quantification with high-performance liquid chromatography (HPLC). The lower limit of detection of GPP is 5 pg, or 0.015 pmol. Basal levels of GPP were determined in three human multiple myeloma cell lines (RPMI-8226, U266, H929). Treatment of cells with inhibitors of the isoprenoid biosynthetic pathway results in marked changes in GPP levels: the HMG-CoA reductase inhibitor lovastatin decreases GPP levels by over 50%, while the FPP synthase inhibitor zoledronic acid increases GPP levels 16- to 107-fold. This method also allows for the simultaneous measurement of GPP, FPP, and GGPP, thus leading to improved understanding of the pathway in a multitude of biological systems. Furthermore, as drugs targeting this pathway are developed, their biological activity can be more directly linked to effects on isoprenoid levels.

  14. Enhanced cellular adenosine uptake limits adenosine receptor stimulation in patients with hyperhomocysteinemia.

    NARCIS (Netherlands)

    Riksen, N.P.; Rongen, G.A.; Boers, G.H.J.; Blom, H.J.; Broek, P.H.H. van den; Smits, P.

    2005-01-01

    OBJECTIVE: Endogenous adenosine has several cardioprotective effects. We postulate that in patients with hyperhomocysteinemia increased intracellular formation of S-adenosylhomocysteine decreases free intracellular adenosine. Subsequently, facilitated diffusion of extracellular adenosine into cells

  15. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole

  16. Substoichiometric ribose methylations in spliceosomal snRNAs

    DEFF Research Database (Denmark)

    Krogh, Nicolai; Kongsbak-Wismann, Martin; Geisler, Carsten

    2017-01-01

    Sequencing-based profiling of ribose methylations is a new approach that allows for experiments addressing dynamic changes on a large scale. Here, we apply such a method to spliceosomal snRNAs present in human whole cell RNA. Analysis of solid tissue samples confirmed all previously known sites...

  17. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  18. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  19. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta.

    Science.gov (United States)

    Orlova, Irina; Nagegowda, Dinesh A; Kish, Christine M; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia

    2009-12-01

    Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.

  20. Regulation of Cardiovascular Development by Adenosine and Adenosine-Mediated Embryo Protection

    OpenAIRE

    Rivkees, Scott A; Wendler, Christopher C.

    2012-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined how adenosine acts via A1ARs to influence embryo development.

  1. Determination of kinetics and crystal structure of a novel Type 2 Isopentenyl Diphosphate: Dimethylallyl Diphosphate Isomerase from Streptococcus pneumoniae

    Science.gov (United States)

    de Ruyck, Jerome; Janczak, Matthew W.; Neti, Syam Sundar; Rothman, Steven C.; Schubert, Heidi L.; Cornish, Rita M.; Matagne, Andre; Wouters, Johan; Poulter, C. Dale

    2014-01-01

    Isopentenyl diphosphate dimethylallyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein and is found in eukaryotes, while the type-2 isoform (IDI-2) is a flavoenzyme found in bacteria and completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in E. coli. Steady state kinetic studies of the enzyme indicated that FMNH2 (KM= 0.3 μM) bound before isopentenyl diphosphate (KM= 40 μM) in an ordered binding mechanism. An X-ray crystal structure at 1.4 Å resolution was obtained for the holo-enzyme, in the closed conformation with reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI-2 and, thus, open new possibilities for the rational design of antibacterial compounds against closely sequence and structure related pathogens such as E. faecalis or S. aureus. PMID:24910111

  2. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E. (Cornell); (Sassari); (Pisa)

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  3. Extracellular guanosine regulates extracellular adenosine levels

    Science.gov (United States)

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  4. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...... an unusual low specificity toward diphosphoryl donors by accepting dATP, GTP, CTP, and UTP in addition to ATP. The kinetic mechanism of the enzyme is an ordered steady state Bi Bi mechanism with K(ATP) and K(Rib-5-P) values of 170 and 110 micrometer, respectively, and a V(max) value of 13.1 micromol (min x...

  5. The juxtaposition of ribose hydroxyl groups: the root of biological catalysis and the RNA world?

    Science.gov (United States)

    Bernhardt, Harold S

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2'-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2'-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  6. Resistance to aspirin is increased by ST-elevation myocardial infarction and correlates with adenosine diphosphate levels

    Directory of Open Access Journals (Sweden)

    Öhlin Hans

    2005-07-01

    Full Text Available Abstract Background To be fully activated platelets are dependent on two positive feedback loops; the formation of thromboxane A2 by cyclooxygenase in the platelets and the release of ADP. We wanted to evaluate the effect of aspirin on platelet function in patients with acute coronary syndromes and we hypothesized that increased levels of ADP in patients with acute coronary syndromes could contribute to aspirin resistance. Methods Platelet activity in 135 patients admitted for chest pain was assessed with PFA-100. An epinephrine-collagen cartridge (EPI-COLL was used for the detection of aspirin resistance together with an ADP-collagen cartridge (ADP-COLL. ADP was measured with hplc from antecubital vein samples. Three subgroups were compared: chest pain with no sign of cardiac disease (NCD, NonST-elevation myocardial infarction (NSTEMI and STEMI. Results Platelet activation was increased for the STEMI group compared NCD. Aspirin resistance defined as Conclusion Platelets are activated and aspirin resistance is more frequent in STEMI, probably due to a general activation of platelets. ADP levels are increased in STEMI and correlates with platelet activation. Increased levels of ADP could be one reason for increased platelet activity and aspirin resistance.

  7. Insulin/adenosine axis linked signalling

    NARCIS (Netherlands)

    Silva, Luis; Subiabre, Mario; Araos, Joaquín; Sáez, Tamara; Salsoso, Rocío; Pardo, Fabián; Leiva, Andrea; San Martín, Rody; Toledo, Fernando; Sobrevia, Luis

    Regulation of blood flow depends on systemic and local release of vasoactive molecules such as insulin and adenosine. These molecules cause vasodilation by activation of plasma membrane receptors at the vascular endothelium. Adenosine activates at least four subtypes of adenosine receptors (A(1)AR,

  8. Disodium calcium dinickel(II bis[diphosphate(V] decahydrate

    Directory of Open Access Journals (Sweden)

    Yun-Cheng Cui

    2011-02-01

    Full Text Available In the title compound, Na2CaNi2(P2O72(H2O10, there are two distinct P-atom sites, each tetrahedrally coordinated by four O atoms. The resulting phosphate tetrahedra link through a common O atom, forming a [P2O7]4− diphosphate unit. The Ni—O coordination is square pyramidal with four O atoms from two diphosphate groups in equatorial positions and the vertex occupied by a water O atom. The (P2O7(H2O units link the Ni atoms, forming a chain of pyramids and tetrahedra. As a result of the d-glide and twofold-axis symmetry of space group Fdd2, the chains propagate along [101] and [10overline{1}], and chains in adjacent layers are mutually orthogonal. The Ca cation, located on a rotation axis, and the Na cation are each octahedrally coordinated by four O atoms and two waters. The Ni-chain arrangement is stabilized by Ca and Na coordination and a network of O—H...O hydrogen bonds.

  9. Global transcriptome response in Lactobacillus sakei during growth on ribose.

    Science.gov (United States)

    McLeod, Anette; Snipen, Lars; Naterstad, Kristine; Axelsson, Lars

    2011-06-24

    Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman). Putative catabolite-responsive element (cre) sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA)-mediated carbon catabolite repression (CCR) mechanism, possibly with the EIIman being indirectly involved. Our data shows that the ribose uptake and catabolic machinery in L. sakei is highly regulated

  10. Global transcriptome response in Lactobacillus sakei during growth on ribose

    Directory of Open Access Journals (Sweden)

    Naterstad Kristine

    2011-06-01

    Full Text Available Abstract Background Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. Results The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman. Putative catabolite-responsive element (cre sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA-mediated carbon catabolite repression (CCR mechanism, possibly with the EIIman being indirectly involved. Conclusions Our data shows that the ribose uptake

  11. Determination of kinetics and the crystal structure of a novel type 2 isopentenyl diphosphate: dimethylallyl diphosphate isomerase from Streptococcus pneumoniae.

    Science.gov (United States)

    de Ruyck, Jerome; Janczak, Matthew W; Neti, Syam Sundar; Rothman, Steven C; Schubert, Heidi L; Cornish, Rita M; Matagne, Andre; Wouters, Johan; Poulter, C Dale

    2014-07-07

    Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI-2) is a flavoenzyme found in bacteria that is completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli. Steady-state kinetic studies of the enzyme indicated that FMNH2 (KM =0.3 μM) bound before isopentenyl diphosphate (KM =40 μM) in an ordered binding mechanism. An X-ray crystal structure at 1.4 Å resolution was obtained for the holoenzyme in the closed conformation with a reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI-2 and, thus, open new possibilities for the rational design of antibacterial compounds against sequence-similar and structure-related pathogens such as Enterococcus faecalis or Staphylococcus aureus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway.

    Science.gov (United States)

    Terami, Yuji; Yoshida, Hiromi; Uechi, Keiko; Morimoto, Kenji; Takata, Goro; Kamitori, Shigehiro

    2015-08-01

    L-Ribose isomerase from Cellulomonas parahominis MB426 (CpL-RI) can catalyze the isomerization between L-ribose and L-ribulose, which are non-abundant in nature and called rare sugars. CpL-RI has a broad substrate specificity and can catalyze the isomerization between D-lyxose and D-xylulose, D-talose and D-tagatose, L-allose and L-psicose, L-gulose and L-sorbose, and D-mannose and D-fructose. To elucidate the molecular basis underlying the substrate recognition mechanism of CpL-RI, the crystal structures of CpL-RI alone and in complexes with L-ribose, L-allose, and L-psicose were determined. The structure of CpL-RI was very similar to that of L-ribose isomerase from Acinetobacter sp. strain DL-28, previously determined by us. CpL-RI had a cupin-type β-barrel structure, and the catalytic site was detected between two large β-sheets with a bound metal ion. The bound substrates coordinated to the metal ion, and Glu113 and Glu204 were shown to act as acid/base catalysts in the catalytic reaction via a cis-enediol intermediate. Glu211 and Arg243 were found to be responsible for the recognition of substrates with various configurations at 4- and 5-positions of sugar. CpL-RI formed a homo-tetramer in crystals, and the catalytic site independently consisted of residues within a subunit, suggesting that the catalytic site acted independently. Crystal structure and site-direct mutagenesis analyses showed that the tetramer structure is essential for the enzyme activity and that each subunit of CpL-RI could be structurally stabilized by intermolecular contacts with other subunits. The results of growth complementation assays suggest that CpL-RI is involved in a novel metabolic pathway using L-ribose as a carbon source.

  13. Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit.

    Science.gov (United States)

    Kulkarni, Ram; Pandit, Sagar; Chidley, Hemangi; Nagel, Raimund; Schmidt, Axel; Gershenzon, Jonathan; Pujari, Keshav; Giri, Ashok; Gupta, Vidya

    2013-10-01

    Mango (cv. Alphonso) is popular due to its highly attractive, terpenoid-rich flavor. Although Alphonso is clonally propagated, its fruit-flavor composition varies when plants are grown in different geo-climatic zones. Isoprenyl diphosphate synthases catalyze important branch-point reactions in terpenoid biosynthesis, providing precursors for common terpenoids such as volatile terpenes, sterols and carotenoids. Two geranyl diphosphate synthases and a farnesyl diphosphate synthase were isolated from Alphonso fruits, cloned for recombinant expression and found to produce the respective products. Although, one of the geranyl diphosphate synthases showed high sequence similarity to the geranylgeranyl diphosphate synthases, it did not exhibit geranylgeranyl diphosphate synthesizing activity. When modeled, this geranyl diphosphate synthase and farnesyl diphosphate synthase structures were found to be homologous with the reference structures, having all the catalytic side chains appropriately oriented. The optimum temperature for both the geranyl diphosphate synthases was 40 °C and that for farnesyl diphosphate synthase was 25 °C. This finding correlated well with the dominance of monoterpenes in comparison to sesquiterpenes in the fruits of Alphonso mango in which the mesocarp temperature is higher during ripening than development. The absence of activity of these enzymes with the divalent metal ion other than Mg(2+) indicated their adaptation to the Mg(2+) rich mesocarp. The typical expression pattern of these genes through the ripening stages of fruits from different cultivation localities depicting the highest transcript levels of these genes in the stage preceding the maximum terpene accumulation indicated the involvement of these genes in the biosynthesis of volatile terpenes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. The ups and downs of tannins as inhibitors of poly(ADP-ribose)glycohydrolase.

    Science.gov (United States)

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R

    2011-02-22

    DNA damage to cells activates nuclear poly(ADP-ribose)polymerases (PARPs) and the poly(ADP-ribose) (PAR) synthesized is rapidly cleaved into ADP-ribose (ADPR) by PAR glycohydrolase (PARG) action. Naturally appearing tannin-like molecules have been implicated in specific inhibition of the PARG enzyme. This review deals with the in vitro and in vivo effects of tannins on PAR metabolism and their downstream actions in DNA damage signaling.

  15. The rise and fall of poly(ADP-ribose): An enzymatic perspective.

    Science.gov (United States)

    Pascal, John M; Ellenberger, Tom

    2015-08-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells

    Directory of Open Access Journals (Sweden)

    Kunihiko Yamashiro

    2017-01-01

    Full Text Available Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.

  17. A Bifunctional Geranyl and Geranylgeranyl Diphosphate Synthase Is Involved in Terpene Oleoresin Formation in Picea abies1[W][OA

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-01-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C10) and diterpenes (C20). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C10), farnesyl diphosphate (C15), and geranylgeranyl diphosphate (C20) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C10) and geranylgeranyl diphosphate (C20). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate. PMID:19939949

  18. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  19. Recombinant ecto-5'-nucleotidase (CD73 has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation

    Directory of Open Access Journals (Sweden)

    Zylka Mark J

    2010-04-01

    Full Text Available Abstract Background Ecto-5'-nucleotidase (NT5E, also known as CD73 hydrolyzes extracellular adenosine 5'-monophosphate (AMP to adenosine in nociceptive circuits. Since adenosine has antinociceptive effects in rodents and humans, we hypothesized that NT5E, an enzyme that generates adenosine, might also have antinociceptive effects in vivo. Results To test this hypothesis, we purified a soluble version of mouse NT5E (mNT5E using the baculovirus expression system. Recombinant mNT5E hydrolyzed AMP in biochemical assays and was inhibited by α,β-methylene-adenosine 5'-diphosphate (α,β-me-ADP; IC50 = 0.43 μM, a selective inhibitor of NT5E. mNT5E exhibited a dose-dependent thermal antinociceptive effect that lasted for two days when injected intrathecally in wild-type mice. In addition, mNT5E had thermal antihyperalgesic and mechanical antiallodynic effects that lasted for two days in the complete Freund's adjuvant (CFA model of inflammatory pain and the spared nerve injury (SNI model of neuropathic pain. In contrast, mNT5E had no antinociceptive effects when injected intrathecally into adenosine A1 receptor (A1R, Adora1 knockout mice. Conclusion Our data indicate that the long lasting antinociceptive effects of mNT5E are due to hydrolysis of AMP followed by activation of A1R. Moreover, our data suggest recombinant NT5E could be used to treat chronic pain and to study many other physiological processes that are regulated by NT5E.

  20. Noncovalent protein interaction with poly(ADP-ribose).

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  1. Regulation of neutrophil function by adenosine

    Science.gov (United States)

    Barletta, Kathryn E.; Ley, Klaus; Mehrad, Borna

    2012-01-01

    Adenosine is an endogenously released purine nucleoside that signals via four widely expressed G-protein coupled receptors: A1, A2A, A2B, and A3. In the setting of inflammation, the generation and release of adenosine is greatly enhanced. Neutrophils play an important role in host defense against invading pathogens and are the cellular hallmark of acute inflammation. Neutrophils both release adenosine and can respond to it via expression of all four adenosine receptor subtypes. At low concentrations, adenosine can act via the A1 and A3 adenosine receptor subtypes to promote neutrophil chemotaxis and phagocytosis. At higher concentrations, adenosine acts at the lower-affinity A2A and A2B receptors to inhibit neutrophil trafficking and effector functions such as oxidative burst, inflammatory mediator production, and granule release. Modulation of neutrophil function by adenosine is relevant in a broad array of disease models, including ischemia reperfusion injury, sepsis, and non-infectious acute lung injury. This review will summarize relevant research in order to provide a framework for understanding how adenosine directly regulates various elements of neutrophil function. PMID:22423037

  2. Profiling of Ribose Methylations in RNA by High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Birkedal, Ulf; Christensen-Dalsgaard, Mikkel; Krogh, Nicolai

    2015-01-01

    Ribose methylations are the most abundant chemical modifications of ribosomal RNA and are critical for ribosome assembly and fidelity of translation. Many aspects of ribose methylations have been difficult to study due to lack of efficient mapping methods. Here, we present a sequencing-based meth...

  3. Poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith coupled to high-performance liquid chromatography for the determination of adenosine phosphates in royal jelly.

    Science.gov (United States)

    Liu, Dan; Zhang, Tianbin; Cheng, Yechun; Jia, Qiong

    2014-07-01

    A polymer monolith microextraction method coupled with high-performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused-silica capillaries using thermal initiation free-radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linker, cyclohexanol, and 1-dodecanol as the porogen. N-Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate-co-ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high-performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9-104.7% when applied to the determination of the adenosines in five royal jelly samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  5. Substrate specificity of undecaprenyl diphosphate synthase from the hyperthermophilic archaeon Aeropyrum pernix.

    Science.gov (United States)

    Mori, Takeshi; Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2013-06-28

    Cis-prenyltransferase from a hyperthermophilic archaeon Aeropyrum pernix was expressed in Escherichia coli and purified for characterization. Properties such as substrate specificity, product chain-length, thermal stability and cofactor requirement were investigated using the recombinant enzyme. In particular, the substrate specificity of the enzyme attracts interest because only dimethylallyl diphosphate and geranylfarnesyl diphosphate, both of which are unusual substrates for known cis-prenyltransferases, are likely available as an allylic primer substrate in A. pernix. From the enzymatic study, the archaeal enzyme was shown to be undecaprenyl diphosphate synthase that has anomalous substrate specificity, which results in a preference for geranylfarnesyl diphosphate. This means that the product of the enzyme, which is probably used as the precursor of the glycosyl carrier lipid, would have an undiscovered structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Adenosine-induced neuroprotection : involvement of glia cells and cytokines

    NARCIS (Netherlands)

    Wittendorp, Maria Catharina

    2004-01-01

    Adenosine is released during pathological conditions and has significant neuroprotective effects mainly by stimulating adenosine A1 receptors in neurons. These neuroprotective effects are increased following upregulation of adenosine A1 receptors. Much research has been performed to enhance the

  7. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  8. DFT Based QSAR Study of Enzyme Ribonucleoside Diphosphate Reductase

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ansari

    2010-01-01

    Full Text Available Quantum chemical descriptors such as heat of formation, energy of HOMO, total energy, absolute hardness and chemical potential in different combinations have been used to develop QSAR models of inhibitors of enzyme ribonucleoside diphosphate reductase, RDR. The inhibitors are mainly derivatives of 1-formylisoquinoline thiosemicarbazone and 2-formylpyridine thiosemicarbazone. The values of various descriptors have been evaluated with the help of Win MOPAC 7.21 software using DFT method. Multiple linear regression analysis has been made with the help of above mentioned descriptors using the same software. Regression equations have been found to be successful models as indicated by the regression coefficient r2 having the value as high as 0.96 and cross validation coefficient rCV2 having the value approaching 0.95. The value of these two coefficients is indicative of high order of reliability for the proposed prediction. The results obtained are also validated on account of the closeness of observed and predicted inhibitory activities. The best combination of descriptors is heat of formation, total energy and energy of HOMO. Thus the prediction of suitability of inhibitors of the enzyme RDR can be made with the help of the best regression equation.

  9. Activation of thiamin diphosphate and FAD in the phosphatedependent pyruvate oxidase from Lactobacillus plantarum.

    Science.gov (United States)

    Tittmann, K; Proske, D; Spinka, M; Ghisla, S; Rudolph, R; Hübner, G; Kern, G

    1998-05-22

    The phosphate- and oxygen-dependent pyruvate oxidase from Lactobacillus plantarum is a homotetrameric enzyme that binds 1 FAD and 1 thiamine diphosphate per subunit. A kinetic analysis of the partial reactions in the overall oxidative conversion of pyruvate to acetyl phosphate and CO2 shows an indirect activation of the thiamine diphosphate by FAD that is mediated by the protein moiety. The rate constant of the initial step, the deprotonation of C2-H of thiamine diphosphate, increases 10-fold in the binary apoenzyme-thiamine diphosphate complex to 10(-2) s-1. Acceleration of this step beyond the observed overall catalytic rate constant to 20 s-1 requires enzyme-bound FAD. FAD appears to bind in a two-step mechanism. The primarily bound form allows formation of hydroxyethylthiamine diphosphate but not the transfer of electrons from this intermediate to O2. This intermediate form can be mimicked using 5-deaza-FAD, which is inactive toward O2 but active in an assay using 2,6-dichlorophenolindophenol as electron acceptor. This analogue also promotes the rate constant of C2-H dissociation of thiamine diphosphate in pyruvate oxidase beyond the overall enzyme turnover. Formation of the catalytically competent FAD-thiamine-pyruvate oxidase ternary complex requires a second step, which was detected at low temperature.

  10. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    Science.gov (United States)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  11. Extracellular 2,3-cyclic adenosine monophosphate is a potent inhibitor of preglomerular vascular smooth muscle cell and mesangial cell growth [corrected].

    Science.gov (United States)

    Jackson, Edwin K; Ren, Jin; Gillespie, Delbert G; Dubey, Raghvendra K

    2010-07-01

    Recently we discovered that intact kidneys release into the extracellular compartment 2',3'-cAMP (a positional isomer of 3',5'-cAMP with unknown pharmacology) and metabolize 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine. Because adenosine inhibits growth of vascular smooth muscle cells and mesangial cells, we tested the hypothesis that extracellular 2',3'-cAMP attenuates growth of preglomerular vascular smooth muscle and mesangial cells via production of adenosine. For comparison, all of the experiments were performed with both 2',3'-cAMP and 3',5'-cAMP. In study 1, 2',3'-cAMP, 3',5'-cAMP, 5'-AMP, 3'-AMP, or 2'-AMP was incubated with cells and purines measured in the medium by mass spectrometry. Both preglomerular vascular smooth muscle and mesangial cells metabolized 3',5'-cAMP to 5'-AMP and adenosine; 5'-AMP to adenosine; 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine; and 2'-AMP and 3'-AMP to adenosine. 3-Isobutyl-1-methylxanthine (phosphodiesterase inhibitor) and 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor) blocked conversion of 3',5'-cAMP to 5'-AMP and adenosine, and alpha,beta-methylene-adenosine-5'-diphosphate (CD73 inhibitor) blocked conversion of 5'-AMP to adenosine. These enzyme inhibitors had little effect on metabolism of 2',3'-cAMP, 2'-AMP, or 3'-AMP. For study 2, 2',3'-cAMP and 3',5'-cAMP profoundly inhibited proliferation (thymidine incorporation and cell number) of both cell types, with 2',3'-cAMP more potent than 3',5'-cAMP. Antagonism of A(2B) receptors (MRS-1724), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the growth inhibitory effects of 2',3'-cAMP and 3',5'-cAMP. Extracellular 2',3'-cAMP inhibits growth of preglomerular vascular smooth muscle and mesangial cells more profoundly than does 3',5'-cAMP. Although both cAMPs inhibit growth in part via conversion to adenosine followed by A(2B) receptor activation, their metabolism is mediated by different enzymes.

  12. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  13. Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase

    Science.gov (United States)

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatář, Jan; Ribeiro, Joaquim A.; Maggi, Laura; Frenguelli, Bruno G.; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M.

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders. PMID:22997174

  14. A Multimode Responsive Aptasensor for Adenosine Detection

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2014-01-01

    Full Text Available We report a novel multimode detection aptasensor with three signal responses (i.e., fluorescence recovery, enhanced Raman signal, and color change. The presence of adenosine induces the conformational switch of the adenosine aptamer (Apt, forming adenosine-aptamer complex and releasing quantum dots (QDs from AuNPs, resulting in the recovered fluorescence, the enhanced Raman signal, and color change of the solution. The multimode signal recognition is potentially advantageous in improving the precision and reliability of the detection in complex environments compared to the conventional single-mode sensing system. The multimode detection strategy opens up a new possibility in sensing and quantifying more other target molecules.

  15. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation...

  16. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    Science.gov (United States)

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD(+)]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD(+) and enzymes that use NAD(+) like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  17. Alteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution.

    Science.gov (United States)

    Lee, Pyung Cheon; Mijts, Benjamin N; Petri, Ralf; Watts, Kevin T; Schmidt-Dannert, Claudia

    2004-11-01

    Directed evolution of the C25 farnesylgeranyl diphosphate synthase of Aeropyrum pernix (Fgs) was carried out by error-prone PCR with an in vivo color complementation screen utilizing carotenoid biosynthetic pathway enzymes. Screening yielded 12 evolved clones with C20 geranylgeranyl diphosphate synthase activity which were isolated and characterized in order to understand better the chain elongation mechanism of this enzyme. Analysis of these mutants revealed three different mechanisms of product chain length specificity. Two mutants (A64T and A64V) have a single mutation at the 8th amino acid upstream of a conserved first aspartate-rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl diphosphate synthases. One mutant (A135T) carries a single mutation at the 7th amino acid upstream of another conserved region (141GQ142), which was recently found to be another important region controlling chain elongation of a type III C20 geranylgeranyl diphosphate synthase and Escherichia coli C15 farnesyl diphosphate synthase. Finally, one mutant carrying four mutations (V84I, H88R, I177 M and M191V) is of interest. Molecular modeling, site-directed mutagenesis and in vitro assays of this mutant suggest that product chain-length distribution can be also controlled by a structural change provoked by a cooperative interaction of amino acids.

  18. Adenosine receptors as drug targets — what are the challenges?

    Science.gov (United States)

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  19. Metabolic roles of poly(ADP-ribose) polymerases.

    Science.gov (United States)

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. X-ray structure of a novel L-ribose isomerase acting on a non-natural sugar L-ribose as its ideal substrate.

    Science.gov (United States)

    Yoshida, Hiromi; Yoshihara, Akihide; Teraoka, Misa; Terami, Yuji; Takata, Goro; Izumori, Ken; Kamitori, Shigehiro

    2014-07-01

    l-Ribose, a pentose, is not known to exist in nature. Although organisms typically do not have a metabolic pathway that uses l-ribose as a carbon source, prokaryotes use various sugars as carbon sources for survival. Acinetobacter sp. DL-28 has been shown to express the novel enzyme, l-ribose isomerase (AcL-RbI), which catalyzes reversible isomerization between l-ribose and l-ribulose. AcL-RbI showed the highest activity to l-ribose, followed by d-lyxose with 47% activity, and had no significant amino acid sequence similarity to structure-known proteins, except for weak homology with the d-lyxose isomerases from Escherichia coli O157 : H7 (18%) and Bacillus subtilis strain (19%). Thus, AcL-RbI is expected to have the unique three-dimensional structure to recognize l-ribose as its ideal substrate. The X-ray structures of AcL-RbI in complexes with substrates were determined. AcL-RbI had a cupin-type β-barrel structure, and the catalytic site was found between two large β-sheets with a bound metal ion. The catalytic site structures clearly showed that AcL-RbI adopted a cis-enediol intermediate mechanism for the isomerization reaction using two glutamate residues (Glu113 and Glu204) as acid/base catalysts. In its crystal form, AcL-RbI formed a unique homotetramer with many substrate sub-binding sites, which likely facilitated capture of the substrate. The atomic coordinates and structure factors of AcL-RbI/l-ribose, AcL-RbI/l-ribulose, AcL-RbI/ribitol, E204Q/l-ribose and E204Q/l-ribulose have been deposited in the Protein Data Bank under accession codes, 4Q0P, 4Q0Q, 4Q0S, 4Q0U and 4Q0V. © 2014 FEBS.

  1. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  2. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque...... strains harboring the rpiA gene in a multicopy plasmid contained up to 42-fold as much ribose phosphate isomerase A activity as the haploid strain....

  3. Cloning and characterization of the l-ribose isomerase gene from Cellulomonas parahominis MB426.

    Science.gov (United States)

    Morimoto, Kenji; Terami, Yuji; Maeda, Yu-ichiro; Yoshihara, Akihide; Takata, Goro; Izumori, Ken

    2013-04-01

    A newly isolated bacterium, Cellulomonas parahominis MB426, produced l-ribose isomerase (CeLRI) on a medium containing l-ribose as a sole carbon source. A 32 kDa protein isomerizing l-ribose to l-ribulose was purified to homogeneity from this bacterium. A set of degenerated primers were synthesized based on amino acid sequences of the purified CeLRI, and a 747 bp gene encoding CeLRI was cloned, sequenced and overexpressed in Escherichia coli. This gene encoded a 249 amino acid protein with a calculated molecular mass of 27,435. The deduced amino acid sequence of this gene showed the highest identity with l-ribose isomerase from Acinetobacter calcoaceticus DL-28 (71%). The recombinant l-ribose isomerase (rCeLRI) was optimally active at pH 9.0 and 40°C, and was stable up to 40°C for 1 h and not dependent for metallic ions for its activity. The rCeLRI showed widely substrate specificity for the rare sugar which involved l-erythro form such as l-ribose, d-lyxose, d-talose, d-mannose, l-gulose, and l-allose. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    Science.gov (United States)

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene.

    Science.gov (United States)

    Guirimand, Grégory; Guihur, Anthony; Phillips, Michael A; Oudin, Audrey; Glévarec, Gaëlle; Mahroug, Samira; Melin, Céline; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Rodríguez-Concepción, Manuel; Burlat, Vincent; Courdavault, Vincent

    2012-11-01

    Isopentenyl diphosphate isomerase (IDI) is a key enzyme of the isoprenoid pathway, catalyzing the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate, the universal precursors of all isoprenoids. In plants, several subcellular compartments, including cytosol/ER, peroxisomes, mitochondria and plastids, are involved in isoprenoid biosynthesis. Here, we report on the unique triple targeting of two Catharanthus roseus IDI isoforms encoded by a single gene (CrIDI1). The triple localization of CrIDI1 in mitochondria, plastids and peroxisomes is explained by alternative transcription initiation of CrIDI1, by the specificity of a bifunctional N-terminal mitochondria/plastid transit peptide and by the presence of a C-terminal peroxisomal targeting signal. Moreover, bimolecular fluorescence complementation assays revealed self-interactions suggesting that the IDI likely acts as a multimer in vivo.

  6. Inhibition of a multiproduct terpene synthase from Medicago truncatula by 3-bromoprenyl diphosphates.

    Science.gov (United States)

    Vattekkatte, Abith; Gatto, Nathalie; Schulze, Eva; Brandt, Wolfgang; Boland, Wilhelm

    2015-04-28

    The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be ideal probes for crystal structure studies.

  7. Current perspectives on recommendations for BRCA genetic testing in ovarian cancer patients

    DEFF Research Database (Denmark)

    Vergote, Ignace; Banerjee, Susana; Gerdes, Anne-Marie

    2016-01-01

    history, harbouring a mutation in BRCA1/2, together with the first poly adenosine diphosphate ribose polymerase inhibitor (PARPi; olaparib [Lynparza]) being licenced for the treatment of BRCA-mutated OC, has led to reconsideration of referral criteria for OC patients. Provided here is a review...

  8. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  9. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    Science.gov (United States)

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  10. On the Relationship between Ribulose Diphosphate Carboxylase and Protochlorophyllide Holochrome of Phaseolus vulgaris Leaves 1

    Science.gov (United States)

    Akoyunoglou, G.; Argyroudi-Akoyunoglou, J. H.; Guiali, A.; Dassiou, C.

    1970-01-01

    The relationship between ribulose diphosphate carboxylase (3-phospho-d-glycerate carboxy-lyase [dimerizing], EC 4.1.1.39, formerly known as carboxydismutase) and protochlorophyllide holochrome of etiolated Phaseolus vulgaris leaves has been studied. A procedure for partially selective extraction of the two proteins was devised using tris-HCl buffer first without and then with Triton X-100. Ribulose diphosphate carboxylase was readily extracted from etiolated bean leaves without Triton X-100, and protochlorophyllide holochrome was extracted on the addition of Triton X-100. Optimal extraction conditions for protochlorophyllide holochrome have been found to be different for tissues of different ages. PMID:5427114

  11. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    Science.gov (United States)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  12. The effect of ribose pre-treatment of cortical bone on γ-irradiation sterilization effectiveness.

    Science.gov (United States)

    Attia, Tarik; Tupy, Jindra; Asker, Dalal; Hatton, Benjamin; Grynpas, Marc; Willett, Thomas

    2017-10-14

    Reconstruction of large skeletal defects is a significant and challenging issue. Tissue banks often use γ-irradiation (15-35 kGy) to sterilize bone allografts, which, however, drastically impairs the post-yield mechanical properties. In previous studies, we reported the development of a method that protects human bone collagen connectivity through ribose crosslinking while still undergoing γ-irradiation. Given these promising results, the next step was to determine if the presence of ribose within the bone tissue would interfere with the effectiveness of the γ-irradiation sterilization against bacteria. This study had two stages. The aim of the first stage was to assess the protective effect of ribose in solution using a Bacillus pumilus spore strip model. The aim of the second stage was to assess the protective effect of ribose (R) on spores within a human cortical bone model in comparison to conventionally irradiated bone (I). Treatment of B. pumilus spore strips with ribose in solution led to temperature-dependent effects on spore viability versus spore strips treated with PBS alone. Ribose solution at 60 °C led to a notable two logs decrease in spore count relative to PBS at 60 °C. In the human bone model, the number of spores in the I and R groups were greatly decreased in comparison to the non-irradiated N group. No spore colonies were detected in the R group (n = 4) whereas two of the four plates of group I formed colonies. This study provides evidence that the method of pre-treating bone with ribose crosslinking prior to irradiation sterilization, while improving irradiation sterilized bone allograft quality, also may improve the effectiveness of the sterilization process.

  13. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  14. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid...

  15. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application.

    Science.gov (United States)

    Gostynska, Natalia; Shankar Krishnakumar, Gopal; Campodoni, Elisabetta; Panseri, Silvia; Montesi, Monica; Sprio, Simone; Kon, Elizaveta; Marcacci, Maurilio; Tampieri, Anna; Sandri, Monica

    2017-08-21

    In this study, ribose was proposed as a promising, non-toxic, low-cost crosslinker to enhance the structural integrity and stiffness of type I collagen matrices. The main objective was to determine the optimal conditions of glycation by ribose to fabricate 3D porous collagen scaffolds and to verify their effectiveness for use as scaffolds for cartilage tissue engineering, by physicochemical and biological characterization. Two different crosslinking strategies were investigated including variation in the amount of ribose and the time of reaction: pre-crosslinking (PRE) and post-crosslinking (POST). All ribose-glycated collagen scaffolds demonstrated good swelling properties and interconnected porous microstructure suitable for cell growth and colonization. The POST samples were superior to PRE, in terms of porosity, degree of crosslinking, fluid uptake ability, and resistance to enzymatic digestion. Moreover, the mechanical properties of the scaffolds were significantly improved upon glycation when compared to non-crosslinked collagen, manifesting the best performance for POST matrices crosslinked for 5 d and in the highest amount of sugar. In vitro studies analyzing cell-material interactions revealed scaffold cytocompatibility with higher cell viability and cell proliferation as well as higher glycosaminoglycan secretion for POST scaffolds with respect to PRE. This report demonstrated the feasibility of developing 3D collagen scaffolds by ribose glycation and highlighted the POST-crosslinking strategy as being more favorable than the PRE-crosslinking to achieve scaffolds suitable for cartilage regeneration.

  16. The Dichotomy of the Poly(ADP-Ribose Polymerase-Like Thermozyme from Sulfolobus solfataricus

    Directory of Open Access Journals (Sweden)

    Maria Rosaria Faraone Mennella

    2018-01-01

    Full Text Available The first evidence of an ADP-ribosylating activity in Archaea was obtained in Sulfolobus solfataricus(strain MT-4 where a poly(ADP-ribose polymerase (PARP-like thermoprotein, defined with the acronymous PARPSso, was found. Similarly to the eukaryotic counterparts PARPSso cleaves beta-nicotinamide adenine dinucleotide to synthesize oligomers of ADP-ribose; cross-reacts with polyclonal anti-PARP-1 catalytic site antibodies; binds DNA. The main differences rely on the molecular mass (46.5 kDa and the thermophily of PARPSso which works at 80 °C. Despite the biochemical properties that allow correlating it to PARP enzymes, the N-terminal and partial amino acid sequences available suggest that PARPSso belongs to a different group of enzymes, the DING proteins, an item discussed in detail in this review.This finding makes PARPSso the first example of a DING protein in Archaea and extends the existence of DING proteins into all the biological kingdoms. PARPSsohas a cell peripheral localization, along with the edge of the cell membrane. The ADP-ribosylation reaction is reverted by a poly(ADP-ribose glycohydrolase-like activity, able to use the eukaryotic poly(ADP-ribose as a substrate too. Here we overview the research of (ADP-ribosylation in Sulfolobus solfataricus in the past thirty years and discuss the features of PARPSso common with the canonical poly(ADP-ribose polymerases, and the structure fitting with that of DING proteins.

  17. Role of Adenosine Signaling in Penile Erection and Erectile Disorders

    Science.gov (United States)

    Phatarpekar, Prasad V.; Wen, Jiaming; Xia, Yang

    2010-01-01

    Introduction Penile erection is a hemodynamic process, which results from increased flow and retention of blood in the penile organ due to the relaxation of smooth muscle cells. Adenosine, a physiological vasorelaxant, has been shown to be a modulator of penile erection. Aim To summarize the research on the role of adenosine signaling in normal penile erection and erectile disorders. Main Outcome Measures Evidence in the literature on the association between adenosine signaling and normal and abnormal penile erection, i.e., erectile dysfunction (ED) and priapism. Methods The article reviews the literature on the role of endogenous and exogenous adenosine in normal penile erection, as well as in erectile disorders namely, ED and priapism. Results Adenosine has been shown to relax corpus cavernosum from various species including human in both in vivo and in vitro studies. Neuromodulatory role of adenosine in corpus cavernosum has also been demonstrated. Impaired adenosine signaling through A2B receptor causes partial resistance of corpus cavernosum, from men with organic ED, to adenosine-mediated relaxation. Increased level of adenosine has been shown to be a causative factor for priapism. Conclusion Overall, the research reviewed here suggests a general role of exogenous and endogenous adenosine signaling in normal penile erection. From this perspective, it is not surprising that impaired adenosine signaling is associated with ED, and excessive adenosine signaling is associated with priapism. Adenosine signaling represents a potentially important diagnostic and therapeutic target for the treatment of ED and priapism. PMID:19889148

  18. Role of adenosine signaling in penile erection and erectile disorders.

    Science.gov (United States)

    Phatarpekar, Prasad V; Wen, Jiaming; Xia, Yang

    2010-11-01

    Penile erection is a hemodynamic process, which results from increased flow and retention of blood in the penile organ due to the relaxation of smooth muscle cells. Adenosine, a physiological vasorelaxant, has been shown to be a modulator of penile erection. To summarize the research on the role of adenosine signaling in normal penile erection and erectile disorders. Evidence in the literature on the association between adenosine signaling and normal and abnormal penile erection, i.e., erectile dysfunction (ED) and priapism. The article reviews the literature on the role of endogenous and exogenous adenosine in normal penile erection, as well as in erectile disorders namely, ED and priapism. Adenosine has been shown to relax corpus cavernosum from various species including human in both in vivo and in vitro studies. Neuromodulatory role of adenosine in corpus cavernosum has also been demonstrated. Impaired adenosine signaling through A(2B) receptor causes partial resistance of corpus cavernosum, from men with organic ED, to adenosine-mediated relaxation. Increased level of adenosine has been shown to be a causative factor for priapism. Overall, the research reviewed here suggests a general role of exogenous and endogenous adenosine signaling in normal penile erection. From this perspective, it is not surprising that impaired adenosine signaling is associated with ED, and excessive adenosine signaling is associated with priapism. Adenosine signaling represents a potentially important diagnostic and therapeutic target for the treatment of ED and priapism. © 2009 International Society for Sexual Medicine.

  19. METOVITAN PREVENTS THE ACCUMULATION OF THIAMINE DIPHOSPHATE OXIDIZED FORM IN RAT TISSUES UNDER IRRADIATION

    Directory of Open Access Journals (Sweden)

    Parkhomenko Yu. M.

    2015-08-01

    Full Text Available The aim of the research was to test the ability of the drug "Metovitan" to prevent the redox balance disturbance in the tissues and thiamine diphosphate irreversible oxidation upon exposure of ionizing radiation on the body. The rats were subjected to a single exposure of the X-ray therapeutic instrument RUM-17 to create a dose of 0.5, 1.0 and 5.0 Gray. Preparation "Metovitan" was administered at a dose of 25 mg per 1 kg body weight for 22–24 h before irradiation. Contents of thiamine diphosphate, reduced SH-groups and reactive oxygen species in blood and brain were determined using previously described methods. It has been shown that the active form of the thiamine diphosphate content in the blood was decreased depending on the doses (from 0.5 to 5.0 Gray. At the same time the content of thiamine diphosphate oxidized form was increased. Furthermore the critical changes occurred in metabolic processes redox state parameters, namely, the level of free SH-groups was reduced and the level of reactive oxygen species was increased. Similar changes were observed in the brain tissue. The Metovitan single administration to the animals the day before irradiation, at 25 mg per 1 kg of body weight dose, promotes the protection of the intracellular thiamine diphosphate and redox status in animal tissues (blood, brain tissue from the negative influence of irradiation (at 0.5; 1.0 Gray doses. These results give reason to recommend the drug for treating of the staff that is involved in the elimination of radioactive contamination. To provide the protection from the higher doses, other scheme of the treatment should be probably recommended.

  20. Characterization of an Isopentenyl Diphosphate Isomerase involved in the Juvenile Hormone pathway in Aedes aegypti

    Science.gov (United States)

    Diaz, Miguel; Mayoral, Jaime G.; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G.

    2012-01-01

    Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterwards IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect. PMID:22782071

  1. Anesthetic Cardioprotection: The Role of Adenosine

    Science.gov (United States)

    Bonney, Stephanie; Hughes, Kelly; Eckle, Tobias

    2014-01-01

    Brief periods of cardiac ischemia and reperfusion exert a protective effect against subsequent longer ischemic periods, a phenomenon coined ischemic preconditioning. Similar, repeated brief episodes of coronary occlusion and reperfusion at the onset of reperfusion, called post-conditioning, dramatically reduce infarct sizes. Interestingly, both effects can be achieved by the administration of any volatile anesthetic. In fact, cardio-protection by volatile anesthetics is an older phenomenon than ischemic pre- or post-conditioning. Although the mechanism through which anesthetics can mimic ischemic pre- or post-conditioning is still unknown, adenosine generation and signaling are the most redundant triggers in ischemic pre- or postconditioning. In fact, adenosine signaling has been implicated in isoflurane-mediated cardioprotection. Adenosine acts via four receptors designated as A1, A2a, A2b, and A3. Cardioprotection has been associated with all subtypes, although the role of each remains controversial. Much of the controversy stems from the abundance of receptor agonists and antagonists that are, in fact, capable of interacting with multiple receptor subtypes. Recently, more specific receptor agonists and new genetic animal models have become available paving way towards new discoveries. As such, the adenosine A2b receptor was shown to be the only 1 of the adenosine receptors whose cardiac expression is induced by ischemia in both mice and humans and whose function is implicated in ischemic pre- or post-conditioning. In the current review, we will focus on adenosine signaling in the context of anesthetic cardioprotection and will highlight new discoveries, which could lead to new therapeutic concepts to treat myocardial ischemia using anesthetic preconditioning. PMID:24502579

  2. Mechanisms of adenosine-induced renal vasodilatation in hypertensive patients.

    NARCIS (Netherlands)

    Wierema, T.K.; Houben, A.J.H.M.; Kroon, A.A.; Postma, C.T.; Koster, D.; Engelshoven, J.M. van; Smits, P.; Leeuw, P.W. de

    2005-01-01

    BACKGROUND: Adenosine is an endogenous nucleoside with potent vasodilatory capacities, released under ischaemic conditions in particular. Its mechanisms of action, however, remain elusive. OBJECTIVE: To evaluate the role of adenosine, using a non-selective purinergic receptor antagonist, and the

  3. Targeting adenosine receptors in the development of cardiovascular therapeutics.

    NARCIS (Netherlands)

    Riksen, N.P.; Rongen, G.A.P.J.M.

    2012-01-01

    Adenosine receptor stimulation has negative inotropic and dromotropic actions, reduces cardiac ischemia-reperfusion injury and remodeling, and prevents cardiac arrhythmias. In the vasculature, adenosine modulates vascular tone, reduces infiltration of inflammatory cells and generation of foam cells,

  4. Adenosine induced ventricular arrhythmias in the emergency room

    NARCIS (Netherlands)

    Tan, H. L.; Spekhorst, H. H.; Peters, R. J.; Wilde, A. A.

    2001-01-01

    While adenosine effectively terminates most supraventricular tachycardias (SVT), rare case reports have demonstrated its proarrhythmic potential, including induction of ventricular tachycardia (VT). The aim of this study was to define the proarrhythmic effects of adenosine in a large, unselected

  5. Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis.

    Science.gov (United States)

    Zhang, Jian; Li, Xiaoling; Kwansa, Herman; Kim, Yun Tai; Yi, Liye; Hong, Gina; Andrabi, Shaida A; Dawson, Valina L; Dawson, Ted M; Koehler, Raymond C; Yang, Zeng-Jin

    2017-06-01

    Tissue acidosis is a key component of cerebral ischemic injury, but its influence on cell death signaling pathways is not well defined. One such pathway is parthanatos, in which oxidative damage to DNA results in activation of poly(ADP-ribose) polymerase and generation of poly(ADP-ribose) polymers that trigger release of mitochondrial apoptosis-inducing factor. In primary neuronal cultures, we first investigated whether acidosis per sé is capable of augmenting parthanatos signaling initiated pharmacologically with the DNA alkylating agent, N-methyl- N'-nitro- N-nitrosoguanidine. Exposure of neurons to medium at pH 6.2 for 4 h after N-methyl- N'-nitro- N-nitrosoguanidine washout increased intracellular calcium and augmented the N-methyl- N'-nitro- N-nitrosoguanidine-evoked increase in poly(ADP-ribose) polymers, nuclear apoptosis-inducing factor , and cell death. The augmented nuclear apoptosis-inducing factor and cell death were blocked by the acid-sensitive ion channel-1a inhibitor, psalmotoxin. In vivo, acute hyperglycemia during transient focal cerebral ischemia augmented tissue acidosis, poly(ADP-ribose) polymers formation, and nuclear apoptosis-inducing factor , which was attenuated by a poly(ADP-ribose) polymerase inhibitor. Infarct volume from hyperglycemic ischemia was decreased in poly(ADP-ribose) polymerase 1-null mice. Collectively, these results demonstrate that acidosis can directly amplify neuronal parthanatos in the absence of ischemia through acid-sensitive ion channel-1a . The results further support parthanatos as one of the mechanisms by which ischemia-associated tissue acidosis augments cell death.

  6. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in ...

  7. Addition of adenosine to hyperbaric bupivacaine in spinal ...

    African Journals Online (AJOL)

    Background: Systemic administration of adenosine produces anti-nociception. Although literature supports intrathecal adenosine for neuropathic pain, its efficacy in postoperative pain remains unproven. There has been no study on the efficacy of adenosine on postoperative pain when administered with hyperbaric ...

  8. Adenosine and its Related Nucleotides may Modulate Gastric Acid ...

    African Journals Online (AJOL)

    Studies on lumen-perfused rat isolated stomachs showed that adenosine, adenosine monophosphate (AMP) and reduced nicotinamide adenine dinucleotide (NADH) inhibited histamine-induced gastric acid secretion. The inhibitions and the calcium levels of the serosal solution exhibited inverse relationship. Adenosine ...

  9. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  10. Inhibition of tubulin polymerization with ribose-modified analogs of GDP and GTP. Reduced inhibition with microtubule-associated proteins and magnesium.

    Science.gov (United States)

    Hamel, E; Lin, C M

    1984-01-24

    Inhibitory effects of ribose-modified GDP and GTP analogs on tubulin polymerization were examined to explore nucleotide structural requirements at the exchangeable GTP binding site. With microtubule-associated proteins and Mg2+, GTP-supported polymerization was only modestly inhibited by GDP, and still weaker inhibitory activity was found with two analogs, dGDP and 9-beta-D-arabinofuranosylguanine-5'-diphosphate (araGDP). Omission of Mg2+ significantly enhanced the inhibitory effects of GDP, dGDP and araGDP and resulted in weak inhibition of the reaction by several other GDP analogs. The relative inhibitory activity of the GDP analogs had no discernible relationship to the relative activity of cognate GTP analogs in supporting microtubule-associated protein-dependent polymerization. One GTP analog, 2',3'-dideoxyguanosine 5'-triphosphate (ddGTP), supports polymerization both with and without microtubule-associated proteins. The inhibitory activity of GDP and GDP analogs in ddGTP-supported polymerization was much greater in the absence of microtubule-associated proteins than in their presence; and both reactions were more readily inhibited than was microtubule-associated protein-dependent, GTP-supported polymerization. Microtubule-associated protein-independent, ddGTP-supported polymerization was also potently inhibited by GTP and a number of GTP analogs. GTP was in fact twice as inhibitory as GDP. The relative inhibitory activity of the GTP analogs was comparable to the relative inhibitory activity of the cognate GDP analogs and very different from their relative activity in supporting polymerization.

  11. The crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Giuseppe, P.O.; Meza, A.N.; Martins, N.H.; Santos, C.R.; Murakami, M.T. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: Purine nucleoside phosphorylases (PNPs) play a key role in the purine-salvage pathway in both prokaryotes and eukaryotes. Its ribosyltransferase activity is of great biotechnological interest due to potential application in the synthesis of nucleoside analogues used in the treatment of antiviral infections and in anticancer chemotherapy. Trimeric PNPs are found mainly in vertebrates and are specific for 6-oxo-purines whereas hexameric PNPs are prevalent in prokaryotes and exhibit a broad range of substrates including 6-oxo and 6-amino purines. BsPNP233, the hexameric PNP from B. subtilis, is able to catalyze the bioconversion of ribavirin, an anti-viral drug, and is relatively thermostable, being a good target for industrial use. Here we report the crystal structures of BsPNP233 in the apo form and in complex with adenosine solved at 2.65 and 1.91 resolution, respectively. The apo and ligand-bound BsPNP233 subunits superposed with an overall r.m.s. deviation of 0.31 for all C{alpha} atoms, which suggests that no major conformational changes occur upon substrate binding. Based on the crystal structure of BsPNP233 in complex with adenosine we have defined the active site residues implicated in binding the ribose (H4{sup *}, R43{sup *}, M64, R87, E178, M179, E180) and the nitrogenous base (S90, C91, G92, S202, V177, F159). These residues are highly conserved among the bacterial hexameric PNPs, suggesting they share the same mode of interaction with the substrates. This work will probably contribute to a better understanding of the molecular basis for the broad substrate specificity of hexameric PNPs and to projects aiming the rational design of PNPs for industrial purposes. (author)

  12. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    Science.gov (United States)

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.

  13. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  14. Cloning and characterization of a thermostable 2- deoxy-D-ribose-5 ...

    African Journals Online (AJOL)

    Analysis of the presumptive 2-deoxy-D-ribose 5-phosphate aldolase gene from Aciduliprofundum boonei revealed an open reading frame (ORF) encoding 222 amino acids, which was subcloned and then expressed in Escherichia coli. The recombinant DERA protein was purified to apparent homogeneity. The enzyme ...

  15. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  16. Comment on "Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs".

    Science.gov (United States)

    Kawai, Jun

    2017-01-13

    Meinert et al (Reports, 8 April 2016, p. 208) reported the formation of prebiotic molecules, including ribose, in an interstellar ice analog experiment. We show that if their experimental procedure is accurately described, much or most of their products may have been formed during their analysis process, not in the parent ice. Copyright © 2017, American Association for the Advancement of Science.

  17. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  18. Identification and characterization of the geranylgeranyl diphosphate synthase in Deinococcus radiodurans.

    Science.gov (United States)

    Liu, C; Sun, Z; Shen, S; Lin, L; Li, T; Tian, B; Hua, Y

    2014-03-01

    Deinococcus radiodurans strain R1 utilizes multiple antioxidants including a unique carotenoid, deinoxanthin, to fight again oxidative stress. Most of the enzymes involved in the deinoxanthin biosynthetic pathway have been identified. However, the enzyme catalysing the synthesis of geranylgeranyl diphosphate (GGPP), which is a precursor of carotenoid biosynthesis, has yet to be identified. Two putative isoprenyl diphosphate synthases (IPPS) homologues (DR1395 and DR932) were screened out by analysis of conserved amino acid regions, and their biochemical functions were investigated. Gene mutation, gene expression in Escherichia coli and analysis of carotenoid products were used to investigate the functions of these candidates. The results suggested that DR1395 encodes the protein for GGPP synthesis. Site-directed mutant analysis indicated that the amino acid composition of and around the first aspartate-rich motif is vital for GGPP synthase function. Deinococcus radiodurans strain R1 produces a unique carotenoid product, deinoxanthin, as an antioxidant. In this study, DR1395 was identified as the gene encoding geranylgeranyl diphosphate synthase (GGPPS) for entrance to deinoxanthin biosynthesis in D. radiodurans. Moreover, site-directed mutagenesis studies on DR1395 identified the effect of amino acid composition of the aspartate-rich motif on the production of this carotenoid. This study demonstrated the entrance step in the deinoxanthin biosynthetic pathway. These results can be useful in genetic engineering strategies for deinoxanthin production including enhancement of GGPPS gene expression in D. radiodurans. © 2013 The Society for Applied Microbiology.

  19. Structural features conferring dual geranyl/farnesyl diphosphate synthase activity to an aphid prenyltransferase.

    Science.gov (United States)

    Vandermoten, Sophie; Santini, Sébastien; Haubruge, Eric; Heuze, Fabien; Francis, Frédéric; Brasseur, Robert; Cusson, Michel; Charloteaux, Benoit

    2009-10-01

    In addition to providing lipid chains for protein prenylation, short-chain isoprenyl diphosphate synthases (scIPPSs) play a pivotal role in the biosynthesis of numerous mevalonate pathway end-products, including insect juvenile hormone and terpenoid pheromones. For this reason, they are being considered as targets for pesticide development. Recently, we characterized an aphid scIPPS displaying dual geranyl diphosphate (GPP; C(10))/farnesyl diphosphate (FPP; C(15)) synthase activity in vitro. To identify the mechanism(s) responsible for this dual activity, we assessed the product selectivity of aphid scIPPSs bearing mutations at Gln107 and/or Leu110, the fourth and first residue upstream from the "first aspartate-rich motif" (FARM), respectively. All but one resulted in significant changes in product chain-length selectivity, effectively increasing the production of either GPP (Q107E, L110W) or FPP (Q107F, Q107F-L110A); the other mutation (L110A) abolished activity. Although some of these effects could be attributed to changes in steric hindrance within the catalytic cavity, molecular dynamics simulations identified other contributing factors, including residue-ligand Van der Waals interactions and the formation of hydrogen bonds or salt bridges between Gln107 and other residues across the catalytic cavity, which constitutes a novel product chain-length determination mechanism for scIPPSs. Thus the aphid enzyme apparently evolved to maintain the capacity to produce both GPP and FPP through a balance between these mechanisms.

  20. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  1. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum.

    Science.gov (United States)

    Chen, Xiaoyue; Berim, Anna; Dayan, Franck E; Gang, David R

    2017-02-01

    Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Molecular Cloning and Characterization of a Geranyl Diphosphate-Specific Aromatic Prenyltransferase from Lemon1[W

    Science.gov (United States)

    Munakata, Ryosuke; Inoue, Tsuyoshi; Koeduka, Takao; Karamat, Fazeelat; Olry, Alexandre; Sugiyama, Akifumi; Takanashi, Kojiro; Dugrand, Audray; Froelicher, Yann; Tanaka, Ryo; Uto, Yoshihiro; Hori, Hitoshi; Azuma, Jun-Ichi; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-01-01

    Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species. PMID:25077796

  3. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  4. Protective effect of D-ribose against inhibition of rats testes function at excessive exercise

    Directory of Open Access Journals (Sweden)

    Chigrinskiy E.A.

    2011-09-01

    Full Text Available An increasing number of research studies point to participation in endurance exercise training as having significant detrimental effects upon reproductive hormonal profiles in men. The means used for prevention and correction of fatigue are ineffective for sexual function recovery and have contraindications and numerous side effects. The search for substances effectively restoring body functions after overtraining and at the same time sparing the reproductive function, which have no contraindications precluding their long and frequent use, is an important trend of studies. One of the candidate substances is ribose used for correction of fatigue in athletes engaged in some sports.We studied the role of ribose deficit in metabolism of the testes under conditions of excessive exercise and the potentialities of ribose use for restoration of the endocrine function of these organs.45 male Wistar rats weighing 240±20 g were used in this study. Animals were divided into 3 groups (n=15: control; excessive exercise; excessive exercise and received ribose treatment. Plasma concentrations of lactic, β-hydroxybutyric, uric acids, luteinizing hormone, total and free testosterone were measured by biochemical and ELISA methods. The superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase activities and uric acids, malondialdehyde, glutathione, ascorbic acids, testosterone levels were estimated in the testes sample.Acute disorders of purine metabolism develop in rat testes under conditions of excessive exercise. These disorders are characterized by enhanced catabolism and reduced reutilization of purine mononucleotides and activation of oxidative stress against the background of reduced activities of the pentose phosphate pathway and antioxidant system. Administration of D-ribose to rats subjected to excessive exercise improves purine reutilization, stimulates the pentose phosphate pathway work

  5. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....

  6. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor.

    Science.gov (United States)

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T N; Gregory, Karen J; Tosh, Dilip K; Christopoulos, Arthur; Jacobson, Kenneth A; May, Lauren T

    2016-07-01

    Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. U.S. Government work not protected by U.S. copyright.

  7. Adenosine Signaling During Acute and Chronic Disease States

    Science.gov (United States)

    Karmouty-Quintana, Harry; Xia, Yang; Blackburn, Michael R.

    2013-01-01

    Adenosine is a signaling nucleoside that is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs. There are four adenosine receptors that are widely distributed on immune, epithelial, endothelial, neuronal and stromal cells throughout the body. Interestingly, these receptors are subject to altered regulation following injury. Studies in mouse models and human cells and tissues have identified that the production of adenosine and its subsequent signaling through its receptors plays largely beneficial roles in acute disease states, with the exception of brain injury. In contrast, if elevated adenosine levels are sustained beyond the acute injury phase, adenosine responses can become detrimental by activating pathways that promote tissue injury and fibrosis. Understanding when during the course of disease adenosine signaling is beneficial as opposed to detrimental and defining the mechanisms involved will be critical for the advancement of adenosine based therapies for acute and chronic diseases. The purpose of this review is to discuss key observations that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes such as inflammatory cell regulation, vascular barrier function and tissue fibrosis. PMID:23340998

  8. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry.

    Science.gov (United States)

    Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas

    2016-10-24

    Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl 2 , CaCl 2 , SrCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , ZnCl 2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn 2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New route for the activation of poly(ADP-ribose) polymerase-1: a passage that links poly(ADP-ribose) polymerase-1 to lipotoxicity?

    Science.gov (United States)

    Bai, Péter; Csóka, Balázs

    2015-07-15

    In this issue of Biochemical Journal, Chen and colleagues characterize an interaction between ACBD3 (acyl-CoA-binding domain-containing 3) protein and PARP [poly(ADP-ribose) polymerase]-1 through the activation of ERKs (extracellular-signal-regulated kinases). This study envisages a pathway through which ABCD3 translates enhanced fatty acid levels to ERK and consequently PARP-1 activation. The consequences of PARP-1 activation lead to cellular and tissue damage, implying that the ACBD3/PARP-1 pathway is an important pathway in lipotoxicity events. © 2015 Authors; published by Portland Press Limited.

  10. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    Science.gov (United States)

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  11. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    Science.gov (United States)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could

  12. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. (Univ. of Tokyo (Japan))

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  13. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  14. Purification, crystallization and preliminary structural analysis of nucleoside diphosphate kinase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Gauri [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India); Aggarwal, Anita [Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007 (India); Mittal, Sonia [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India); Singh, Yogendra [Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007 (India); Ramachandran, Ravishankar, E-mail: r-ravishankar@cdri.res.in [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2007-12-01

    Nucleoside diphosphate kinase from B. anthracis has been crystallized. Preliminary crystallographic analysis shows that there is one monomer in the asymmetric unit of the crystal. Bacillus anthracis nucleoside diphosphate kinase (BaNdk) is an enzyme whose primary function is to maintain deoxynucleotide triphosphate (dNTP) pools by converting deoxynucleotide diphosphates to triphosphates using ATP as the major phosphate donor. Although the structures of Ndks from a variety of organisms have been elucidated, the enzyme from sporulating bacteria has not been structurally characterized to date. Crystals of the B. anthracis enzyme were grown using the vapour-diffusion method from a hanging drop consisting of 2 µl 10 mg ml{sup −1} protein in 50 mM Tris–HCl pH 8.0, 50 mM NaCl, 5 mM EDTA equilibrated against 500 µl reservoir solution consisting of 2.25 M ammonium formate and 0.1 M HEPES buffer pH 7.25. Diffraction data extending to 2.0 Å were collected at room temperature from a single crystal with unit-cell parameters a = b = 107.53, c = 52.3 Å. The crystals are hexagonal in shape and belong to space group P6{sub 3}22. The crystals contain a monomer in the asymmetric unit, which corresponds to a Matthews coefficient (V{sub M}) of 2.1 Å{sup 3} Da{sup −1} and a solvent content of about 36.9%.

  15. Functional Analysis of the Isopentenyl Diphosphate Isomerase of Salvia miltiorrhiza via Color Complementation and RNA Interference.

    Science.gov (United States)

    Zhang, Xianan; Guan, Hongyu; Dai, Zhubo; Guo, Juan; Shen, Ye; Cui, Guanghong; Gao, Wei; Huang, Luqi

    2015-11-10

    Isopentenyl diphosphate isomerase (IPI) catalyzes the isomerization between the common terpene precursor substances isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) during the terpenoid biosynthesis process. In this study, tissue expression analysis revealed that the expression level of the Salvia miltiorrhiza IPI1 gene (SmIPI1) was higher in the leaves than in the roots and stems. Furthermore, color complementation and RNA interference methods were used to verify the function of the SmIPI1 gene from two aspects. A recombinant SmIPI1 plasmid was successfully constructed and transferred into engineered E. coli for validating the function of SmIPI1 through the color difference in comparison to the control group; the observed color difference indicated that SmIPI1 served in promoting the accumulation of lycopene. Transformant hairy root lines with RNA interference of SmIPI1 were successfully constructed mediated by Agrobacterium rhizogenes ACCC 10060. RNA interference hairy roots had a severe phenotype characterized by withering, deformity or even death. The mRNA expression level of SmIPI1 in the RSi3 root line was only 8.4% of that of the wild type. Furthermore the tanshinone content was too low to be detected in the RNA interference lines. These results suggest that SmIPI1 plays a critical role in terpenoid metabolic pathways. Addition of an exogenous SmIPI1 gene promoted metabolic flow toward the biosynthesis of carotenoids in E. coli, and SmIPI1 interference in S. miltiorrhiza hairy roots may cause interruption of the 2-C-methyl-D-erythritol-4-phosphate metabolic pathway.

  16. Metabolic flexibility of d-ribose producer strain of Bacillus pumilus under environmental perturbations

    DEFF Research Database (Denmark)

    Srivastava, Rajesh K.; Maiti, Soumen K.; Das, Debasish

    2012-01-01

    The metabolic reaction rate vector is a bridge that links gene and protein expression alterations to the phenotypic endpoint. We present a simple approach for the estimation of flux distribution at key branch points in the metabolic network by using substrate uptake, metabolite secretion rate......, and biomass growth rate for transketolase (tkt) deficient Bacillus pumilus ATCC 21951. We find that the glucose-6-phosphate (G6P) and pseudo catabolic/anabolic branch points are flexible in the d-ribose-producing tkt deficient strain of B. pumilus. The normalized flux through the pentose phosphate pathway...... (PPP) varied from 1.5 to 86 % under different growth conditions, thereby enabling substantial extracellular accumulation of d-ribose under certain conditions. Interestingly, the flux through PPP was affected by the extracellular phosphate concentration and dissolved oxygen concentration. This metabolic...

  17. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  18. Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations.

    Science.gov (United States)

    Antonioli, Luca; Blandizzi, Corrado; Csóka, Balázs; Pacher, Pál; Haskó, György

    2015-04-01

    Adenosine is a key extracellular signalling molecule that regulates several aspects of tissue function by activating four G-protein-coupled receptors, A1, A2A, A2B and A1 adenosine receptors. Accumulating evidence highlights a critical role for the adenosine system in the regulation of glucose homeostasis and the pathophysiology of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Although adenosine signalling is known to affect insulin secretion, new data indicate that adenosine signalling also contributes to the regulation of β-cell homeostasis and activity by controlling the proliferation and regeneration of these cells as well as the survival of β cells in inflammatory microenvironments. Furthermore, adenosine is emerging as a major regulator of insulin responsiveness by controlling insulin signalling in adipose tissue, muscle and liver; adenosine also indirectly mediates effects on inflammatory and/or immune cells in these tissues. This Review critically discusses the role of the adenosine-adenosine receptor system in regulating both the onset and progression of T1DM and T2DM, and the potential of pharmacological manipulation of the adenosinergic system as an approach to manage T1DM, T2DM and their associated complications.

  19. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    National Research Council Canada - National Science Library

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    .... The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design...

  20. Thermodynamic Potential for the Abiotic Synthesis of Adenine, Cytosine, Guanine, Thymine, Uracil, Ribose, and Deoxyribose in Hydrothermal Systems

    NARCIS (Netherlands)

    LaRowe, D.E.; Regnier, P.

    2008-01-01

    The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition

  1. FRET imaging of diatoms expressing a biosilica-localized ribose sensor.

    Directory of Open Access Journals (Sweden)

    Kathryn E Marshall

    Full Text Available Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification for localization of recombinant proteins in the biosilica cell wall. However, the full range of protein functionalities that can be accommodated by the modified porous biosilica has yet to be described. Our objective was to functionalize diatom biosilica with a reagent-less sensor dependent on ligand-binding and conformational change to drive FRET-based signaling capabilities. A fusion protein designed to confer such properties included a bacterial periplasmic ribose binding protein (R flanked by CyPet (C and YPet (Y, cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the CRY recombinant chimeric protein was confirmed by expression in E. coli prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of the recombinant CRY showed 97% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica localization exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 µM and 142.8 µM, respectively. The addition of the Sil3 tag did not alter the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated frustules in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand-binding and conformational change for FRET-signal generation.

  2. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis

    OpenAIRE

    Dantzer, Françoise; Mark, Manuel; Quenet, Delphine; Scherthan, Harry; Huber, Aline; Liebe, Bodo; Monaco, Lucia; Chicheportiche, Alexandra; Sassone-Corsi, Paolo; de Murcia, Gilbert; Ménissier-de Murcia, Josiane

    2006-01-01

    Besides the established central role of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in the maintenance of genomic integrity, accumulating evidence indicates that poly(ADP-ribosyl)ation may modulate epigenetic modifications under physiological conditions. Here, we provide in vivo evidence for the pleiotropic involvement of Parp-2 in both meiotic and postmeiotic processes. We show that Parp-2-deficient mice exhibit severely impaired spermatogenesis, with a defect in prophase of meiosis I ...

  3. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation.

    OpenAIRE

    Kannan, P.; Yu, Y.; Wankhade, S; Tainsky, M A

    1999-01-01

    Overexpression of transcription factor AP-2 has been implicated in the tumorigenicity of the human teratocarcinoma cell lines PA-1 that contain an activated ras oncogene. Here we show evidence that overexpression of AP-2 sequesters transcriptional coactivators which results in self-inhibition. We identified AP-2-interacting proteins and determined whether these proteins were coactivators for AP-2-mediated transcription. One such interacting protein is polyADP-ribose polymerase (PARP). PARP su...

  4. PKCa and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation.

    OpenAIRE

    Andersson Anneli; Bluwstein Andrej; Kumar Nitin; Teloni Federico; Traenkle Jens; Baudis Michael; Altmeyer Matthias; Hottiger Michael O

    2016-01-01

    Harmful oxidation of proteins lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced causing 'oxidative stress'. Nuclear poly ADP ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase pro...

  5. Response to Comment on "Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs".

    Science.gov (United States)

    Meinert, Cornelia; Myrgorodska, Iuliia; de Marcellus, Pierre; Buhse, Thomas; Nahon, Laurent; Hoffmann, Søren V; d'Hendecourt, Louis Le Sergeant; Meierhenrich, Uwe J

    2017-01-13

    We detected ribose and related sugars in the organic residues of simulated interstellar ices using multidimensional gas chromatography. Kawai questions the formation of sugar compounds in the ices and suggests that they arise from a classical formose reaction during sample workup for analysis. We disagree with this hypothesis and present additional data to argue that Kawai's criticism does not apply. Copyright © 2017, American Association for the Advancement of Science.

  6. Crystal structures and enzyme mechanisms of a dual fucose mutarotase/ribose pyranase.

    Science.gov (United States)

    Lee, Kwang-Hoon; Ryu, Kyoung-Seok; Kim, Min-Sung; Suh, Hye-Young; Ku, Bonsu; Song, Young-Lan; Ko, Sunggeon; Lee, Weontae; Oh, Byung-Ha

    2009-08-07

    Escherichia coli FucU (Fucose Unknown) is a dual fucose mutarotase and ribose pyranase, which shares 44% sequence identity with its human counterpart. Herein, we report the structures of E. coli FucU and mouse FucU bound to L-fucose and delineate the catalytic mechanisms underlying the interconversion between stereoisomers of fucose and ribose. E. coli FucU forms a decameric toroid with each active site formed by two adjacent subunits. While one subunit provides most of the fucose-interacting residues including a catalytic tyrosine residue, the other subunit provides a catalytic His-Asp dyad. This active-site feature is critical not only for the mutarotase activity toward L-fucose but also for the pyranase activity toward D-ribose. Structural and biochemical analyses pointed that mouse FucU assembles into four different oligomeric forms, among which the smallest homodimeric form is most abundant and would be the predominant species under physiological conditions. This homodimer has two fucose-binding sites that are devoid of the His-Asp dyad and catalytically inactive, indicating that the mutarotase and the pyranase activities appear dispensable in vertebrates. The defective assembly of the mouse FucU homodimer into the decameric form is due to an insertion of two residues at the N-terminal extreme, which is a common aspect of all the known vertebrate FucU proteins. Therefore, vertebrate FucU appears to serve for as yet unknown function through the quaternary structural alteration.

  7. Altered CD38/Cyclic ADP-Ribose Signaling Contributes to the Asthmatic Phenotype

    Directory of Open Access Journals (Sweden)

    Joseph A. Jude

    2012-01-01

    Full Text Available CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implicated in asthma upregulate CD38 expression and increase the calcium responses to contractile agonists in airway smooth muscle cells. The augmented intracellular calcium responses following cytokine exposure of airway smooth muscle cells are inhibited by an antagonist of cyclic ADP-ribose. Airway smooth muscle cells from CD38 knockout mice exhibit attenuated intracellular calcium responses to agonists, and these mice have reduced airway response to inhaled methacholine. CD38 also contributes to airway hyperresponsiveness as shown in mouse models of allergen or cytokine-induced inflammatory airway disease. In airway smooth muscle cells obtained from asthmatics, the cytokine-induced CD38 expression is significantly enhanced compared to expression in cells from nonasthmatics. This differential induction of CD38 expression in asthmatic airway smooth muscle cells stems from increased activation of MAP kinases and transcription through NF-κB, and altered post-transcriptional regulation through microRNAs. We propose that increased capacity for CD38 signaling in airway smooth muscle in asthma contributes to airway hyperresponsiveness.

  8. Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization.

    Science.gov (United States)

    Ji, Yingbiao; Tulin, Alexei V

    2012-03-27

    Within the short span of the cell cycle, poly(ADP-ribose) (pADPr) can be rapidly produced by poly(ADP-ribose) polymerases and degraded by poly(ADP-ribose) glycohydrolases. Here we show that changes in association between pADPr and heterogeneous nuclear ribonucleoproteins (hnRNPs) regulate germline stem cell (GSC) maintenance and egg chamber polarity during oogenesis in Drosophila. The association of pADPr and Hrp38, an orthologue of human hnRNPA1, disrupts the interaction of Hrp38 with the 5'-untranslated region of DE-cadherin messenger RNA, thereby diminishing DE-cadherin translation in progenitor cells. Following the reduction of DE-cadherin level, GSCs leave the stem cell niche and differentiate. Defects in either pADPr catabolism or Hrp38 function cause a decrease in DE-cadherin translation, leading to a loss of GSCs and mislocalization of oocytes in the ovary. Taken together, our findings suggest that Hrp38 and its association with pADPr control GSC self-renewal and oocyte localization by regulating DE-cadherin translation.

  9. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    Science.gov (United States)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  10. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity

    Science.gov (United States)

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V.; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S.; Molina, Jose G.; Blackburn, Michael R.; Kellems, Rodney E.

    2015-01-01

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD. PMID:25587035

  11. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2017-08-18

    The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4′ atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose–base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair–π stacking interactions also occur between ribose and aromatic amino acids in RNA–protein complexes.

  12. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  13. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli.

    Science.gov (United States)

    Beigi, Maryam; Waltzer, Simon; Zarei, Mostafa; Müller, Michael

    2014-12-10

    The intermolecular asymmetric Stetter reaction is a rarely found biocatalysts transformation. MenD, the second enzyme of the menaquinone biosynthetic pathway, catalyzes as a physiological reaction a Stetter-like addition of α-ketoglutarate to isochorismate. The substrate range of MenD for similar 1,4-additions is highly restricted. All other thiamine diphosphate dependent enzymes known to act as stetterases are members of the PigD enzyme subfamily, which accept aliphatic and aromatic α,β-unsaturated ketones and thioesters as Michael acceptor substrates. Here, we describe the unexpected activity of MenD with short-chain α,β-unsaturated acids and derivatives as substrates in Stetter reactions. MenD possesses a characteristic substrate range with respect to Michael acceptor substrates which is distinctly different from the classical stetterases. This provides biocatalytic access to new types of products which are not related to the products currently accessible by thiamine diphosphate dependent enzyme catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.Nuclear Smad function is negatively

  15. Partial agonism of theophylline-7-riboside on adenosine receptors

    NARCIS (Netherlands)

    IJzerman, A. P.; van der Wenden, E. M.; von Frijtag Drabbe Künzel, J. K.; Mathôt, R. A.; Danhof, M.; Borea, P. A.; Varani, K.

    1994-01-01

    Theophylline-7-riboside was evaluated as a partial agonist for rat adenosine receptors. Radioligand binding experiments were performed on both A1 and A2a adenosine receptors, using several methodologies to discriminate between agonists and antagonists. Mainly from thermodynamic data it was concluded

  16. Elevated Placental Adenosine Signaling Contributes to the Pathogenesis of Preeclampsia

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F.; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A.; Blackwell, Sean C.; Sibai, Baha M.; Chan, Lee-Nien L.; Chan, Teh-Sheng; Hicks, M. John; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2016-01-01

    Background Preeclampsia (PE) is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be due to placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways leading to impaired placentas and maternal disease development remain elusive. Methods and Results By using two independent animal models of PE—1) genetically-engineered pregnant mice with elevated adenosine exclusively in placentas, and 2) a pathogenic autoantibody-induced PE mouse model—we demonstrated here that chronically elevated placental adenosine was sufficient to induce hallmark features of PE including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacologic approaches revealed that elevated placental adenosine coupled with excessive A2B adenosine receptor (ADORA2B) signaling contributed to the development of these features of PE. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to PE. Conclusions We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for PE. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of PE, and, thereby highlight novel therapeutic targets. PMID:25538227

  17. Comorbidities in Neurology: Is Adenosine the Common Link?

    Science.gov (United States)

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  18. Adenosine deaminase activities and fasting blood glucose in obesity ...

    African Journals Online (AJOL)

    Background: A complex relationship seems to exist between adenosine deaminase (ADA) and insulin in obesity. Through its effect on adenosine, the enzyme can modulate the action of insulin and affect blood glucose while the administration of insulin is said to decrease the activities of the enzyme. Aim: To investigate the ...

  19. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of

  20. Adenosine Deaminase, (ADA) level in leprosy | Ogbu | International ...

    African Journals Online (AJOL)

    Background: Adenosine deaminase (ADA) is involved in and the catabolism of toxic de-oxynucleotides (5) and modulation of insulin action. Although its activities in leprosy have been measured, its characteristics have not been reported. Objective: To determine adenosine deaminase activities in leprosy and possible ...

  1. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  2. Interaction of uridine diphosphate glucose analogs with calf liver uridine diphosphate glucose dehydrogenase. Influence of substituents at C-5 of pyrimidine nucleus.

    Science.gov (United States)

    Shibaev, V N; Eliseeva, G I; Kochetkov, N K

    1975-09-22

    The interaction of alpha-D-glucopyranosyl pyrophosphates of 5-X-uridines (X = CH3, NH2, CH3O, I, Br, Cl, OH) with uridine diphosphate glucose (UDPGlc) dehydrogenase (EC 1.1.1.22) from calf liver has been studied. All the derivatives investigated were able to serve as substrates for the enzyme. The apparent Michaelis constants for UDPGlc-analogs were dependent both on electronic and steric factors. Increase of substituent negative inductive effect lead to decrease of pKa for ionization of the NH-group in the uracil nucleus and, consequently, to a diminishing of the proportion of the active analog species under the conditions of assay. After correction for the ionization effect, the Km values were found to depend on the van der Waals radius of the substituent. The value of 1.95 A seems to be critical, as the analogs with bulkier substituents at C-5 showed a decreased affinity to the enzyme. The maximal velocity values of the analogs were also dependent on nature of the substituent. Good linear correlation between log V and substituent hydrophobic phi-constant was observed for a number of the analogs, although V values for the nucleotides with X = H, OH or NH2 were higher than would be expected on the basis of the correlation. The significance of the results for understanding of the topography of UDPGlc dehydrogenase active site is discussed.

  3. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Krath, Britta N.; Eriksen, Tina A.; Poulsen, Tim S.

    1999-01-01

    cDNAs specifying four active phosphoribosyl diphosphate synthase isozymes were isolated from an Arabidopsis thaliana cDNA library. In contrast to other phosphoribosyl diphosphate synthases the activity of two of the A. thaliana isozymes are independent of Pi. Amino acid sequence comparison and ph...

  4. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  5. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    Directory of Open Access Journals (Sweden)

    Leibly David J

    2011-10-01

    Full Text Available Abstract Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.

  6. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis.

    Science.gov (United States)

    Edwards, Thomas E; Abramov, Ariel B; Smith, Eric R; Baydo, Ruth O; Leonard, Jess T; Leibly, David J; Thompkins, Kaitlin B; Clifton, Matthew C; Gardberg, Anna S; Staker, Bart L; Van Voorhis, Wesley C; Myler, Peter J; Stewart, Lance J

    2011-10-13

    Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD) phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.

  7. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 araispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    A concise synthetic route is described for the synthesis of gabosine A and N. The key step uses a zinc-mediated tandem reaction where methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside is fragmented to give an unsaturated aldehyde which is allylated in the same pot with 3-benzoyloxy-2......-methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  9. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.

    Science.gov (United States)

    Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-01-21

    In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Structure of uridine diphosphate N-acetylglucosamine pyrophosphorylase from Entamoeba histolytica.

    Science.gov (United States)

    Edwards, Thomas E; Gardberg, Anna S; Phan, Isabelle Q H; Zhang, Yang; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2015-05-01

    Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.

  11. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    Directory of Open Access Journals (Sweden)

    Zhuan Wei

    2015-01-01

    Full Text Available D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH42SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions.

  12. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function.

    Science.gov (United States)

    Breslin, Claire; Hornyak, Peter; Ridley, Andrew; Rulten, Stuart L; Hanzlikova, Hana; Oliver, Antony W; Caldecott, Keith W

    2015-08-18

    Poly (ADP-ribose) is synthesized at DNA single-strand breaks and can promote the recruitment of the scaffold protein, XRCC1. However, the mechanism and importance of this process has been challenged. To address this issue, we have characterized the mechanism of poly (ADP-ribose) binding by XRCC1 and examined its importance for XRCC1 function. We show that the phosphate-binding pocket in the central BRCT1 domain of XRCC1 is required for selective binding to poly (ADP-ribose) at low levels of ADP-ribosylation, and promotes interaction with cellular PARP1. We also show that the phosphate-binding pocket is required for EGFP-XRCC1 accumulation at DNA damage induced by UVA laser, H2O2, and at sites of sub-nuclear PCNA foci, suggesting that poly (ADP-ribose) promotes XRCC1 recruitment both at single-strand breaks globally across the genome and at sites of DNA replication stress. Finally, we show that the phosphate-binding pocket is required following DNA damage for XRCC1-dependent acceleration of DNA single-strand break repair, DNA base excision repair, and cell survival. These data support the hypothesis that poly (ADP-ribose) synthesis promotes XRCC1 recruitment at DNA damage sites and is important for XRCC1 function. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Chloroquine diphosphate: a risk factor for herpes zoster in patients with dermatomyositis/polymyositis

    Directory of Open Access Journals (Sweden)

    Gilmara Franco da Cunha

    2013-05-01

    Full Text Available OBJECTIVES: Herpes zoster has been widely described in the context of different systemic autoimmune diseases but not dermatomyositis/polymyositis. Therefore, we analyzed the prevalence, risk factors and herpes zoster outcomes in this population. METHOD: A retrospective cohort study of herpes zoster infections in dermatomyositis/polymyositis patients was performed. The patients were followed at a tertiary center from 1991 to 2012. For the control group, each patient with herpes zoster was paired with two patients without herpes zoster. Patients were matched by gender and the type of myositis, age at myositis onset and disease duration. RESULTS: Of 230 patients, 24 (10.4% had a histories of herpes zoster (19 with dermatomyositis and five with polymyositis, two-thirds female. The mean age of the patients with herpes zoster was 44.6±16.8 years. No difference between the groups was found regarding cumulative clinical manifestations. Disease activity, autoantibody, muscle and leukogram parameters were also comparable between the groups. No differences in immunosuppressive (alone or in association with other immunosuppressive therapies or glucocorticoid (current use, medium dose and cumulative dose in the last two months therapies were found between patients with and without herpes zoster. However, a higher proportion of patients in the herpes zoster group received chloroquine diphosphate compared to the control group. All of the patients received acyclovir; 58.3% of patients had postherpetic neuralgia and no cases of recurrence were reported. Furthermore, individuals who were taking high prednisone doses at the time of the herpes zoster diagnosis had reduced levels of postherpetic neuralgia. CONCLUSIONS: These data suggest that chloroquine diphosphate could predispose patients with dermatomyositis/polymyositis to developing herpes zoster, particularly women and dermatomyositis patients.

  14. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine.

    Science.gov (United States)

    Birnbaum, Yochai; Birnbaum, Gilad D; Birnbaum, Itamar; Nylander, Sven; Ye, Yumei

    2016-12-01

    Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A4. Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.

  15. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth A. Jacobson

    2015-01-01

    Full Text Available We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs, e.g. adenosine receptors (ARs and P2Y receptors (P2YRs, respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain. Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R, an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.

  16. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  17. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    Science.gov (United States)

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  18. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    Science.gov (United States)

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  19.  Poly(ADP-ribose polymerase (PARP inhibitors in BRCA1/2 cancer therapy

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2012-06-01

    Full Text Available  A majority of currently used anticancer drugs belong to a group of chemical agents that damage DNA. The efficiency of the treatment is limited by effective DNA repair systems functioning in cancer cells. Many chemotherapeutic compounds cause strong systemic toxicity. Therefore, there is still a need for new anticancer agents which are less toxic for nontransformed cells and selectively kill cancer cells. One of the most promising molecular targets in cancer therapy is poly(ADP-ribose polymerases (PARP. PARP play an essential role in repairing DNA strand breaks. Small molecule inhibitors of these enzymes have been developed and have proved to be extremely toxic for cancer cells that lack the functional BRCA1 and BRCA2 proteins that are involved in homologous recombination, a complex repair mechanism of DNA double strand breaks. Mutations in BRCA1/2 genes are associated with genetically inherited breast and ovarian cancers. Therefore PARP inhibitors may prove to be very effective and selective in the treatment of these cancer types. This review is focused on the function of BRCA1/2 proteins and poly(ADP-ribose polymerases in DNA repair systems, especially in the homologous recombination process. A short history of the studies that led to synthesis of high specificity small molecule PARP inhibitors is also presented, as well as the results of clinical trials concerning the most effective PARP inhibitors in view of their potential application in oncological treatment, particularly breast cancers.

  20. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  1. PROTEOLYTIC DEGRADATION OF POLY (ADP-RIBOSE POLYMERASE IN RATS WITH CARRAGEENAN-INDUCED GASTROENTEROCOLITIS

    Directory of Open Access Journals (Sweden)

    Tkachenko A. S.

    2017-12-01

    Full Text Available The aim of the research was to study the activity of poly (ADP-ribose polymerase in small intestinal homogenate of rats with chronic carrageenan-induced gastroenterocolitis, as well as mechanisms of regulation of the enzyme in this pathology. Twenty Wistar Albino Glaxo rats were divided into two groups. Animals of group 1 (n = 10 consumed 1 % carrageenan solution for 28 days, which resulted in the development of gastroenterocolitis confirmed morphologically. The control group consisted of intact animals (n = 10. The activity of poly (ADP-ribose polymerase (PARP in the homogenate of small intestine, as well as caspase-3, matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 serum levels were determined. Obtained data were statistically processed using the Mann-Whitney U test and calculating median and interquartile range (Me, 25th–75th percentile with the help of the GraphPad Prism 5 application. The development of carrageenan-induced gastroenterocolitis was accompanied by an increase in caspase-3, MMP-2, MMP-9 concentrations in blood serum and a decrease in the activity of PARP in small intestinal homogenates. The reduced activity of PARP in chronic carrageenan-induced gastroenterocolitis may be due to the proteolysis of this enzyme under the action of caspase-3, MMP-2, and MMP-9.

  2. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2

    Science.gov (United States)

    Oliver, Antony W.; Amé, Jean-Christophe; Roe, S. Mark; Good, Valerie; de Murcia, Gilbert; Pearl, Laurence H.

    2004-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a ‘DNA-strand break sensor’, which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the ‘PARP catalytic’ signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 Å resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors. PMID:14739238

  3. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    Science.gov (United States)

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  4. Inhibition of uptake of adenosine into human blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Trieschnigg, A.C.

    1980-01-01

    Adenosine transport into human blood platelets is mediated by two independent systems with different affinities. Both systems transport only purine nucleosides and no pyrimidine nucleosides. In experiments with differently substituted purine nucleosides, purines and analogues, differences in carrier

  5. Adenosin deaminasa como molecula coestimuladora y marcador de inmunidad celular

    National Research Council Canada - National Science Library

    Perez-Aguilar, Mary Carmen; Goncalves, Loredana; Ibarra, Alba; Bonfante-Cabarcas, Rafael

    2010-01-01

    La adenosin deaminasa (ADA), es una enzima del metabolismo de las purinas que ha sido objeto de mucho interes debido a que el defecto congenito de esta enzima causa el sindrome de inmunodeficiencia combinada severa...

  6. Addition of adenosine to hyperbaric bupivacaine in spinal ...

    African Journals Online (AJOL)

    2011-04-17

    effects, ... efficacy of adenosine on postoperative pain when administered with hyperbaric bupivacaine. The aim of our present study ... lower back, or ingestion of methylxanthine-containing food or beverages within 12 hours of ...

  7. Adenosine-deaminase (ADA activity in Psoriasis (A Preliminary Study

    Directory of Open Access Journals (Sweden)

    S D Chaudhry

    1988-01-01

    Full Text Available Study of adenosine-deaminase activity ′in 23 patients hav-mg psoriasis compared with an equal number of healthy controls revealed significantly high ADA-activity in the psotiatic patients.

  8. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a response...... that has been suggested to be an organ-specific version of metabolic control designed to restrict organ perfusion when transport work increases. However, the vasoconstriction elicited by an intravenous infusion of adenosine is only short lasting, being replaced within 1-2 min by vasodilatation. It appears...... that the steady-state response to the increase of plasma adenosine levels above normal resulting from the infusion is global renal vasorelaxation that is the result of A2AR activation in most parts of the renal vasculature, including larger renal arteries, juxtamedullary afferent arterioles, efferent arterioles...

  9. A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory

    Science.gov (United States)

    Suardíaz, Reynier; Sahakyan, Aleksandr B.; Vendruscolo, Michele

    2013-07-01

    It has been recently shown that NMR chemical shifts can be used to determine the structures of proteins. In order to begin to extend this type of approach to nucleic acids, we present an equation that relates the structural parameters and the 13C chemical shifts of the ribose group. The parameters in the equation were determined by maximizing the agreement between the DFT-derived chemical shifts and those predicted through the equation for a database of ribose structures. Our results indicate that this type of approach represents a promising way of establishing quantitative and computationally efficient analytical relationships between chemical shifts and structural parameters in nucleic acids.

  10. Poly(ADP-ribose) glycohydrolase and poly(ADP-ribose)-interacting protein Hrp38 regulate pattern formation during Drosophila eye development.

    Science.gov (United States)

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V

    2013-09-10

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Evaluation of the sorption of Eu(III) in titanium diphosphate; Evaluacion de la sorcion de Eu(III) en difosfato de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M. [ININ, Carretera Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: hortiz@nuclear.inin.mx

    2007-07-01

    In this work its are presented: the synthesis, physicochemical characterization and the surface parameters estimation that can be related with the retention properties of the titanium diphosphate for the actinides of valence III (Pu, Am, Cm among others), using the Eu{sup 3+} like a chemical analog. The surface area, hydration time, zero charge point, density of active sites and the surface species distribution in the titanium diphosphate are reported. This information was used to explain the retention of the Eu(lll) in the surface of the titanium diphosphate. (Author)

  12. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Bentsen, Ann-Kristin K; Harlow, Kenneth W

    2005-01-01

    Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced...... in an Escherichia coli strain lacking endogenous phosphoribosyl diphosphate synthase activity and purified to near homogeneity. The B. subtilis phosphoribosyl diphosphate synthase mutant variants K197A and R199A were studied in detail. The physical properties of the two enzymes were similar to those of the wildtype...

  13. Cell Type-Specific Effects of Adenosine on Cortical Neurons

    Science.gov (United States)

    van Aerde, Karlijn I.; Qi, Guanxiao; Feldmeyer, Dirk

    2015-01-01

    The neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3–6 were hyperpolarized (range 1.2–10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening. PMID:24108800

  14. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Directory of Open Access Journals (Sweden)

    Nedeljkovic Milan

    2003-06-01

    Full Text Available Abstract Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  15. The 1976C>T polymorphism in the adenosine A2A receptor gene does not affect the vasodilator response to adenosine in humans in vivo

    NARCIS (Netherlands)

    Riksen, N.P.; Franke, B.; Broek, P. van den; Smits, P.; Rongen, G.A.

    2007-01-01

    The 1976C>T polymorphism in the adenosine A2A receptor gene (ADORA2A) modulates the psychological response to administration of the adenosine receptor antagonist caffeine. We quantified the vascular response to adenosine and caffeine to determine the relevance of this variant allele in the

  16. Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxyribonucleoside 5'-diphosphates

    Directory of Open Access Journals (Sweden)

    Kamiya Hiroyuki

    2004-05-01

    Full Text Available Abstract Background Nudix hydrolases form a protein family whose function is to hydrolyse intracellular nucleotides and so regulate their levels and eliminate potentially toxic derivatives. The genome of the radioresistant bacterium Deinococcus radiodurans encodes 25 nudix hydrolases, an unexpectedly large number. These may contribute to radioresistance by removing mutagenic oxidised and otherwise damaged nucleotides. Characterisation of these hydrolases is necessary to understand the reason for their presence. Here, we report the cloning and characterisation of the DR0975 gene product, a nudix hydrolase that appears to be unique to this organism. Results The DR0975 gene was cloned and expressed as a 20 kDa histidine-tagged recombinant product in Escherichia coli. Substrate analysis of the purified enzyme showed it to act primarily as a phosphatase with a marked preference for (deoxynucleoside 5'-diphosphates (dGDP > ADP > dADP > GDP > dTDP > UDP > dCDP > CDP. Km for dGDP was 110 μM and kcat was 0.18 s-1 under optimal assay conditions (pH 9.4, 7.5 mM Mg2+. 8-Hydroxy-2'-deoxyguanosine 5'-diphosphate (8-OH-dGDP was also a substrate with a Km of 170 μM and kcat of 0.13 s-1. Thus, DR0975 showed no preference for 8-OH-dGDP over dGDP. Limited pyrophosphatase activity was also observed with NADH and some (diadenosine polyphosphates but no other substrates. Expression of the DR0975 gene was undetectable in logarithmic phase cells but was induced at least 30-fold in stationary phase. Superoxide, but not peroxide, stress and slow, but not rapid, dehydration both caused a slight induction of the DR0975 gene. Conclusion Nucleotide substrates for nudix hydrolases conform to the structure NDP-X, where X can be one of several moieties. Thus, a preference for (dNDPs themselves is most unusual. The lack of preference for 8-OH-dGDP over dGDP as a substrate combined with the induction in stationary phase, but not by peroxide or superoxide, suggests that the

  17. The role of CD38 expression on NAD levels and cell physiology in a leukaemia model

    OpenAIRE

    Al-Abady, Zainab N

    2014-01-01

    CD38 is a transmembrane glycoprotein with both ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase activities; it is also known as a cell surface receptor. CD38 utilizes NAD(P) as a substrate to produce the second messengers, Nicotinic acid adenine dinucleotide phosphate (NAADP) and Cyclic adenosine diphosphate ribose (cADPR). CD38 has been implicated in several diseases. For instance, in chronic lymphocytic leukemia (CLL), it is known as a poor prognostic marker and as a disease modifier. Also, ...

  18. In vitro studies in a myelogenous leukemia cell line suggest an organized binding of geranylgeranyl diphosphate synthase inhibitors.

    Science.gov (United States)

    Reilly, Jacqueline E; Zhou, Xiang; Tong, Huaxiang; Kuder, Craig H; Wiemer, David F; Hohl, Raymond J

    2015-07-15

    A small set of isoprenoid bisphosphonates ethers has been tested in the K562 chronic myelogenous leukemia cell line to determine their impact on isoprenoid biosynthesis. Five of these compounds inhibit geranylgeranyl diphosphate synthase (GGDPS) with IC50 values below 1 μM in enzyme assays, but in cells their apparent activity is more varied. In particular, the isomeric C-geranyl-O-prenyl and C-prenyl-O-geranyl bisphosphonates are quite different in their activity with the former consistently demonstrating greater impairment of geranylgeranylation in cells but the latter showing greater impact in the enzyme assays with GGDPS. Together, these findings suggest an organized binding of these inhibitors in the two hydrophobic channels of the geranylgeranyl diphosphate synthase enzyme. Copyright © 2015. Published by Elsevier Inc.

  19. Inhibition of DNA Binding by the Phosphorylation of Poly ADP-Ribose Polymerase Protein Catalyzed by Protein Kinase C

    Science.gov (United States)

    1993-04-21

    glycohydrolase and ADP-ribose polymerase (3). Besides enzymatic activities, ADPRT possesses significant colligative properties towards DNA termini and certain...differentiation of particular cell types (3). The biochemical role of ADPRT in living cells in most probably related to both catalytic and colligative properties

  20. Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles.

    Science.gov (United States)

    Steer, Andrew M; Bia, Nicolas; Smith, David K; Clarke, Paul A

    2017-09-25

    Understanding the prebiotic genesis of 2-deoxy-d-ribose, which forms the backbone of DNA, is of crucial importance to unravelling the origins of life, yet remains open to debate. Here we demonstrate that 20 mol% of proteinogenic amino esters promote the selective formation of 2-deoxy-d-ribose over 2-deoxy-d-threopentose in combined yields of ≥4%. We also demonstrate the first aldol reaction promoted by prebiotically-relevant proteinogenic amino nitriles (20 mol%) for the enantioselective synthesis of d-glyceraldehyde with 6% ee, and its subsequent conversion into 2-deoxy-d-ribose in yields of ≥ 5%. Finally, we explore the combination of these two steps in a one-pot process using 20 mol% of an amino ester or amino nitrile promoter. It is hence demonstrated that three interstellar starting materials, when mixed together with an appropriate promoter, can directly lead to the formation of a mixture of higher carbohydrates, including 2-deoxy-d-ribose.

  1. Intracellular ATP concentration contributes to the cytotoxic and cytoprotective effects of adenosine.

    Directory of Open Access Journals (Sweden)

    Shujue Li

    Full Text Available Extracellular adenosine (ADE interacts with cells by two pathways: by activating cell surface receptors at nanomolar/micromolar concentrations; and by interfering with the homeostasis of the intracellular nucleotide pool at millimolar concentrations. Ade shows both cytotoxic and cytoprotective effects; however, the underlying mechanisms remain unclear. In the present study, the effects of adenosine-mediated ATP on cell viability were investigated. Adenosine treatment was found to be cytoprotective in the low intracellular ATP state, but cytotoxic under the normal ATP state. Adenosine-mediated cytotoxicity and cytoprotection rely on adenosine-derived ATP formation, but not via the adenosine receptor pathway. Ade enhanced proteasome inhibition-induced cell death mediated by ATP generation. These data provide a new pathway by which adenosine exerts dual biological effects on cell viability, suggesting an important role for adenosine as an ATP precursor besides the adenosine receptor pathway.

  2. Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark.

    Science.gov (United States)

    Lodhi, Niraj; Kossenkov, Andrew V; Tulin, Alexei V

    2014-06-01

    Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The Role of Poly(ADP-ribose Polymerase-1 in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Samuel García

    2015-01-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.

  4. The clinical development of inhibitors of poly(ADP-ribose) polymerase.

    Science.gov (United States)

    Calvert, H; Azzariti, A

    2011-01-01

    A number of inhibitors of DNA repair have been evaluated or are undergoing development as potential cancer treatments. Inhibitors of poly(ADP-ribose) polymerase (PARP) are of particular interest in treating hereditary breast cancers occurring in patients who are carriers of BRCA1 or BRCA2 mutations. In vitro PARP inhibitors are highly cytotoxic to cell lines carrying BRCA mutations while only minimally toxic to cell lines without these mutations. This is thought to be due to a phenomenon known as synthetic lethality where the accumulation of single-strand breaks consequent on PARP inhibition are converted to double-strand breaks on cell division. Cancer cells in BRCA carriers are uniquely unable to repair the consequent double-strand breaks that result during cell division. PARP inhibitors were initially developed as possible chemo-potentiating agents but have now been evaluated clinically in BRCA-related tumors, showing remarkable single-agent activity. The potential future development and use is reviewed.

  5. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    Science.gov (United States)

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  7. Role of A3 adenosine receptor in diabetic neuropathy.

    Science.gov (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  9. Adenosine prevents isoprenaline-induced cardiac contractile and electrophysiological dysfunction.

    Science.gov (United States)

    Shao, Yangzhen; Redfors, Björn; Mattson-Hultén, Lillemor; Scharing Täng, Margareta; Daryoni, Elma; Said, Mohammed; Omerovic, Elmir

    2013-10-15

    Excessive levels of catecholamines are believed to contribute to cardiac dysfunction in a variety of disease states, including myocardial infarction and heart failure, and are particularly implicated in stress-induced cardiomyopathy, an increasingly recognized cardiomyopathy associated with significant morbidity and mortality. We have previously shown that a high dose of isoprenaline induces reversible regional dysfunction of the left ventricle in mice. We now hypothesize that adenosine can prevent cardiac dysfunction in this mouse model of stress-induced cardiomyopathy. Hundred male C57BL/6 mice were injected with 400mg/kg isoprenaline and then randomized to either 400mg/kg adenosine or saline. Cardiac function was evaluated by echocardiography at baseline and 2, 24, 48, 72, 96 and 120 min post isoprenaline. Myocardial fibrosis was quantified after 10 days. Intracellular lipid accumulation was quantified after 2 and 24h. Electrophysiological parameters and degree of lipid accumulation were evaluated in cultured HL1 cardiomyocytes. Two hours post isoprenaline treatment, echocardiographic parameters of global and posterior wall regional function were significantly better in adenosine-treated mice (P<0.05). This difference persisted at 24h, but saline-treated mice gradually recovered over the next 96 h. Intracellular lipid accumulation was also significantly lower in adenosine mice. We found no sign of fibrosis in the adenosine mice, whereas the extent of fibrosis in isoprenaline mice was 1.3% (P<0.05). Furthermore, adenosine-treated HL1 cells showed preserved electrophysiological function and displayed less severe intracellular lipid accumulation in response to isoprenaline. In conclusion, adenosine attenuates isoprenaline-induced cardiac dysfunction in mice and cells. © 2013 Elsevier B.V. All rights reserved.

  10. Partial Adenosine A1 Agonist in Heart Failure.

    Science.gov (United States)

    Dinh, Wilfried; Albrecht-Küpper, Barbara; Gheorghiade, Mihai; Voors, Adriaan A; van der Laan, Michael; Sabbah, Hani N

    2017-01-01

    Adenosine exerts a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes, namely, A1, A2a, A2b, and A3. The central physiological role of adenosine is to preclude tissue injury and promote repair in response to stress. In the heart, adenosine acts as a cytoprotective modulator, linking cardiac function to metabolic demand predominantly via activation of adenosine A1 receptors (A1Rs), which leads to inhibition of adenylate cyclase activity, modulation of protein kinase C, and opening of ATP-sensitive potassium channels. Activation of myocardial adenosine A1Rs has been shown to modulate a variety of pathologies associated with ischemic cardiac injury, including arrhythmogenesis, coronary and ventricular dysfunction, apoptosis, mitochondrial dysfunction, and ventricular remodeling. Partial A1R agonists are agents that are likely to elicit favorable pharmacological responses in heart failure (HF) without giving rise to the undesirable cardiac and extra-cardiac effects observed with full A1R agonism. Preclinical data have shown that partial adenosine A1R agonists protect and improve cardiac function at doses that do not result in undesirable effects on heart rate, atrioventricular conduction, and blood pressure, suggesting that these compounds may constitute a valuable new therapy for chronic HF. Neladenoson bialanate (BAY1067197) is the first oral partial and highly selective A1R agonist that has entered clinical development for the treatment of HF. This review provides an overview of adenosine A1R-mediated signaling in the heart, summarizes the results from preclinical and clinical studies of partial A1R agonists in HF, and discusses the potential benefits of these drugs in the clinical setting.

  11. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    Science.gov (United States)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  12. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Degao [Dalian University of Technology, Department of Environmental Science and Technology, Dalian (China)

    2005-10-01

    Quantitative structure-activity relationships (QSARs), which relate the glucuronidation of hydroxyl polychlorinated biphenyls (OH-PCBs) - catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs) - to their physicochemical properties and molecular structural parameters, can be used to predict the rate constants and interpret the mechanism of glucuronidation. In this study, QSARs have been developed that use 23 semi-empirical calculated quantum chemical descriptors to predict the logarithms of the constants 1/K{sub m} and V{sub max}, related to enzyme kinetics. A partial least squares regression method was used to select the optimal set of descriptors to minimize the multicollinearity between the descriptors, as well as to maximize the cross-validated coefficient (Q{sup 2} {sub cum}) values. The key descriptors affecting log(1/K{sub m}) were E{sub lumo}- E{sub homo} (the energy gap between the lowest unoccupied molecular orbital and the highest occupied molecular orbital) and q{sub C}{sup -} (the largest negative net atomic charge on a carbon atom), while the key descriptors affecting log V{sub max} were the polarizability {alpha}, the Connolly solvent-excluded volume (CSEV), and logP (the logarithm of the partition coefficient for octanol/water). From the results obtained it can be concluded that hydrophobic and electronic aspects of OH-PCBs are important in the glucuronidation of OH-PCBs. (orig.)

  13. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer

    Science.gov (United States)

    Song, Wenshen; Fei, Ruixiang; Yang, Li

    2017-12-01

    Vertically (off-plane) ferroelectric ordering in ultrathin films has been pursued for decades. We predict the existence of intrinsic vertical polarization orderings in ultrathin metal chalcogen-diphosphates (MCDs). Taking CuInP2Se6 as an example, the first-principles calculation and electrostatic-energy model show that, under the open-circuit boundary condition, the ground state of bulk CuInP2Se6 is ferroelectric (FE) while that of monolayer is antiferroelectric (AFE), and the critical thickness for this FE/AFE transition is around six layers. Interestingly, under the closed-circuit boundary condition, the FE state can hold even for monolayer. Particularly, because of the small energy difference but the large barrier between FE and AFE orderings, the FE state can be stabilized in a free-standing monolayer, giving rise to intrinsic, off-plane two-dimensional ferroelectrics. Applying Monte Carlo simulations, we further calculate the ferroelectric Curie temperature (Tc) and electric hysteresis.

  14. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 C

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, C.R.; Clark, S.B. [Washington State Univ., Pullman, WA (United States); Felmy, A.R. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO{sub 2}){sub 3}(PO{sub 4}){sub 2} . 4H{sub 2}O) and Na autunite (Na[UO{sub 2}PO{sub 4}] . xH{sub 2}O) at 23 and 50 C in NaClO{sub 4}-HClO{sub 4} solutions at pC{sub H1} = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 m solutions were equilibrated at 23 and 50 C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K{sub sp}, for TDT was determined to be -49.7 and -51.3 at 23 and 50 C respectively. log K{sub sp} for Na autunite was determined to be -24.4 (23 C) and -24.1 {+-} 0.2 (50 C). (orig.)

  15. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  16. Increased nucleoside diphosphate kinase activity induces white spot syndrome virus infection in Litopenaeus vannamei.

    Directory of Open Access Journals (Sweden)

    Peng-Fei Liu

    Full Text Available Nucleoside diphosphate kinase (NDK, which has the same sequence as oncoprotein (OP in humans, can induce nucleoside triphosphates in DNA replication by maintenance of the deoxynucleotide triphosphate (dNTP's and is known to be regulated by viral infection in the shrimp Litopenaeus vannamei. This paper describes the relationship between NDK and white spot syndrome virus (WSSV infection. The recombinant NDK was produced by a prokaryotic expression system. WSSV copy numbers and mRNA levels of IE1 and VP28 were significantly increased in shrimp injected with recombinant NDK at 72 h after WSSV infection. After synthesizing dsRNA-NDK and confirming the efficacy of NDK silencing, we recorded the cumulative mortality of WSSV-infected shrimp injected with NDK and dsRNA-NDK. A comparison between the results demonstrated that silencing NDK delayed the death of shrimps. These findings indicate that NDK has an important role influencing the replication of WSSV replication in shrimp. Furthermore, NDK may have potential target as a new therapeutic strategy against WSSV infection in shrimp.

  17. Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology.

    Science.gov (United States)

    Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide

    2017-01-01

    We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  18. Safety and efficacy of technetium-99 methylene diphosphate combined with glucocorticoid for Graves ophthalmopathy

    Directory of Open Access Journals (Sweden)

    Ri-Qiu Chen

    2016-04-01

    Full Text Available AIM:To evaluate the clinical efficacy and safety of technetium-99 methylene diphosphate(99Tc - MDPwith glucocorticoid therapy for Graves ophthalmopathy. METHODS:A total of 96 patients with Graves ophthalmopathy were randomly divided into two groups, The control group assigned to receive methylprednisolone injection pulse therapy and oral prednisone tablets in the intermittent period. The experimental group was given the treatment of 99Tc - MDP injection based on therapy of the control group. Then the clinical efficacy and safety of the two therapies were compared. RESULTS:The clinical symptoms of the two groups were improved. The efficiency rate of the experimental group was higher than that of the control group, especially on the degree of exophthalmos, and the difference was statistically significant(PP>0.05. The experimental group did not have serious adverse reactions associated with 99Tc-MDP.CONCLUSION:There are obvious improvements in patients with Graves ophthalmopathy treated by 99Tc - MDP combined with glucocorticoid, especially in the degree of exophthalmus and with less adverse reactions, which deserves promotion.

  19. Structural elucidation of cisoid and transoid cyclization pathways of a sesquiterpene synthase using 2-fluorofarnesyl diphosphates.

    Science.gov (United States)

    Noel, Joseph P; Dellas, Nikki; Faraldos, Juan A; Zhao, Marylin; Hess, B Andes; Smentek, Lidia; Coates, Robert M; O'Maille, Paul E

    2010-04-16

    Sesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate. Strikingly, TEAS was catalytically robust in the enzymatic conversion of (cis,trans)-FPP (1b) to exclusively (>/=99.5%) cisoid products. Further, crystallographic characterization of wild-type TEAS and a catalytically promiscuous mutant (M4 TEAS) with 2-fluoro analogues of both all-trans FPP (1a) and (cis,trans)-FPP (1b) revealed binding modes consistent with preorganization of the farnesyl chain. These results provide a structural glimpse into both cisoid and transoid cyclization pathways efficiently templated by a single enzyme active site, consistent with the recently elucidated stereochemistry of the cisoid products. Further, computational studies using density functional theory calculations reveal concerted, highly asynchronous cyclization pathways leading to the major cisoid cyclization products. The implications of these discoveries for expanded sesquiterpene diversity in nature are discussed.

  20. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae.

    OpenAIRE

    Okada, K.; Kamiya, Y.; Zhu, X; Suzuki, K; Tanaka, K; Nakagawa, T; Matsuda, H.; Kawamukai, M

    1997-01-01

    Different organisms produce different species of isoprenoid quinones, each with its own distinctive length. These differences in length are commonly exploited in microbial classification. The side chain length of quinone is determined by the nature of the polyprenyl diphosphate synthase that catalyzes the reaction. To determine if the side chain length of ubiquinone (UQ) has any distinct role to play in the metabolism of the cells in which it is found, we cloned the solanesyl diphosphate synt...

  1. A (–)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum

    Science.gov (United States)

    Chen, Xiaoyue; Berim, Anna; Dayan, Franck E.

    2017-01-01

    Abstract Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (–)-kolavenyl diphosphate [(–)-KPP], which is subsequently dephosphorylated to afford (–)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (–)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (–)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase. PMID:28204567

  2. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae.

    Science.gov (United States)

    Okada, K; Kamiya, Y; Zhu, X; Suzuki, K; Tanaka, K; Nakagawa, T; Matsuda, H; Kawamukai, M

    1997-10-01

    Different organisms produce different species of isoprenoid quinones, each with its own distinctive length. These differences in length are commonly exploited in microbial classification. The side chain length of quinone is determined by the nature of the polyprenyl diphosphate synthase that catalyzes the reaction. To determine if the side chain length of ubiquinone (UQ) has any distinct role to play in the metabolism of the cells in which it is found, we cloned the solanesyl diphosphate synthase gene (sdsA) from Rhodobacter capsulatus SB1003 and expressed it in Escherichia coli and Saccharomyces cerevisiae. Sequence analysis revealed that the sdsA gene encodes a 325-amino-acid protein which has similarity (27 to 40%) with other prenyl diphosphate synthases. Expression of the sdsA gene complemented a defect in the octaprenyl diphosphate synthase gene of E. coli and the nonrespiratory phenotype resulting from a defect in the hexaprenyl diphosphate synthase gene of S. cerevisiae. Both E. coli and S. cerevisiae expressing the sdsA gene mainly produced solanesyl diphosphate, which resulted in the synthesis of UQ-9 without any noticeable effect on the growth of the cells. Thus, it appears that UQ-9 can replace the function of UQ-8 in E. coli and UQ-6 in S. cerevisiae. Taken together with previous results, the results described here imply that the side chain length of UQ is not a critical factor for the survival of microorganisms.

  3. Adenosine hypothesis of schizophrenia –opportunities for pharmacotherapy

    Science.gov (United States)

    Boison, Detlev; Singer, Philipp; Shen, Hai-Ying; Feldon, Joram; Yee, Benjamin K.

    2011-01-01

    Pharmacotherapy of schizophrenia based on the dopamine hypothesis remains unsatisfactory for the negative and cognitive symptoms of the disease. Enhancing N-methyl-d-aspartate receptors (NMDAR) function is expected to alleviate such persistent symptoms, but successful development of novel clinically effective compounds remains challenging. Adenosine is a homeostatic bioenergetic network modulator that is able to affect complex networks synergistically at different levels (receptor dependent pathways, biochemistry, bioenergetics, and epigenetics). By affecting brain dopamine and glutamate activities it represents a promising candidate for restoring the functional imbalance in these neurotransmitter systems believed to underlie the genesis of schizophrenia symptoms, as well as restoring homeostasis of bioenergetics. Suggestion of an adenosine hypothesis of schizophrenia further posits that adenosinergic dysfunction might contribute to the emergence of multiple neurotransmitter dysfunctionscharacteristic of schizophrenia via diverse mechanisms. Given the importance of adenosine in early brain development and regulation of brain immune response, it also bears direct relevance to the aetiology of schizophrenia. Here, we provide an overview of the rationale and evidence in support of the therapeutic potential of multiple adenosinergic targets, including the high-affinity adenosine receptors (A1R and A2AR), and the regulatory enzyme adenosine kinase (ADK). Key preliminary clinical data and preclinical findings are reviewed. PMID:21315743

  4. Respiratory gating in cardiac PET: Effects of adenosine and dipyridamole.

    Science.gov (United States)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E; Kjær, Andreas; Hasbak, Philip

    2017-12-01

    Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. Forty-eight patients were randomized to adenosine or dipyridamole cardiac stress 82RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4.7) min-1, P respiratory gating compared to dipyridamole (47% vs 71%, P = .12). As a result, imaging quality was superior in the dipyridamole group compared to adenosine. If respiratory gating is considered for use in cardiac PET, a dipyridamole stress protocol is recommended as it, compared to adenosine, causes a more uniform respiration and results in a higher frequency of successful respiratory gating and thereby superior imaging quality.

  5. [Hypocretins and adenosine in the regulation of sleep].

    Science.gov (United States)

    Salín-Pascual, R J

    To review the recent discovery of hypocretins (orexins) and their link to the pathophysiology of narcolepsy and the role of adenosine in the integration of brain metabolism and sleep. The importance of the functions carried out by the hypothalamus in the regulation of sleep and the waking state has been consolidated by the discovery of hypocretins and the role played by cerebral adenosine. Hypocretins are two peptides made up of 33 and 28 amino acids whose neurons are located predominantly in the lateral hypothalamus and surrounding regions. In the Doberman canine narcolepsy model, in which this disease is presented with an autosomal recessive pattern, a mutation was detected in one of the receptors involved in the hypocretin system, namely the hypocretin-2 receptor. Failures in the hypocretin system have been confirmed as a key factor in narcolepsy by other findings in laboratory animals and humans. Adenosine, on the other hand, is accumulated during the waking state as a result of neuronal metabolism and this in turn is related to drowsiness. Sleep episodes lower the levels of this substance in the brain. Adenosine receptor antagonists increase wakefulness (e.g. caffeine), while the agonists promote slow-wave sleep. Hypocretins and adenosine from the hypothalamus perform functions involving the regulation of sleep and wakefulness. Understanding these two systems can have repercussions on clinical problems such as insomnia, hypersomnia and other neuropsychiatric disorders.

  6. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  7. Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice.

    Science.gov (United States)

    Wu, Beibei; Wei, Yan; Wang, Yujing; Su, Tao; Zhou, Lei; Liu, Ying; He, Rongqiao

    2015-10-27

    In addition to D-Glucose, D-Ribose is also abnormally elevated in the urine of type 2 diabetic patients, establishing a positive correlation between the concentration of uric D-Ribose and the severity of diabetes. Intraperitoneal injection of D-Ribose causes memory loss and brain inflammation in mice. To simulate a chronic progression of age-related cognitive impairment, we orally administered D-Ribose by gavage at both a low and high dose to 8 week-old male C57BL/6J mice daily for a total of 6 months, followed by behavioral, histological and biochemical analysis. We found that long-term oral administration of D-Ribose impairs spatial learning and memory, accompanied by anxiety-like behavior. Tau was hyperphosphorylated at AT8, S396, S214 and T181 in the brain. Aβ-like deposition was also found in the hippocampus for the high dose group. D-Glucose-gavaged mice did not show significant memory loss and anxiety-like behavior under the same experimental conditions. These results demonstrate that a long-term oral administration of D-Ribose not only induces memory loss with anxiety-like behavior, but also elevates Aβ-like deposition and Tau hyperphosphorylation, presenting D-Ribose-gavaged mouse as a model for age-related cognitive impairment and diabetic encephalopathy.

  8. Poly(ADP-ribose) polymerase, a potential target for drugs: Cellular regulatory role of the polymer and the polymerase protein mediated by catalytic and macromolecular colligative actions (Review).

    Science.gov (United States)

    Kun

    1998-08-01

    The cellular coenzymatic role of NAD, being a pleiotropic cofactor for diverse cellular reactions, is extended to poly(ADP-ribose) and to the highly abundant nuclear protein, poly(ADP-ribose) polymerase, with special focus on the pharmacological action of ligands on the latter. The polymer is defined to possess a helical configuration. From direct analyses of the polymer under physiological conditions, it is concluded that the polymerase is dormant in normal tissues, but is activated under certain pathological conditions: malignancy, retroviral integrate containing cells, and in a variety of inflammatory states. The interaction of poly(ADP-ribose) polymerase ligands with the DNA component of the active poly (ADP-ribose) polymerase - DNA complex is shown. A major cellular function of the poly(ADP-ribose) polymerase protein is its binding capacity to a large number of nuclear proteins and DNA sites, an effect which is induced by drugs that inhibit the polymerase activity. The malignancy-reverting effect of poly(ADP-ribose) polymerase ligand drugs is illustrated in chemically and oncovirally transformed cancer cells. The poly(ADP-ribose) polymerase ligand-induced cessation of HIV replication is analyzed. Peroxynitrite-induced DNA damage-initiated pathological responses are shown to be inhibited by a specific poly(ADP-ribose) polymerase ligand. The irreversibly acting C-NO drugs oxidize asymmetric zinc fingers [poly(ADP-ribose) polymerase, HIV gag-precursor protein] and act as anti-cancer and anti-HIV agents, an effect that is regulated by cellular concentration of GSH.

  9. Adenosine induces growth-cone turning of sensory neurons.

    Science.gov (United States)

    Grau, Benjamin; Eilert, John-Christian; Munck, Sebastian; Harz, Hartmann

    2008-12-01

    The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system.

  10. No role of interstitial adenosine in insulin-mediated vasodilation

    DEFF Research Database (Denmark)

    Dela, F; Stallknecht, B

    1999-01-01

    The mechanisms behind the vasodilatory effect of insulin are not fully understood, but nitric oxide plays an important role. We have investigated the possibility that insulin mediates vasodilatation in the human skeletal muscle via an increase in extracellular adenosine concentrations. In eight...... healthy subjects (H) and in four subjects with a complete, high (C5-C6/7) spinal cord injury (SCI) a hyperinsulinaemic (480 mU min-1 kg-1), isoglycaemic clamp was performed. SCI subjects were included as it has been proposed that adenosine and adenine nucleotides may be released from nerve endings...... in the skeletal muscle. Adenosine concentrations in the extracellular fluid (ECF) of skeletal muscle in the thigh were measured by means of the microdialysis technique. Leg blood flow (LBF) was measured by termodilution. In response to insulin infusion, LBF always increased (P

  11. Inhibition of adenosine kinase attenuates acute lung injury

    Science.gov (United States)

    Köhler, David; Streißenberger, Ariane; Morote-García, Julio C.; Granja, Tiago F.; Schneider, Mariella; Straub, Andreas; Boison, Detlev; Rosenberger, Peter

    2015-01-01

    Objective Extracellular adenosine has tissue protective potential in several conditions. Adenosine levels are regulated by a close interplay between nucleoside transporters and adenosine kinase (ADK). Based on evidence of the role of ADK in regulating adenosine levels during hypoxia, we evaluated the effect of ADK on lung injury. Furthermore, we tested the influence of a pharmacological approach to blocking ADK on the extent of lung injury. Design Prospective experimental animal study. Setting University based research laboratory. Subjects In vitro cell lines, wildtype (Wt) and ADK+/− mice. Methods We tested the expression of ADK during inflammatory stimulation in vitro and in a model of lipopolysaccharide (LPS) inhalation in vivo. Studies using the ADK promoter were performed in vitro. Wt and ADK+/− mice were subjected to LPS inhalation. Pharmacological inhibition of ADK was performed in vitro, and its effect on adenosine uptake was evaluated. The pharmacological inhibition was also performed in vivo, and the effect on lung injury was assessed. Measurements and Results We observed the repression of ADK by pro-inflammatory cytokines and found a significant influence of NF-κB on regulation of the ADK promoter. Mice with endogenous ADK repression (ADK+/−) showed reduced infiltration of leukocytes into the alveolar space, decreased total protein and myeloperoxidase levels, and lower cytokine levels in the alveolar lavage fluid. The inhibition of ADK by 5-iodotubercidine increased the extracellular adenosine levels in vitro, diminished the transmigration of neutrophils and improved the epithelial barrier function. The inhibition of ADK in vivo showed protective properties, reducing the extent of pulmonary inflammation during lung injury. Conclusions Taken together, these data show that ADK is a valuable target for reducing the inflammatory changes associated with lung injury and should be pursued as a therapeutic option. PMID:26491864

  12. Reduction of salt-requirement of halophilic nucleoside diphosphate kinase by engineering S-S bond.

    Science.gov (United States)

    Ishibashi, Matsujiro; Uchino, Manami; Arai, Shigeki; Kuroki, Ryota; Arakawa, Tsutomu; Tokunaga, Masao

    2012-09-01

    Nucleoside diphosphate kinase (HsNDK) from extremely halophilic haloarchaeon, Halobacterium salinarum, requires salt at high concentrations for folding. A D148C mutant, in which Asp148 was replaced with Cys, was designed to enhance stability and folding in low salt solution by S-S bond. It showed increased thermal stability by about 10 °C in 0.2 M NaCl over the wild type HsNDK. It refolded from heat-denaturation even in 0.1 M NaCl, while the wild type required 2 M NaCl to achieve the same level of activity recovery. This enhanced refolding is due to the three S-S bonds between two basic dimeric units in the hexameric HsNDK structure, indicating that assembly of the dimeric unit may be the rate-limiting step in low salt solution. Circular dichroism and native-PAGE analysis showed that heat-denatured HsNDK formed partially folded dimeric structure, upon refolding, in the absence of salt and the native-like secondary structure in the presence of salt above 0.1 M NaCl. However, it remained dimeric upon prolonged incubation at this salt concentration. In contrary, heat-denatured D148C mutant refolded into tetrameric folding intermediate in the absence of salt and native-like structure above 0.1 M salt. This native-like structure was then converted to the native hexamer with time. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Involvement of nucleoside diphosphate kinase b and elongation factor 2 in Leishmania braziliensis antimony resistance phenotype.

    Science.gov (United States)

    Moreira, Douglas S; Murta, Silvane M F

    2016-12-13

    Nucleoside diphosphate kinase b (NDKb) is responsible for nucleoside triphosphates synthesis and it has key role in the purine metabolism in trypanosomatid protozoans. Elongation factor 2 (EF2) is an important factor for protein synthesis. Recently, our phosphoproteomic analysis demonstrated that NDKb and EF2 proteins were phosphorylated and dephosphorylated in antimony (Sb III )-resistant L. braziliensis line compared to its Sb III -susceptible pair, respectively. In this study, the overexpression of NDKb and EF2 genes in L. braziliensis and L. infantum was performed to investigate the contribution of these proteins in the Sb III -resistance phenotype. Furthermore, we examined the role of lamivudine on Sb III susceptibility in clones that overexpress the NDKb gene, and the effect of EF2 kinase (EF2K) inhibitor on the growth of EF2-overexpressing parasites. Western blot analysis demonstrated that NDKb and EF2 proteins are more and less expressed, respectively, in Sb III -resistant line of L. braziliensis than its wild-type (WTS) counterpart, corroborating our previous phosphoproteomic data. NDKb or EF2-overexpressing L. braziliensis lines were 1.6 to 2.1-fold more resistant to Sb III than the untransfected WTS line. In contrast, no difference in Sb III susceptibility was observed in L. infantum parasites overexpressing NDKb or EF2. Susceptibility assays showed that NDKb-overexpressing L. braziliensis lines presented elevated resistance to lamivudine, an antiviral agent, but it did not alter the leishmanicidal activity in association with Sb III . EF2-overexpressing L. braziliensis clone was slightly more resistant to EF2K inhibitor than the WTS line. Surprisingly, this inhibitor increased the antileishmanial effect of Sb III , suggesting that this association might be a valuable strategy for leishmaniasis chemotherapy. Our findings represent the first study of NDKb and EF2 genes overexpression that demonstrates an increase of Sb III resistance in L. braziliensis

  14. Fructose-1,6-diphosphate in the treatment of oleander toxicity in dogs.

    Science.gov (United States)

    Markov, A K; Payment, M F; Hume, A S; Rao, M R; Markov, M A; Skelton, T N; Lehan, P H

    1999-02-01

    Oleander, a flowering plant that grows in the Mediterranean and southern US, contains the cardiac glycosides oleandrin, digitoxigenin and nerium, which inhibit Na(+)-K+ ATPase. Clinical manifestations of oleander toxicity include gastrointestinal irritation, marked hyperkalemia, A-V block, ventricular dysrhythmia, and not uncommonly death. Because fructose-1,6-diphosphate (FDP) has been shown to attenuate digoxin toxicity, we determined whether this agent would be effective in the treatment of the toxicity of these similarly-structured cardiac glycosides. Anesthetized dogs (n = 12) were infused i.v. for 5 min with 40 mg oleander extract/kg and then 6 dogs randomly selected from that group received a 50 mg/kg bolus of 10% FDP followed by a constant infusion. The other control animals received the same dosage of 10% dextrose. Within 5 min after oleander administration, all dogs developed dysrhythmias. The FDP-treated animals reverted to sinus rhythm within 1.58 +/- 0.15 h; none in the control group returned to sinus rhythm. One control dog died at 3 h from ventricular fibrillation. Marked hyperkalemia was observed in the control group; plasma K+ remained unchanged in the FDP group. Throughout the 4 h experimental period the FDP group maintained normal arterial pressures; in the control dextrose group, pressures were profoundly depressed. Cardiac output declined in both groups but remained higher in the FDP group. To determine the mechanism whereby FDP attenuates oleander toxicity, we studied the in vitro effect of FDP on oleander poisoned myocardial sarcolemmal membranes. At concentrations of 1 and 2 mg oleander inhibited Na(+)-K+ ATPase activity and addition of 500 microM FDP restored myocardial sarcolemmal Na(+)-K+ ATPase function. FDP effectively prevented hyperkalemia, reversed dysrhythmias and improved hemodynamics in vivo in this canine model of oleander toxicity and also restored sarcolemmal Na(+)-K+ ATPase activity in vitro.

  15. Pre-steady state of reaction of nucleoside diphosphate kinase with anti-HIV nucleotides.

    Science.gov (United States)

    Schneider, B; Xu, Y W; Sellam, O; Sarfati, R; Janin, J; Veron, M; Deville-Bonne, D

    1998-05-08

    The pre-steady-state reaction of Dictyostelium nucleoside diphosphate (NDP) kinase with dideoxynucleotide triphosphates (ddNTP) and AZT triphosphate was studied by quenching of protein fluorescence after manual mixing or by stopped flow. The fluorescence signal, which is correlated with the phosphorylation state of the catalytic histidine in the enzyme active site, decreases upon ddNTP addition according to a monoexponential time course. The pseudo-first order rate constant was determined for different concentrations of the various ddNTPs and was found to be saturable. The data are compatible with a two-step reaction scheme, where fast association of the enzyme with the dideoxynucleotide is followed by a rate-limiting phosphorylation step. The rate constants and dissociation equilibrium constants determined for each dideoxynucleotide were correlated with the steady-state kinetic parameters measured in the enzymatic assay in the presence of the two substrates. It is shown that ddNTPs and AZT triphosphate are poor substrates for NDP kinase with a rate of phosphate transfer of 0.02 to 3.5 s-1 and a KS of 1-5 mM. The equilibrium dissociation constants for ADP, GDP, ddADP, and ddGDP were also determined by fluorescence titration of a mutant F64W NDP kinase, where the introduction of a tryptophan at the nucleotide binding site provides a direct spectroscopic probe. The lack of the 3'-OH in ddNTP causes a 10-fold increase in KD. Contrary to "natural" NTPs, NDP kinase discriminates between various ddNTPs, with ddGTP the more efficient and ddCTP the least efficient substrate within a range of 100 in kcat values.

  16. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese.

    Science.gov (United States)

    Akaba, K; Kimura, T; Sasaki, A; Tanabe, S; Wakabayashi, T; Hiroi, M; Yasumura, S; Maki, K; Aikawa, S; Hayasaka, K

    1999-01-01

    Neonatal hyperbilirubinemia, which is prevalent among Asian peoples, has been considered as a physiological phenomenon, and its metabolic basis has not been clearly explained. Gilbert syndrome is a common inherited disease of unconjugated hyperbilirubinemia due to decreased bilirubin uridine diphosphate-glucuronosyltransferase (B-UGT), and its role in neonatal jaundice has recently been considered. We have previously reported that the Gly71Arg mutation of the B-UGT gene associated with Gilbert syndrome is prevalent in Japanese, Korean, and Chinese populations and was more frequently detected in neonates with severe hyperbilirubinemia than in control subjects. We have studied 159 Japanese full-term neonates, evaluating the relationship between the B-UGT genotype and the severity of jaundice, as assessed with a transcutaneous bilirubinometer. The gene frequency of the Gly71Arg mutation in these neonates was 0.19, and neonates carrying the Gly71Arg mutation had significantly increased bilirubin levels on days 2-4, manifested in a gene dose-dependent manner. The frequency of the Gly71Arg mutation was 0.47 in the neonates who required phototherapy (i.e., those with more severe hyperbilirubinemia), significantly higher than 0.16 in the neonates who did not require the therapy. The gene frequency of the TA repeat promoter polymorphism, the (TA)7 mutation, was 0.07, and neonates carrying this mutation did not have an increase in bilirubin. These results suggested that the Gly71Arg mutation contributes to the high incidence of neonatal hyperbilirubinemia in Japanese.

  17. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Science.gov (United States)

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  18. Inert Reassessment Document for Adenosine - CAS No. 58-61-7

    Science.gov (United States)

    Adenosine is classified as a 4B inert ingredient. Based on the reasonable certainty of no harm safety finding and the existing 40 CFR 180.920 use limiation, the List 4B classification for adenosine is affirmed.

  19. In vivo evidence against a role for adenosine in the exercise pressor reflex in humans.

    NARCIS (Netherlands)

    Riksen, N.P.; Ginneken, E.E.M. van; Broek, P.H.H. van den; Smits, P.; Rongen, G.A.

    2005-01-01

    The pressor response to exercise is of great importance in both physiology and pathophysiology. Whether endogenous adenosine is a trigger for this reflex remains controversial. Muscle interstitial adenosine concentration can be determined by microdialysis. However, there are indications that local

  20. Comparison of the novel vasodilator uridine triphosphate and adenosine for the measurement of fractional flow reserve

    DEFF Research Database (Denmark)

    Sivertsen, Jacob; Jensen, Jan; Galatius, Søren

    2014-01-01

    AIM: Examination of the fractional flow reserve (FFR) responses of intravenous (IV) adenosine with increasing doses of intracoronary (IC) adenosine versus IC uridine triphosphate (UTP) in patients with coronary artery disease. METHODS AND RESULTS: We measured FFR in 25 patients during continuous IV...... and IC infusion (using a microcatheter in the coronary ostium). Standard IV adenosine infusion (140 μg/kg/min) was compared to 8 equimolar incremental doses of IC UTP and IC adenosine (20, 40, 60, 80, 160, 240, 320 and 640 μg/min) in a randomized order. Across all doses, ΔFFR[IC UTP - IC adenosine......] was -0.038 ± 0.008, Padenosine (FFR[IV adenosine] = 0.72 ± 0.05; P=.02) and IC adenosine (FFR[IC adenosine] = 0.68 ± 0.05; P=.03). Furthermore, UTP had significantly fewer side effects compared...

  1. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  2. Development of coronary vasospasm during adenosine-stress myocardial perfusion CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Aeo; Kwon, Woon Jeong [Dept. of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2015-06-15

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  3. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    Science.gov (United States)

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  4. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease.

    Science.gov (United States)

    Poth, Jens M; Brodsky, Kelley; Ehrentraut, Heidi; Grenz, Almut; Eltzschig, Holger K

    2013-02-01

    Inflammatory lesions, ischemic tissues, or solid tumors are characterized by the occurrence of severe tissue hypoxia within the diseased tissue. Subsequent stabilization of hypoxia-inducible transcription factors-particularly of hypoxia-inducible factor 1α (HIF1A)--results in significant alterations of gene expression of resident cells or inflammatory cells that have been recruited into such lesions. Interestingly, studies of hypoxia-induced changes of gene expression identified a transcriptional program that promotes extracellular adenosine signaling. Adenosine is a signaling molecule that functions through the activation of four distinct adenosine receptors--the ADORA1, ADORA2A, ADORA2B, and ADORA3 receptors. Extracellular adenosine is predominantly derived from the phosphohydrolysis of precursor nucleotides, such as adenosine triphosphate or adenosine monophosphate. HIF1A-elicited alterations in gene expression enhance the enzymatic capacity within inflamed tissues to produce extracellular adenosine. Moreover, hypoxia-elicited induction of adenosine receptors--particularly of ADORA2B--results in increased signal transduction. Functional studies in genetic models for HIF1A or adenosine receptors implicate this pathway in an endogenous feedback loop that dampens excessive inflammation and promotes injury resolution, while at the same time enhancing ischemia tolerance. Therefore, pharmacological strategies to enhance HIF-elicited adenosine production or to promote adenosine signaling through adenosine receptors are being investigated for the treatment of acute inflammatory or ischemic diseases characterized by tissue hypoxia.

  5. The mouse brain adenosine A(1) receptor : functional expression and pharmacology

    NARCIS (Netherlands)

    Wittendorp, MC; Kunzel, JVD; Ijzerman, AP; Boddeke, HWGM; Biber, K

    2004-01-01

    The adenosinergic system is involved in many important physiological functions. Adenosine exerts its extracellular effects through four types of G-protein-coupled receptors: A(1), A(2A), A(2B) and A(3). Adenosine acts as an important regulator of metabolic processes. In the brain adenosine mediates

  6. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  7. Adenosine A(3) receptor-induced CCL2 synthesis in cultured mouse astrocytes

    NARCIS (Netherlands)

    Wittendorp, MC; Boddeke, HWGM; Biber, K

    During neuropathological conditions, high concentrations of adenosine are released, stimulating adenosine receptors in neurons and glial cells. It has recently been shown that stimulation of adenosine receptors in glial cells induces the release of neuroprotective substances such as NGF, S-100beta,

  8. Mechanisms and clinical significance of adenosine-induced dormant accessory pathway conduction after catheter ablation.

    Science.gov (United States)

    Spotnitz, Michelle D; Markowitz, Steven M; Liu, Christopher F; Thomas, George; Ip, James E; Liez, Joshua; Lerman, Bruce B; Cheung, Jim W

    2014-12-01

    Adenosine can unmask dormant pulmonary vein conduction after isolation. The role of adenosine in uncovering dormant accessory pathway (AP) conduction after AP ablation is unknown. We evaluated 109 consecutive patients (age, 41 ± 28 years; 62 [57%] men) who were administered adenosine after successful AP ablation. Dormant AP conduction was defined as adenosine-induced recurrent AP conduction, as demonstrated by recurrent preexcitation or change in retrograde ventriculoatrial activation patterns. Dormant AP conduction was identified in 13 (12%) patients. Adenosine led to transient retrograde AP conduction in 6 patients and transient anterograde AP conduction in 8 patients. In all these cases, adenosine-induced AP conduction occurred during the bradycardia phase of adenosine effect and resulted in dormant AP conduction times shorter than atrioventricular nodal conduction times before adenosine administration. On the basis of analysis of timing of occurrence of dormant AP conduction, the mechanism of adenosine-induced AP conduction was determined to be caused by AP excitability recovery in ≥ 12 (92%) cases. The presence of dormant AP conduction was a significant predictor of chronic recurrent AP conduction requiring repeat ablation (odds ratio, 8.54; 95% confidence interval, 1.09-66.9; P=0.041). Adenosine can unmask dormant AP conduction after catheter ablation. Direct effects of adenosine on the AP, possibly via AP membrane potential hyperpolarization, are the dominant mechanism of adenosine-induced AP conduction after ablation. Dormant AP conduction is associated with higher rates of recurrent AP conduction requiring repeat ablation. © 2014 American Heart Association, Inc.

  9. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  10. Structure of escherichia coli ribose-5-phosphate isomerase : a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Andersson, C. E.; Savchenko, A.; Skarina, T.; Evdokimova, E.; Beasley, S.; Arrowsmith, C. H.; Edwards, A.; Joachimiak, A.; Mowbray, S. L.; Biosciences Division; Uppsala Univ.; Univ. Health Network; Univ. of Toronto; Swedish Univ. of Agricultural Sciences

    2003-01-01

    Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 Angstroms resolution (R factor 22.4%, R{sub free} 23.7%). RpiA exhibits an {alpha}/{beta}/({alpha}/{beta})/{beta}/{alpha} fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.

  11. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ribose 1,5-bisphosphate is a putative regulator of fructose 6-phosphate/fructose 1,6-bisphosphate cycle in liver.

    Science.gov (United States)

    Sawada, M; Mitsui, Y; Sugiya, H; Furuyama, S

    2000-04-01

    6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.

  13. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  14. Analysis of poly(ADP-Ribose polymerases in Arabidopsis telomere biology.

    Directory of Open Access Journals (Sweden)

    Kara A Boltz

    Full Text Available Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose polymerases (PARPs have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one.

  15. Poly(ADP-ribose) polymerase-1 (Parp-1)-deficient mice demonstrate abnormal antibody responses

    Science.gov (United States)

    Ambrose, Helen E; Willimott, Shaun; Beswick, Richard W; Dantzer, Françoise; de Murcia, Josiane Ménissier; Yelamos, José; Wagner, Simon D

    2009-01-01

    Poly(ADP-ribosylation) of acceptor proteins is an epigenetic modification involved in DNA strand break repair, recombination and transcription. Here we provide evidence for the involvement of poly(ADP-ribose) polymerase-1 (Parp-1) in antibody responses. Parp-1−/− mice had increased numbers of T cells and normal numbers of total B cells. Marginal zone B cells were mildly reduced in number, and numbers of follicular B cells were preserved. There were abnormal levels of basal immunoglobulins, with reduced levels of immunoglobulin G2a (IgG2a) and increased levels of IgA and IgG2b. Analysis of specific antibody responses showed that T cell-independent responses were normal but T cell-dependent responses were markedly reduced. Germinal centres were normal in size and number. In vitro purified B cells from Parp-1−/− mice proliferated normally and showed normal IgM secretion, decreased switching to IgG2a but increased IgA secretion. Collectively our results demonstrate that Parp-1 has essential roles in normal T cell-dependent antibody responses and the regulation of isotype expression. We speculate that Parp-1 forms a component of the protein complex involved in resolving the DNA double-strand breaks that occur during class switch recombination. PMID:18778284

  16. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis

    Science.gov (United States)

    Dantzer, Françoise; Mark, Manuel; Quenet, Delphine; Scherthan, Harry; Huber, Aline; Liebe, Bodo; Monaco, Lucia; Chicheportiche, Alexandra; Sassone-Corsi, Paolo; de Murcia, Gilbert; Ménissier-de Murcia, Josiane

    2006-01-01

    Besides the established central role of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in the maintenance of genomic integrity, accumulating evidence indicates that poly(ADP-ribosyl)ation may modulate epigenetic modifications under physiological conditions. Here, we provide in vivo evidence for the pleiotropic involvement of Parp-2 in both meiotic and postmeiotic processes. We show that Parp-2-deficient mice exhibit severely impaired spermatogenesis, with a defect in prophase of meiosis I characterized by massive apoptosis at pachytene and metaphase I stages. Although Parp-2−/− spermatocytes exhibit normal telomere dynamics and normal chromosome synapsis, they display defective meiotic sex chromosome inactivation associated with derailed regulation of histone acetylation and methylation and up-regulated X- and Y-linked gene expression. Furthermore, a drastically reduced number of crossover-associated Mlh1 foci are associated with chromosome missegregation at metaphase I. Moreover, Parp-2−/− spermatids are severely compromised in differentiation and exhibit a marked delay in nuclear elongation. Altogether, our findings indicate that, in addition to its well known role in DNA repair, Parp-2 exerts essential functions during meiosis I and haploid gamete differentiation. PMID:17001008

  17. Pharmacodynamic analyses in a multi-laboratory network: lessons from the poly(ADP-ribose) assay.

    Science.gov (United States)

    Ferry-Galow, Katherine V; Ji, Jiuping; Kinders, Robert J; Zhang, Yiping; Czambel, R Kenneth; Schmitz, John C; Herzog, Josef; Evrard, Yvonne A; Parchment, Ralph E

    2016-08-01

    Clinical pharmacodynamic assays need to meet higher criteria for sensitivity, precision, robustness, and reproducibility than those expected for research-grade assays because of the long duration of clinical trials and the potentially unpredictable number of laboratories running the assays. This report describes the process of making an immunoassay based on commercially available reagents "clinically ready". The assay was developed to quantify poly(ADP-ribose) (PAR) levels as a marker of PAR polymerase inhibitor activity for a proof-of-concept phase 0 clinical trial at the National Cancer Institute (NCI) and subsequent clinical trials. In this publication, we retrospectively examine the measures taken to validate the published PAR immunoassay and outline key lessons learned during the development and implementation of these procedures at both internal and external clinical trial sites; these measures included optimizing PAR measurements in tumor biopsies and peripheral blood mononuclear cells (PBMCs), reagent qualification, analytical validation and assay quality control, instrument qualification and method quality control, and support for external laboratories. Copyright © 2016. Published by Elsevier Inc.

  18. Differential Role of Poly(ADP-ribose polymerase in D. discoideum growth and development

    Directory of Open Access Journals (Sweden)

    Begum Rasheedunnisa

    2011-03-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  19. PARP1 is a TRF2-associated poly(ADP-ribose) polymerase and protects eroded telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Marla V [ORNL; Wu, Jun [ORNL; Wang, Yisong [ORNL; Liu, Yie [ORNL

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  20. PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yie [ORNL; Wu, Jun [ORNL; Schreiber, Valerie [Universite Louis Pasteur, France; Dunlap, John [University of Tennessee, Knoxville (UTK); Dantzer, Francoise [Universite Louis Pasteur, France; Wang, Yisong [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  1. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    Science.gov (United States)

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  2. Differential role of poly(ADP-ribose) polymerase in D. discoideum growth and development.

    Science.gov (United States)

    Rajawat, Jyotika; Mir, Hina; Begum, Rasheedunnisa

    2011-03-09

    Poly(ADP-ribose) polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  3. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  4. Adenosine Deaminase Activity in Subjects with Normal Pregnancy ...

    African Journals Online (AJOL)

    METHODS: One hundred and twenty-five pregnant women comprising 35 normal non-pregnant women, 35 normal pregnant women, 35 pregnant women with pregnancy induced hypertension and 20 patients with pre-eclampsia were recruited for the study. Serum adenosine deaminase enzyme (ADA) activity was ...

  5. Plasma Adenosine Deaminase Enzyme Reduces with Treatment of ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma Adenosine Deaminase Enzyme Reduces with Treatment of Pulmonary Tuberculosis in Nigerian Patients: Indication for. Diagnosis and Treatment Monitoring. Ige O.a, Edem V.F.b and Arinola O.G.b,*. aDepartment of Medicine, University of Ibadan, Ibadan, Nigeria b Department of Chemical Pathology,. University of ...

  6. Short Term Glucose Load and Serum Adenosine Deaminase Activity ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA), an enzyme that is involved in nucleic acid metabolism has been reported to show raised serum activity in diabetic patients. As part of a preliminary study to assess ADA activity in diabetic and non-diabetic Nigerians, ADA was measured in fasting and 2 hour post-prandial (PP) sera from the ...

  7. Quantitative effect and regulatory function of cyclic adenosine 5 ...

    Indian Academy of Sciences (India)

    Cyclic adenosine 5′-phosphate (cAMP) is a global regulator of gene expression in Escherichia coli. Despite decades of intensive study, the quantitative effect and regulatory function of cAMP remain the subjects of considerable debate. Here, we analyse the data in the literature to show that: In carbon-limited cultures ...

  8. Validity of serum Adenosine deaminase in diagnosis of tuberculosis ...

    African Journals Online (AJOL)

    Introduction: Tuberculosis is one of the most important infectious causes of death worldwide. Ziehl-Neelsen staining of sputum has high specificity in tuberculosis endemic countries, but modest sensitivity which varies among laboratories. This study was set up to investigate the diagnostic value of serum Adenosine ...

  9. Adenosine Deaminase Activity in Diabetic and Obese Patients ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA) commonly associated with severe combined immunodeficiency disease believed to be an important enzyme for the modulation of bioactivity of insulin. The clinical significance in Metabolic Diseases patients in South Eastern Nigeria was studied. Body Mass Index (BMI), Fating Blood Glucose, ...

  10. Contributory role of adenosine deaminase in metabolic syndrome

    African Journals Online (AJOL)

    olayemitoyin

    levels) is one of the complications of diabetes mellitus, and that ADA plays an important role in the in the modulation of carbohydrate metabolism and glucose regulation (Onyeanusi et al, 2003). Table 4 shows the correlation and comparison of the Glycated Hemoglobin (GHbAic) with the. Adenosine Deaminase (ADA) in the ...

  11. Contributory role of adenosine deaminase in metabolic syndrome ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA) is an enzyme of purine metabolism commonly associated with severe combined immunodeficiency disease and believed to modulate bioactivity of insulin. Its contributory role in patients with metabolic syndrome (having features such as obesity, insulin resistance, fasting hyperglycaemia, lipid ...

  12. Contributory role of adenosine deaminase in metabolic syndrome

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Adenosine deaminase (ADA) is an enzyme of purine metabolism commonly associated with severe combined immunodeficiency disease and believed to modulate bioactivity of insulin. Its contributory role in patients with metabolic syndrome (having features such as obesity, insulin resistance, fasting ...

  13. High pleural fluid adenosine deaminase levels: A valuable tool for ...

    African Journals Online (AJOL)

    High pleural fluid adenosine deaminase levels: A valuable tool for rapid diagnosis of pleural TB in a middle-income country with a high TB/HIV burden. ... Following queries from clinicians concerning the likely high false-positive (FP) rate of FADA from our laboratory, we performed a retrospective audit of all high FADA ...

  14. Adenosine involvement on bronchial reactivity modulation by diesel exhaust

    NARCIS (Netherlands)

    Cojocaru, Elena; Dumitriu, Irina Luciana; Gurzu, B; Margineanu, Ioana; Dinca, Maria; Costuleanu, M; Slătineanu, Simona Mihaela; Scutaru, Brigitte; Petrescu, Gh

    2009-01-01

    UNLABELLED: In recent decades, epidemiologic investigations have suggested a strong relationship between air pollution and an increase in the prevalence of allergic rhinitis and asthma. AIM: To investigate the possible involvement of adenosine (AD) in bronchomotor effects of diesel exhaust (DE).

  15. Adenosine receptor modulation of seizure susceptibility in rats

    Energy Technology Data Exchange (ETDEWEB)

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  16. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Aripirala, Srinivas [Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States); Gonzalez-Pacanowska, Dolores [López-Neyra Institute of Parasitology and Biomedicine, 18001 Granada (Spain); Oldfield, Eric [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kaiser, Marcel [University of Basel, Petersplatz 1, CH-4003 Basel (Switzerland); Amzel, L. Mario, E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Gabelli, Sandra B., E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States)

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  17. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Ge Lin

    2009-02-01

    Full Text Available Abstract Background D-ribose in cells and human serum participates in glycation of proteins resulting in advanced glycation end products (AGEs that affect cell metabolism and induce cell death. However, the mechanism by which D-ribose-glycated proteins induce cell death is still unclear. Results Here, we incubated D-ribose with bovine serum albumin (BSA and observed changes in the intensity of fluorescence at 410 nm and 425 nm to monitor the formation of D-ribose-glycated BSA. Comparing glycation of BSA with xylose (a control for furanose, glucose and fructose (controls for pyranose, the rate of glycation with D-ribose was the most rapid. Protein intrinsic fluorescence (335 nm, Nitroblue tetrazolium (NBT assays and Western blotting with anti-AGEs showed that glycation of BSA incubated with D-ribose occurred faster than for the other reducing sugars. Protein intrinsic fluorescence showed marked conformational changes when BSA was incubated with D-ribose. Importantly, observations with atomic force microscopy showed that D-ribose-glycated BSA appeared in globular polymers. Furthermore, a fluorescent assay with Thioflavin T (ThT showed a remarkable increase in fluorescence at 485 nm in the presence of D-ribose-glycated BSA. However, ThT fluorescence did not show the same marked increase in the presence of xylose or glucose. This suggests that glycation with D-ribose induced BSA to aggregate into globular amyloid-like deposits. As observed by Hoechst 33258 staining, 3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT and cell counting kit-8 (CCK-8 assay, lactate dehydrogenase (LDH activity assay, flow cytometry using Annexin V and Propidium Iodide staining and reactive oxygen species (ROS measurements, the amyloid-like aggregation of glycated BSA induced apoptosis in the neurotypic cell line SH-SY5Y. Conclusion Glycation with D-ribose induces BSA to misfold rapidly and form globular amyloid-like aggregations which play an important

  19. An assay to measure poly(ADP ribose glycohydrolase (PARG activity in cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dominic I. James

    2016-09-01

    Full Text Available After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP ribose (PAR polymerases (PARPs are broken down by the enzyme poly(ADP ribose glycohydrolase (PARG. Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS. Lastly, the assay has been shown to be robust over a period of several years.

  20. Uridine 5'-diphosphate-xylose: anthocyanidin 3-O-glucose-xylosyltransferase from petals of Matthiola incana R.Br.

    Science.gov (United States)

    Teusch, M

    1986-12-01

    Petals of genetically defined lines of Matthiola incana R.Br. contain a glycosyltransferase which catalyzes the transfer of the xylosyl moiety of uridine 5'-diphosphate-xylose to the glucose of cyanidin 3-glucoside. The enzyme also uses 3-glucosides of pelargonidin and delphinidin, cyanidin 3-(p-coumaroyl)-glucoside and 3-(caffeoyl)-glucoside as substrates. The xylosyltransferase exhibits a pH optimum of 6.5. The enzyme activity depends on the stage of bud and flower development. Accumulation of cyanidin 3-glucoside during flower development is correlated with xylosyltransferase activity.

  1. Sustained Adenosine Exposure Causes Lung Endothelial Barrier Dysfunction via Nucleoside Transporter–Mediated Signaling

    Science.gov (United States)

    Newton, Julie; Hsiao, Vivian; Shamirian, Paul; Blackburn, Michael R.; Pedroza, Mesias

    2012-01-01

    Previous studies by our group as well as others have shown that acute adenosine exposure enhances lung vascular endothelial barrier integrity and protects against increased permeability lung edema. In contrast, there is growing evidence that sustained adenosine exposure has detrimental effects on the lungs, including lung edema. It is well established that adenosine modulates lung inflammation. However, little is known concerning the effect of sustained adenosine exposure on lung endothelial cells (ECs), which are critical to the maintenance of the alveolar–capillary barrier. We show that exogenous adenosine plus adenosine deaminase inhibitor caused sustained elevation of adenosine in lung ECs. This sustained adenosine exposure decreased EC barrier function, elevated cellular reactive oxygen species levels, and activated p38, JNK, and RhoA. Inhibition of equilibrative nucleoside transporters (ENTs) prevented sustained adenosine-induced p38 and JNK activation and EC barrier dysfunction. Inhibition of p38, JNK, or RhoA also partially attenuated sustained adenosine-induced EC barrier dysfunction. These data indicate that sustained adenosine exposure causes lung EC barrier dysfunction via ENT-dependent intracellular adenosine uptake and subsequent activation of p38, JNK, and RhoA. The antioxidant N-acetylcysteine and the NADPH inhibitor partially blunted sustained adenosine-induced JNK activation but were ineffective in attenuation of p38 activation or barrier dysfunction. p38 was activated exclusively in mitochondria, whereas JNK was activated in mitochondria and cytoplasm by sustained adenosine exposure. Our data further suggest that sustained adenosine exposure may cause mitochondrial oxidative stress, leading to activation of p38, JNK, and RhoA in mitochondria and resulting in EC barrier dysfunction. PMID:22744860

  2. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress.

    Science.gov (United States)

    Schroeder, Rebekka Y; Zhu, Anting; Eubel, Holger; Dahncke, Kathleen; Witte, Claus-Peter

    2017-09-18

    Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival. © 2017 The Authors New Phytologist © 2017 New Phytologist Trust.

  3. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electro stimulated cells, and in response to the adenosine analogue NECA, and the adenosine A(2A) receptor specific...... infusion enhanced (Pmuscle cells, NECA...

  4. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX

  5. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  6. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Science.gov (United States)

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  7. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  8. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    Science.gov (United States)

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  9. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    Science.gov (United States)

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576

  10. Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse

    DEFF Research Database (Denmark)

    Al-Mashhadi, Rozh H; Skøtt, Ole; Vanhoutte, Paul M

    2009-01-01

    Adenosine can induce vasodilatation and vasoconstriction of the renal afferent arteriole of the mouse. We determined here its direct effect on efferent arterioles of mouse kidneys. Using isolated-perfused cortical efferent arterioles, we measured changes in luminal diameter in response to adenosine....... Extraluminal application of adenosine and cyclohexyladenosine had no effect on the luminal diameter. When the vessels were constricted by the thromboxane mimetic U46619, application of adenosine and 5'-N-ethylcarboxamido-adenosine dilated the efferent arterioles in a dose-dependent manner. We also found...... that the adenosine-induced vasodilatation was inhibited by the A(2)-specific receptor blocker 3,7-dimethyl-1-propargylxanthine. In the presence of this inhibitor, adenosine failed to alter the basal vessel diameter of quiescent efferent arterioles. Using primer-specific polymerase chain reaction we found...

  11. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbanion intermediate.

    Science.gov (United States)

    Grazi, E

    1975-10-01

    The rate of oxidation of ferricyanide of the aldolase-dihydroxyacetone phosphate complex was measured under different conditions. The following conclusions are drawn. 1. In the cleavage of fructose diphosphate, catalysed by native aldolase, the steady-state concentration of the enzyme-dihydroxyacetone phosphate carbanion intermediate represents less than 6% of the total enzyme-substrate intermediates. 2. Fructose diphosphate and dihydroxyacetone phosphate compete for the four catalytic sites on aldolase, the binding of fructose diphosphate being about twice as tight. 3. The equilibrium concentration of the carbanion intermediate formed by reaction of carboxypeptidase-treated aldolase with dihydroxyacetone phosphate is independent of pH between 5.0 and 9.0. The rates of fromation of the carbanion intermediate and of the reverse reaction are, however, concomitantly increased by increasing pH between 5.0 and 6.5.

  12. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer.

    Science.gov (United States)

    Huang, Chuan-Hsiang; Gabelli, Sandra B; Oldfield, Eric; Amzel, L Mario

    2010-03-01

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groups of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  13. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric; Amzel, L. Mario (UIUC); (JHU-MED)

    2010-11-15

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groups of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.

  14. Current status of poly(ADP-ribose polymerase inhibitors and future directions

    Directory of Open Access Journals (Sweden)

    Ohmoto A

    2017-10-01

    Full Text Available Akihiro Ohmoto,1 Shinichi Yachida1,2 1Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo, 2Department of Cancer Genome Informatics, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, Japan Abstract: Inhibitors of poly(ADP-ribose polymerases (PARPs, which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality. Synthetic lethality is the idea that cell death would be efficiently induced by simultaneous loss of function of plural key molecules, for example, by exposing tumor cells with inactivating gene mutation of BRCA-mediated DNA repair to chemically induced inhibition of PARPs. Indeed, three PARP inhibitors, olaparib, rucaparib and niraparib have already been approved in the US or Europe, mainly for the treatment of BRCA-mutant ovarian cancer. Clinical trials of various combinations of PARP inhibitors with cytotoxic or molecular-targeted agents are also underway. In particular, expanded applications of PARP inhibitors are anticipated following recent reports that defects in homologous recombination repair (HRR are associated with mutations in repair genes other than BRCA1/BRCA2, such as ATM, ATR, PALB2, RAD51, CHEK1 and CHEK2, as well as with epigenetic loss of BRCA1 function through promoter methylation or overexpression of the BRCA2-interacting transcriptional repressor EMSY. Current topics of interest include selection of the best agent in each clinical context, identification of new treatment targets for HRR-proficient cases, and development of PARP inhibitor-based regimens that are less toxic and that prolong overall survival as well as progression-free survival. In addition, potential long-term side effects and suitable biomarkers for predicting efficacy and mechanisms of clinical resistance are in discussion. This review summarizes representative preclinical and clinical data for PARP inhibitors and discusses

  15. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    Science.gov (United States)

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P healing in ischemic and diabetic wounds is caused by PARP hyperactivity, and PARP inhibition significantly enhanced ischemic and diabetic wound healing by promoting angiogenesis. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose polymerase-1.

    Directory of Open Access Journals (Sweden)

    Ingrid Oit-Wiscombe

    Full Text Available Chronic oxidative stress (OS, a major mechanism of chronic obstructive pulmonary disease (COPD, may cause significant damage to DNA. Poly(ADP-ribose polymerase (PARP-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR 7.88, 95% CI 4.26-14.57; p<0.001 and OR 3.91, 95% CI 2.69-5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001. An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040. Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.

  17. Current status of poly(ADP-ribose) polymerase inhibitors and future directions.

    Science.gov (United States)

    Ohmoto, Akihiro; Yachida, Shinichi

    2017-01-01

    Inhibitors of poly(ADP-ribose) polymerases (PARPs), which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality. Synthetic lethality is the idea that cell death would be efficiently induced by simultaneous loss of function of plural key molecules, for example, by exposing tumor cells with inactivating gene mutation of BRCA-mediated DNA repair to chemically induced inhibition of PARPs. Indeed, three PARP inhibitors, olaparib, rucaparib and niraparib have already been approved in the US or Europe, mainly for the treatment of BRCA-mutant ovarian cancer. Clinical trials of various combinations of PARP inhibitors with cytotoxic or molecular-targeted agents are also underway. In particular, expanded applications of PARP inhibitors are anticipated following recent reports that defects in homologous recombination repair (HRR) are associated with mutations in repair genes other than BRCA1/BRCA2, such as ATM, ATR, PALB2, RAD51, CHEK1 and CHEK2, as well as with epigenetic loss of BRCA1 function through promoter methylation or overexpression of the BRCA2-interacting transcriptional repressor EMSY. Current topics of interest include selection of the best agent in each clinical context, identification of new treatment targets for HRR-proficient cases, and development of PARP inhibitor-based regimens that are less toxic and that prolong overall survival as well as progression-free survival. In addition, potential long-term side effects and suitable biomarkers for predicting efficacy and mechanisms of clinical resistance are in discussion. This review summarizes representative preclinical and clinical data for PARP inhibitors and discusses their potential for future applications to treat various malignancies.

  18. cADP-ribose/ryanodine channel/Ca2+-release signal transduction pathway in mesangial cells.

    Science.gov (United States)

    Yusufi, A N; Cheng, J; Thompson, M A; Dousa, T P; Warner, G M; Walker, H J; Grande, J P

    2001-07-01

    Signaling via release of Ca2+ from intracellular stores is mediated by several systems, including the inositol 1,4,5-trisphosphate (IP3) and cADP-ribose (cADPR) pathway. We recently discovered a high capacity for cADPR synthesis in rat glomeruli and cultured mesangial cells (MC). We sought to determine whether 1) cADPR synthesis in MC is regulated by cytokines and hormones, 2) ryanodine receptors (RyRs) are expressed in MC, and 3) Ca2+ is released through RyRs in response to cADPR. We found that ADP-ribosyl cyclase, a CD38-like enzyme that catalyzes cADPR synthesis, is upregulated in MC by tumor necrosis factor-alpha, interleukin-1beta, and all-trans retinoic acid (atRA). [3H]ryanodine binds to microsomal fractions from MC with high affinity in a Ca2+-dependent manner; binding is enhanced by specific RyR agonists and blocked by ruthenium red and cADPR. Western blot analysis confirmed the presence of RyR in MC. Release of 45Ca2+ from MC microsomes was stimulated by cADPR; release was blocked by ruthenium red and 8-bromo-cADPR. ADPR (non-cyclic) was without effect. In MC, TNF-alpha and atRA amplified the increment of cytoplasmic Ca2+ elicited by vasopressin. We conclude that MC possess elements of a novel ADP-ribosyl cyclase-->cADPR-->RyR-->Ca2+-release signaling pathway subject to regulation by proinflammatory cytokines and steroid superfamily hormones.

  19. Adenosine receptor control of cognition in normal and disease.

    Science.gov (United States)

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  20. Intrathecal adenosine for treatment of acute pain : Safety assessments and evaluation in experimental, surgical and labour pain

    OpenAIRE

    Rane Lindgren, Kerstin

    2003-01-01

    Adenosine is an endogenous compound present in all cells in the body with a wide range of physiological effects. Exogenous administration of adenosine is used clinically as an antiarrytmic agent and as a vasodilator. In animals, antinociceptive effects have been demonstrated by adenosine and adenosine analogues, after systemic as well as intrathecal (IT) administration. In patients, a low dose of adenosine IV infusion during surgery reduces anaesthetic requirements as well a...

  1. Study of the thorium phosphate-diphosphate (TPD) dissolution: kinetic aspect - thermodynamic aspect: analysis of the neo-formed phases; Etude de la dissolution du phosphate diphosphate de thorium: - aspect cinetique - aspect thermodynamique: analyse des phases neoformees

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.Ch

    2000-10-06

    The aim of this work is to study the aqueous corrosion of the thorium phosphate-diphosphate (TPD), of the formula Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, in the framework of the actinides immobilization. In order to complete the anterior studies concerning solid solutions where thorium is substituted by a tetravalent ion (uranium (IV) or plutonium (IV)) in the TPD structure, compounds of thorium and neptunium phosphate-diphosphate, of formula Th{sub 4-x}Np{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, have been prepared. Furthermore, a new chemical way of synthesis has been investigated in order to sinter solids solution of thorium and uranium phosphate-diphosphate (TUPD) in good conditions. The TPD dissolution study showed two principals steps. The first one corresponds to the control of element concentration by the material dissolution whereas the second corresponds to the formation of secondary precipitates for which thermodynamic equilibrium controls the concentration of the species in solution. Leaching tests have been performed varying several independent parameters in order to determine the TPD dissolution rate. The partial orders related to the protons or to the hydroxide ions have been found between 0.35 and 0.45 whereas the apparent dissolution rate constants are in the range 1.10{sup -5} for 9.10{sup -5} g.m{sup -2}.j{sup -1} for acidic and basic media. The neo-formed phases have been characterized after the dissolution of TPD and TUPD. We found that the TPD leaching in acidic medium leads to the formation of the crystallized thorium phosphate-hydrogen-phosphate (TPHP), of formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), x H{sub 2}O, whereas the TUPD dissolution leads to the TPHP and an other compound, of formula (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}, 5 H{sub 2}O. We calculated its solubility product which is in good agreement with those found in the literature. The phases formed during the leaching of solids containing plutonium; americium or curium (Th

  2. Adenosine versus intravenous calcium channel antagonists for supraventricular tachycardia.

    Science.gov (United States)

    Alabed, Samer; Sabouni, Ammar; Providencia, Rui; Atallah, Edmond; Qintar, Mohammed; Chico, Timothy Ja

    2017-10-12

    People with supraventricular tachycardia (SVT) frequently are symptomatic and present to the emergency department for treatment. Although vagal manoeuvres may terminate SVT, they often fail, and subsequently adenosine or calcium channel antagonists (CCAs) are administered. Both are known to be effective, but both have a significant side effect profile. This is an update of a Cochrane review previously published in 2006. To review all randomised controlled trials (RCTs) that compare effects of adenosine versus CCAs in terminating SVT. We identified studies by searching CENTRAL, MEDLINE, Embase, and two trial registers in July 2017. We checked bibliographies of identified studies and applied no language restrictions. We planned to include all RCTs that compare adenosine versus a CCA for patients of any age presenting with SVT. We used standard methodological procedures as expected by Cochrane. Two review authors independently checked results of searches to identify relevant studies and resolved differences by discussion with a third review author. At least two review authors independently assessed each included study and extracted study data. We entered extracted data into Review Manager 5. Primary outcomes were rate of reversion to sinus rhythm and major adverse effects of adenosine and CCAs. Secondary outcomes were rate of recurrence, time to reversion, and minor adverse outcomes. We measured outcomes by calculating odds ratios (ORs) and assessed the quality of primary outcomes using the GRADE approach through the GRADEproGDT website. We identified two new studies for inclusion in the review update; the review now includes seven trials with 622 participants who presented to an emergency department with SVT. All included studies were RCTs, but only three described the randomisation process, and none had blinded participants, personnel, or outcome assessors to the intervention given. Moderate-quality evidence shows no differences in the number of people reverting to

  3. Characterization of adenosine deaminase isozymes from normal human erythrocytes.

    Science.gov (United States)

    Van Heukelom, L H; Boom, A; Bartstra, H A; Staal, G E

    1976-10-01

    Adenosine deaminase of phenotype ADA was partially purified by chromatography on CM-Sephadex C-50 and ammonium sulphate precipitation. With DEAE-Sephadex A-50 three isozymes could be detected. a. The KM values for the substrate adenosine were found to be 30 muM for each isozyme. b. pH optimum was 7.0 and the molecular weight estimated by gel filtration was found to be 30 000 for each isozyme. c. The heat stability of RBC-ADA type 1-1 was greater than type 1-2. The isozyme in type 2-1 representing the electrophoretic band of phenotype ADA2-2 is the most labile. d. ATP, ADP, AMP and cyclic AMP, PCMB and 6-methylmercaptopurine riboside were found to be competitive inhibitors with ADA in all three isozymes.

  4. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I.

    Science.gov (United States)

    Malanga, Maria; Czubaty, Alicja; Girstun, Agnieszka; Staron, Krzysztof; Althaus, Felix R

    2008-07-18

    Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.

  5. Adenosine deaminase polymorphism in the house sparrow, Passer domesticus.

    Science.gov (United States)

    Cole, S R; Parkin, D T

    1986-01-01

    A polymorphism at the adenosine deaminase locus of the house sparrow, Passer domesticus, has been investigated by starch gel electrophoresis. Five alleles have been identified, and most populations seem to be close to the Hardy-Weinberg equilibrium. The allele frequencies differ strikingly across Europe, and in Britian there are significant differences between urban and rural populations. Samples from introduced populations in Australia and New Zealand lack some of the rarer alleles, as predicted from the Founder Effect.

  6. Adenosine signaling in striatal circuits and alcohol use disorders.

    Science.gov (United States)

    Nam, Hyung Wook; Bruner, Robert C; Choi, Doo-Sup

    2013-09-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.

  7. Adenosine Signaling in Striatal Circuits and Alcohol Use Disorders

    OpenAIRE

    Nam, Hyung Wook; Bruner, Robert C.; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, ...

  8. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice

    Science.gov (United States)

    Witts, Emily C.; Nascimento, Filipe

    2015-01-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925–1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  9. Adenosine-to-Inosine RNA Editing in Health and Disease.

    Science.gov (United States)

    Gatsiou, Aikaterini; Vlachogiannis, Nikolaos; Lunella, Federica Francesca; Sachse, Marco; Stellos, Konstantinos

    2017-09-26

    Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 00, 000-000.

  10. ADENOSINE DEAMINASE ACTIVITY IN TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Farija Peruvankuzhiyil

    2017-01-01

    Full Text Available BACKGROUND Altered blood levels of adenosine deaminase may help in predicting immunological dysfunction in diabetic individuals. But very few studies exist on ADA activity in type 2 diabetes mellitus. Aim of this study is to compare serum adenosine deaminase activity in type 2 diabetic patients with non-diabetic control. MATERIALS AND METHODS A comparative study design was used in data collection process. The study was conducted in 40 type 2 diabetes mellitus patients attending diabetic clinic or admitted in the medicine ward for metabolic control of diabetes in medical college, Calicut from January 2011 to January 2012. The adenosine deaminase (ADA level in the serum is measured by endpoint method in these patients. The results were expressed as mean and standard deviation. The statistical significance of the differences between the values was assessed by ANOVA. RESULTS Among 40 diabetic patients, mean ADA level in the serum is 38.56, SD±6.72 (min 30, max 53. Mean ADA level in the serum in the control group is 22.04±4.625 (min 13, max 29. CONCLUSION ADA level in the serum is found to be increased indicating its role as an important immunoenzyme marker in the aetiopathology of type 2 diabetes mellitus.

  11. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  12. Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver

    Directory of Open Access Journals (Sweden)

    Chen Ren

    2012-10-01

    Full Text Available Abstract Background Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. Results To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629 encoding isopentenyl diphosphate isomerase (IPI was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line control. Conclusions Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our

  13. D-Ribose Interferes with Quorum Sensing to Inhibit Biofilm Formation of Lactobacillus paraplantarum L-ZS9

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2017-09-01

    Full Text Available Biofilms help bacteria survive under adverse conditions, and the quorum sensing (QS system plays an important role in regulating their activities. Quorum sensing inhibitors (QSIs have great potential to inhibit pathogenic biofilm formation and are considered possible replacements for antibiotics; however, further investigation is required to understand the mechanisms of action of QSIs and to avoid inhibitory effects on beneficial bacteria. Lactobacillus paraplantarum L-ZS9, isolated from fermented sausage, is a bacteriocin-producing bacteria that shows potential to be a probiotic starter. Since exogenous autoinducer-2 (AI-2 promoted biofilm formation of the strain, expression of genes involved in AI-2 production was determined in L. paraplantarum L-ZS9, especially the key gene luxS. D-Ribose was used to inhibit biofilm formation because of its AI-2 inhibitory activity. Twenty-seven differentially expressed proteins were identified by comparative proteomic analysis following D-ribose treatment and were functionally classified into six groups. Real-time quantitative PCR showed that AI-2 had a counteractive effect on transcription of the genes tuf, fba, gap, pgm, nfo, rib, and rpoN. Over-expression of the tuf, fba, gap, pgm, and rpoN genes promoted biofilm formation of L. paraplantarum L-ZS9, while over-expression of the nfo and rib genes inhibited biofilm formation. In conclusion, D-ribose inhibited biofilm formation of L. paraplantarum L-ZS9 by regulating multiple genes involved in the glycolytic pathway, extracellular DNA degradation and transcription, and translation. This research provides a new mechanism of QSI regulation of biofilm formation of Lactobacillus and offers a valuable reference for QSI application in the future.

  14. Bone marrow expression of poly(ADP-ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion

    Science.gov (United States)

    Terashima, Tomoya; Kojima, Hideto; Chan, Lawrence

    2012-01-01

    Diabetic neuropathy is the most common diabetic complication. The pathogenetic pathways include oxidative stress, advanced glycation end product (AGE) formation, protein kinase C, and NF-κB activation, as well as increased polyol flux. These metabolic perturbations affect neurons, Schwann cells, and vasa nervorum, which are held to be the primary cell types involved. We hypothesize that diabetes induces the appearance of abnormal bone marrow-derived cells (BMDCs) that fuse with neurons in the dorsal root ganglia (DRG) of mice, leading to diabetic neuropathy. Neuronal poly(ADP-ribose) polymerase-1 (PARP-1) activation in diabetes is known to generate free radical and oxidant-induced injury and poly(ADP-ribose) polymer formation, resulting in neuronal death and dysfunction, culminating in neuropathy. We further hypothesize that BM-specific PARP expression plays a determining role in disease pathogenesis. Here we show that bone marrow transplantation (BMT) of PARP-knockout (PARPKO) cells to wild-type mice protects against, whereas BMT of wild-type cells to PARPKO mice, which are normally “neuropathy-resistant,” confers susceptibility to, diabetic neuropathy. The pathogenetic process involving hyperglycemia, BMDCs, and BMDC-neuron fusion can be recapitulated in vitro. Incubation in high, but not low, glucose confers fusogenicity to BMDCs, which are characterized by proinsulin (PI) and TNF-α coexpression; coincubation of isolated DRG neurons with PI-BMDCs in high glucose leads to spontaneous fusion between the 2 cell types, while the presence of a PARP inhibitor or use of PARPKO BMDCs in the incubation protects against BMDC-neuron fusion. These complementary in vivo and in vitro experiments indicate that BMDC-PARP expression promotes diabetic neuropathy via BMDC-neuron fusion.—Terashima, T., Kojima, H., Chan, L. Bone marrow expression of poly(ADP-ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion. PMID:21978940

  15. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: n.willems@acta.nl [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.

  16. D-Ribose Interferes with Quorum Sensing to Inhibit Biofilm Formation of Lactobacillus paraplantarum L-ZS9.

    Science.gov (United States)

    Liu, Lei; Wu, Ruiyun; Zhang, Jinlan; Shang, Nan; Li, Pinglan

    2017-01-01

    Biofilms help bacteria survive under adverse conditions, and the quorum sensing (QS) system plays an important role in regulating their activities. Quorum sensing inhibitors (QSIs) have great potential to inhibit pathogenic biofilm formation and are considered possible replacements for antibiotics; however, further investigation is required to understand the mechanisms of action of QSIs and to avoid inhibitory effects on beneficial bacteria. Lactobacillus paraplantarum L-ZS9, isolated from fermented sausage, is a bacteriocin-producing bacteria that shows potential to be a probiotic starter. Since exogenous autoinducer-2 (AI-2) promoted biofilm formation of the strain, expression of genes involved in AI-2 production was determined in L. paraplantarum L-ZS9, especially the key gene luxS. D-Ribose was used to inhibit biofilm formation because of its AI-2 inhibitory activity. Twenty-seven differentially expressed proteins were identified by comparative proteomic analysis following D-ribose treatment and were functionally classified into six groups. Real-time quantitative PCR showed that AI-2 had a counteractive effect on transcription of the genes tuf, fba, gap, pgm, nfo, rib, and rpoN. Over-expression of the tuf, fba, gap, pgm, and rpoN genes promoted biofilm formation of L. paraplantarum L-ZS9, while over-expression of the nfo and rib genes inhibited biofilm formation. In conclusion, D-ribose inhibited biofilm formation of L. paraplantarum L-ZS9 by regulating multiple genes involved in the glycolytic pathway, extracellular DNA degradation and transcription, and translation. This research provides a new mechanism of QSI regulation of biofilm formation of Lactobacillus and offers a valuable reference for QSI application in the future.

  17. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  18. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Larsen, Sara C; Leutert, Mario; Bilan, Vera

    2017-01-01

    remained a difficult challenge. Here, we describe a detailed protocol for unbiased analysis of ADP-ribosylated proteins and their ADP-ribose acceptor sites under physiological conditions. The method relies on the enrichment of mono-ADP-ribosylated peptides using the macrodomain Af1521 in combination...... with liquid chromatography-high-resolution tandem MS (LC-MS/MS). The 5-day protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture stage all the way through to data processing using the MaxQuant software suite....

  19. Convenient Synthesis of 1,4-Dideoxy-1,4-imino-D-ribitol from D-Ribose

    Directory of Open Access Journals (Sweden)

    Makoto Oba

    2013-01-01

    Full Text Available This paper describes a convenient synthesis of 1,4-dideoxy-1,4-imino-D-ribitol (DRB from D-ribose. L-Lyxonolactone, a key intermediate in this synthesis, was prepared by base-promoted hydrolysis of a 5-chlorinated D-ribonolactone derivative with inversion of configuration at the C-4 position. Cyclization of the generated dimesylated L-lyxitol with benzylamine proceeded with another configurational inversion at C-4 to afford the D-ribo-configured pyrrolidine system, which upon deprotection gave DRB.

  20. Roles of poly(ADP-ribose) synthesis in repair and replication in normal human, Cockayne syndrome, and xeroderma pigmentosum fibroblasts after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Goto, K.; Yamamoto, K.; Ichihashi, M.

    1983-01-01

    Roles of poly(ADP-ribose) in repair and replication were studied in UV-irradiated normal, xeroderma pigmentosum (XP), and Cockayne syndrome (CS) fibroblasts. UV radiation reduced cellular NAD with concurrent synthesis of poly-(ADP-ribose) in a dose-dependent manner in normal and CS cells, but not in XP cells. Enzymatic incision of DNA of UV-irradiated XP cells by T4-endonuclease V activated poly(ADP-ribose) polymerase. Methyl methanesulfonate (MMS) also reduced the cellular NAD in all the above strains. However, inhibitors of poly(ADP-ribose) synthesis did not affect UV-induced unscheduled DNA synthesis (UDS) and UV and MMS survivals. Thus, poly(ADP-ribose) synthesis may have a chromatin-stabilizing effect, but not the key role in excision repair of UV damage, unlike in the repair of dimethyl sulfate alkylation. CS cells were deficient in the NAD pool and in the recovery of post-UV DNA synthesis, which were rescued by an exogenous supply of NAD. Such normalization in CS cells was inhibited by excess nicotinamide as in normal cells, suggesting that replicon reinitiation may require specific poly(ADP-ribosyl)ation in UV-irradiated human cells.

  1. A Structure-Activity Relationship Study of Bitopic N6-Substituted Adenosine Derivatives as Biased Adenosine A1 Receptor Agonists.

    Science.gov (United States)

    Aurelio, Luigi; Baltos, Jo-Anne; Ford, Leigh; Nguyen, Anh T N; Jörg, Manuela; Devine, Shane M; Valant, Celine; White, Paul J; Christopoulos, Arthur; May, Lauren T; Scammells, Peter J

    2018-02-15

    Herein, we investigate the structure-activity relationships of a series of compounds derived from the bitopic N6-substituted adenosine derivative 1, a previously reported biased ligand at the A1 adenosine receptor. Modifications were made to the orthosteric adenosine pharmacophore, the linker and the allosteric 2-amino-3-benzoylthiophene pharmacophore to probe the structure-activity relationships, both in terms of the effect of these modifications on biased signalling as well as receptor subtype selectivity. Modification of the orthosteric pharmacophore at the 2- or 5'-positions resulted in a significant loss of bias away from calcium mobilization that was observed for 1. Interestingly, increasing the linker length by one additional carbon resulted in approximately 10-fold increase in bias away from calcium mobilization, while reducing the linker length by one carbon trended towards a reduction in bias. In terms of the allosteric pharmacophore, the trifluoromethylphenyl substituent on the thiophene ring appears to be crucial for the biased signaling away from calcium mobilization.

  2. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    Science.gov (United States)

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  3. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    Science.gov (United States)

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. © 2016 American Society of Plant Biologists. All rights reserved.

  4. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open readi...

  5. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    therapies based on cold exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from...... hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A receptors in mice causes a decrease in BAT-dependent thermogenesis, whereas treatment with A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation...

  6. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... of adenosine. The addition of adenosine to skeletal muscle cells increased NO formation (fluorochrome 4-amino-5-methylamino-2',7-difluorescein fluorescence), whereas prostacyclin levels remained unchanged. The addition of adenosine to microvascular endothelial cells induced an increase in NO and prostacyclin...

  7. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  8. Flow cytometry application for studies on adenosine A2A receptors expression.

    Science.gov (United States)

    Wójcik, Tomasz; Bereta, Michał; Faron-Górecka, Agata; Dziedzicka-Wasylewska, Marta; Kieć-Kononowicz, Katarzyna

    2008-01-01

    Adenosine A2A receptors belong to the heptaspanning membrane receptors family A, also known as G protein-coupled receptors. In human brain they are highly expressed in striatum, where they co-exist and co-function with adenosine A1, glutamate mGlu5 and dopamine D2 receptors. As glutaminergic neurotransmission modulators in GABAergic enkephalinergic neurons, adenosine A2A receptors are attractive targets for new, alternative therapies of neurodegenerative disorders, like Parkinson's disease and Huntington's disease. The aim of the research was to obtained fluorescently tagged adenosine A2A receptors. Gene encoding human adenosine A2A receptor was inserted into plasmid pEYFP-N1, bearing enhanced yellow fluorescent protein (EYFP). The construct was expressed in HEK 293 cells. Fluorescence was observed by flow cytometry and epifluorescence microscopy. Functional ligand binding properties were investigated by saturation binding analysis of adenosine A2A receptors specific agonist [3H] CGS 21680.

  9. Photoactive analogs of farnesyl diphosphate and related isoprenoids: design and applications in studies of medicinally important isoprenoid-utilizing enzymes.

    Science.gov (United States)

    Vervacke, Jeffrey S; Wang, Yen-Chih; Distefano, Mark D

    2013-01-01

    Farnesyl diphosphate (FPP) is an important metabolic intermediate in the biosynthesis of a variety of molecules including sesquiterpenes and the side chains of a number of cofactors. FPP is also the source of isoprenoid side chains found attached to proteins. Enzymes that employ FPP as a substrate are of interest because they are involved in the semisynthesis of drugs as well as targets for drug design. Photoactive analogs of FPP have been useful for identifying enzymes that use this molecule as a substrate. A variety of photocrosslinking groups have been employed to prepare FPP analogs for use in such experiments including aryl azides, diazotrifluoropropionates and benzophenones. In this review, the design of these probes is described along with an examination of how they have been used in crosslinking experiments.

  10. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G

    1996-01-01

    in buffers containing 5% methanol allows unambiguous distinction between serine/threonine and histidine phosphorylation (O-phosphomonoesters and phosphoramide, respectively) since under these conditions only one type of residue is dephosphorylated. The addition of 5% methanol to all buffers was indispensable...... to deplete phosphate from membranes incubated successively under acid and basic conditions. The technique was applied to the study of nucleoside diphosphate kinase (NDP kinase) phosphorylation. In this enzyme, autophosphorylation of active site histidine is an accepted intermediate step in the catalytic...... of phosphoserine after strong acid hydrolysis of the histidine autophosphorylated enzyme is in fact a nonenzymatic transphosphorylation from phosphohistidine due to the harsh acid treatment. This methodology was also applied to in vivo phosphorylation studies of C. albicans NDP kinase. We believe...

  11. Optical properties of Tb[sup 3+] in the diphosphate CsYP[sub 2]O[sub 7

    Energy Technology Data Exchange (ETDEWEB)

    Akrim, A. (Laboratoire de Chimie des Solides, URA 444, Universite Blaise Pascal, F-63177 Aubiere Cedex (France)); Zambon, D. (Laboratoire de Chimie des Solides, URA 444, Universite Blaise Pascal, F-63177 Aubiere Cedex (France)); Cousseins, J.C. (Laboratoire de Chimie des Solides, URA 444, Universite Blaise Pascal, F-63177 Aubiere Cedex (France))

    1994-06-01

    The luminescence of Tb[sup 3+] ion in the diphosphate CsY[sub 1-x]Tb[sub x]P[sub 2]O[sub 7] (0

  12. [Content of free and bound thiamine diphosphate in the liver hyaloplasm of vitamine B1 deficient rats].

    Science.gov (United States)

    Ostrovskiĭ, Iu M; Voskoboev, A I; Gritsenko, E A; Grushnik, V V

    1979-01-01

    The amount of free and protein-bound thiamin diphosphate (TDP) in the liver hyaloplasm of B1 vitamin deficient rats has been measured. In the norm the content of protein-bound TDP remains stable (4.5--4.7 micrograms/g tissue) and does not grow upon thiamin injections. The level of the free coenzyme varies appreciably: in the B1-avitaminotic state the content of free TDP decreases, and in the B1-saturated condition it may exceed the norm 4 times. In the liver this enzyme occurs only as a holoenzyme. In case of B1 vitamin deficiency in the diet the transketolase apoform cannot be detected in the liver. A new model for rapid generation of B1-avitaminosis characterized by a significantly lower level of free and bound TDP is described.

  13. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    Science.gov (United States)

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  14. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine

    Science.gov (United States)

    2011-01-01

    Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440

  15. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R J

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  16. Chemical formation of 4-hydroxy-2,5-dimethyl-3[2H]-furanone from D-fructose 1,6-diphosphate.

    Science.gov (United States)

    Hauck, Tobias; Landmann, Christian; Raab, Thomas; Brühlmann, Fredi; Schwab, Wilfried

    2002-07-16

    The selective chemical formation of 4-hydroxy-2,5-dimethyl-3[2H]-furanone (HDF) from D-fructose 1,6-diphosphate in the presence of reduced nicotinamide-adenine-dinucleotides (NAD(P)H) was investigated by means of HPLC-DAD and HPLC-UV-MS/MS. The temperature optimum for HDF formation was 30 degrees C, whereas the pH value (pH 3-10) and chemical nature of the buffer had no significant influence. A linear correlation of reaction time and D-fructose 1,6-diphosphate concentration with the obtained HDF yield was observed. Proteins appeared to have a stabilizing effect. The NAD(P)H were mandatory, even in the presence of protein, implying a non-enzymatic hydride-transfer to an unknown intermediate which finally leads to the selective formation of HDF. The hydride-transfer was confirmed by the application of selectively pro-4R or pro-4S deuterium labeled NADH resulting in each case in the formation of HDF exhibiting a deuterium labeling of approx 30% and employment of [4R,S-(2)H(2)]-NADH led to a deuterium labeling of approx 66%. The incubation of [1-(13)C]-D-fructose 1,6-diphosphate with [4R,S-(2)H(2)]-NADH revealed that the hydride is transferred to C-5 or C-6 of the D-fructose 1,6-diphosphate skeleton. Thus, a chemical HDF formation from D-fructose 1,6-diphosphate under physiological reaction conditions was shown and for the first time to our knowledge a non-enzymatic hydride-transfer from NADH to a carbohydrate structure was demonstrated.

  17. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  18. Evidence for constitutively-active adenosine receptors at mammalian motor nerve endings

    OpenAIRE

    Searl, Timothy J; Silinsky, Eugene M

    2012-01-01

    A study was made to determine if constitutively active adenosine receptors are present at mouse motor nerve endings. In preparations blocked by low Ca2+ / high Mg2+ solution, 8-cyclopentyl-1,3,dipropylxanthine (CPX, 10–100 nM), which has been reported to be both an A1 adenosine receptor antagonist and inverse agonist, produced a dose-dependent increase in the number of acetylcholine quanta released by a nerve impulse. Adenosine deaminase, which degrades ambient adenosine into its inactive con...

  19. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex

    Science.gov (United States)

    Ross, Ashley E.; Nguyen, Michael D.; Privman, Eve; Venton, B. Jill

    2014-01-01

    Mechanical perturbations can release ATP, which is broken down to adenosine. In this work, we used carbon-fiber microelectrodes and fast-scan cyclic voltammetry to measure mechanically-stimulated adenosine in the brain by lowering the electrode 50 μm. Mechanical stimulation evoked adenosine in vivo (average: 3.3 ± 0.6 μM) and in brain slices (average: 0.8 ± 0.1 μM) in the prefrontal cortex. The release was transient, lasting 18 ± 2 s. Lowering a 15 μm diameter glass pipette near the carbon-fiber microelectrode produced similar results as lowering the actual microelectrode. However, applying a small puff of artificial cerebral spinal fluid was not sufficient to evoke adenosine. Multiple stimulations within a 50 μm region of a slice did not significantly change over time or damage cells. Chelating calcium with EDTA or blocking sodium channels with tetrodotoxin (TTX) significantly decreased mechanically evoked adenosine, signifying that the release is activity-dependent. An alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), did not affect mechanically-stimulated adenosine; however, the nucleoside triphosphate diphosphohydrolase 1,2 and 3 (NTDPase) inhibitor POM-1 significantly reduced adenosine so a portion of adenosine is dependent on extracellular ATP metabolism. Thus, mechanical perturbations from inserting a probe in the brain cause rapid, transient adenosine signaling which might be neuroprotective. PMID:24606335

  20. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  1. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas

    2006-01-01

    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD....... The elevated plasma renin concentrations found in the A1R-/- mice could also result in increased blood pressure. Our results confirm that adenosine, acting through the adenosine A1 receptor, plays an important role in regulating blood pressure, renin release, and sodium excretion....

  2. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  3. The role of carotid chemoreceptors in the sympathetic activation by adenosine in humans.

    Science.gov (United States)

    Timmers, Henri J L M; Rongen, Gerard A; Karemaker, John M; Wieling, Wouter; Marres, Henri A M; Lenders, Jacques W M

    2004-01-01

    The direct vasodilatory and negative chronotropic effects of adenosine in humans are counterbalanced by a reflex increase in sympathetic nerve traffic. A suggested mechanism for this reflex includes peripheral chemoreceptor activation. We, therefore, assessed the contribution of carotid chemoreceptors to sympatho-excitation by adenosine. Muscle sympathetic nerve activity was recorded during adenosine infusion (140 microg.kg(-1).min(-1) for 5 min) in five patients lacking carotid chemoreceptors after bilateral carotid body tumour resection (one male and four female, mean age 51 +/- 11 years) and in six healthy controls (two male and four female, mean age 50 +/- 7 years). Sympathetic responses to sodium nitroprusside injections were assessed to measure baroreceptor-mediated sympathetic activation. In response to adenosine, controls showed no change in blood pressure, an increase in heart rate (+48.2 +/- 13.2%; Pactivity (+195 +/- 103%; Pactivity. Adenosine-induced hypotension in individual patients elicited less sympathetic activation than equihypotensive sodium nitroprusside injections. In humans lacking carotid chemoreceptors, adenosine infusion elicits hypotension due to the absence of significant sympatho-excitation. Chemoreceptor activation is essential for counterbalancing the direct vasodilation by adenosine. In addition, blunting of the baroreflex sympathetic response to adenosine-induced hypotension may indicate a direct sympatho-inhibitory effect of adenosine.

  4. Does coronary vasodilation after adenosine override endothelin-1-induced coronary vasoconstriction?

    Science.gov (United States)

    Loghin, Catalin; Sdringola, Stefano; Gould, K Lance

    2007-01-01

    Endothelin-1 is a powerful coronary vasoconstrictor that is overexpressed in coronary artery disease. Adenosine is a powerful coronary vasodilator used for myocardial perfusion imaging to identify flow-limiting coronary artery stenosis. Therefore, in an animal model we tested the hypothesis that intracoronary endothelin-1 may cause myocardial perfusion abnormalities by positron emission tomography (PET) at resting conditions that may persist or only partially improve after intravenous adenosine stress in the absence of myocardial scar and flow-limiting stenosis. Fourteen dogs underwent serial PET perfusion imaging with rubidium-82 before and after subselective intracoronary infusion of endothelin-1, followed by intravenous and then intracoronary adenosine. Small physiological doses of endothelin-1 infused into the mid-left circumflex coronary artery caused quantitatively significant resting perfusion abnormalities that normalized after intracoronary adenosine but not consistently after intravenous adenosine used for diagnostic imaging. After effects of adenosine abated, resting perfusion defects returned, lasting up to 5 h in some animals. Cumulative doses of endothelin-1 caused perfusion defects that did not normalize after intravenous adenosine. In an animal model without myocardial scar or flow-limiting stenosis, intracoronary endothelin-1 causes visually apparent, quantitatively significant, long-lasting myocardial perfusion defects at resting conditions that may persist or only partially improve after intravenous adenosine used for diagnostic imaging. These results may potentially explain resting perfusion abnormalities or heterogeneity by clinical PET that may persist or only partially improve after adenosine stress perfusion imaging in the absence of myocardial scar and flow-limiting stenosis.

  5. IL-4 amplifies the pro-inflammatory effect of adenosine in human mast cells by changing expression levels of adenosine receptors.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Hua

    Full Text Available Adenosine inhalation produces immediate bronchoconstriction in asthmatics but not in normal subjects. The bronchospastic effect of adenosine is largely mediated through adenosine-induced mast cell activation, the mechanism of which is poorly understood due to limitations in culturing human primary mast cells. Here, we show that human umbilical cord blood -derived mast cells incubated with the Th2 cytokine IL-4 develop increased sensitivity to adenosine. Potentiation of anti-IgE- induced and calcium ionophore/PMA-induced degranulation was augmented in mast cells cultured with IL-4, and this effect was reduced or abolished by pre-treatment with A(2BsiRNA and selective A(2B receptor antagonists, respectively. IL-4 incubation resulted in the increased expression of A(2B and reduced expression of A(2A adenosine receptors on human mast cells. These results suggest that Th2 cytokines in the asthmatic lung may alter adenosine receptor expression on airway mast cells to promote increased responsiveness to adenosine.

  6. IL-4 Amplifies the Pro-Inflammatory Effect of Adenosine in Human Mast Cells by Changing Expression Levels of Adenosine Receptors

    Science.gov (United States)

    Hua, Xiaoyang; Chason, Kelly D.; Patel, Janki Y.; Naselsky, Warren C.; Tilley, Stephen L.

    2011-01-01

    Adenosine inhalation produces immediate bronchoconstriction in asthmatics but not in normal subjects. The bronchospastic effect of adenosine is largely mediated through adenosine-induced mast cell activation, the mechanism of which is poorly understood due to limitations in culturing human primary mast cells. Here, we show that human umbilical cord blood -derived mast cells incubated with the Th2 cytokine IL-4 develop increased sensitivity to adenosine. Potentiation of anti-IgE- induced and calcium ionophore/PMA-induced degranulation was augmented in mast cells cultured with IL-4, and this effect was reduced or abolished by pre-treatment with A2BsiRNA and selective A2B receptor antagonists, respectively. IL-4 incubation resulted in the increased expression of A2B and reduced expression of A2A adenosine receptors on human mast cells. These results suggest that Th2 cytokines in the asthmatic lung may alter adenosine receptor expression on airway mast cells to promote increased responsiveness to adenosine. PMID:21966389

  7. Functional Interaction between Poly(ADP-Ribose) Polymerase 2 (PARP-2) and TRF2: PARP Activity Negatively Regulates TRF2

    Science.gov (United States)

    Dantzer, Françoise; Giraud-Panis, Marie-Josèphe; Jaco, Isabel; Amé, Jean-Christophe; Schultz, Inès; Blasco, Maria; Koering, Catherine-Elaine; Gilson, Eric; Ménissier-de Murcia, Josiane; de Murcia, Gilbert; Schreiber, Valérie

    2004-01-01

    The DNA damage-dependent poly(ADP-ribose) polymerase-2 (PARP-2) is, together with PARP-1, an active player of the base excision repair process, thus defining its key role in genome surveillance and protection. Telomeres are specialized DNA-protein structures that protect chromosome ends from being recognized and processed as DNA strand breaks. In mammals, telomere protection depends on the T2AG3 repeat binding protein TRF2, which has been shown to remodel telomeres into large duplex loops (t-loops). In this work we show that PARP-2 physically binds to TRF2 with high affinity. The association of both proteins requires the N-terminal domain of PARP-2 and the myb domain of TRF2. Both partners colocalize at promyelocytic leukemia bodies in immortalized telomerase-negative cells. In addition, our data show that PARP activity regulates the DNA binding activity of TRF2 via both a covalent heteromodification of the dimerization domain of TRF2 and a noncovalent binding of poly(ADP-ribose) to the myb domain of TRF2. PARP-2−/− primary cells show normal telomere length as well as normal telomerase activity compared to wild-type cells but display a spontaneously increased frequency of chromosome and chromatid breaks and of ends lacking detectable T2AG3 repeats. Altogether, these results suggest a functional role of PARP-2 activity in the maintenance of telomere integrity. PMID:14749375

  8. Involvement of bleomycin hydrolase and poly(ADP-ribose) polymerase-1 in Ubc9-mediated resistance to chemotherapy agents.

    Science.gov (United States)

    Chen, Yang; Zhang, Huixian; He, Qiyang

    2017-01-01

    Ubiquitin-conjugating protein 9 (Ubc9), the sole enzyme for sumoylation, plays critical roles in many physiological functions, such as DNA damage repair and genome integrity. Its overexpression led to poor prognosis and drug resistance in tumor chemotherapy. However, the underlying mechanism by which Ubc9 promotes tumor progress and influences the susceptibility to antitumor agents remains elusive. In this study, we used nine antitumor agents with distinct actions to explore Ubc9-mediated resistance in human breast carcinoma MCF-7 cells. Increase of susceptibility, respectively, to boningmycin, hydroxycamptothecine, cis-dichlorodiamineplatinum, 5-fluorouracil, vepeside and gemcitabine, but not for doxorubicin, vincristine and norcantharidin, was observed after the knockdown of Ubc9 protein level with RNA interference. Reduction of bleomycin hydrolase and poly(ADP-ribose) polymerase-1 levels after knockdown of Ubc9 suggests their contribution to Ubc9-mediated drug resistance. This is the first report on the sensitivity to hydroxycamptothecine, cis-dichlorodiamineplatinum and gemcitabine that increased after knockdown of bleomycin hydrolase at protein level. In conclusion, Ubc9 plays different roles of action in antitumor agents in chemotherapy. The process requires bleomycin hydrolase and poly(ADP-ribose) polymerase-1. The results are beneficial to deeply understanding of Ubc9 functions and for precise prediction of chemotherapy outcomes in tumors.

  9. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  10. Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues.

    Science.gov (United States)

    Strzelecka, Dominika; Chmielinski, Sebastian; Bednarek, Sylwia; Jemielity, Jacek; Kowalska, Joanna

    2017-08-21

    Synthetic nucleotide and nucleic acid analogues are useful research tools and modern therapeutics. Hence, methods for the rapid and unambiguous identification of mononucleotides derived from organic syntheses or biological materials are of broad interest. Here, we analysed over 150 mononucleotides (mostly nucleoside 5'-mono-, 5'-di-, and 5'-triphosphates) and their structurally related nucleobase-, phosphate-, and ribose-modified analogues by electrospray tandem mass spectrometry (ESI/MS/MS), identifying characteristic fragmentation ions that may be helpful in structure determination. While positive-ion mode yielded fragments derived mainly from nucleobases, negative-ion mode provided insight into the structures of phosphoryl and phosphoribosyl moieties, enabling the determination of structural features such as the number of phosphate groups and the presence of ribose or phosphate substitutions. Based on these data, we proposed fragmentation pathways that were confirmed by experiments with [18O]-isotopologues. We demonstrated the utility of ESI(-)/MS/MS in the analysis of structurally related compounds by analysing isomeric and isobaric nucleotides and applying ESI(-)/MS/MS to rapid identification of nucleotide synthesis products. We formulated general rules regarding nucleotide structure-fragmentation pattern relationships and indicating characteristic fragmentation ions for the interpretation of ESI(-)/MS/MS spectra of nucleotides and their analogues. The ESI(-)/MS/MS spectra of all nucleotides are available in an on-line database, msTide, at www.msTide-db.com.

  11. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sachiko [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Tanaka, Masakazu [Department of Microbiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka 573-1010 (Japan); Sato, Teruaki [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Ida, Chieri [Department of Applied Life Studies, College of Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi 467-8610 (Japan); Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Moss, Joel [Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590 (United States); Miwa, Masanao, E-mail: m_miwa@nagahama-i-bio.ac.jp [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2016-08-05

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  12. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  13. The Role of Adenosine Receptors in Psychostimulant Addiction

    Directory of Open Access Journals (Sweden)

    Inmaculada Ballesteros-Yáñez

    2018-01-01

    Full Text Available Adenosine receptors (AR are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS, adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC, through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A, as well as with other subtypes (e.g., A2A/D2, opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are

  14. Characterization of Spontaneous, Transient Adenosine Release in the Caudate-Putamen and Prefrontal Cortex

    Science.gov (United States)

    Nguyen, Michael D.; Lee, Scott T.; Ross, Ashley E.; Ryals, Matthew; Choudhry, Vishesh I.; Venton, B. Jill

    2014-01-01

    Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N6-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation. PMID:24494035

  15. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial

    DEFF Research Database (Denmark)

    Cannon, Christopher P; Husted, Steen; Harrington, Robert A

    2007-01-01

    .96, respectively, vs. clopidogrel); the major bleeding rates were 6.9%, 7.1%, and 5.1%, respectively (p = 0.91 and p = 0.35, respectively, vs. clopidogrel). Although not statistically significant, favorable trends were seen in the Kaplan-Meier rates of myocardial infarction (MI) over the entire study period (MI: 5...... of platelet inhibition than clopidogrel in patients with stable coronary artery disease. METHODS: A total of 990 patients with NSTE-ACS, treated with aspirin and standard therapy for ACS, were randomized in a 1:1:1 double-blind fashion to receive either twice-daily AZD6140 90 mg, AZD6140 180 mg...

  16. Activity-Dependent Adenosine Release May Be Linked to Activation of Na+-K+ ATPase: An In Vitro Rat Study

    Science.gov (United States)

    Sims, Robert Edward; Dale, Nicholas

    2014-01-01

    In the brain, extracellular adenosine increases as a result of neuronal activity. The mechanisms by which this occurs are only incompletely understood. Here we investigate the hypothesis that the Na+ influxes associated with neuronal signalling activate the Na+-K+ ATPase which, by consuming ATP, generates intracellular adenosine that is then released via transporters. By measuring adenosine release directly with microelectrode biosensors, we have demonstrated that AMPA-receptor evoked adenosine release in basal forebrain and cortex depends on extracellular Na+. We have simultaneously imaged intracellular Na+ and measured adenosine release. The accumulation of intracellular Na+ during AMPA receptor activation preceded adenosine release by some 90 s. By removing extracellular Ca2+, and thus preventing indiscriminate neuronal activation, we used ouabain to test the role of the Na+-K+ ATPase in the release of adenosine. Under conditions which caused a Na+ influx, brief applications of ouabain increased the accumulation of intracellular Na+ but conversely rapidly reduced extracellular adenosine levels. In addition, ouabain greatly reduced the amount of adenosine released during application of AMPA. Our data therefore suggest that activity of the Na+-K+ ATPase is directly linked to the efflux of adenosine and could provide a universal mechanism that couples adenosine release to neuronal activity. The Na+-K+ ATPase-dependent adenosine efflux is likely to provide adenosine-mediated activity-dependent negative feedback that will be important in many diverse functional contexts including the regulation of sleep. PMID:24489921

  17. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial.

    Science.gov (United States)

    Iskandrian, Ami E; Bateman, Timothy M; Belardinelli, Luiz; Blackburn, Brent; Cerqueira, Manuel D; Hendel, Robert C; Lieu, Hsiao; Mahmarian, John J; Olmsted, Ann; Underwood, S Richard; Vitola, João; Wang, Whedy

    2007-01-01

    Earlier phase 1 and 2 studies have shown that regadenoson has desirable features as a stress agent for myocardial perfusion imaging. This multicenter, double-blinded phase 3 trial involved 784 patients at 54 sites. Each patient underwent 2 sets of gated single photon emission computed tomography myocardial perfusion imaging studies: an initial qualifying study with adenosine and a subsequent randomized study with either regadenoson (2/3 of patients) or adenosine. Regadenoson was administered as a rapid bolus (adenosine-regadenoson images and adenosine-adenosine images, lay above a prespecified noninferiority margin. Other prospectively defined safety and tolerability comparisons and supporting analyses were also performed. The average agreement rate based on the median of 3 independent blinded readers was 0.63 +/- 0.03 for regadenoson-adenosine and 0.64 +/- 0.04 for adenosine-adenosine-a 1% absolute difference with the lower limit of the 95% confidence interval lying above the prespecified noninferiority margin. Side-by-side interpretation of regadenoson and adenosine images provided comparable results for detecting reversible defects. The peak increase in heart rate was greater with regadenoson than adenosine, but the blood pressure nadir was similar. A summed symptom score of flushing, chest pain, and dyspnea was less with regadenoson than adenosine (P = .013). This phase 3 trial shows that regadenoson provides diagnostic information comparable to a standard adenosine infusion. There were no serious drug-related side effects, and regadenoson was better tolerated than adenosine.

  18. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola de Andrade Mello

    2017-11-01

    Full Text Available Cancer is still one of the world’s most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that boosts patient’s immune system to fight cancer by modifying tumor–immune cells interaction in the tumor microenvironment (TME. Extracellular adenosine triphosphate (eATP and adenosine (Ado are signaling molecules released in the TME that act as modulators of both immune and tumor cell responses. Extracellular adenosine triphosphate and Ado activate purinergic type 2 (P2 and type 1 (P1 receptors, respectively, triggering the so-called purinergic signaling. The concentration of eATP and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, while Ado attenuates or suppresses immunity against the tumor. In addition, both molecules can mediate growth stimulation or inhibition of the tumor, depending on the specific receptor activated. Therefore, purinergic signaling is able to modulate both tumor and immune cells behavior and, consequently, the tumor–host interaction and disease progression. In this review, we discuss the role of purinergic signaling in the host–tumor interaction detailing the multifaceted effects of eATP and Ado in the inflammatory TME. Moreover, we present recent findings into the application of purinergic-targeting therapy as a potential novel option to boost antitumor immune responses in cancer.

  19. Capadenoson, a clinically trialed partial adenosine A1receptor agonist, can stimulate adenosine A2Breceptor biased agonism.

    Science.gov (United States)

    Baltos, Jo-Anne; Vecchio, Elizabeth A; Harris, Matthew A; Qin, Cheng Xue; Ritchie, Rebecca H; Christopoulos, Arthur; White, Paul J; May, Lauren T

    2017-07-01

    The adenosine A 2B receptor (A 2B AR) has been identified as an important therapeutic target in cardiovascular disease, however in vitro and in vivo targeting has been limited by the paucity of pharmacological tools, particularly potent agonists. Interestingly, 2-((6-amino-3,5-dicyano-4-(4-(cyclopropylmethoxy)phenyl)-2-pyridinyl)thio)acetamide (BAY60-6583), a potent and subtype-selective A 2B AR agonist, has the same core structure as 2-amino-6-[[2-(4-chlorophenyl)-1,3-thiazol-4-yl]methylsulfanyl]-4-[4-(2-hydroxyethoxy)phenyl]pyridine-3,5-dicarbonitril (capadenoson). Capadenoson, currently classified as an adenosine A 1 receptor (A 1 AR) partial agonist, has undergone two Phase IIa clinical trials, initially in patients with atrial fibrillation and subsequently in patients with stable angina. Capadenoson has also been shown to decrease cardiac remodeling in an animal model of advanced heart failure and a capadenoson derivative, neladenoson bialanate, recently entered clinical development for the treatment of chronic heart failure. The therapeutic effects of capadenoson are currently thought to be mediated through the A 1 AR. However, the ability of capadenoson to stimulate additional adenosine receptor subtypes, in particular the A 2B AR, has not been rigorously assessed. In this study, we demonstrate that capadenoson does indeed have significant A 2B AR activity in physiologically relevant cells, cardiac fibroblasts and cardiomyocytes, which endogenously express the A 2B AR. Relative to the non-selective adenosine receptor agonist NECA, capadenoson was a biased A 2B AR agonist with a preference for cAMP signal transduction over other downstream mediators in cells with recombinant and endogenous A 2B AR expression. These findings suggest the reclassification of capadenoson as a dual A 1 AR/A 2B AR agonist. Furthermore, a potential A 2B AR contribution should be an important consideration for the future clinical development of capadenoson-like therapeutics, as the A

  20. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    Science.gov (United States)

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Erythrocyte adenosine transport. A rapid screening test for cardiovascular drugs.

    Science.gov (United States)

    Yeung, P K; Mosher, S J; Li, R; Farmer, P S; Klassen, G A; Pollak, P T; McMullen, M; Ferrier, G

    1993-11-01

    An erythrocyte (RBC) model based on whole blood was used to investigate the effect of cardiovascular drugs on the uptake of adenosine in vitro. Fresh whole blood obtained from healthy volunteers was allowed to equilibrate with various concentrations (5-1000 microM) of a tested agent. (2-3H)-Adenosine was used as a substrate, and the reaction was terminated after 2 sec of incubation at room temperature by rapid addition of a "Stopping Solution" which was a mixture of erythro-9-(2-hydroxy-3-nonyl)adenine, dipyridamole, and EDTA. The mixture was centrifuged (1760 g, 4 degrees C, 10 min), and the radioactivity of an aliquot of the supernatant was determined by a scintillation counter. The results showed that dipyridamole was the most potent agent tested (IC50 = 0.2 microM). Amongst the calcium antagonists studied, isradipine was most potent, followed by verapamil, clentiazem, diltiazem, and then nifedipine. The racemates of two metabolites of diltiazem, MX and MB, were more potent than the parent drug. The antiarrhythmic agents, amiodarone and sotalol, the two new lipid peroxidation inhibitors, U-74389F and U-78517F, and the anxiolytic agent, alprazolam, were as active as verapamil. The beta-receptor antagonist propranolol and the angiotensin converting enzyme (ACE) inhibitor, enalapril, were practically inactive. In addition, the model was stereoselective such that the S(-)-enantiomer of verapamil was considerably more potent than the R(+)-antipote, whereas d(+)-sotalol was practically inactive compared to racemic sotalol.

  2. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Kathryn Victoria Whitmore

    2016-08-01

    Full Text Available Adenosine deaminase (ADA deficiency is best known as a form of severe combined immunodeficiency (SCID which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.

  3. Structure-Based Rational Design of Adenosine Receptor Ligands.

    Science.gov (United States)

    Gutiérrez-de-Terán, Hugo; Sallander, Jessica; Sotelo, Eddy

    2017-01-01

    The family of adenosine receptors (ARs) is focus of several medicinal chemistry programs aimed to find new potent and selective drugs. Each receptor subtype has been proposed as a relevant drug target in the treatment of, e.g., cardiovascular or inflammatory diseases, asthma or Parkinson's disease. Until recently, most of these efforts have been dominated by ligand-based or empirical approaches. However, the latest advances in G protein-coupled receptor (GPCR) crystallography allowed for a thorough structural characterization of the A2AAR subtype, which has been crystalized with a number of agonists and antagonists. Consequently, the ligand discovery of AR ligands has been enriched with a number of structure-based approaches. These include the generation of higher-confident homology models for the remaining AR subtypes, virtual screening identification of novel chemotypes, structure-based lead-optimization programs, rationalization of selectivity profiles, or the structural characterization of novel binding sites that enable the design of novel allosteric modulators. Computational methodologies have importantly contributed to the success of these structure-based approaches, and the recent advances in the field are also analyzed in this review. We conclude that the design of adenosine receptor ligands has improved dramatically with the consideration of structure- based approaches, which is paving the way to a better understanding of the biology and pharmacological modulation of this relevant family of receptors.

  4. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  5. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo

    Science.gov (United States)

    Lindquist, Britta E; Shuttleworth, C William

    2014-01-01

    Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions. PMID:25160669

  6. Beneficial and detrimental role of adenosine signaling in diseases and therapy

    Science.gov (United States)

    Liu, Hong

    2015-01-01

    Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects. PMID:26316513

  7. The ischemic preconditioning effect of adenosine in patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Berglund Margareta

    2009-11-01

    Full Text Available Abstract Introduction In vivo and in vitro evidence suggests that adenosine and its agonists play key roles in the process of ischemic preconditioning. The effects of low-dose adenosine infusion on ischemic preconditioning have not been thoroughly studied in humans. Aims We hypothesised that a low-dose adenosine infusion could reduce the ischemic burden evoked by physical exercise and improve the regional left ventricular (LV systolic function. Materials and methods We studied nine severely symptomatic male patients with severe coronary artery disease. Myocardial ischemia was induced by exercise on two separate occasions and quantified by Tissue Doppler Echocardiography. Prior to the exercise test, intravenous low-dose adenosine or placebo was infused over ten minutes according to a randomized, double blind, cross-over protocol. The LV walls were defined as ischemic if a reduction, no increment, or an increment of Results PSV increased from baseline to maximal exercise in non-ischemic walls both during placebo (P = 0.0001 and low-dose adenosine infusion (P = 0.0009. However, in the ischemic walls, PSV increased only during low-dose adenosine infusion (P = 0.001, while no changes in PSV occurred during placebo infusion (P = NS. Conclusion Low-dose adenosine infusion reduced the ischemic burden and improved LV regional systolic function in the ischemic walls of patients with exercise-induced myocardial ischemia, confirming that adenosine is a potential preconditioning agent in humans.

  8. Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations.

    NARCIS (Netherlands)

    Ramakers, B.P.C.; Pickkers, P.; Deussen, A.; Rongen, G.A.P.J.M.; Broek, P. van den; Hoeven, J.G. van der; Smits, P.; Riksen, N.P.

    2008-01-01

    The endogenous nucleoside adenosine has profound tissue protective effects in situations of ischaemia or inflammation. Animal studies have shown that various drugs can activate this protective mechanism by interfering with the metabolism of adenosine. Translation of this concept to the clinical

  9. Effects of adenosine and regadenoson on hemodynamics measured using cardiovascular magnetic resonance imaging

    OpenAIRE

    Thomas, Dustin M.; Minor, Matthew R.; Aden, James K.; Lisanti, Christopher J.; Steel, Kevin E.

    2017-01-01

    Background Adenosine or regadenoson vasodilator stress cardiovascular magnetic resonance (CMR) is an effective non-invasive strategy for evaluating symptomatic coronary artery disease. Vasodilator injection typically precedes ventricular functional sequences to efficiently reduce overall scanning times, though the effects of vasodilators on CMR-derived ventricular volumes and function are unknown. Methods We prospectively enrolled 25 healthy subjects to undergo consecutive adenosine and regad...

  10. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...G, Pacher P, Deitch EA, Vizi ES. Pharmacol Ther. 2007 Feb;113(2):264-75. Epub 2006 Sep 14. (.png) (.svg) (.html) (.csml) Show Shapi...ng of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Title Shapi

  11. Adenosine in peripheral chemoreception: new insights into a historically overlooked molecule--invited article.

    Science.gov (United States)

    Conde, S V; Monteiro, E C; Obeso, A; Gonzalez, C

    2009-01-01

    In the present article we review in a concise manner the literature on the general biology of adenosine signalling. In the first section we describe briefly the historical aspects of adenosine research. In the second section is presented the biochemical characteristics of this nucleoside, namely its metabolism and regulation, and its physiological actions. In the third section we have succinctly described the role of adenosine and its metabolism in hypoxia. The final section is devoted to the role of adenosine in chemoreception in the carotid body, providing a review of the literature on the presence of adenosine receptors in the carotid body; on the effects of adenosine at presynaptic level in carotid body chemoreceptor cells, as well as, its metabolism and regulation; and at postsynaptic level in carotid sinus nerve activity. Additionally, a review on the effects of adenosine in ventilation was done. This review discusses evidence for a key role of adenosine in the hypoxic response of carotid body and emphasizes new research likely to be important in the future.

  12. Adenosine induces apoptosis in human liver cancer cells through ROS production and mitochondrial dysfunction.

    Science.gov (United States)

    Ma, Yunfang; Zhang, Jun; Zhang, Qi; Chen, Ping; Song, Junyao; Yu, Shunji; Liu, Hui; Liu, Fuchen; Song, Chunhua; Yang, Dongqin; Liu, Jie

    2014-05-23

    Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are

  14. Synthesis of P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate for the investigation of biosynthesis of O-antigenic polysaccharides in Pseudomonas aeruginosa and Escherichia coli O104.

    Science.gov (United States)

    Torgov, Vladimir; Danilov, Leonid; Utkina, Natalia; Veselovsky, Vladimir; Brockhausen, Inka

    2017-12-01

    Two new phenoxyundecyl diphosphate sugars were synthesized for the first time: P 1 -(11-phenoxyundecyl)-P 2 - (2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P 1 -(11-phenoxyundecyl)-P 2 -(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate to study the third step of biosynthesis of the repeating units of O-antigenic polysaccharides in Pseudomonas aeruginosa and E.coli O104 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...... in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenosine receptor blockade on skeletal muscle exercise hyperemia with and without simultaneous inhibition of prostaglandins (indomethacin; 0.8 to 1.8 mg/min) and NO (N(G)-mono-methyl-l-arginine; 29 to 52 mg....../min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors...

  16. Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes

    Science.gov (United States)

    Chistiakova, Marina; Chen, Jen-Yung; Bazhenov, Maxim

    2017-01-01

    Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of

  17. Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the Salvia divinorum clerodienyl diphosphate synthase.

    Science.gov (United States)

    Pelot, Kyle A; Mitchell, Rod; Kwon, Moonhyuk; Hagelthorn, David M; Wardman, Jacob F; Chiang, Angela; Bohlmann, Jörg; Ro, Dae-Kyun; Zerbe, Philipp

    2017-03-01

    Salvia divinorum commonly known as diviner's sage, is an ethnomedicinal plant of the mint family (Lamiaceae). Salvia divinorum is rich in clerodane-type diterpenoids, which accumulate predominantly in leaf glandular trichomes. The main bioactive metabolite, salvinorin A, is the first non-nitrogenous natural compound known to function as an opioid-receptor agonist, and is undergoing clinical trials for potential use in treating neuropsychiatric diseases and drug addictions. We report here the discovery and functional characterization of two S. divinorum diterpene synthases (diTPSs), the ent-copalyl diphosphate (ent-CPP) synthase SdCPS1, and the clerodienyl diphosphate (CLPP) synthase SdCPS2. Mining of leaf- and trichome-specific transcriptomes revealed five diTPSs, two of which are class II diTPSs (SdCPS1-2) and three are class I enzymes (SdKSL1-3). Of the class II diTPSs, transient expression in Nicotiana benthamiana identified SdCPS1 as an ent-CPP synthase, which is prevalent in roots and, together with SdKSL1, exhibits a possible dual role in general and specialized metabolism. In vivo co-expression and in vitro assays combined with nuclear magnetic resonance (NMR) analysis identified SdCPS2 as a CLPP synthase. A role of SdCPS2 in catalyzing the committed step in salvinorin A biosynthesis is supported by its biochemical function, trichome-specific expression and absence of additional class II diTPSs in S. divinorum. Structure-guided mutagenesis revealed four catalytic residues that enabled the re-programming of SdCPS2 activity to afford four distinct products, thus advancing our understanding of how neo-functionalization events have shaped the array of different class II diTPS functions in plants, and may promote synthetic biology platforms for a broader spectrum of diterpenoid bioproducts. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies.

    Science.gov (United States)

    Takahashi, Reinaldo Naoto; Pamplona, Fabricio Alano; Prediger, Rui Daniel Schroder

    2008-01-01

    Over the last decade, adenosine receptors in the central nervous system have been implicated in the modulation of cognitive functions. Despite the general view that endogenous adenosine modulates cognition through the activation of adenosine A1 receptors, evidence is now emerging on a possible role of A2A receptors in learning and memory. The present review attempts to examine results reported in different studies using diverse animal models, to provide a comprehensive picture of the recent evidence of a relationship between adenosinergic function and memory deficits. The present data suggest that caffeine (a nonselective adenosine receptor antagonist) and selective adenosine A2A receptor antagonists can improve memory performance in rodents evaluated through different tasks. They might also afford protection against memory dysfunction elicited in experimental models of aging, Alzheimer's disease, Parkinson's disease and, in spontaneously hypertensive rats (SHR), a putative genetic model of attention deficit hyperactivity disorder (ADHD).

  19. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in human...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...

  20. Evaluation of usefulness of pleural fluid adenosine deaminase in diagnosing tuberculous pleural effusion from empyema

    Directory of Open Access Journals (Sweden)

    Vijetha Shenoy

    2014-02-01

    Full Text Available Objective: To evaluate the utility of adenosine deaminase activity in the pleural fluid for the diagnosis of tuberculous pleural effusion from empyema of non-tubercular origin. Method: A retrospective analysis of data was performed on patients who were diagnosed to have tuberculous pleural effusion and empyema of non tubercular origin. Among 46 patients at Kasturba Hospital, Manipal University, Manipal, Karnataka, India, from November 201 2 to February 2013 who underwent pleural fluid adenosine deaminase estimation, 25 patients with tuberculous pleural effusion and 21 patients with empyema were diagnosed respectively. Adenosine deaminase in pleural fluid is estimated using colorimetric, Galanti and Guisti method. Results: Pleural fluid Adenosine Deaminase levels among tuberculous pleural effusion(109.38依 53.83 , empyema (141.20依71.69 with P=0.27. Conclusion: Pleural fluid adenosine deaminase alone cannot be used as a marker for the diagnosis of tuberculous pleural effusion.

  1. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects

    DEFF Research Database (Denmark)

    Birk, S; Petersen, K.A.; Kruuse, Christina Rostrup

    2005-01-01

    Adenosine is an endogenous neurotransmitter that is released from the brain during hypoxia and relaxes isolated human cerebral arteries. Many cerebral artery dilators cause migraine attacks. However, the effect of intravenous adenosine on headache and cerebral artery diameter has not previously...... been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design......(-1) min(-1) and six during 120 microg kg(-1) min(-1) compared with none on placebo (P = 0.006). The headache was very mild and predominantly described as a pressing sensation. When correcting data for adenosine-induced hyperventilation, no significant changes in rCBF (P = 0.22) or V(MCA) (P = 0...

  2. The kinetic mechanism of S. pneumoniae DNA ligase and inhibition by adenosine-based antibacterial compounds.

    Science.gov (United States)

    Jahić, Haris; Liu, Ce Feng; Thresher, Jason; Livchak, Stephania; Wang, Hongming; Ehmann, David E

    2012-09-01

    The NAD-dependent DNA ligase is an excellent target for the discovery of antibacterial agents with a novel mode of action. In this work the DNA ligase from Streptococcus pneumoniae was investigated for its steady-state kinetic parameters and inhibition by compounds with an adenosine substructure. Inhibition by substrate DNA that was observed in the enzyme turnover experiments was verified by direct binding measurements using isothermal titration calorimetry (ITC). The substrate-inhibited enzyme form was identified as deadenylated DNA ligase. The binding potencies of 2-(butylsulfanyl) adenosine and 2-(cyclopentyloxy) adenosine were not significantly affected by the presence of the enzyme-bound DNA substrate. Finally, a mutant protein was prepared that was known to confer resistance to the adenosine compounds' antibacterial activity. The mutant protein was shown to have little catalytic impairment yet it was less susceptible to adenosine compound inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate; Effets de la temperature sur les mecanismes d'interaction entre les ions europium (3) et uranyle et le diphosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Finck, N

    2006-10-15

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  4. Interception of the enzymatic conversion of farnesyl diphosphate to 5-epi-aristolochene by using a fluoro substrate analogue: 1-fluorogermacrene A from (2E,6Z)-6-fluorofarnesyl diphosphate.

    Science.gov (United States)

    Faraldos, Juan A; Zhao, Yuxin; O'Maille, Paul E; Noel, Joseph P; Coates, Robert M

    2007-10-15

    Tobacco 5-epi-aristolochene synthase (TEAS) catalyzes the Mg(II)-dependent cyclizations and rearrangements of (E,E)-farnesyl diphosphate (PP) to the bicyclic sesquiterpene hydrocarbon via a tightly bound (+)-germacrene A as a deprotonated intermediate. With the native enzyme, only a few percent of the putative germacrene A intermediate is released from the active site during the catalytic cycle. 6-Fluorofarnesyl PP was designed and synthesized with the aim of arresting the cyclization-rearrangement mechanism en route to 5-epi-aristolochene. Indeed, incubation of (2E,6Z)-6-fluorofarnesyl PP with recombinant TEAS afforded (-)-1-fluorogermacrene A as the sole product in 58% yield. Steady-state kinetic experiments with farnesyl PP and the 6-fluoro analogue showed that the overall catalytic efficiencies (k(cat)/K(m)) are essentially the same for both substrates. 1-Fluorogermacrene A was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR and (1)H NMR data, and by heat-induced Cope rearrangement to (+)-1-fluoro-beta-elemene. (1)H NMR spectra at room temperature revealed that this (E,E)-configured fluorocyclodecadiene exists in solution as a 7:3 mixture of UU and UD conformers. 1-Fluorogermacrene A underwent trifluoroacetic acid-catalyzed cyclization to give three 1alpha-fluoroselinene isomers at a rate estimated to be about 1000 times slower than that of the similar cyclization of (+)-germacrene A to the parent selinenes.

  5. Interception of the Enzymatic Conversion of Farnesyl Diphosphate to 5-Epi-Aristolochene by Using a Fluoro Substrate Analogue: 1-Fluorogermacrene A from (2E,6Z)-6-Fluorofarnesyl Diphosphate**

    Science.gov (United States)

    Faraldos, Juan A.; Zhao, Yuxin; O'Maille, Paul E.; Noel, Joseph P.; Coates, Robert M.

    2009-01-01

    Tobacco 5-epi-aristolochene synthase (TEAS) catalyzes the MgII-dependent cyclizations and rearrangements of (E,E)-farnesyl diphosphate (PP) to the bicyclic sesquiterpene hydrocarbon via a tightly bound (+)-germacrene A as a deprotonated intermediate. With the native enzyme, only a few percent of the putative germacrene A intermediate is released from the active site during the catalytic cycle. 6-Fluorofarnesyl PP was designed and synthesized with the aim of arresting the cyclization-rearrangement mechanism en route to 5-epi-aristolochene. Indeed, incubation of (2E,6Z)-6-fluorofarnesyl PP with recombinant TEAS afforded (-)-1-fluororogermacrene A as the sole product in 58% yield. Steady-state kinetic experiments with farnesyl PP and the 6-fluoro analogue showed that the overall catalytic efficiencies (kcat/Km) are essentially the same for both substrates. 1-Fluorogermacrene A was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR and 1H NMR data, and by heat-induced Cope rearrangement to (+)-1-fluoro-β-elemene. 1H NMR spectra at room temperature revealed that this (E,E)-configured fluorocyclodecadiene exists in solution as a 7:3 mixture of UU and UD conformers. 1-Fluorogermacrene A underwent trifluoroacetic acid-catalyzed cyclization to give three 1α-fluoroselinene isomers at a rate estimated to be about 1000 times slower than that of the similar cyclization of (+)-germacrene A to the parent selinenes. PMID:17886322

  6. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    OpenAIRE

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Gr?gory; Garcia-Argote, S?bastien; Loreau, Olivier; Goncalves, Jordan; Chacun, H?l?ne; Courbebaisse, Yann; Clayette, Pascal; Desma?le, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia an...

  7. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism

    Czech Academy of Sciences Publication Activity Database

    Downey, Alan Michael; Pohl, Radek; Roithová, J.; Hocek, Michal

    2017-01-01

    Roč. 23, č. 16 (2017), s. 3910-3917 ISSN 0947-6539 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA16-00178S Institutional support: RVO:61388963 Keywords : epoxides * glycosylation * nucleosides * riboses * synthesis design Subject RIV: CC - Organic Chemistry Impact factor: 5.317, year: 2016

  8. Current Status of Poly(ADP-ribose Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    David J. Hiller

    2012-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2 negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in the absence of therapy. Research has now further differentiated breast cancer into subtypes based on genetic expression patterns. One of these subtypes, basal-like, frequently overlaps with the clinical picture of TNBC. Additionally, both TNBC and basal-like breast cancer link to BRCA mutations. Recent pharmaceutical advances have created a class of drugs, poly(ADP-ribose polymerase (PARP inhibitors, which are showing potential to effectively treat these patients. The aim of this paper is to summarize the basis behind PARP inhibitors and update the current status of their development in clinical trials for the treatment of TNBC.

  9. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chassé, Maggie H.; Muthurajan, Uma M.; Clark, Nicholas J.; Kramer, Michael A.; Chakravarthy, Srinivas; Irving, Thomas; Luger, Karolin [Children; (IIT); (Colorado); (Amgen)

    2018-01-18

    Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.

  10. Adenosine promotes alternative macrophage activation via A2A and A2B receptors

    Science.gov (United States)

    Csóka, Balázs; Selmeczy, Zsolt; Koscsó, Balázs; Németh, Zoltán H.; Pacher, Pál; Murray, Peter J.; Kepka-Lenhart, Diane; Morris, Sidney M.; Gause, William C.; Leibovich, S. Joseph; Haskó, György

    2012-01-01

    Adenosine has been implicated in suppressing the proinflammatory responses of classically activated macrophages induced by Th1 cytokines. Alternative macrophage activation is induced by the Th2 cytokines interleukin (IL)-4 and IL-13; however, the role of adenosine in governing alternative macrophage activation is unknown. We show here that adenosine treatment of IL-4- or IL-13-activated macrophages augments the expression of alternative macrophage markers arginase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and macrophage galactose-type C-type lectin-1. The stimulatory effect of adenosine required primarily A2B receptors because the nonselective adenosine receptor agonist 5′-N-ethylcarboxamidoadenosine (NECA) increased both arginase activity (EC50=261.8 nM) and TIMP-1 production (EC50=80.67 nM), and both pharmacologic and genetic blockade of A2B receptors prevented the effect of NECA. A2A receptors also contributed to the adenosine augmentation of IL-4-induced TIMP-1 release, as both adenosine and NECA were less efficacious in augmenting TIMP-1 release by A2A receptor-deficient than control macrophages. Of the transcription factors known to drive alternative macrophage activation, CCAAT-enhancer-binding protein β was required, while cAMP response element-binding protein and signal transducer and activator of transcription 6 were dispensable in mediating the effect of adenosine. We propose that adenosine receptor activation suppresses inflammation and promotes tissue restitution, in part, by promoting alternative macrophage activation.—Csóka, B., Selmeczy, Z., Koscsó, B., Németh, Z. H., Pacher, P., Murray, P. J., Kepka-Lenhart, D., Morris S. M., Jr., Gause, W. C., Leibovich, S. J., Haskó, G. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. PMID:21926236

  11. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    Science.gov (United States)

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  12. Rietveld refinement of the RbYP[sub 2]O[sub 7] structure and crystal chemistry of related rare earths diphosphates

    Energy Technology Data Exchange (ETDEWEB)

    Akrim, A.; Zambon, D.; Metin, J.; Cousseins, J.C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France))

    1993-01-01

    The crystal structure of the diphosphate BbYP[sub 2]O[sub 7] was refined using the Rietveld analysis of X-ray powder diffraction data. This compound crystallizes in the monoclinic system. The structure is compared with that of some isotypic compounds. The distortion of the YO[sub 6] and P[sub 2]O[sub 7] polyhedra seems to be due in RbYP[sub 2]O[sub 7] to the large size of the Y[sup 3+] cation. Some other diphosphates isotypic with RbYP[sub 2]O[sub 7] were prepared with the lanthanide cations: RbLnP[sub 2]O[sub 7] (Ln = Dy[yields]Lu) and CsLnP[sub 2]O[sub 7] (Ln = Gd[yields]Lu). The existence of these compounds is discussed on the basis of the ionic radii of the different ions.

  13. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Science.gov (United States)

    2010-02-26

    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health... triazoloquinazoline derivatives, their preparation and use as adenosine receptor antagonists,'' filed January 29, 1996... one-, and triazoloquinazoline derivatives, their preparation and use as adenosine receptor antagonists...

  14. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    Science.gov (United States)

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. Copyright © 2015. Published by Elsevier B.V.

  15. Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures.

    Science.gov (United States)

    Tritsch, Denis; Hemmerlin, Andréa; Bach, Thomas J; Rohmer, Michel

    2010-01-04

    Feeding tobacco BY-2 cells with [2-(13)C,4-(2)H]deoxyxylulose revealed from the (13)C labeling that the plastid isoprenoids, synthesized via the MEP pathway, are essentially derived from the labeled precursor. The ca. 15% (2)H retention observed in all isoprene units corresponds to the isopentenyl diphosphate (IPP)/dimethylallyl diphosphate (DMAPP) ratio (85:15) directly produced by the hydroxymethylbutenyl diphosphate reductase, the last enzyme of the MEP pathway. (2)H retention characterizes the isoprene units derived from the DMAPP branch, whereas (2)H loss represents the signature of the IPP branch. Taking into account the enantioselectivity of the reactions catalyzed by the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, the IPP isomerase and the trans-prenyl transferase, a single biogenetic scheme allows to interpret all labeling patterns observed in bacteria or plants upon incubation with (2)H labeled deoxyxylulose.

  16. [Cloning and functional characterization of a cDNA encoding isopentenyl diphosphate isomerase involved in taxol biosynthesis in Taxus media].

    Science.gov (United States)

    Shen, Tian; Qiu, Fei; Chen, Min; Lan, Xiao-zhong; Liao, Zhi-hua

    2015-05-01

    Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.

  17. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    Science.gov (United States)

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A Molybdenum V Diphosphate Involving LiO 4 Tetrahedra: LiMoOP 2O 7

    Science.gov (United States)

    Ledain, S.; Borel, M. M.; Leclaire, A.; Provost, J.; Raveau, B.

    1995-12-01

    A lithium Mo(V) diphosphate LiMoOP 2O 7 has been synthesized for the first time. It crystallizes in the space group P 2 1/n with a = 16.046(4) Å, b = 11.951(2) Å, c = 9.937(2) Å, β = 104.62(2)°. Its original structure is built up from P 2O 7 groups and MoO 6 octahedra forming intersecting tunnels, where the Li + cations are located with a tetrahedral coordination. This phase belongs to the IB class of Mo(V) phosphates defined by Costentin et al. The [MoP 2O 8] framework indeed consists of MoP 2O 11 units built up from one P 2O 7 group sharing two apices with the same MoO 6 octahedron; the MoP 2O 11 units share their apices forming [MoP 2O 10]∞ chains running along a and b and the [1¯04] direction. This phase exhibits a classical paramagnetic behavior, with 0 = -9.8 K and μ = 1.58 μ B.

  19. HbIDI, SlIDI and EcIDI: A comparative study of isopentenyl diphosphate isomerase activity and structure.

    Science.gov (United States)

    Berthelot, Karine; Estevez, Yannick; Quiliano, Miguel; Baldera-Aguayo, Pedro A; Zimic, Mirko; Pribat, Anne; Bakleh, Marc-Elias; Teyssier, Emeline; Gallusci, Philippe; Gardrat, Christian; Lecomte, Sophie; Peruch, Frédéric

    2016-08-01

    In this study, we cloned, expressed and purified the isopentenyl diphosphate isomerases (IDIs) from two plants, Hevea brasiliensis and Solanum lycopersicum, and compared them to the already well characterized Escherichia coli IDI. Phylogenetic analysis showed high homology between the three enzymes. Their catalytic activity was investigated in vitro with recombinant purified enzymes and in vivo by complementation colorimetric tests. The three enzymes displayed consistent activities both in vitro and in vivo. In term of structure, studied by ATR-FTIR and molecular modeling, it is clear that both plant enzymes are more related to their human homologue than to E. coli IDI. But it is assumed that EcIDI represent the minimalistic part of the catalytic core, as both plant enzymes present a supplementary sequence forming an extra α-helice surrounding the catalytic site that could facilitate the biocatalysis. New potential biotechnological applications may be envisaged. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.

    Science.gov (United States)

    Ginis, Olivia; Courdavault, Vincent; Melin, Céline; Lanoue, Arnaud; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Courtois, Martine; Oudin, Audrey

    2012-05-01

    The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.

  1. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5.

    Science.gov (United States)

    Mannen, Kazuto; Matsumoto, Takuro; Takahashi, Seiji; Yamaguchi, Yuta; Tsukagoshi, Masanori; Sano, Ryosuke; Suzuki, Hideyuki; Sakurai, Nozomu; Shibata, Daisuke; Koyama, Tanetoshi; Nakayama, Toru

    2014-01-10

    All isoprenoids are derived from a common C5 unit, isopentenyl diphosphate (IPP). In plants, IPP is synthesized via two distinct pathways; the cytosolic mevalonate pathway and the plastidial non-mevalonate (MEP) pathway. In this study, we used a co-expression analysis to identify transcription factors that coordinately regulate the expression of multiple genes encoding enzymes in the IPP biosynthetic pathway. Some candidates showed especially strong correlations with multiple genes encoding MEP-pathway enzymes. We report here that phytochrome-interacting factor 5 (PIF5), a basic-helix-loop-helix type transcription factor, functions as a positive regulator of the MEP pathway. Its overexpression in T87 suspension cultured cells resulted in increased accumulation of chlorophylls and carotenoids. Detailed analyses of carotenoids by HPLC indicated that some carotenoid biosynthetic pathways were concomitantly up-regulated, possibly as a result of enhanced IPP metabolic flow. Our results also revealed other PIF family proteins that play different roles from that of PIF5 in IPP metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

    Science.gov (United States)

    Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N

    1997-04-15

    The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other

  3. Identification of cysteine-319 as the target amino acid of 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate in bovine liver glutamate dehydrogenase.

    Science.gov (United States)

    Ozturk, D H; Colman, R F

    1991-07-23

    The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) has been shown to react with bovine liver glutamate dehydrogenase in the region of the GTP-dependent NADH inhibitory site with incorporation of about 1 mol of reagent/mol of subunit [Ozturk, D. H., Safer, D., & Colman, R. F. (1990) Biochemistry 29, 7112-7118]. The modified enzyme was shown to contain only 5 free sulfhydryl groups upon 5,5'-dithiobis (2-nitrobenzoate) titration as compared with 6 in the unmodified enzyme. In the unmodified enzyme digested with trypsin, 6 cysteinyl peptides were detected by high-performance liquid chromatography upon treatment with iodo [3H]acetic acid. In contrast, only 5 (carboxymethyl)cysteinyl peptides were detected in 8-BDB-TA-5'-TP-modified enzyme. When carboxymethylated modified and unmodified enzymes were digested with thermolysin, 6 peptide sequences containing (carboxymethyl)cysteine were obtained in the unmodified enzyme, but only 5 were observed in the modified enzyme. The (carboxymethyl)cysteine which was absent in the modified enzyme was determined to be Cys-319, leading to the conclusion that 8-BDB-TA-5'-TP reacts with Cys-319, thereby preventing it from subsequent reaction with radioactive iodoacetate. It was previously reported that 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate (6-BDB-TA-5'-DP) modifies Cys-319 in this enzyme [Batra, S. P., & Colman, R. F. (1986) Biochemistry 25, 3508-3515].(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Molecular cloning and functional identification of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Qiqing Cheng

    2017-03-01

    Full Text Available The 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR is the last step key enzyme of the methylerythritol phosphate (MEP pathway, synthesizing isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which is important for regulation of isoprenoid biosynthesis. Here the full-length cDNA of HDR, designated TwHDR (GenBank Accession No. KJ933412.1, was isolated from Tripterygium wilfordii for the first time. TwHDR has an open reading frame (ORF of 1386 bp encoding 461 amino acids. TwHDR exhibits high homology with HDRs of other plants, with an N-terminal conserved domain and three conserved cysteine residues. TwHDR cDNA was cloned into an expression vector and transformed into an Escherichia coli hdr mutant. Since loss-of-function E.coli hdr mutant is lethal, the result showed that transformation of TwHDR cDNA rescued the E.coli hdr mutant. This complementation assay suggests that the TwHDR cDNA encodes a functional HDR enzyme. The expression of TwHDR was induced by methyl-jasmonate (MJ in T. wilfordii suspension cells. The expression of TwHDR reached the highest level after 1 h of MJ treatment. These results indicate that we have identified a functional TwHDR enzyme, which may play a pivotal role in the biosynthesis of diterpenoid triptolide in T. wilfordii.

  5. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  6. N6-adenosine methylation in MiRNAs.

    Directory of Open Access Journals (Sweden)

    Tea Berulava

    Full Text Available Methylation of N6-adenosine (m6A has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression.

  7. N6-adenosine methylation in MiRNAs.

    Science.gov (United States)

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression.

  8. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  9. The perfusion pattern in coronary artery occlusion: comparison of exercise and adenosine.p6.

    Science.gov (United States)

    Iskandrian, A S; Kegel, J; Heo, J; Ogilby, J D; Untereker, W J; Cave, V

    1992-12-01

    This study compared exercise to adenosine thallium-201 single photon emission computed tomography in detecting occlusion of left anterior descending or right coronary arteries in patients with no previous myocardial infarction. There were 41 patients who underwent adenosine thallium imaging (adenosine infusion at a rate of 140 micrograms/kg/min for 6 min), and 143 patients who underwent exercise thallium imaging. There were more patients with right coronary than left anterior descending coronary artery occlusion. Thus, in the adenosine group, there were 15 patients with left anterior descending artery occlusion, and 26 with right coronary artery occlusion, and in the exercise group, there were 46 patients with left anterior descending artery occlusion, and 97 patients with right coronary artery occlusion. In the adenosine group, the thallium images were abnormal in 41 patients (100%), while in the exercise group, the thallium images were abnormal in 125 patients (87%, P exercise group (P:NS). In patients with isolated single vessel occlusion, the size of the perfusion abnormality was 28 +/- 9% with adenosine, and 21 +/- 12% with exercise (P:NS). Thus, most patients with occlusion of the left anterior descending or right coronary artery have regional perfusion abnormality during stress; the different role of collaterals with each type of stress may explain the higher percentage of abnormal results with adenosine than exercise.

  10. Adenosine for postoperative analgesia: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia.We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR, and 95% confidence intervals (CI were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials.In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1. The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1, but the rate of PONV occurrence was greater in the remifentanil subgroup (P 0.1.Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function.

  11. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  12. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Voigtlander, Thomas; Magedanz, Annett; Schmermund, Axel [Cardiovascular Center Bethanien (CCB), Frankfurt (Germany); Bramlage, Peter [Technical University of Dresden, Dresden (Germany); Elsaesser, Amelie [University of Mainz, Mainz (Germany); Kauczor, Hans-Ulrich; Mohrs, Oliver K. [University of Heidelberg, Heidelberg (Germany)

    2011-08-15

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 {+-} 9 years) received adenosine (140 {mu}g/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 {+-} 11.7 versus 82.4 {+-} 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 {+-} 1.9% versus 97 {+-} 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 {+-} 24.0 versus 140.9 {+-} 25.7 mmHg; diastolic: 80.2 {+-} 12.5 mmHg versus 78.9 {+-} 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  13. Intravenous adenosine protects the myocardium primarily by activation of a neurogenic pathway

    Science.gov (United States)

    Manintveld, Olivier C; te Lintel Hekkert, Maaike; Keijzer, Elisabeth; Verdouw, Pieter D; Duncker, Dirk J

    2005-01-01

    Endogenous adenosine is a trigger for ischemic myocardial preconditioning (IPC). Although intravascular administration of adenosine has been used to further unravel the mechanism of protection by IPC, it is questionable whether adenosine and IPC employ the same signaling pathways to exert cardioprotection. We therefore investigated whether the active metabolic barrier of the endothelium prevents an increase in myocardial interstitial adenosine concentrations by intravenous adenosine, using microdialysis, and also the role of NO and activation of a neurogenic pathway in the cardioprotection by adenosine. In pentobarbital-anesthetized rats, area at risk and infarct size (IS) were determined 120 min after a 60-min coronary artery occlusion (CAO), using trypan blue and nitro-blue-tetrazolium staining, respectively. IPC with a single 15-min CAO and a 15-min adenosine infusion (ADO, 200 μg min−1 i.v.) limited IS to the same extent (IS=41±6% and IS=40±4%, respectively) compared to control rats (IS=63±3%, both P<0.05). However, IPC increased myocardial interstitial adenosine levels seven-fold from 4.3±0.7 to 27.1±10.0 μM (P<0.05), while ADO had no effect on interstitial adenosine (4.1±1.2 μM), or any of the other purines. The NO synthase inhibitor Nω-nitro-L-arginine (LNNA), which did not affect IS (IS=62±3%), attenuated the protection by ADO (IS=56±3%; P<0.05 vs ADO, P=NS vs LNNA). The ganglion blocker hexamethonium, which had also no effect on IS (IS=66±3%), blunted the protection by ADO (IS=55±4%; P<0.05 vs ADO and vs hexamethonium). These observations demonstrate that cardioprotection by ADO is dependent on NO, and is primarily mediated by activation of a neurogenic pathway. PMID:15895104

  14. Smoke Extract Impairs Adenosine Wound Healing. Implications of Smoke-Generated Reactive Oxygen Species

    Science.gov (United States)

    Zimmerman, Matthew C.; Zhang, Hui; Castellanos, Glenda; O’Malley, Jennifer K.; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H.; Wyatt, Todd A.

    2013-01-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5′-(N-cyclopropyl)–carboxamido–adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract–mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate–dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species–dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of

  15. The thorium phosphate diphosphate as matrix for radioactive waste conditioning: radionuclide immobilization and behavior under irradiation; Le phosphate diphosphate de thorium, matrice pour le conditionnement des dechets radioactifs: immobilisation de radionucleides, comportement sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pichot, Erwan [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-13

    The aim of this work was to perform successively the decontamination of liquid solutions and the final immobilization of radionuclide storage using the same matrix. For this, thorium phosphate-diphosphate (TPD) of the formula Th{sub 4}P{sub 6}O{sub 23}, is proposed as a very resistant to water corrosion matrix. A new compound, thorium phosphate hydrogeno-phosphate (TPHP) of the formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), nH{sub 2}O with n=3-7 was synthesized and characterized. Heated at 1100 deg.C it is transformed into the TDP. Ion exchange properties of TPHP were investigated. The exchange yields of imponderable caesium, strontium and americium ion onto TPHP (NaNO{sub 3} 0.1 M media at pH=6) are equal to 60% for the first one and 100% for the two others. The results interpreted in terms of ion-exchange led to determine selectivity coefficient values for each cation and suggested that only hydrated ions are exchanged. While the TPD is proposed for the high level nuclear waste storage, the irradiation effects, particularly structural modifications were studied using both {gamma} irradiation and charged particle irradiation. ESR and TL methods were carried out in order to identify radicals created during gamma radiation exposure. Correlation between ESR and TL experiments performed at room temperature clearly show three of PO{sub 3}{sup 2-} species and one POO{center_dot} species of free radicals. We have shown that Au-ion irradiation in the range of MeV energy involved TPD structure and chemical modifications. Important sputtering was interpreted in terms of local thermal chemical decomposition. We have shown, at room temperature, that the amorphization dose for heavy ion irradiation is between 0.1 to 0.4 dpa. (author) 146 refs., 46 figs., 21 tabs.

  16. Study of the irradiation effects on thorium phosphate diphosphate ({beta}-TPD): consequences on its chemical durability; Etude des effets d'irradiation sur le phosphate diphosphate de thorium ({beta}-PDT): consequences sur la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C

    2005-12-15

    Since Thorium Phosphate Diphosphate (beta-TPD) can be considered as a potential host matrix for long-term storage in underground repository, it is necessary to study the irradiation effects on the structure of this ceramics and the consequences on its chemical durability. Sintered samples of beta-TPD and of associated solid solutions of beta-TUPD were irradiated under ion beams and then altered in aqueous solutions. Depending on the electronic LET value, beta-TPD can be completely or partly amorphized. Furthermore, the ability of recrystallization of the amorphous material by thermal annealing was also demonstrated. Some leaching tests, realized on these irradiated samples, have shown a significant effect of the amorphous fraction on the normalized dissolution rate which was increased by a factor of 10 from the crystallized to the fully amorphized material. Correlatively, the amorphous fraction also modified the delay to reach the saturation conditions associated to the thermodynamic equilibria involved. On the other hand, it exhibited no influence neither on other kinetic parameters, such as activation energy of the dissolution process or partial order related to the proton concentration, nor on the nature of the neo-formed phase formed at the saturation of the leachate and identified as Thorium Phosphate Hydrogeno-Phosphate Hydrate (TPHPH). Beta-TUPD samples were also irradiated by gamma and alpha rays during leaching tests to study the effects of radiolysis in the leaching medium on the normalized leaching rate. It appeared that the radiolytic species occurring in the dissolution mechanism were unstable, disappearing quickly when stopping the irradiation. (author)

  17. Regadenoson provides perfusion results comparable to adenosine in heterogeneous patient populations: a quantitative analysis from the ADVANCE MPI trials.

    Science.gov (United States)

    Mahmarian, John J; Peterson, Leif E; Xu, Jiaqiong; Cerqueira, Manuel D; Iskandrian, Ami E; Bateman, Timothy M; Thomas, Gregory S; Nabi, Faisal

    2015-04-01

    Total and reversible left ventricular (LV) perfusion defect size (PDS) predict patient outcome. Limited data exist as to whether regadenoson induces similar perfusion abnormalities as observed with adenosine. We sought to determine whether regadenoson induces a similar LV PDS as seen with adenosine across varying patient populations. ADVANCE MPI were prospective, double-blind randomized trials comparing regadenoson to standard adenosine myocardial perfusion tomography (SPECT). Following an initial adenosine SPECT, patients were randomized to either regadenoson (N = 1284) or a second adenosine study (N = 660). SPECT quantification was performed blinded to randomization and image sequence. Propensity analysis was used to define comparability of regadenoson and adenosine perfusion results. Baseline clinical and SPECT results were similar in the two randomized groups. There was a close correlation between adenosine and regadenoson-induced total (r (2) = 0.98, P regadenoson vs adenosine, respectively, and irrespective of age, gender, diabetic status, body mass index, or prior cardiovascular history. By propensity analysis, regadenoson-induced total PDS was significantly larger than observed with adenosine. This is the first study to show that regadenoson induces similar, if not larger, perfusion defects than those observed with adenosine across different patient populations and demonstrates the value of quantitative analysis for defining serial changes in SPECT perfusion results. Regadenoson should provide comparable diagnostic and prognostic SPECT information to that obtained with adenosine.

  18. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    the protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  19. Regional distribution of high affinity binding of 3H-adenosine in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Traversa, U.; Puppini, P.; de Angelis, L.; Vertua, R.

    1984-06-01

    The high and low affinity adenosine binding sites with Kd values ranging respectively from 0.8 to 1.65 microM and from 3.1 to 13.86 microM were demonstrated in the following rat brain areas: cortex, hippocampus, striatum, cerebellum, diencephalon, and pons-medulla. Adenosine receptors involved in the high affinity binding seem to be mainly Ra-type. The analysis of the regional distribution of 3H-Adenosine showed the highest levels of specific binding in striatum and hippocampus; somewhat smaller values in cortex, cerebellum, and diencephalon, and even lower in pons-medulla.

  20. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  1. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    Science.gov (United States)

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  2. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    OpenAIRE

    Peakman, M C; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC5...

  3. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    Science.gov (United States)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  4. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  5. Synthetic Lethality Triggered by Combining Olaparib with BRCA2-Rad51 Disruptors.

    Science.gov (United States)

    Falchi, Federico; Giacomini, Elisa; Masini, Tiziana; Boutard, Nicolas; Di Ianni, Lorenza; Manerba, Marcella; Farabegoli, Fulvia; Rossini, Lara; Robertson, Janet; Minucci, Saverio; Pallavicini, Isabella; Di Stefano, Giuseppina; Roberti, Marinella; Pellicciari, Roberto; Cavalli, Andrea

    2017-10-20

    In BRCA2-defective cells, poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitors can trigger synthetic lethality, as two independent DNA-repairing mechanisms are simultaneously impaired. Here, we have pharmacologically induced synthetic lethality, which was triggered by combining two different small organic molecules. When administered with a BRCA2-Rad51 disruptor in nonmutant cells, Olaparib showed anticancer activity comparable to that shown when administered alone in BRCA2-defective cells. This strategy could represent an innovative approach to anticancer drug discovery and could be extended to other synthetic lethality pathways.

  6. Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase.

    Science.gov (United States)

    Johnson, Larry; Atanasova, Kalina R; Bui, Phuong Q; Lee, Jungnam; Hung, Shu-Chen; Yilmaz, Özlem; Ojcius, David M

    2015-05-01

    Many intracellular pathogens evade the innate immune response in order to survive and proliferate within infected cells. We show that Porphyromonas gingivalis, an intracellular opportunistic pathogen, uses a nucleoside-diphosphate kinase (NDK) homolog to inhibit innate immune responses due to stimulation by extracellular ATP, which acts as a danger signal that binds to P2X7 receptors and induces activation of an inflammasome and caspase-1. Thus, infection of gingival epithelial cells (GECs) with wild-type P. gingivalis results in inhibition of ATP-induced caspase-1 activation. However, ndk-deficient P. gingivalis is less effective than wild-type P. gingivalis in reducing ATP-mediated caspase-1 activation and secretion of the pro-inflammatory cytokine, IL-1β, from infected GECs. Furthermore, P. gingivalis NDK modulates release of high-mobility group protein B1 (HMGB1), a pro-inflammatory danger signal, which remains associated with chromatin in healthy cells. Unexpectedly, infection with either wild-type or ndk-deficient P. gingivalis causes release of HMGB1 from the nucleus to the cytosol. But HMGB1 is released to the extracellular space when uninfected GECs are further stimulated with ATP, and there is more HMGB1 released from the cells when ATP-treated cells are infected with ndk-deficient mutant than wild-type P. gingivalis. Our results reveal that NDK plays a significant role in inhibiting P2X7-dependent inflammasome activation and HMGB1 release from infected GECs. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews.

    Science.gov (United States)

    Zelinger, Lina; Banin, Eyal; Obolensky, Alexey; Mizrahi-Meissonnier, Liliana; Beryozkin, Avigail; Bandah-Rozenfeld, Dikla; Frenkel, Shahar; Ben-Yosef, Tamar; Merin, Saul; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G; Sharon, Dror

    2011-02-11

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Suppressing ABA uridine diphosphate glucosyltransferase (SlUGT75C1) alters fruit ripening and the stress response in tomato.

    Science.gov (United States)

    Sun, Yufei; Ji, Kai; Liang, Bin; Du, Yangwei; Jiang, Li; Wang, Juan; Kai, Wenbin; Zhang, Yushu; Zhai, Xiawan; Chen, Pei; Wang, Hongqing; Leng, Ping

    2017-08-01

    Abscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA. Therefore, SlUGT75C1 was selected for further investigation. SlUGT75C1 RNA interference significantly up-regulated the expression level of SlCYP707A2, which encodes an ABA 8'-hydroxylase but did not affect the expression of SlNCED1, which encodes a key enzyme in ABA biosynthesis. Suppression of SlUGT75C1 significantly accelerated fruit ripening by enhancing ABA levels and promoting the early release of ethylene. SlUGT75C1-RNAi altered the expression of fruit ripening genes (genes involved in ethylene release and cell wall catabolism). SlUGT75C1-RNAi seeds showed delayed germination and root growth compared with wild-type as well as increased sensitivity to exogenous ABA. SlUGT75C1-RNAi plants were also more resistant to drought stress. These results demonstrated that SlUGT75C1 plays a crucial role in ABA-mediated fruit ripening, seed germination, and drought responses in tomato. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase {beta} in long patch base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, Maria; Khodyreva, Svetlana [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation); Lavrik, Olga, E-mail: lavrik@niboch.nsc.ru [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation)

    2010-03-01

    Poly(ADP-ribose)polymerase 1 (PARP1), functioning as DNA nick-sensor, interacts with base excision repair (BER) DNA intermediates containing single-strand breaks. When bound to DNA breaks, PARP1 catalyzes synthesis of poly(ADP-ribose) covalently attached to itself and some nuclear proteins. Autopoly(ADP-ribosyl)ation of PARP1 facilitates its dissociation from DNA breaks and is considered as a factor regulating DNA repair. In the study, using system reconstituted from purified BER proteins, bovine testis nuclear extract and model BER DNA intermediates, we examined the influence of PARP1 and its autopoly(ADP-ribosyl)ation on DNA polymerase {beta} (Pol {beta})-mediated long patch (LP) BER DNA synthesis that is accomplished through a cooperation between Pol {beta} and apurinic/apyrimidinic endonuclease1 (APE1) or flap endonuclease 1 (FEN1) and gap-filling activity of Pol {beta}. PARP1 upon interaction with nicked LP BER DNA intermediated, formed after gap-filling, was shown to suppress the subsequent steps in LP pathway. PARP1 interferes with APE1-dependent stimulation of DNA synthesis by Pol {beta} via strand-displacement mechanism. PARP1 also represses Pol {beta}/FEN1-mediated LP BER DNA synthesis via a 'gap translation' mechanism inhibiting FEN1 activity on the nicked DNA intermediate. Poly(ADP-ribosyl)ation of PARP1 abolishes its inhibitory influence on LP BER DNA synthesis catalyzed by Pol {beta} both via APE1-mediated strand-displacement and FEN1-mediated 'gap translation' mechanism. Thus PARP1 may act as a negative regulator of Pol {beta} activity in LP BER pathway and poly(ADP-ribosyl)ation of PARP1 seems to play a critical role in enablement of Pol {beta}-mediated DNA synthesis in this process. In contrast, interaction of PARP1 with one nucleotide gapped DNA mimicking the intermediate of short patch (SP) BER slightly inhibits the gap-filling activity of Pol {beta} and the overall efficiency of SP BER is practically unaffected by PARP1. Thus

  10. Determination of Adenosine, Cordycepin and Ergosterol Contents in Cultivated Antrodia camphorata by HPLC Method

    National Research Council Canada - National Science Library

    CHIEN-YU CHANG; MING-YONG LUE; TZU-MING PAN

    2005-01-01

      The concentrations of adenosine and cordycepin, 3'-deoxyadenosine in the hot water extract and ergosterol in the ethanol extract of a cultivated Antrodia camphorata were measured by high performance...

  11. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After

  12. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    Continued progress has been made toward each of the Specific Aims (SAs) 1 and 2 (SA 3 completed) of our research project, Caffeine, adenosine receptors and estrogen in toxin models of Parkinson's disease...

  13. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF......) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... and with theophylline (P Adenosine receptor blockade did not have any effect on mean bulk BF or BF heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  14. The role of carotid chemoreceptors in the sympathetic activation by adenosine in humans.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Rongen, G.A.P.J.M.; Karemaker, J.M.; Wieling, W.; Marres, H.A.M.; Lenders, J.W.M.

    2004-01-01

    The direct vasodilatory and negative chronotropic effects of adenosine in humans are counterbalanced by a reflex increase in sympathetic nerve traffic. A suggested mechanism for this reflex includes peripheral chemoreceptor activation. We, therefore, assessed the contribution of carotid

  15. Hemodynamic significance of coronary stenosis by vessel attenuation measurement on CT compared with adenosine perfusion MRI

    NARCIS (Netherlands)

    den Dekker, Martijn A. M.; Pelgrim, Gert Jan; Pundziute, Gabija; van den Heuvel, Edwin R.; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    Purpose: We assessed the association between corrected contrast opacification (CCO) based on coronary computed tomography angiography (cCTA) and inducible ischemia by adenosine perfusion magnetic resonance imaging (APMR). Methods: Sixty cardiac asymptomatic patients with extra-cardiac arterial

  16. Cardiac endothelial transport and metabolism of adenosine and inosine

    Science.gov (United States)

    Schwartz, Lisa M.; Bukowski, Thomas R.; Revkin, James H.; Bassingthwaighte, James B.

    2010-01-01

    The influence of transmembrane flux limitations on cellular metabolism of purine nucleosides was assessed in whole organ studies. Transcapillary transport of the purine nucleosides adenosine (Ado) and inosine (Ino) via paracellular diffusion through interendothelial clefts in parallel with carrier-mediated transendothelial fluxes was studied in isolated, Krebs-Henseleit-perfused rabbit and guinea pig hearts. After injection into coronary inflow, multiple-indicator dilution curves were obtained from coronary outflow for 90 s for 131I-labeled albumin (intravascular reference tracer), [3H]arabinofuranosyl hypoxanthine (AraH; extracellular reference tracer and nonreactive adenosine analog), and either [14C]Ado or [14C]Ino. Ado or Ino was separated from their degradative products, hypoxanthine, xanthine, and uric acid, in each outflow sample by HPLC and radioisotope counting. Ado and Ino, but not AraH, permeate the luminal membrane of endothelial cells via a saturable transporter with permeability-surface area product PSecl and also diffuse passively through interendothelial clefts with the same conductance (PSg) as AraH. These parallel conductances were estimated via fitting with an axially distributed, multi-pathway, four-region blood-tissue exchange model. PSg for AraH were ~4 and 2.5 ml · g−1 · min−1 in rabbits and guinea pigs, respectively. In contrast, transplasmalemmal conductances (endothelial PSecl) were ~0.2 ml · g−1 · min−1 for both Ado and Ino in rabbit hearts but ~2 ml · g−1 · min−1 in guinea pig hearts, an order of magnitude different. Purine nucleoside metabolism also differs between guinea pig and rabbit cardiac endothelium. In guinea pig heart, 50% of the tracer Ado bolus was retained, 35% was washed out as Ado, and 15% was lost as effluent metabolites; 25% of Ino was retained, 50% washed out, and 25% was lost as metabolites. In rabbit heart, 45% of Ado was retained and 5% lost as metabolites, and 7% of Ino was retained and 3% lost as

  17. Myocardial perfusion imaging laboratory efficiency with the use of regadenoson compared to adenosine and dipyridamole.

    Science.gov (United States)

    Friedman, Michelle; Spalding, James; Kothari, Smita; Wu, You; Gatt, Elyse; Boulanger, Luke

    2013-01-01

    Adenosine, dipyridamole, and regadenoson are pharmacologic stress agents used in myocardial perfusion imaging (MPI), to diagnose and monitor coronary artery disease. Clinical studies suggest that regadenoson has pharmacologic properties that simplify the MPI procedure through availability to a wider range of patients and easier administrative requirements. This study assesses the operational advantages and laboratory efficiency associated with the use of regadenoson compared to adenosine and dipyridamole. A web-based survey of 141 nuclear medicine technologists working in US-based cardiovascular imaging laboratories from June-July 2009. Descriptive statistics measured the adenosine, dipyridamole, and regadenoson cohorts. Bivariate analyses compared the overall and staff-specific time to conduct an MPI test. The site-specific sub-groups were defined by hospital vs non-hospital setting, hours of operation, number of SPECT cameras, and number of full-time equivalent staff, including nurses, nuclear technologists, physicians, and nurse practitioners/physician assistants. The total time to conduct an MPI test was shortest with regadenoson 156 (46) min compared to adenosine and dipyridamole 182 (63) and 191 (61) min, respectively. Time from regadenoson administration to the start of the imaging session, including dose calculation and infusion time, was 14.2 min less than adenosine, and 12.0 min less than dipyridamole. The time to manage adverse events was shortest if it occurred with regadenoson compared to adenosine and dipyridamole, with minor exceptions. Due to the nature of survey implementation, possible recall bias may limit the results. Some differences in procedures times may be attributable to differences in laboratories' protocols. Overall time savings and time savings stratified by operational ability (number of staff, number of SPECT cameras, hours of operation) translate to a more efficient utilization of laboratory resources when using regadenoson

  18. Effects of dose ranging of adenosine infusion on electrocardiographic findings during and after general anesthesia.

    Science.gov (United States)

    Sun, Yan-Xia; Habib, Ashraf S; Wenger, Tom; Gratz, Irwin; Glick, David; Adsumelli, Rishimani; Creed, Mary R; Gan, Tong J

    2012-10-01

    To assess changes in the electrocardiogram (ECG) associated with intraoperative infusion of adenosine in patients undergoing open abdominal gynecological surgery. One hundred and sixty-six patients undergoing gynecological surgery were randomly assigned to receive one of four doses of adenosine infusion (25, 50, 100, or 200 μg/kg/min) or matching placebo. Study drug administration was started at skin incision and discontinued at end of surgery. A standardized general anesthetic regimen was used and adjusted based on hemodynamic and bispectral index values. Heart rate and rhythm variables, and PR, QRS, QT, and QTc intervals were recorded from 12-lead ECGs before anesthesia and immediately after patient arrival in the postanesthesia care unit. In addition, a rhythm strip was obtained during administration of the loading dose of the study drug. ECG variables were compared within and between groups. Incidence of ECG and hemodynamic abnormalities was recorded. One hundred and fifty-one subjects had a full set of electrocardiographic data: placebo (n = 38), group adenosine 25 μg/kg/min (n = 31), group adenosine 50 μg/kg/min (n = 29), group adenosine 100 μg/kg/min (n = 28), and group adenosine 200 μg/kg/min (n = 25). Statistically significant postoperative QTc prolongation was observed in all study groups when compared with baseline except for the adenosine 200 μg/kg/min group. However, these changes from baseline were not different among the groups. There were also no significant differences in PR, QRS, and QT intervals between the treatment groups. There was no difference in QTc prolongation following intraoperative administration of adenosine infusion compared with placebo during isoflurane general anesthesia. However, QTc prolongation is common following general anesthesia.

  19. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat

    Science.gov (United States)

    2008-11-01

    358–363, 1996. 11. Cook NC, Samman S. Flavonoids —chemistry, metabolism, cardiopro- tective effects, and dietary sources. Nutr Biochem 7: 66–76, 1996...metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310, 1997. R400 ADENOSINE RECEPTOR ANTAGONISM AND EXERCISE IN THE HEAT...Interactions of flavonoids with adenosine receptors. J Med Chem 39: 781–788, 1996. 35. MacRae HS, Mefferd KM. Dietary antioxidant supplementation com

  20. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis.

    Science.gov (United States)

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-11-01

    Lactobacillus wasatchensis sp. nov. has been studied for growth and gas formation in a control Cheddar cheese and in cheese supplemented with 0.5% ribose, 0.5% galactose, or 0.25% ribose plus 0.25% galactose using regular and accelerated cheese ripening temperatures of 6 and 12°C, respectively. Milk was inoculated with (1) Lactococcus lactis starter culture, or (2) Lc. lactis starter culture plus Lb. wasatchensis (10(4) cfu/mL). In the control cheese with no added Lb. wasatchensis, starter numbers decreased from 10(7) initially to ~10(4) cfu/g over 23 wk of ripening at 6°C. When the cheese was ripened at 12°C, or if Lb. wasatchensis was added, the final starter counts were 1 log lower. In contrast, nonstarter lactic acid bacteria in the cheese increased from cheese with no added Lb. wasatchensis, levels of Lb. wasatchensis were initially below the enumeration threshold but counts of up to 10(3) cfu/g were detected after 23 wk. When the cheese was inoculated with Lb. wasatchensis, it could be enumerated throughout ripening, with final levels at 23 wk being dependent on whether ribose had been added to the cheese curd. With added ribose (with or without added galactose), Lb. wasatchensis grew to 10(7) to 10(8) cfu/g after 23 wk, whereas without added ribose it was 1 log lower. In all cheeses with added Lb. wasatchensis, greater gas formation was observed at 12°C, with most gas production occurring after ~16 wk. Very little gas production was detected in cheese without added Lb. wasatchensis ripened at 12°C or in cheese with added Lb. wasatchensis ripened at 6°C. Adding a combination of ribose and galactose caused more gas formation, putatively because of the ability of Lb. wasatchensis to co-utilize both sugars and grow to high numbers, and then produce gas from galactose as ribose levels were depleted. Even without sugar supplementation, gas was observed in cheese with added Lb. wasatchensis after 16 wk. We also observed that Lb. wasatchensis could grow to

  1. METABOLISM OF d-RIBOSE-1-C14 AND C14-LABELED d-GLUCONATE IN AN ENZYME SYSTEM OF THE GENUS PROPIONIBACTERIUM

    Science.gov (United States)

    Stjernholm, Rune L.; Flanders, Frank

    1962-01-01

    Stjernholm, Rune L. (Western Reserve University, Cleveland, Ohio) and Frank Flanders. Metabolism of d-ribose-1-C14 and C14-labeled d-gluconate in an enzyme system of the genus Propionibacterium. J. Bacteriol. 84:563–568. 1962.—Ribose-1-C14 and potassium gluconate labeled in different positions were incubated with cell-free extracts of Propionibacterium shermanii. The resulting propionate, acetate, and succinate were isolated and the C14 distribution determined by degradation. It is proposed that the extensive randomization observed is caused by the conversion of the labeled substrates to fructose-6-phosphate via the transketolase-transaldolase sequence followed by the Embden-Meyerhof pathway, and that the triosephosphates produced by these metabolic routes are metabolized via pyruvate to succinate and propionate. PMID:13984204

  2. Effects of adenosine and a selective A2A adenosine receptor agonist on hemodynamic and thallium-201 and technetium-99m-sestaMIBI biodistribution and kinetics.

    Science.gov (United States)

    Mekkaoui, Choukri; Jadbabaie, Farid; Dione, Donald P; Meoli, David F; Purushothaman, Kailasnath; Belardinelli, Luiz; Sinusas, Albert J

    2009-10-01

    The purpose of this study was to compare a selective A(2A) adenosine receptor agonist (regadenoson) with adenosine in clinically relevant canine models with regard to effects on hemodynamics and thallium-201 ((201)Tl) and technetium-99m ((99m)Tc)-sestaMIBI biodistribution and kinetics. The clinical application of vasodilator stress for perfusion imaging requires consideration of the effects of these vasodilating agents on systemic hemodynamics, coronary flow, and radiotracer uptake and clearance kinetics. Sequential imaging and arterial blood sampling was performed on control, anesthetized closed-chest canines (n = 7) to evaluate radiotracer biodistribution and kinetics after either a bolus administration of regadenoson (2.5 microg/kg) or 4.5-min infusion of adenosine (280 microg/kg). The effects of regadenoson on coronary flow and myocardial radiotracer uptake were then evaluated in an open-chest canine model of a critical stenosis (n = 7). Results from ex vivo single-photon emission computed tomography were compared with tissue well-counting. The use of regadenoson compared favorably with adenosine in regard to the duration and magnitude of the hemodynamic effects and the effect on (201)Tl and (99m)Tc-sestaMIBI biodistribution and kinetics. The arterial blood clearance half-time was significantly faster for (99m)Tc-sestaMIBI (regadenoson: 1.4 +/- 0.03 min; adenosine: 1.5 +/- 0.08 min) than for (201)Tl (regadenoson: 2.5 +/- 0.16 min, p adenosine: 2.7 +/- 0.04 min, p regadenoson stress was significantly greater than the relative perfusion defect with (99m)Tc-sestaMIBI (0.69 +/- 0.03%, p regadenoson produced a hyperemic response comparable to a standard infusion of adenosine. The biodistribution and clearance of both (201)Tl and (99m)Tc-sestaMIBI during regadenoson were similar to adenosine vasodilation. Ex vivo perfusion images under the most ideal conditions permitted detection of a critical stenosis, although (201)Tl offered significant advantages over (99m

  3. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo.

    Directory of Open Access Journals (Sweden)

    T N A van den Berg

    Full Text Available In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo.In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation.Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations.In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor.ClinicalTrials.gov NCT01996735.

  4. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo

    Science.gov (United States)

    Rongen, G. A.; van den Broek, P. H. H.; Bilos, A.; Donders, A. R. T.; Gomes, M. E.; Riksen, N. P.

    2015-01-01

    Background and Purpose In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. Experimental Approach In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. Key Results Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. Conclusion and Implications In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. Trial Registration ClinicalTrials.gov NCT01996735 PMID:26509673

  5. Topical adenosine increases thick hair ratio in Japanese men with androgenetic alopecia.

    Science.gov (United States)

    Watanabe, Y; Nagashima, T; Hanzawa, N; Ishino, A; Nakazawa, Y; Ogo, M; Iwabuchi, T; Tajima, M

    2015-12-01

    Hair thickness is more important than hair density in the appearance of baldness in male with androgenetic alopecia (AGA). Adenosine improves hair loss by stimulating hair growth and by thickening hair shafts in women. The objective of this study was to evaluate the hair growth efficacy and safety of topical adenosine in men with AGA. A lotion containing either adenosine or niacinamide was administered to the scalps of 102 Japanese men twice daily for 6 months in a double-blind, randomized study. Efficacy was evaluated by dermatologists who assessed the quality of the hair and by calculating the percentages of vellus-like and thick hairs among the vertex hairs, as well as hair density. Adenosine was significantly (P < 0.05) superior to niacinamide in terms of global improvement of AGA, increase in the percentage of thick hairs (at least 60 μm) and self-assessment of hair thickness by the study participants. No causal adverse event due to the adenosine lotion was observed. These data indicate that adenosine increases thick hair ratio in Japanese men with AGA, and this compound is useful for the improvement of AGA. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Extracellular Adenosine Generation in the Regulation of Pro-Inflammatory Responses and Pathogen Colonization

    Directory of Open Access Journals (Sweden)

    M. Samiul Alam

    2015-05-01

    Full Text Available Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase and CD73 (ecto-5'-nucleotidase by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine’s control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis. Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  7. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. (Deborah Heart and Lung Center, Browns Mills, NJ (USA))

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  8. CD73+ regulatory T cells contribute to adenosine-mediated resolution of acute lung injury.

    Science.gov (United States)

    Ehrentraut, Heidi; Clambey, Eric T; McNamee, Eoin N; Brodsky, Kelley S; Ehrentraut, Stefan F; Poth, Jens M; Riegel, Ann K; Westrich, Joseph A; Colgan, Sean P; Eltzschig, Holger K

    2013-06-01

    Acute lung injury (ALI) is characterized by alveolar injury and uncontrolled inflammation. Since most cases of ALI resolve spontaneously, understanding the endogenous mechanisms that promote ALI resolution is important to developing effective therapies. Previous studies have implicated extracellular adenosine signaling in tissue adaptation and wound healing. Therefore, we hypothesized a functional contribution for the endogenous production of adenosine during ALI resolution. As a model, we administered intratracheal LPS and observed peak lung injury at 3 d, with resolution by d 14. Treatment with pegylated adenosine-deaminase to enhance extracellular adenosine breakdown revealed impaired ALI resolution. Similarly, genetic deletion of cd73, the pacemaker for extracellular adenosine generation, was associated with increased mortality (0% wild-type and 40% in cd73(-/-) mice; P<0.05) and failure to resolve ALI adequately. Studies of inflammatory cell trafficking into the lungs during ALI resolution revealed that regulatory T cells (Tregs) express the highest levels of CD73. While Treg numbers in cd73(-/-) mice were similar to controls, cd73-deficient Tregs had attenuated immunosuppressive functions. Moreover, adoptive transfer of cd73-deficient Tregs into Rag(-/-) mice emulated the observed phenotype in cd73(-/-) mice, while transfer of wild-type Tregs was associated with normal ALI resolution. Together, these studies implicate CD73-dependent adenosine generation in Tregs in promoting ALI resolution.

  9. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  10. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  11. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    Science.gov (United States)

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol