WorldWideScience

Sample records for adenosine diphosphate ribose

  1. Strategies for the Use of Poly(adenosine diphosphate ribose Polymerase (PARP Inhibitors in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Helleday

    2012-12-01

    Full Text Available Treatments with Poly(adenosine diphosphate ribose polymerase (PARP inhibitors have offered patients carrying cancers with mutated BRCA1 or BRCA2 genes a new and in many cases effective option for disease control. There is potentially a large patient population that may also benefit from PARP inhibitor treatment, either in monotherapy or in combination with chemotherapy. Here, we describe the multifaceted role of PARP inhibitors and discuss which treatment options could potentially be useful to gain disease control without potentiating side effects.

  2. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  3. Poly(adenosine diphosphate-ribose) polymerase expression in serous ovarian carcinoma: correlation with p53, MIB-1, and outcome.

    Science.gov (United States)

    Brustmann, Hermann

    2007-04-01

    This study investigated the expression of poly(adenosine diphosphate-ribose) polymerase (PARP) in a cohort of ovarian serous carcinomas by immunohistochemistry with regard to outcome, clinicopathologic parameters, proliferation as assessed by MIB-1 labeling indices (LIs), and p53 immunoexpression. Formalin-fixed, paraffin-embedded archival tissues of 50 ovarian serous carcinomas were immunostained with antibodies to PARP, MIB-1, and p53. In addition, 10 benign serous cystadenomas and 10 typical serous borderline ovarian tumors were included in the PARP immunostudy. Immunostaining for PARP was scored with regard to quantity and intensity of positively stained nuclei as negative, low, or strong. The MIB-1 LIs were quantitated as the percentage of positively stained nuclei in 1000 nuclei. For p53, at least 10% of tumor cells had to display nuclear staining. The expression of PARP was scored negative in all serous cystadenomas and low in serous borderline ovarian tumors. Strong PARP expression was determined in 38 cases (76%), and low expression in 12 cases (12%) of ovarian serous carcinomas; MIB-1 staining was noted in all cases (mean, 44.2; range, 10.8-66.5), positivity for p53 in 39 cases (78%). The PARP immunoreactivity increased with the International Federation of Gynecology and Obstetrics stage (P = 0.0075), as well as p53 positivity (P = 0.0141) and MIB-1 LIs (P = 0.0102), with grade determined after Malpica et al. (P = 0.0445) but not with grade assessed after Shimizu et al. (P = 0.1495). A trend for poor outcome was observed in patients whose tumors displayed high levels of PARP immunoexpression (P = 0.0196, log-rank test). This study indicates that PARP expression is frequently upregulated in ovarian serous carcinomas, related with MIB-1 LIs and p53 expression, and may serve as a marker of aggressive behavior with prognostic value.

  4. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    International Nuclear Information System (INIS)

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-01-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination

  5. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  6. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Arun, E-mail: arun.azad@bccancer.bc.ca [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Pathology, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Bukczynska, Patricia; Jackson, Susan [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Haput, Ygal; Cullinane, Carleen [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); McArthur, Grant A.; Solomon, Benjamin [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Medicine, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia)

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  7. Poly(Adenosine 5'-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy.

    Science.gov (United States)

    Drel, Viktor R; Xu, Weizheng; Zhang, Jie; Pavlov, Ivan A; Shevalye, Hanna; Slusher, Barbara; Obrosova, Irina G

    2009-12-01

    This study was aimed at evaluating the role for poly(ADP-ribose) polymerase (PARP) in early nephropathy associated with type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with one of two structurally unrelated PARP inhibitors, 1,5-isoquinolinediol (ISO) and 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15427), at 3 mg/kg(-1) x d(-1) ip and 30 mg/kg(-1) x d(-1), respectively, for 10 wk after the first 2 wk without treatment. PARP activity in the renal cortex was assessed by immunohistochemistry and Western blot analysis of poly(ADP-ribosyl)ated proteins. Variables of diabetic nephropathy in urine and renal cortex were evaluated by ELISA, Western blot analysis, immunohistochemistry, and colorimetry. Urinary albumin excretion was increased about 4-fold in diabetic rats, and this increase was prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-associated increase in poly(ADP-ribose) immunoreactivities in renal glomeruli and tubuli and poly(ADP-ribosyl)ated protein level. Renal concentrations of TGF-beta(1), vascular endothelial growth factor, endothelin-1, TNF-alpha, monocyte chemoattractant protein-1, lipid peroxidation products, and nitrotyrosine were increased in diabetic rats, and all these changes as well as an increase in urinary TNF-alpha excretion were completely or partially prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-induced up-regulation of endothelin (B) receptor, podocyte loss, accumulation of collagen-alpha1 (IY), periodic acid-Schiff-positive substances, fibronectin, and advanced glycation end-products in the renal cortex. In conclusion, PARP activation is implicated in multiple changes characteristic for early nephropathy associated with type 1 diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies.

  8. Formation of nicotinamide ribose diphosphate ribose, a new metabolite of the NAD pathway, by growing mycelium of Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1976-01-01

    A new step of NAD metabolism was shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAm-RDPR), which had been isolated from the culture filtrate. Its content in the culture medium increased with an increase of culture time, and this compound was proved to be a terminal metabolite in the NAD pathway. The experimental results also showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into an unknown compound. (auth.)

  9. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  10. Non-ribose ligands for the human adenosine A1 receptor

    NARCIS (Netherlands)

    Klaasse, Elisabeth Cornelia

    2008-01-01

    This thesis describes new, non-ribose ligands for the human Adenosine A1 Receptor (hA1R). An introduction to the four adenosine receptors subtypes, their history and cloning, occurrence, functioning, trafficking and therapeutic potential is given in Chapter 1. The process of desensitization and

  11. Characterization of the effects of adenosine 5'-[beta-thio]-diphosphate in rat liver.

    OpenAIRE

    Keppens, S.; Vandekerckhove, A.; De Wulf, H.

    1993-01-01

    1. In rat liver cells micromolar concentrations of adenosine 5'-[beta-thio]diphosphate (ADP beta S), activate glycogen phosphorylase by an adenosine 3':5'-cyclic monophosphate (cyclic AMP)- independent mechanism. 2. As with adenosine 5'-triphosphate (ATP), ADP beta S also inhibits the rise in cyclic AMP after glucagon. 3. Cytosolic Ca2+ measured in single cells is rapidly increased with a pattern similar for ADP beta S and for ATP. 4. At variance with ATP, ADP beta S hardly increases inositol...

  12. Synthesis, biological evaluation, and molecular modeling of ribose-modified adenosine analogues as adenosine receptor agonists.

    Science.gov (United States)

    Cappellacci, Loredana; Franchetti, Palmarisa; Pasqualini, Michela; Petrelli, Riccardo; Vita, Patrizia; Lavecchia, Antonio; Novellino, Ettore; Costa, Barbara; Martini, Claudia; Klotz, Karl-Norbert; Grifantini, Mario

    2005-03-10

    A number of 3'-C-methyl analogues of selective adenosine receptor agonists such as CPA, CHA, CCPA, 2'-Me-CCPA, NECA, and IB-MECA was synthesized to further investigate the subdomain of the receptor that binds the ribose moiety of the ligands. Affinity data at A(1), A(2A), and A(3) receptors in bovine brain membranes showed that the 3'-C-modification in adenosine resulted in a decrease of the affinity at all three receptor subtypes. When this modification was combined with N(6)-substitution with groups that induce high potency and selectivity at A(1) receptor, the affinity and selectivity were increased. However, all 3'-C-methyl derivatives proved to be very less active than the corresponding 2'-C-methyl analogues. The most active compound was found to be 3'-Me-CPA which displayed a K(i) value of 0.35 microM at A(1) receptor and a selectivity for A(1) vs A(2A) and A(3) receptors higher than 28-fold. 2'-Me-CCPA was confirmed to be the most selective, high affinity agonist so far known also at human A(1) receptor with a K(i) value of 3.3 nM and 2903- and 341-fold selective vs human A(2A) and A(3) receptors, respectively. In functional assay, 3'-Me-CPA, 3'-Me-CCPA, and 2-Cl-3'-Me-IB-MECA inhibited forskolin-stimulated adenylyl cyclase activity with IC(50) values ranging from 0.3 to 4.9 microM, acting as full agonists. A rhodopsin-based model of the bovine A(1)AR was built to rationalize the higher affinity and selectivity of 2'-C-methyl derivatives of N(6)-substituted-adenosine compared to that of 3'-C-methyl analogues. In the docking exploration, it was found that 2'-Me-CCPA was able to form a number of interactions with several polar residues in the transmembrane helices TM-3, TM-6, and TM-7 of bA(1)AR which were not preserved in the molecular dynamics simulation of 3'-Me-CCPA/bA(1)AR complex.

  13. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... enzymes were dependent on the metal ion present, suggesting a function of the investigated aspartic acid residues both in the binding of ribose 5-phosphate, possibly via a divalent metal ion, and in the interaction with a divalent metal ion during catalysis....

  14. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J

    2016-01-01

    treated with percutaneous coronary intervention discharged alive on ADPri therapy from 233 United States TRANSLATE-ACS study (Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome) participating hospitals...... ADPri cessation included physician-recommended discontinuation (54%), as well as patient self-discontinuation, because of cost (19%), medication side effects (9%), and procedural interruption (10%). Using a time-dependent covariate model, early cessation of ADPri therapy was associated with increased...

  15. Ribose-modified nucleosides as ligands for adenosine receptors: synthesis, conformational analysis, and biological evaluation of 1'-C-methyl adenosine analogues.

    Science.gov (United States)

    Cappellacci, Loredana; Barboni, Grazia; Palmieri, Micaela; Pasqualini, Michela; Grifantini, Mario; Costa, Barbara; Martini, Claudia; Franchetti, Palmarisa

    2002-03-14

    1'-C-Methyl analogues of adenosine and selective adenosine A(1) receptor agonists, such as N-[(1R)-1-methyl-2-phenylethyl]adenosine ((R)-PIA) and N(6)-cyclopentyladenosine, were synthesized to further investigate the subdomain that binds the ribose moiety. Binding affinities of these new compounds at A(1) and A(2A) receptors in rat brain membranes and at A(3) in rat testis membranes were determined and compared. It was found that the 1'-C-methyl modification in adenosine resulted in a decrease of affinity, particularly at A(1) and A(2A) receptors. When this modification was combined with N(6) substitutions with groups that induce high potency and selectivity at A(1) receptors, the high affinity was in part restored and the selectivity was increased. The most potent compound proved to be the 1'-C-methyl analogue of (R)-PIA with a K(i) of 23 nM for the displacement of [(3)H]CHA binding from rat brain A(1) receptors and a > 435-fold selectivity over A(2A) receptors. In functional assays, these compounds inhibited forskolin-stimulated adenylate cyclase with IC(50) values ranging from 0.065 to 3.4 microM, acting as full agonists. Conformational analysis based on vicinal protonminus signproton J-coupling constants and molecular mechanics calculations using the MM2 force field proved that the methyl group on C1' in adenosine has a pronounced impact on the furanose conformation by driving its conformational equilibrium toward the north, gamma+, syn form.

  16. Interaction centres of purine nucleotides: adenosine-5'-diphosphate and adenosine-5'-triphosphate in their reactions with tetramines and Cu(II) ions.

    Science.gov (United States)

    Gasowska, A

    2003-08-01

    The interactions between the nucleotides: adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) with spermine (Spm) and 1,11-diamine-4,8-diazaundecane (3,3,3-tet), as well as Cu(II) ions are studied. In the metal-free systems nucleotide-polyamine molecular complexes have been found to form, in which the interaction centres are the nitrogen atoms of the purine ring N(1) and N(7), oxygen atoms of the phosphate group of the nucleotide (for 3,3,3-tet) and protonated nitrogen atoms of the polyamine. Significant differences in the mode of metallation between the systems with Spm and 3,3,3-tet have been established. In the systems with Spm, the main products are protonated species with [N(7),O] chromophore and the nitrogen N(1) is involved in the intramolecular interaction additionally stabilising the complex. In the systems with 3,3,3-tet the formation of metal-ligand-ligand (MLL) species has been observed, in which the oxygen atoms from the phosphate group and the nitrogen atoms from the polyamine are involved in the metallation, while the N(1) and N(7) atoms from the purine ring of the nucleotide remain outside the inner coordination sphere of the copper ion. The main centre of metallation in the nucleotide, both with Spm and 3,3,3-tet, is the phosphate group of the nucleotide.

  17. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...

  18. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  19. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots

    Science.gov (United States)

    Chung, Tze-Wen; Lin, Pei-Yi; Wang, Shoei-Shen; Chen, Yen-Fung

    2014-01-01

    Chitosan nanoparticles (NPs) decorated with adenosine diphosphate (ADP) (ANPs) or fibrinogen (FNPs) were used to fabricate hemostatic NPs that can shorten blood clotting time and prevent severe local hemorrhage. The structure and mechanical properties of the blood clot induced with ANP (clot/ANP) or FNP (clot/FNP) were also investigated. The NPs, ANPs, and FNPs, which had particle sizes of 245.1±14.0, 251.0±9.8, and 326.5±14.5 nm and zeta potentials of 24.1±0.5, 20.6±1.9, and 15.3±1.5 mV (n=4), respectively, were fabricated by ionic gelation and then decorated with ADP and fibrinogen. The zeta potentials and Fourier transform infrared (FTIR) spectroscopy of the NPs confirmed that their surfaces were successfully coated with ADP and fibrinogen. The scanning electron microscope (SEM) micrographs of the structure of the clot induced with “undecorated” chitosan NPs (clot/NP), clot/ANP, and clot/FNP (at 0.05 wt%) were different, after citrated bloods had been recalcified by a calcium chloride solution containing NPs, ANPs, or FNPs. This indicated that many NPs adhered on the membrane surfaces of red blood cells, that ANPs induced many platelet aggregates, and that FNPs were incorporated into the fibrin network in the clots. Measurements of the blood clotting times (Tc) of blood clot/NPs, clot/ANPs, and clot/FNPs, based on 90% of ultimate frequency shifts measured on a quartz crystal microbalance (QCM), were significantly (P<0.05) (n=4) shorter than that of a clot induced by a phosphate-buffered solution (PBS) (clot/PBS) (63.6%±3.1%, 48.3%±6.2%, and 63.2%±4.7%, respectively). The ΔF2 values in the spectra of frequency shifts associated with the propagation of fibrin networks in the clot/ANPs and clot/FNPs were significantly lower than those of clot/PBS. Interestingly, texture profile analysis of the compressional properties showed significantly lower hardness and compressibility in clot/NPs and clot/ANPs (P<0.05 or better) (n=4) compared with clot/PBS and

  20. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots

    Directory of Open Access Journals (Sweden)

    Chung TW

    2014-03-01

    Full Text Available Tze-Wen Chung,1,3 Pei-Yi Lin,2 Shoei-Shen Wang,2 Yen-Fung Chen31Department of Biomedical Engineering, National Yang-Ming University, 2Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, Republic of China; 3Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, Republic of ChinaAbstract: Chitosan nanoparticles (NPs decorated with adenosine diphosphate (ADP (ANPs or fibrinogen (FNPs were used to fabricate hemostatic NPs that can shorten blood clotting time and prevent severe local hemorrhage. The structure and mechanical properties of the blood clot induced with ANP (clot/ANP or FNP (clot/FNP were also investigated. The NPs, ANPs, and FNPs, which had particle sizes of 245.1±14.0, 251.0±9.8, and 326.5±14.5 nm and zeta potentials of 24.1±0.5, 20.6±1.9, and 15.3±1.5 mV (n=4, respectively, were fabricated by ionic gelation and then decorated with ADP and fibrinogen. The zeta potentials and Fourier transform infrared (FTIR spectroscopy of the NPs confirmed that their surfaces were successfully coated with ADP and fibrinogen. The scanning electron microscope (SEM micrographs of the structure of the clot induced with "undecorated" chitosan NPs (clot/NP, clot/ANP, and clot/FNP (at 0.05 wt% were different, after citrated bloods had been recalcified by a calcium chloride solution containing NPs, ANPs, or FNPs. This indicated that many NPs adhered on the membrane surfaces of red blood cells, that ANPs induced many platelet aggregates, and that FNPs were incorporated into the fibrin network in the clots. Measurements of the blood clotting times (Tc of blood clot/NPs, clot/ANPs, and clot/FNPs, based on 90% of ultimate frequency shifts measured on a quartz crystal microbalance (QCM, were significantly (P<0.05 (n=4 shorter than that of a clot induced by a phosphate-buffered solution (PBS (clot/PBS (63.6%±3.1%, 48.3%±6.2%, and 63.2%±4.7%, respectively. The ∆F2

  1. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  2. Unplanned Inpatient and Observation Rehospitalizations After Acute Myocardial Infarction: Insights From the Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome (TRANSLATE-ACS) Study.

    Science.gov (United States)

    Hess, Connie N; Wang, Tracy Y; McCoy, Lisa A; Messenger, John C; Effron, Mark B; Zettler, Marjorie E; Henry, Timothy D; Peterson, Eric D; Fonarow, Gregg C

    2016-02-02

    Previous studies examining early readmission after acute myocardial infarction have focused exclusively on inpatient readmissions. However, from a patient's perspective, any unplanned inpatient or observation rehospitalization after acute myocardial infarction represents a significant event; these unplanned rehospitalizations have not been well characterized. We examined all patients with acute myocardial infarction treated with percutaneous coronary intervention and discharged alive from 233 hospitals in the Treatment With Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome (TRANSLATE-ACS) study from 2010 to 2012. Our primary outcome was unplanned rehospitalizations (inpatient or observation status) within 30 days after discharge. We identified factors associated with unplanned rehospitalizations using multivariable logistic regression. Among 12 312 patients, 1326 (10.8%) had 1483 unplanned rehospitalizations within 30 days of the index event: 1028 (69.3%) were inpatient readmissions, and 455 (30.7%) were observation stays. The majority of unplanned rehospitalizations (72%) were for cardiovascular reasons. Variation in hospital rates of 30-day unplanned rehospitalization ranged from 5.4% to 20.0%, with a median of 10.7%. After multivariable modeling, the factors most strongly associated with unplanned rehospitalization were baseline quality of life and depression, followed by index hospital length of stay. Early unplanned rehospitalizations are common after acute myocardial infarction, and close to one third were classified as an observation stay. Predischarge and postdischarge assessments of overall, not just cardiovascular, health and strategies to optimize patient functional status may help to reduce unplanned rehospitalizations. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01088503. © 2015 American Heart Association, Inc.

  3. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  4. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  5. Potentiation of adenosine triphosphate-induced contractile responses of the guinea-pig isolated vas deferens by adenosine monophosphate and adenosine 5'-monophosphorothioate.

    OpenAIRE

    Fedan, J. S.

    1987-01-01

    The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (3...

  6. An arsenical analogue of adenosine diphosphate.

    Science.gov (United States)

    Webster, D; Sparkes, M J; Dixon, H B

    1978-01-01

    An analogue of ADP was made in which the terminal phosphono-oxy group, -O-PO(OH)2, has been replaced by the arsonomethyl group, -CH2-AsO(OH)2. This compound cannot form a stable analogue of ATP because anhydrides of arsonic acids are rapidly hydrolysed, so that any enzyme that phosphorylates ADP and accepts this analogue as a substrate should release orthophosphate in its presence. The analogue proves to be a poor substrate for 3-phosphoglycerate kinase (V/Km is diminished by a factor of 10(2)-10(3)) and a very poor substrate for pyruvate kinase (V/Km is diminished by a factor of 10(5)-10(6)). No substrate action was detected with adenyl kinase and creatine kinase. PMID:204292

  7. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  8. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  9. D-ribose--an additive with caffeine.

    Science.gov (United States)

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  10. Dermal benefits of topical D-ribose

    Directory of Open Access Journals (Sweden)

    Linda M Shecterle

    2009-09-01

    Full Text Available Linda M Shecterle, John A St. CyrJacqmar, Inc., Minneapolis, MN, USAAbstract: Our aging skin undergoes changes with reductions in collagenous and elastic fibers, fibroblasts, mast cells, and macrophages with free radical production, which can result in reduced skin tone and wrinkle formation. Fibroblasts are important for dermal integrity and function with a decrease in function producing less skin tone, thinning, and wrinkle formation. Dermal levels of adenosine triphosphate (ATP decline with aging, potentially altering dermal function. Supplemental D-ribose, a natural occurring carbohydrate, enhances ATP regeneration. D-ribosebased studies demonstrated benefits in both cell culture fibroblastic activities and a subsequent clinical study in women with decreased skin tone with wrinkles. Supplemental D-ribose may offer this needed cellular benefit.Keywords: dermal, fibroblast, ATP, aging, wrinkles

  11. Supplementation of creatine and ribose prevents apoptosis and right ventricle hypertrophy in hypoxic hearts.

    Science.gov (United States)

    Caretti, Anna; Bianciardi, Paola; Marini, Marina; Abruzzo, Provvidenza M; Bolotta, Alessandra; Terruzzi, Carlo; Lucchina, Franco; Samaja, Michele

    2013-01-01

    The simultaneous supplementation of creatine and D-ribose has been shown to reduce apoptosis in vitro in non-irreversibly injured cultured ischemic cardiomyocytes through down-regulation of the signaling mechanisms governing adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (Akt). Here, we test the hypothesis that an analogous mechanism exists in vivo when the challenge is chronic exposure to hypoxia. Five week-old mice were exposed to an atmosphere containing 10% O2 for 10 days. Mice were gavaged daily with vehicle, creatine, D-ribose or creatine + D-ribose. After sacrifice, myocardial and pulmonary tissue were harvested for structural and biochemical analyses. Hypoxia induced right ventricle hypertrophy and left ventricle apoptosis. Both phenotypes were slightly reduced by either creatine or D-ribose, whereas the simultaneous administration of creatine + D-ribose almost completely reversed the effects of hypoxia. Furthermore, creatine + D-ribose diminished the hypoxia-induced increases in the activity of AMPK, Akt and JNK, but not of ERK. Finally, the hypoxia-induced pulmonary overexpression of endothelin-1 mRNA was markedly reduced by creatine + D-ribose. The simultaneous administration of creatine + D-ribose confers additional cardiovascular protection with respect to that observed with either creatine or D-ribose. The mechanism stems from the AMPK and Akt signaling pathways. These findings may form the basis of a paradigm to re-energize non-irreversibly damaged cardiomyocytes, counteracting injury by triggering specific signaling pathways.

  12. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?

    OpenAIRE

    Kumar, V.

    2012-01-01

    Cancer is a chronic disease and its pathogenesis is well correlated with infection and inflammation. Adenosine is a purine nucleoside, which is produced under metabolic stress like hypoxic conditions. Acute or chronic inflammatory conditions lead to the release of precursor adenine nucleotides (adenosine triphosphate (ATP), adenosien diphosphate (ADP) and adenosine monophosphate (AMP)) from cells, which are extracellularly catabolized into adenosine by extracellular ectonucleotidases, i.e., C...

  13. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  14. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Andres H de la Peña

    Full Text Available Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 -- a Nudix hydrolase from Bdellovibrio bacteriovorus-that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively. Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases.

  15. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    A steady state kinetic investigation of the Pi activation of 5-phospho-D-ribosyl α-1-diphosphate synthase from Escherichia coli suggests that Pi can bind randomly to the enzyme either before or after an ordered addition of free Mg2+ and substrates. Unsaturation with ribose 5-phosphate increased...... the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...

  16. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate.

    Science.gov (United States)

    Burke, Charles; Croteau, Rodney

    2002-02-01

    Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.

  17. Reactions of fac-[Re(CO)3(H2O)3]+ with nucleoside diphosphates and thiamine diphosphate in aqueous solution investigated by multinuclear NMR spectroscopy.

    Science.gov (United States)

    Adams, Kristie M; Marzilli, Patricia A; Marzilli, Luigi G

    2007-10-29

    Products formed between monoester diphosphates (MDPs) and fac-[Re(CO)3(H2O)3]OTf at pH 3.6 were examined. Such adducts of the fac-[Re(CO)3]+ moiety have an uncommon combination of properties for an "inert" metal center in that sharp NMR signals can be observed, yet the products are equilibrating at rates allowing NMR EXSY cross-peaks to be observed. Thiamine diphosphate (TDP) and uridine 5'-diphosphate (5'-UDP) form 1:1 bidentate {Palpha,Pbeta} chelates, in which the MDP binds Re(I) via Palpha and Pbeta phosphate groups. Asymmetric centers are created at Re(I) (RRe/SRe) and Palpha (Delta/Lambda), leading to four diastereomers. The two mirror pairs of diastereomers (RReDelta/SReLambda) and (RReLambda/SReDelta) for TDP (no ribose) and for all four diastereomers (RReDelta, RReLambda, SReDelta, SReLambda) for 5'-UDP (asymmetric ribose) gave two and four sets of NMR signals for the bound MDP, respectively. 31Palpha-31Palpha EXSY cross-peaks indicate that the fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- isomers interchange slowly on the NMR time scale, with an average k approximately equal to 0.8 s(-1) at 32 degrees C; the EXSY cross-peaks could arise from chirality changes at only Re(I) or at only Palpha. Guanosine 5'-diphosphate (5'-GDP), with a ribose moiety and a Re(I)-binding base, formed both possible diastereomers (RRe and SRe) of the fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- macrochelate, with one slightly more abundant diastereomer suggested to be RRe by Mn2+ ion 1H NMR signal line-broadening combined with distances from molecular models. Interchange of the diastereomers requires that the coordination site of either N7 or Pbeta move to the H2O site. 31Palpha-31Palpha EXSY cross-peaks indicate a k approximately equal to 0.5 s(-1) at 32 degrees C for RRe-to-SRe interchange. The similarity of the rate constants for interchange of fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- and fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- adducts suggest strongly that interchange of Pbeta and H2O coordination

  18. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  19. Photoreaction of 4,5',8-trimethylpsoralen with adenosine

    International Nuclear Information System (INIS)

    Sangchul Shim; Seungju Choi

    1990-01-01

    The near-UV induced photoreaction of 4,5',8-trimethylpsoralen (TMP) with adenosine was investigated in a dry film state. Four major photoadducts were isolated and purified by reverse-phase liquid chromatography. The structures of the photoproducts were elucidated on the basis of spectroscopic methods, including UV, FT-IR, mass spectrometry (FAB and EI methods) and 1 H-NMR analysis. These photoproducts were characterized to be TMP-adenosine 1:1 adducts, which resulted from the covalent bond formation between the carbon C(4) of TMP and ribose 1' or 5' carbon of adenosine. Of the photoadducts, one photoadduct (V) was the major product, reflecting some selectivity in the photoreaction of TMP with adenosine in the solid state. (author)

  20. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Bentsen, Ann-Kristin K; Harlow, Kenneth W

    2005-01-01

    Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced...... in an Escherichia coli strain lacking endogenous phosphoribosyl diphosphate synthase activity and purified to near homogeneity. The B. subtilis phosphoribosyl diphosphate synthase mutant variants K197A and R199A were studied in detail. The physical properties of the two enzymes were similar to those of the wildtype...... enzyme. Kinetic characterization showed that the V(max) values of the K197A and R199A mutant enzymes were more than 30 000- and more than 24 000-fold reduced, respectively, compared to the wildtype enzyme. The K(m) values for ATP and ribose 5-phosphate of the two mutant enzymes were essentially unchanged...

  1. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  2. Differential effects of adenine nucleotide analogues on shape change and aggregation induced by adnosine 5-diphosphate (ADP) in human platelets.

    Science.gov (United States)

    Park, H S; Hourani, S M

    1999-07-01

    Adenosine 5'-diphosphate (ADP) induces human blood platelets to aggregate and change shape, and it has been suggested that these two responses are mediated by more than one subtype of ADP receptor. The structure-activity relationships for several analogues of adenine nucleotides in causing aggregation and shape change were measured and compared in washed platelets using an aggregometer. ADP and its analogues 2-methylthioadenosine 5'-diphosphate (2-methylthio-ADP), adenosine 5'(alpha,beta-methylene)diphosphonate (AMPCP), S(P)-adenosine 5'-O-(1-thiodiphosphate) (AD-P alphaS) and adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS) were used as agonists. Adenosine 5'-triphosphate (ATP) and its analogues, P1, P5-diadenosine pentaphosphate (ApsA), adenosine (5'-(alpha,beta-methylene)triphosphonate (AMPCPP), 2-methylthioadenosine 5'-triphosphate (2-methylthio-ATP) and uridine 5'-triphosphate (UTP), as well as the trypanocidal drug suramin, were used as antagonists. In general, the structure-activity relationships for both responses were similar, but for some analogues differences were observed. ADPalphaS and ADPbetaS were much more potent agonists relative to ADP for shape change than for aggregation and indeed ADPalphaS antagonized ADP-induced aggregation with an apparent pK(B) value of 5.5+/-0.1. 2-Methylthio-ATP also had different effects in aggregation and shape change, being a much higher affinity antagonist of aggregation than of shape change with an apparent pK(B) value of 7.0+/-0.2 for aggregation and 5.2+/-0.2 for shape change. These results support the suggestion that these two responses are mediated by multiple ADP receptors on human platelets, and are consistent with shape change being mediated via one receptor (the P2Y1 receptor) with aggregation requiring the activation of two receptors (the P2Y1 and another P2Y receptor).

  3. Identification of separate receptors for adenosine and adenosine 5'-triphosphate in causing relaxations of the isolated taenia of the guinea-pig caecum.

    Science.gov (United States)

    Spedding, M; Weetman, D F

    1976-01-01

    1 The mechanisms by which adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and adenosine relax the taenia caecum preparation of the guineapig have been studied. ATP and ADP produced similar effects which were qualitatively different from those of AMP and adenosine. 2 2-2'Pyridylisatogen tosylate (PIT: 50 muM for 30 min) blocked the effects of ATP and ADP, but exhibited weak activity against AMP and failed to antagonize the effects of adenosine. The action of PIT was unaffected by the inclusion of dipyridamole (2muM) in the bathing fluid. 3 There was a significant correlation between the sensitivity of individual preparations to ATP or ADP and the blocking potency of PIT. 4 The presence of adenosine in the bathing fluid (2 mM for greater than 30 min) desensitized the taenia to subsequent applications of adenosine. The effects of ATP were increased by this procedure. 5 The results indicate that ATP and adenosine relax the taenia by different mechanisms. PMID:938799

  4. Motesanib diphosphate in progressive differentiated thyroid cancer

    DEFF Research Database (Denmark)

    Sherman, Steven I; Wirth, Lori J; Droz, Jean-Pierre

    2008-01-01

    BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet-derived gr......BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet......-derived growth-factor receptor, and KIT. METHODS: In an open-label, single-group, phase 2 study, we treated 93 patients who had progressive, locally advanced or metastatic, radioiodine-resistant differentiated thyroid cancer with 125 mg of motesanib diphosphate, administered orally once daily. The primary end...... point was an objective response as assessed by an independent radiographic review. Additional end points included the duration of the response, progression-free survival, safety, and changes in serum thyroglobulin concentration. RESULTS: Of the 93 patients, 57 (61%) had papillary thyroid carcinoma...

  5. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    Science.gov (United States)

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemoelectrical energy conversion of adenosine triphosphate

    Science.gov (United States)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  7. Adenosine 5'-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions.

    OpenAIRE

    Apel, W A; Dugan, P R; Tuttle, J H

    1980-01-01

    Vesicles prepared from iron-grown Thiobacillus ferrooxidans, and subsequently loaded with adenosine 5'-diphosphate and inorganic phosphate, produced adenosine 5'-triphosphate when subjected to H+ gradients comparable to those in the cells' normal environment (i.e., an internal pH in the range of 6.0 to 8.0 with an optimum of 7.0 to 7.8 and an external pH in the range of 2.1 to 4.1 with an optimum of 2.8). Nigericin, dicyclohexylcarbodiimide, and pentachlorophenol decreased adenosine 5'-tripho...

  8. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce [Pullman, WA; Burke, Charles Cullen [Moscow, ID

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  9. Adenosine and preeclampsia.

    Science.gov (United States)

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  10. Metabolic consequences of DNA damage: The role of poly (ADP-ribose) polymerase as mediator of the suicide response

    International Nuclear Information System (INIS)

    Berger, N.A.; Berger, S.J.

    1986-01-01

    Recent studies show that DNA damage can produce rapid alterations in steady state levels of deoxynucleoside triphosphate pools, for example, MNNG or uv-irradiation cause rapid increases in dATP and dTTP pools without significant changes in dGTP or dCTP pools. In vitro, studies with purified eukaryotic DNA polymerases show that the frequency of nucleotide misincorporation was affected by alterations in relative concentrations of the deoxynucleoside triphosphates. Thus the alterations in dNTP pool sizes that occur consequent to DNA damage may contribute to an increased mutagenic frequency. Poly(ADP-ribose) polymerase mediated suicide mechanism may participate in the toxicity of adenosine deaminase deficiency and severe combined immune deficiency disease in humans. Individuals with this disease suffer severe lymphopenia due to the toxic effects of deoxyadenosine. The lymphocytotoxic effect of adenosine deaminase deficiency can be simulated in lymphocyte cell lines from normal individuals by incubating them with the adenosine deaminase inhibitor, deoxycoformycin. Incubation of such leukocytes with deoxycoformycin and deoxyadenosine results in the gradual accumulation of DNA strand breaks and the depletion of NAD + leading to cell death over a period of several days. This depletion of NAD and loss of cell viability were effectively blocked by nicotinamide or 3-amino benzamide. Thus, persistent activation of poly(ADP-ribose) polymerase by unrepaired or recurrent DNA strand breaks may activate the suicide mechanism of cell death. This study provides a basis for the interesting suggestion that treatment with nicotinamide could block the persistent activity of poly(ADP-ribose) polymerase and may help preserve lymphocyte function in patients with adenosine deaminase deficiency. 16 refs., 3 figs., 2 tabs

  11. Adenosine and dialysis hypotension

    NARCIS (Netherlands)

    Franssen, CMF

    In this issue, Imai et al. report the results of a double-blind placebo-controlled study on the effect of an adenosine A1 receptor antagonist, FK352, on the incidence of dialysis hypotension in hypotension-prone patients. This Commentary discusses the use of selective adenosine A1 receptor

  12. RESIDUAL PLATELET REACTIVITY DURING THERAPY WITH INHIBITORS OF CYCLOOXIGENASE OR ADENOSINE DIPHOSPHATE RECEPTORS

    Directory of Open Access Journals (Sweden)

    A. A. Lomonosova

    2012-01-01

    Full Text Available Aim. To compare effects of acetylsalicylic acid (ASA and two clopidogrel drugs on residual platelet aggregative reactivity (RPAR. Material and methods. Patients (n=40 with ischemic heart disease aged under 70 years were involved into the crossover study. Clinical examination included questionnaire survey , blood pressure (BP measurement, ECG registration, 24-hour ECG and BP monitoring, determination of blood levels of total cholesterol, high density lipoproteins, triglycerides, transaminases, and creatinine, complete blood cell count, including platelets number and hemoglobin level. Besides evaluation of the platelet aggregation by optical aggregometry was performed initially , after one week ASA treatment and after every next 3 week clopidogrel treatment period.  Results. RPAR during ASA monotherapy was 56.4±0.3%. There were no significant differences in effects of original and generic clopidogrel on RPAR. Сlopidogrel therapy reduced RPAR more significantly (42.2±0.2% than ASA monotherapy did (p=0.0003. Authors proposed definition for high level of RPAR during therapy - it is platelet aggregation more than 46%. Data analysis taking into account this criterion showed that a number of patients with high RPAR was 70 and 30% among patients treated with enterosoluble ASA and clopidogrel, respectively. Conclusion. Study results show that a significant number of patients receiving antiplatelet monotherapy does not achieve the target level of RPAR(<46%. These results may be a rationale for combined therapy in patients of this type.

  13.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia

    2013-01-01

    myocardial IS and whether this correlated to t-PA release or improvements in hemodynamic responses. Hemodynamic variables and t-PA were measured in 22 pigs before, during, and after 45 min of left anterior coronary artery occlusion. During reperfusion, the pigs were randomized to 240 min of intracoronary...

  14. Alterations of serum potassium, serum magnesium and adenosine diphosphate due to various contrast media containing iodine

    International Nuclear Information System (INIS)

    Lehrberger, G.

    1979-01-01

    As an introduction of the chemical structure of contrast media is explained. Then follows a survey about the complication rates in examinations with intravascularly applicable iodine-containing contrast media. In the next part clinical symptoms and signs of general and localized contrast media incompatibility reactions, the contrast medium protein reaction and the relationship between allergic reaction and contrast medium are explained. It was tried to attribute the large amount of side-effects to one primary reaction. In this connection the three above-mentioned components were investigated. (orig./MG) [de

  15. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP{sub 2}O{sub 7}) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP{sub 2}O{sub 7} surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  16. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    Science.gov (United States)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  17. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    Science.gov (United States)

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism.

  18. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  19. Caffeine and adenosine.

    Science.gov (United States)

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  20. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 120; Issue 3. The ribose and glycine Maillard reaction in the interstellar medium (ISM): A theoretical study. Abraham F Jalbout Md Abul Haider ... Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase interstellar medium.

  1. Phosphorus-31 magnetic relaxation of adenosine 5‧-monophosphate, adenosine 5‧-diphosphate and adenosine 5‧-triphosphate in solution

    Science.gov (United States)

    Gaspar, R., Jr.; Brey, W. S., Jr.; Qiu, A.; Andrew, E. R.

    1989-04-01

    Measurements have been made of the longitudinal phosphorus-31 magnetic relaxation of the individual phosphorus resonances of AMP, ADP and ATP at 121.5 MHz from 278 to 333 K and at 40.5 MHz at room temperature in H 2O solutions of the chemicals. The phosphorus-31 spin-lattice relaxation times of all compounds are dominated by dipolar interactions and influenced by chemical shift anisotropy interactions to a different extent at the two frequencies. Phosphate group motion superimposed on the tumbling of the molecules is the main source of phosphorus-31 spin-lattice relaxation. Activation energies characterizing the combined motion range between 17.1 and 20.0 kJ/mol.

  2. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  3. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  4. Adenosine and sleep

    International Nuclear Information System (INIS)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A 1 receptors, 3 H-L-PIA binding was measured. The Bmax values for 3 H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in 3 H-L-PIA binding resulted from REM sleep deprivation and not from stress

  5. Daily supplementation of D-ribose shows no therapeutic benefits in the MHC-I transgenic mouse model of inflammatory myositis.

    Directory of Open Access Journals (Sweden)

    William Coley

    Full Text Available BACKGROUND: Current treatments for idiopathic inflammatory myopathies (collectively called myositis focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1, leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. RESULTS: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. CONCLUSIONS: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.

  6. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    Science.gov (United States)

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  7. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    Science.gov (United States)

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  9. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...

  10. A modified method for synthesis of [γ-32P] labelled adenosine triphosphate

    International Nuclear Information System (INIS)

    Rahman, W.Y.; Rohadi Awaludin; Endang Sarmini; Herlina; Triyanto; Rien Ritawidya; Abdul Mutalib; Santi Nurbaiti

    2015-01-01

    Production of [γ- 32 P]-ATP using three glycolysis enzymatic reaction i.e. glyceraldehyde 3-phosphate dehydrogenase, 3-phosphoglyceric phosphokinase and lactate dehydrogenase has been conducted. dl-glyceraldehyde 3-phosphate, Adenosine Diphosphate and H 3 32 PO 4 was used as precursors for this reaction. Purification of [γ- 32 P]-ATP was performed by using DEAE-Sephadex column chromatography. The result suggested that this simple method could be used for producing [γ- 32 P]-ATP to support the provision of radiolabeled nucleotide for biotechnology research in Indonesia. (author)

  11. Unique energetic properties of Adenosine Tri-Phosphate in comparison to similar compounds using density functional theory

    Science.gov (United States)

    Muraszko, Kevin; Halloran, Thomas; Malinovskaya, Svetlana; Leopold, Philip

    2015-05-01

    Adenosine Tri-Phosphate (ATP) is arguably the most critical compound to all life known on Earth, serving as the main energy transport and storage in cellular biology. Why in particular did nature ``choose'' ATP instead of a similar compound? We are seeking to answer this question by comparing the energetic properties of ATP to similar compounds. We discuss 3-D models for ATP, variants of the molecule based on all of the separate nucleobases, and ATP's twin molecule Adenosine Di-Phosphate. All calculations were done using Density Functional Theory. The results showed that purine compounds like Adenosine and Guanosine produce similar bond angles, making these viable unlike the other nucleobases. We have analyzed the chiral properties of ATP by comparing the ground-state-energies of ATP-cis and ATP-trans and have shown that ATP-cis is the more energetically favorable of the two. This is consistent with observations in nature.

  12. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  13. Ribose utilization by the human commensal Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Pokusaeva, Karina; Neves, Ana Rute; Zomer, Aldert; O'Connell-Motherway, Mary; MacSharry, John; Curley, Peter; Fitzgerald, Gerald F; van Sinderen, Douwe

    2010-05-01

    Growth of Bifidobacterium breve UCC2003 on ribose leads to the transcriptional induction of the rbsACBDK gene cluster. Generation and phenotypic analysis of an rbsA insertion mutant established that the rbs gene cluster is essential for ribose utilization, and that its transcription is likely regulated by a LacI-type regulator encoded by rbsR, located immediately upstream of rbsA. Gel mobility shift assays using purified RbsR(His) indicate that the promoter upstream of rbsABCDK is negatively controlled by RbsR(His) binding to an 18 bp inverted repeat and that RbsR(His) binding activity is modulated by D-ribose. The rbsK gene of the rbs operon of B. breve UCC2003 was shown to specify a ribokinase (EC 2.7.1.15), which specifically directs its phosphorylating activity towards D-ribose, converting this pentose sugar to ribose-5-phosphate. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif.

    Science.gov (United States)

    Gasmi, L; Cartwright, J L; McLennan, A G

    1999-12-01

    The human homologue of the Saccharomyces cerevisiae YSA1 protein, YSA1H, has been expressed as a thioredoxin fusion protein in Escherichia coli. It is an ADP-sugar pyrophosphatase with similar activities towards ADP-ribose and ADP-mannose. Its activities with ADP-glucose and diadenosine diphosphate were 56% and 20% of that with ADP-ribose respectively, whereas its activity towards other nucleoside 5'-diphosphosugars was typically 2-10%. cADP-ribose was not a substrate. The products of ADP-ribose hydrolysis were AMP and ribose 5-phosphate. K(m) and k(cat) values with ADP-ribose were 60 microM and 5.5 s(-1) respectively. The optimal activity was at alkaline pH (7.4-9.0) with 2.5-5 mM Mg(2+) or 100-250 microM Mn(2+) ions; fluoride was inhibitory, with an IC(50) of 20 microM. The YSA1H gene, which maps to 10p13-p14, is widely expressed in all human tissues examined, giving a 1.4 kb transcript. The 41.6 kDa fusion protein behaved as an 85 kDa dimer on gel filtration. After cleavage with enterokinase, the 24.4 kDa native protein fragment ran on SDS/PAGE with an apparent molecular mass of 33 kDa. Immunoblot analysis with a polyclonal antibody raised against the recombinant YSA1H revealed the presence of a protein of apparent molecular mass 33 kDa in various human cells, including erythrocytes. The sequence of YSA1H contains a MutT sequence signature motif. A major proposed function of the MutT motif proteins is to eliminate toxic nucleotide metabolites from the cell. Hence the function of YSA1H might be to remove free ADP-ribose arising from NAD(+) and protein-bound poly- and mono-(ADP-ribose) turnover to prevent the occurrence of non-enzymic protein glycation.

  15. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

    Science.gov (United States)

    Bettendorff, Lucien; Wins, Pierre

    2009-06-01

    Prokaryotes, yeasts and plants synthesize thiamin (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamin homeostasis. Inside the cells, thiamin is phosphorylated to higher phosphate derivatives. Thiamin diphosphate (ThDP) is the best-known thiamin compound because of its role as an enzymatic cofactor. However, in addition to ThDP, at least three other thiamin phosphates occur naturally in most cells: thiamin monophosphate, thiamin triphosphate (ThTP) and the recently discovered adenosine thiamin triphosphate. It has been suggested that ThTP has a specific neurophysiological role, but recent data favor a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP, possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. Adenosine thiamin triphosphate, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamin metabolism, thiamin transporters, thiamin pyrophosphokinase and a soluble 25-kDa thiamin triphosphatase have been characterized at the molecular level, in contrast to thiamin mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of adenosine thiamin triphosphate from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamin biochemistry, which is not restricted to the cofactor role of ThDP.

  16. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Lai, D.-H.; Bontempi, E. J.; Lukeš, Julius

    2012-01-01

    Roč. 183, č. 2 (2012), s. 189-192 ISSN 0166-6851 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Sleeping sickness * Ubiquinone * Solanesyl-diphosphate synthase * Digitonin permeabilization * In situ tagging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112000539

  17. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  18. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  19. Some neural effects of adenosin.

    Science.gov (United States)

    Haulică, I; Brănişteanu, D D; Petrescu, G H

    1978-01-01

    The possible neural effects of adenosine were investigated by using electrophysiological techniques at the level of some central and peripheral synapses. The evoked potentials in the somatosensorial cerebral cortex are influenced according to both the type of administration and the level of the electrical stimulation. While the local application does not induce significant alterations, the intrathalamic injections and the perfusion of the IIIrd cerebral ventricle do change the distribution of activated units at the level of different cortical layers especially during the peripheral stimulation. The frequency of spontaneous miniature discharges intracellularly recorded in the neuromuscular junction (mepp) is significantly depressed by adenosine. This effect is calcium- and dose-dependent. The end plate potentials (EPP) were also depressed. The statistical binomial analysis of the phenomenon indicated that adenosine induces a decrease if the presynaptic pool of the available transmitter. The data obtained demonstrate a presynaptic inhibitory action of adenosine beside its known vascular and metaholic effects.

  20. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E. (Cornell); (Sassari); (Pisa)

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  1. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole

  2. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  3. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  4. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    Science.gov (United States)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  5. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    Science.gov (United States)

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Determination of kinetics and the crystal structure of a novel type 2 isopentenyl diphosphate: dimethylallyl diphosphate isomerase from Streptococcus pneumoniae.

    Science.gov (United States)

    de Ruyck, Jerome; Janczak, Matthew W; Neti, Syam Sundar; Rothman, Steven C; Schubert, Heidi L; Cornish, Rita M; Matagne, Andre; Wouters, Johan; Poulter, C Dale

    2014-07-07

    Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI-2) is a flavoenzyme found in bacteria that is completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli. Steady-state kinetic studies of the enzyme indicated that FMNH2 (KM =0.3 μM) bound before isopentenyl diphosphate (KM =40 μM) in an ordered binding mechanism. An X-ray crystal structure at 1.4 Å resolution was obtained for the holoenzyme in the closed conformation with a reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI-2 and, thus, open new possibilities for the rational design of antibacterial compounds against sequence-similar and structure-related pathogens such as Enterococcus faecalis or Staphylococcus aureus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of extracellular adenosine triphosphate on activity of osteoblast like cells - biomed 2013.

    Science.gov (United States)

    Mehta, Siddhant K; Tucci, Michelle A; Benghuzzi, Hamed A

    2013-01-01

    Platelet dense granules contain serotonin, adenosine triphosphate (ATP), and adenosine diphosphate (ADP). These molecules are present in platelet rich plasma (PRP), and may therefore have an impact on the efficacy of PRP therapy. Additionally, nucleotides are important extracellular signaling molecules in a variety of tissue types including bone. The purpose of this investigation was to evaluate the in vitro dose-dependent effects of extracellular adenosine triphosphate (ATP) exposure on activity of human osteoblast-like cells. MG-63 cells were exposed to phosphate buffered saline (control group) or ATP solution (20 µM, 100µM, 200 µM). Osteoblast viability was evaluated at 24, 48, and 72 hours using nonspecific and osteoblast-specific markers and cellular morphology. No significant differences in total protein, malonlydialdehyde (MDA), or glutathione were observed with ATP exposure at any timepoint. High dose ATP exposure resulted in a significantly higher production of nitric oxide compared to controls and other groups. With respect to alkaline phosphatase activity and osteopontin production, no significant differences were present with ATP exposure. Overall conclusion: Extracellular ATP exposure modulated osteoblast activity with no change in cell viability in vitro.

  8. Mutagenicity of γ-irradiated oxygenated and deoxygenated solutions of 2-deoxy-D-ribose and D-ribose in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Wilmer, J.; Leveling, H.; Schubert, J.

    1981-01-01

    Solutions of 2-deoxy-D-ribose and D-ribose were γ-irradiated under different experimental conditions and tested for mutagenicity, with and without preincubation, in Salmonella typhimurium. The irradiated sugar solutions were mutagenic in the tester strains TA 100 and TA 98. Except for malonaldehyde (MDA), which is not mutagenic in the concentrations produced radiolytically, the relative mutagenicities of the individual radiolytic products are unknown. With irradiated solutions of 2-deoxy-D-ribose, a relationship was found between the level of non-MDA aldehydes and the mutagenicity in TA 100. Heating the irradiated solutions of 2-deoxy-D-ribose resulted in a temperature-dependent reduction fo the mutagenicity. Autoclaved, non-irradiated solutions of 2-deoxy-D-ribose were not mutagenic in the Salmonella test. (orig.)

  9. A simple chemical synthesis of sugar nucleoside diphosphates in water.

    Science.gov (United States)

    Tanaka, Hidenori; Yoshimura, Yayoi; Hindsgaul, Ole

    2013-10-08

    Chemoenzymatic oligosaccharide synthesis is attractive since it eliminates the tedious multistep protection-deprotection requirements of pure chemical synthesis. Chemoenzymatic synthesis using glycosyltransferases, however, requires not only the correct enzyme to control both regio- and stereospecificity, but also the glycosyl donor to provide the sugar that is added. This unit describes a simple synthesis of sugar-nucleoside diphosphates (sugar-NDPs), the type of glycosyl donor (e.g., UDP-Glc, UDP-Gal, ADP-Glc) required by most glycosyltransferases, by using a chemical coupling reaction in water. The preparation of sugar-NDPs by this method therefore does not require any skills in synthetic organic chemistry. Copyright © 2013 John Wiley & Sons, Inc.

  10. Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway.

    Science.gov (United States)

    Terami, Yuji; Yoshida, Hiromi; Uechi, Keiko; Morimoto, Kenji; Takata, Goro; Kamitori, Shigehiro

    2015-08-01

    L-Ribose isomerase from Cellulomonas parahominis MB426 (CpL-RI) can catalyze the isomerization between L-ribose and L-ribulose, which are non-abundant in nature and called rare sugars. CpL-RI has a broad substrate specificity and can catalyze the isomerization between D-lyxose and D-xylulose, D-talose and D-tagatose, L-allose and L-psicose, L-gulose and L-sorbose, and D-mannose and D-fructose. To elucidate the molecular basis underlying the substrate recognition mechanism of CpL-RI, the crystal structures of CpL-RI alone and in complexes with L-ribose, L-allose, and L-psicose were determined. The structure of CpL-RI was very similar to that of L-ribose isomerase from Acinetobacter sp. strain DL-28, previously determined by us. CpL-RI had a cupin-type β-barrel structure, and the catalytic site was detected between two large β-sheets with a bound metal ion. The bound substrates coordinated to the metal ion, and Glu113 and Glu204 were shown to act as acid/base catalysts in the catalytic reaction via a cis-enediol intermediate. Glu211 and Arg243 were found to be responsible for the recognition of substrates with various configurations at 4- and 5-positions of sugar. CpL-RI formed a homo-tetramer in crystals, and the catalytic site independently consisted of residues within a subunit, suggesting that the catalytic site acted independently. Crystal structure and site-direct mutagenesis analyses showed that the tetramer structure is essential for the enzyme activity and that each subunit of CpL-RI could be structurally stabilized by intermolecular contacts with other subunits. The results of growth complementation assays suggest that CpL-RI is involved in a novel metabolic pathway using L-ribose as a carbon source.

  11. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  12. Evaluation of the sorption of Eu(III) in titanium diphosphate

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M.

    2007-01-01

    In this work its are presented: the synthesis, physicochemical characterization and the surface parameters estimation that can be related with the retention properties of the titanium diphosphate for the actinides of valence III (Pu, Am, Cm among others), using the Eu 3+ like a chemical analog. The surface area, hydration time, zero charge point, density of active sites and the surface species distribution in the titanium diphosphate are reported. This information was used to explain the retention of the Eu(lll) in the surface of the titanium diphosphate. (Author)

  13. Poly(ADP-ribose): From chemical synthesis to drug design.

    Science.gov (United States)

    Drenichev, Mikhail S; Mikhailov, Sergey N

    2016-08-01

    Poly(ADP-ribose) (PAR) is an important biopolymer, which is involved in various life processes such as DNA repair and replication, modulation of chromatin structure, transcription, cell differentiation, and in pathogenesis of various diseases such as cancer, diabetes, ischemia and inflammations. PAR is the most electronegative biopolymer and this property is essential for its binding with a wide range of proteins. Understanding of PAR functions in cell on molecular level requires chemical synthesis of regular PAR oligomers. Recently developed methodologies for chemical synthesis of PAR oligomers, will facilitate the study of various cellular processes, involving PAR. Copyright © 2016. Published by Elsevier Ltd.

  14. The A1 adenosine receptor as a new player in microglia physiology.

    Science.gov (United States)

    Luongo, L; Guida, F; Imperatore, R; Napolitano, F; Gatta, L; Cristino, L; Giordano, C; Siniscalco, D; Di Marzo, V; Bellini, G; Petrelli, R; Cappellacci, L; Usiello, A; de Novellis, V; Rossi, F; Maione, S

    2014-01-01

    The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2 X4,7 and P2 Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca(2+) influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive-specific neuron before and after application of resting or ATP-treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone. Copyright © 2013 Wiley Periodicals, Inc.

  15. Intravenous adenosine SPECT thallium imaging

    International Nuclear Information System (INIS)

    Joyce, J.M.; Grossman, S.J.; Garrett, J.S.; Sharma, B.; Geller, M.; Sweeney, P.J.

    1991-01-01

    This paper determines the safety and efficacy of intravenous (IV) adenosine in females for the evaluation of coronary artery disease, since only limited data are available. Eighty consecutive studies of 78 female subjects (aged 43-83 years) using IV adenosine (0.14 mg/kg per minute) with T1-201 SPECT imaging were reviewed. Fifty-eight (73%) had mild symptoms; mild dyspnea (24%), flushing (23%), chest pain (23%), headache (11%), dizziness (11%), weakness (9%), nausea (8%), abdominal pain (8%), arm pain (6%), chest tightness (4%), neck tightness (4%), dry mouth (4%), and dropped P waves (4%). Four had moderate symptoms: dyspnea requiring Proventil or aminophylline (2%), significant hypotension (1%), and third-degree atrioventicular heart block (1%). Two had severe symptoms (ventricular tachycardia requiring cardioversion (1%) and severe dyspnea requiring epinephrine (1%). Twenty-two (28%) underwent cardiac catheterization that demonstrated coronary artery disease or postangioplasty results. The thallium SPECT images were 94% sensitive and 100% specific in detecting significant disease. The one false-negative result was in a subject who experienced no symptoms for ECG changes during adenosine infusion. Ischemic ECG changes were 35% sensitive and 100% specific. Chest pain was 53% sensitive and 60% specific

  16. Characterization and tissue specificity of a monoclonal antibody against human uridine 5'-diphosphate-glucuronosyltransferase

    NARCIS (Netherlands)

    Peters, W. H.; Allebes, W. A.; Jansen, P. L.; Poels, L. G.; Capel, P. J.

    1987-01-01

    A monoclonal antibody against human liver uridine 5'-diphosphate-glucuronosyltransferase (UDPGTase) was developed. Enzyme inhibition studies with this monoclonal antibody showed inhibition of human liver UDPGTase activity with bilirubin, 4-methylumbelliferone, and 4-nitrophenol as substrates.

  17. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  18. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  19. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  20. Kinetic study of the thorium phosphate - diphosphate dissolution

    International Nuclear Information System (INIS)

    Dacheux, N.; Thomas, A.C.; Brandel, V.; Genet, M.

    2000-01-01

    The thorium phosphate-diphosphate Th 4 (PO 4 ) 4 P 2 O 7 (TPD) structure allows the replacement of large amounts of thorium by tetravalent actinides leading to the formation of solid solutions. This compound was obtained in powdered or sintered form after pressing at room temperature at 300-800 MPa then heating at 1250 deg. C for 10-30 hours. The resistance of this material to aqueous corrosion was determined by varying several parameters such as surface, leaching flow, acidity or temperature. It was thus possible to independently determine the influence of each parameter on the leaching rate provided that the saturation of the solution was not obtained. In acidic media, the partial order related to [H 3 O + ] was found to be in the 0.31-0.35 range while, in basic media, the partial order related to [OH - ] was almost the same (0.45). The activation energy (42 kJ/mol) was determined between 4 deg. C and 120 deg. C. Moreover, the addition of phosphate in the leachate slightly increased the TPD dissolution rate. When the saturation of the solution is reached, a gelatinous precipitate controls the thorium and phosphate concentrations. The complete characterization of this solid led to the proposed general formula Th 2 (PO 4 ) 2 (HPO 4 ). n H 2 O which conventional solubility product (at I = 0 M) is very low: K * S,0 10 -66.6±1.2 even in very acidic media. (authors)

  1. Ribulose diphosphate carboxylase of the cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Terekhova, I.V.; Chernyad' ev, I.I.; Doman, N.G.

    1986-11-20

    The ribulose diphosphate (RDP) carboxylase activity of the cyanobacterium Spirulina platensis is represented by two peaks when a cell homogenate is centrifuged in a sucrose density gradient. In the case of differential centrifugation (40,000 g, 1 h), the activity of the enzyme was distributed between the supernatant liquid (soluble form) and the precipitate (carboxysomal form). From the soluble fraction, in which 80-95% of the total activity of the enzyme is concentrated, electrophoretically homogeneous RDP carboxylase was isolated by precipitation with ammonium sulfate and centrifugation in a sucrose density gradient. The purified enzyme possessed greater electrophoretic mobility in comparison with the RDP carboxylase of beans Vicia faba. The molecular weight of the enzyme, determined by gel filtration, was 450,000. The enzyme consists of monotypic subunits with a molecular weight of 53,000. The small subunits were not detected in electrophoresis in polyacrylamide gel in the presence of SDS after fixation and staining of the gels by various methods.

  2. Profiling of Ribose Methylations in RNA by High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Birkedal, Ulf; Christensen-Dalsgaard, Mikkel; Krogh, Nicolai

    2015-01-01

    Ribose methylations are the most abundant chemical modifications of ribosomal RNA and are critical for ribosome assembly and fidelity of translation. Many aspects of ribose methylations have been difficult to study due to lack of efficient mapping methods. Here, we present a sequencing-based method...

  3. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    International Nuclear Information System (INIS)

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H.

    1990-01-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-[ 3 H]ethylcarboxamidoadenosine [( 3 H]NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the [ 3 H]NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors

  4. Mutations of human DNA topoisomerase I at poly(ADP-ribose) binding sites: modulation of camptothecin activity by ADP-ribose polymers.

    Science.gov (United States)

    Tesauro, Cinzia; Graziani, Grazia; Arnò, Barbara; Zuccaro, Laura; Muzi, Alessia; D'Annessa, Ilda; Santori, Elettra; Tentori, Lucio; Leonetti, Carlo; Fiorani, Paola; Desideri, Alessandro

    2014-09-17

    DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase I belongs to the family of poly(ADP-ribose)-binding proteins and is the target of camptothecin derived anticancer drugs. Poly(ADP-ribosyl)ation occurs at specific sites of the enzyme inhibiting the cleavage and enhancing the religation steps during the catalytic cycle. Thus, ADP-ribose polymers antagonize the activity of topoisomerase I poisons, whereas PARP inhibitors increase their antitumor effects. Using site-directed mutagenesis we have analyzed the interaction of human topoisomerase I and poly(ADP-ribose) through enzymatic activity and binding procedures. Mutations of the human topoisomerase I hydrophobic or charged residues, located on the putative polymer binding sites, are not sufficient to abolish or reduce the binding of the poly(ADP-ribose) to the protein. These results suggest either the presence of additional binding sites or that the mutations are not enough perturbative to destroy the poly(ADP-ribose) interaction, although in one mutant they fully abolish the enzyme activity. It can be concluded that mutations at the hydrophobic or charged residues of the putative polymer binding sites do not interfere with the ability of poly(ADP-ribose) to antagonize the antitumor activity of topoisomerase I poisons.

  5. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs.

    Science.gov (United States)

    Meinert, Cornelia; Myrgorodska, Iuliia; de Marcellus, Pierre; Buhse, Thomas; Nahon, Laurent; Hoffmann, Søren V; d'Hendecourt, Louis Le Sergeant; Meierhenrich, Uwe J

    2016-04-08

    Ribose is the central molecular subunit in RNA, but the prebiotic origin of ribose remains unknown. We observed the formation of substantial quantities of ribose and a diversity of structurally related sugar molecules such as arabinose, xylose, and lyxose in the room-temperature organic residues of photo-processed interstellar ice analogs initially composed of H2O, CH3OH, and NH3 Our results suggest that the generation of numerous sugar molecules, including the aldopentose ribose, may be possible from photochemical and thermal treatment of cosmic ices in the late stages of the solar nebula. Our detection of ribose provides plausible insights into the chemical processes that could lead to formation of biologically relevant molecules in suitable planetary environments. Copyright © 2016, American Association for the Advancement of Science.

  6. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  7. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    International Nuclear Information System (INIS)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal

    2006-01-01

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis

  8. The Prognostic Value of BRCA1 and PARP Expression in Epithelial Ovarian Carcinoma

    DEFF Research Database (Denmark)

    Hjortkjær, Mette; Waldstrøm, Marianne; Jakobsen, Anders

    2017-01-01

    pathway (BRCAness phenomenon), which is important when treatment with poly (adenosine-diphosphate-ribose) polymerase (PARP) inhibitors is considered. The aim of this study was to investigate immunohistochemical detection of BRCA1 and PARP expression in EOC and their possible prognostic relevance. Tumor...

  9. Repeated administration of adenosine increases its cardiovascular effects in rats.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  10. Enzymatic Redox Cascade for One-Pot Synthesis of Uridine 5'-Diphosphate Xylose from Uridine 5'-Diphosphate Glucose.

    Science.gov (United States)

    Eixelsberger, Thomas; Nidetzky, Bernd

    2014-11-24

    Synthetic ways towards uridine 5'-diphosphate (UDP)-xylose are scarce and not well established, although this compound plays an important role in the glycobiology of various organisms and cell types. We show here how UDP-glucose 6-dehydrogenase (hUGDH) and UDP-xylose synthase 1 (hUXS) from Homo sapiens can be used for the efficient production of pure UDP-α-xylose from UDP-glucose. In a mimic of the natural biosynthetic route, UDP-glucose is converted to UDP-glucuronic acid by hUGDH, followed by subsequent formation of UDP-xylose by hUXS. The nicotinamide adenine dinucleotide (NAD + ) required in the hUGDH reaction is continuously regenerated in a three-step chemo-enzymatic cascade. In the first step, reduced NAD + (NADH) is recycled by xylose reductase from Candida tenuis via reduction of 9,10-phenanthrenequinone (PQ). Radical chemical re-oxidation of this mediator in the second step reduces molecular oxygen to hydrogen peroxide (H 2 O 2 ) that is cleaved by bovine liver catalase in the last step. A comprehensive analysis of the coupled chemo-enzymatic reactions revealed pronounced inhibition of hUGDH by NADH and UDP-xylose as well as an adequate oxygen supply for PQ re-oxidation as major bottlenecks of effective performance of the overall multi-step reaction system. Net oxidation of UDP-glucose to UDP-xylose by hydrogen peroxide (H 2 O 2 ) could thus be achieved when using an in situ oxygen supply through periodic external feed of H 2 O 2 during the reaction. Engineering of the interrelated reaction parameters finally enabled production of 19.5 mM (10.5 g l -1 ) UDP-α-xylose. After two-step chromatographic purification the compound was obtained in high purity (>98%) and good overall yield (46%). The results provide a strong case for application of multi-step redox cascades in the synthesis of nucleotide sugar products.

  11. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  12. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  13. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  14. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Krath, Britta N.; Eriksen, Tina A.; Poulsen, Tim S.

    1999-01-01

    cDNAs specifying four active phosphoribosyl diphosphate synthase isozymes were isolated from an Arabidopsis thaliana cDNA library. In contrast to other phosphoribosyl diphosphate synthases the activity of two of the A. thaliana isozymes are independent of Pi. Amino acid sequence comparison...

  15. Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models.

    Science.gov (United States)

    Ordway, Gregory A; Szebeni, Attila; Hernandez, Liza J; Crawford, Jessica D; Szebeni, Katalin; Chandley, Michelle J; Burgess, Katherine C; Miller, Corwin; Bakkalbasi, Erol; Brown, Russell W

    2017-12-01

    Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors. Two rodent models, the Porsolt swim test and repeated exposure to psychological stressors, were used to test the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, for potential antidepressant activity. Another poly(ADP-ribose) polymerase inhibitor, 5-aminoisoquinolinone, was also tested. Poly(ADP-ribose) polymerase inhibitors produced antidepressant-like effects in the Porsolt swim test, decreasing immobility time, and increasing latency to immobility, similar to the effects of fluoxetine. In addition, 3-aminobenzamide treatment increased sucrose preference and social interaction times relative to vehicle-treated control rats following repeated exposure to combined social defeat and unpredictable stress, mediating effects similar to fluoxetine treatment. The poly(ADP-ribose) polymerase inhibitors 3-aminobenzamide and 5-aminoisoquinolinone exhibit antidepressant-like activity in 2 rodent stress models and uncover poly(ADP-ribose) polymerase as a unique molecular target for the potential development of a novel class of antidepressants.

  16. myo-Inositol and d-Ribose Ligand Discrimination in an ABC Periplasmic Binding Protein

    Science.gov (United States)

    Herrou, Julien

    2013-01-01

    The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds d-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and d-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for d-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on d-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands. PMID:23504019

  17. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  18. Cloning and characterization of the l-ribose isomerase gene from Cellulomonas parahominis MB426.

    Science.gov (United States)

    Morimoto, Kenji; Terami, Yuji; Maeda, Yu-ichiro; Yoshihara, Akihide; Takata, Goro; Izumori, Ken

    2013-04-01

    A newly isolated bacterium, Cellulomonas parahominis MB426, produced l-ribose isomerase (CeLRI) on a medium containing l-ribose as a sole carbon source. A 32 kDa protein isomerizing l-ribose to l-ribulose was purified to homogeneity from this bacterium. A set of degenerated primers were synthesized based on amino acid sequences of the purified CeLRI, and a 747 bp gene encoding CeLRI was cloned, sequenced and overexpressed in Escherichia coli. This gene encoded a 249 amino acid protein with a calculated molecular mass of 27,435. The deduced amino acid sequence of this gene showed the highest identity with l-ribose isomerase from Acinetobacter calcoaceticus DL-28 (71%). The recombinant l-ribose isomerase (rCeLRI) was optimally active at pH 9.0 and 40°C, and was stable up to 40°C for 1 h and not dependent for metallic ions for its activity. The rCeLRI showed widely substrate specificity for the rare sugar which involved l-erythro form such as l-ribose, d-lyxose, d-talose, d-mannose, l-gulose, and l-allose. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    Science.gov (United States)

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of Hematological and Biochemical parameters with extended D-Ribose ingestion

    Directory of Open Access Journals (Sweden)

    Frelich Angela

    2008-09-01

    Full Text Available Abstract D-ribose, a naturally occurring pentose carbohydrate, has been shown to replenish high- energy phosphates following myocardial ischemia and high intensity, repetitive exercise. Human studies have mainly involved short-term assessment, including potential toxicity. Reports describing adverse effects of D-ribose with prolonged ingestion have been lacking. Therefore, this study assessed the toxicity of extended consumption of D-ribose in healthy adults. Nineteen subjects ingested 20 grams/Day (10 grams, twice a Day of ribose with serial measurements of biochemical and hematological parameters at Days 0, 7, and 14. No significant toxic changes over the 14-day assessment period occurred in complete blood count, albumin, alkaline phosphatase, gamma glutamyltransferase, alanine amiotransferase, and aspartate aminotransferase. However, D-ribose did produce an asymptomatic, mild hypoglycemia of short duration. Uric acid levels increased at Day 7, but decreased to baseline values by Day 14. D-ribose consumption for 14 days appears not to produce significant toxic changes in both hematological and biochemical parameters in healthy human volunteers.

  1. D-ribose therapy in four Polish patients with adenylosuccinate lyase deficiency: absence of positive effect.

    Science.gov (United States)

    Jurecka, A; Tylki-Szymanska, A; Zikanova, M; Krijt, J; Kmoch, S

    2008-12-01

    Deficiency of adenylosuccinate lyase (ADSL) (OMIM 103050) is an autosomal recessive disorder of the purine de novo synthesis pathway and purine nucleotide cycle, diagnosed so far in approximately 50 patients. The clinical presentation is characterized by severe neurological involvement including hypotonia, seizures, developmental delay and autistic features. Epilepsy in ADSL deficiency is frequent and occurs in approximately two-thirds of patients, beginning either early in the neonatal period or after the first year of life. At present there is no treatment of proven clinical efficacy. Despite of the increasing number of ADSL-deficient patients reported, there are only a few communications of therapeutic considerations or efforts. Among them only two showed some beneficial effects in ADSL-deficient patients. D-ribose, a simple and relatively cheap therapy, has been associated with improvement of behaviour and progressive reduction of the seizure frequency in one 13-year-old patient with ADSL deficiency. In this study we have re-examined D-ribose treatment in four ADSL-deficient patients. Assessments consisted of biochemical markers and neurological outcome. The 12-month trial of D-ribose failed to show any clinical benefit in ADSL patients with both milder and severe phenotype. D-ribose administration was accompanied by neither reduction in seizure frequency nor growth enhancement. Additionally, patients with milder type II presented the first seizure after 4 and 8 months of the D-ribose treatment. Therefore, we could not confirm a positive effect of D-ribose as previously reported.

  2. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  3. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  4. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid se...

  5. A single arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms

    NARCIS (Netherlands)

    Águila Ruiz-Sola, M.; Barja, M.V.; Manzano, David; Llorente, Briardo; Schipper, Bert; Beekwilder, Jules; Rodriguez-Concepcion, Manuel

    2016-01-01

    A wide diversity of isoprenoids is produced in different plant compartments. Most groups of isoprenoids synthesized in plastids, and some produced elsewhere in the plant cell derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. In Arabidopsis (Arabidopsis

  6. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    Science.gov (United States)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  7. Adenosine stress protocols for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  8. Contribution of adenosine-producing ectoenzymes to the mechanisms underlying the mitigation of maternal-fetal conflicts.

    Science.gov (United States)

    Cecati, M; Emanuelli, M; Giannubilo, S R; Quarona, V; Senetta, R; Malavasi, F; Tranquilli, A L; Saccucci, F

    2013-01-01

    The interactions taking place between mother and embryo have been the focus of detailed studies in recent years, where pregnancy is considered as an in vivo transplant. The immune systems of the mother and the embryo together establish a condition of tolerance, which lasts throughout the pregnancy. Alongside immunogenetic components, a contribution is provided by the ectoenzyme network, a chain of surface molecules mainly operating in closed environments and potentially providing inhibitory or activator signals. One of the soluble products of the ectoenzyme network with immunosuppressory potential is adenosine, a purine nucleoside that plays multiple roles in almost all tissues and organs. The hypothesis behind the work was studied in patients with recurrent pregnancy loss (RPL), an event which remains unexplained in over 50 percent of cases. To this aim, we analyzed the expression of CD39 (ectonucleoside triphosphate diphosphohydrolase 1, ENTPD1) and CD73 (ecto-5’-nucleotidase, NT5E), the main pathway for adenosine generation, in samples obtained from women with RPL. The study included the evaluation of the expression of TNF-alpha (a pro-inflammatory cytokine) and of an alternative pathway of adenosine generation run by CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) and PC-1 (ectonucleotide pyrophosphatase/phosphodiesterase 1, ENPP1). The results of this study highlight the existence of a network of surface enzymes expressed at the maternal/fetal interface and addressed to the production of adenosine. Perturbation of this network may induce a rescue pathway driven by CD38 and ENPP1. Ectoenzyme and inflammation may be considered now key elements in orchestrating the events leading to the interruption of pregnancy in the RPL sample analyzed and at the same potentially becoming therapeutic targets.

  9. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion....

  10. Inhibition of the adenosine-5'-phosphosulfate-sulfotransferase activity from spinach, maize, and Chlorella by adenosine-5'-monophosphate.

    Science.gov (United States)

    Schmidt, A

    1975-01-01

    Adenosin-5'-phosphosulfate (APS) sulfotransferase from higher plants and algae seems to be regulated by adenosine-5'-monophosphate, an endproduct of the APS-sulfotransferase reaction. This was found in crude extracts of Spinacea oleracea L. and Zea mays L. and with partially purified APS-sulfotransferase fractions from Chlorella pyrenoidosa. Half-maximal inhibition with adenosine-5'-monophosphate, was found to be (a) 1.3 mM for Spinacea; (b) 1.3 mM for Zea; and (c) 1.6 mM for Chlorella. This inhibition is specific for adenosine-5'-monophosphate, adenosine and adenosine-3'-monophosphate having no inhibitory effect.

  11. d-Ribose induced glycoxidative insult to hemoglobin protein: An approach to spot its structural perturbations.

    Science.gov (United States)

    Siddiqui, Zeba; Ishtikhar, Mohd; Moinuddin; Ahmad, Saheem

    2018-01-31

    Glycation of biological macromolecule leads to the establishment of advanced glycation end products (AGEs) having implications in metabolic disorders. d‑ribose appears to be the most reactive among the naturally occurring sugars and contribute significantly to the glycation reactions in vivo, however, no report have been published yet to discuss d‑ribose induced glycation of hemoglobin (Hb). Therefore, the present study was designed to investigate d‑ribose induced glycoxidative damage to Hb protein. Briefly, the commercially available Hb was glycated with d‑ribose for varying time intervals. The structural perturbation induced in glycated Hb (GHb) was confirmed by biophysical techniques viz., UV-visible, fluorescence spectroscopy, circular dichroism, Fourier transform infra-red spectroscopy, dynamic light scattering, MALDIthermal denaturation by UV-visible spectrophotometer and DSC. Biophysical techniques confirm the secondary and tertiary structural perturbation in GHb as compared to native Hb. The values of carbonyl content, hydroxy methyl furfural, thiobarbituric acid reactive substance and nitro blue tetrazolium were found to be increased and free lysine and free arginine content were decreased in the GHb due to structural change. Thus, results of this study have established that glycation with d‑ribose lead to the structural changes in the native Hb which might play an important role in pathophysiology metabolic diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Dichotomy of the Poly(ADP-Ribose Polymerase-Like Thermozyme from Sulfolobus solfataricus

    Directory of Open Access Journals (Sweden)

    Maria Rosaria Faraone Mennella

    2018-01-01

    Full Text Available The first evidence of an ADP-ribosylating activity in Archaea was obtained in Sulfolobus solfataricus(strain MT-4 where a poly(ADP-ribose polymerase (PARP-like thermoprotein, defined with the acronymous PARPSso, was found. Similarly to the eukaryotic counterparts PARPSso cleaves beta-nicotinamide adenine dinucleotide to synthesize oligomers of ADP-ribose; cross-reacts with polyclonal anti-PARP-1 catalytic site antibodies; binds DNA. The main differences rely on the molecular mass (46.5 kDa and the thermophily of PARPSso which works at 80 °C. Despite the biochemical properties that allow correlating it to PARP enzymes, the N-terminal and partial amino acid sequences available suggest that PARPSso belongs to a different group of enzymes, the DING proteins, an item discussed in detail in this review.This finding makes PARPSso the first example of a DING protein in Archaea and extends the existence of DING proteins into all the biological kingdoms. PARPSsohas a cell peripheral localization, along with the edge of the cell membrane. The ADP-ribosylation reaction is reverted by a poly(ADP-ribose glycohydrolase-like activity, able to use the eukaryotic poly(ADP-ribose as a substrate too. Here we overview the research of (ADP-ribosylation in Sulfolobus solfataricus in the past thirty years and discuss the features of PARPSso common with the canonical poly(ADP-ribose polymerases, and the structure fitting with that of DING proteins.

  13. Selective down-regulation of nuclear poly(ADP-ribose glycohydrolase.

    Directory of Open Access Journals (Sweden)

    David M Burns

    Full Text Available The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose polymerase-1 (PARP-1 is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose glycohydrolase (PARG degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway.

  14. Crystallographic and biochemical analysis of the mouse poly(ADP-ribose glycohydrolase.

    Directory of Open Access Journals (Sweden)

    Zhizhi Wang

    Full Text Available Protein poly(ADP-ribosylation (PARylation regulates a number of important cellular processes. Poly(ADP-ribose glycohydrolase (PARG is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose (PAR polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG catalytic domain, its complexes with ADP-ribose (ADPr and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.

  15. Activation of P2Y6 Receptors Facilitates Nonneuronal Adenosine Triphosphate and Acetylcholine Release from Urothelium with the Lamina Propria of Men with Bladder Outlet Obstruction.

    Science.gov (United States)

    Silva, Isabel; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2015-10-01

    Deregulation of purinergic bladder signaling may contribute to persistent detrusor overactivity in patients with bladder outlet obstruction. Activation of uridine diphosphate sensitive P2Y6 receptors increases voiding frequency in rats indirectly by releasing adenosine triphosphate from the urothelium. To our knowledge this mechanism has never been tested in the human bladder. We examined the role of the uridine diphosphate sensitive P2Y6 receptor on tetrodotoxin insensitive nonneuronal adenosine triphosphate and [(3)H]acetylcholine release from the human urothelium with the lamina propria of control organ donors and patients with benign prostatic hyperplasia. The adenosine triphosphate-to-[(3)H]acetylcholine ratio was fivefold higher in mucosal urothelium/lamina propria strips from benign prostatic hyperplasia patients than control men. The selective P2Y6 receptor agonist PSB0474 (100 nM) augmented by a similar amount adenosine triphosphate and [(3)H]acetylcholine release from mucosal urothelium/lamina propria strips from both groups of individuals. The facilitatory effect of PSB0474 was prevented by MRS2578 (50 nM) and by carbenoxolone (10 μM), which block P2Y6 receptor and pannexin-1 hemichannels, respectively. Blockade of P2X3 (and/or P2X2/3) receptors with A317491 (100 nM) also attenuated release facilitation by PSB0474 in control men but not in patients with benign prostatic hyperplasia. Immunolocalization studies showed that P2Y6, P2X2 and P2X3 receptors were present in choline acetyltransferase positive urothelial cells. In contrast to P2Y6 staining, choline acetyltransferase, P2X2 and P2X3 immunoreactivity decreased in the urothelium of benign prostatic hyperplasia patients. Activation of P2Y6 receptor amplifies mucosal adenosine triphosphate release underlying bladder overactivity in patients with benign prostatic hyperplasia. Therefore, we propose selective P2Y6 receptor blockade as a novel therapeutic strategy to control persistent storage symptoms in

  16. Guanosine exerts antiplatelet and antithrombotic properties through an adenosine-related cAMP-PKA signaling.

    Science.gov (United States)

    Fuentes, Francisco; Alarcón, Marcelo; Badimon, Lina; Fuentes, Manuel; Klotz, Karl-Norbert; Vilahur, Gemma; Kachler, Sonja; Padró, Teresa; Palomo, Iván; Fuentes, Eduardo

    2017-12-01

    Guanosine is a natural product and an endogenous nucleoside that has shown to increase during myocardial ischemia. Platelets are critically involved in ischemic coronary events. It remains unknown, however, whether guanosine may affect platelet activation and function. We sought to investigate the potential antiplatelet and antithrombotic properties of guanosine and decipher the mechanisms behind. We firstly assessed the effects of guanosine on platelet activation/aggregation upon stimulation with several platelet agonists including adenosine diphosphate (ADP), collagen, arachidonic acid (AA), and TRAP-6. Guanosine antithrombotic potential was also evaluated both in vitro (Badimon perfusion chamber) and in vivo (murine model). In addition we assessed any potential effect on bleeding. At a mechanistic level we determined the release of thromboxane B2, intraplatelet cAMP levels, the binding affinity on platelet membrane, and the activation/phosphorylation of protein kinase A (PKA), phospholipase C (PLC) and PKC. Guanosine markedly inhibited platelet activation/aggregation-challenged by ADP and, although to a lesser extent, also reduced platelet aggregation challenged by collagen, AA and TRAP-6. Guanosine significantly reduced thrombus formation both in vitro and in vivo without significantly affects bleeding. Guanosine antiplatelet effects were associated with the activation of the cAMP/PKA signaling pathway, and a reduction in thromboxane B2 levels and PLC and PKC phosphorylation. The platelet aggregation and binding affinity assays revealed that guanosine effects on platelets were mediated by adenosine. Guanosine effectively reduces ADP-induced platelet aggregation and limits thrombotic risk. These antithrombotic properties are associated with the activation of the cAMP/PKA signaling pathway. Copyright © 2017. Published by Elsevier B.V.

  17. Adenosine and its Related Nucleotides may Modulate Gastric Acid ...

    African Journals Online (AJOL)

    Studies on lumen-perfused rat isolated stomachs showed that adenosine, adenosine monophosphate (AMP) and reduced nicotinamide adenine dinucleotide (NADH) inhibited histamine-induced gastric acid secretion. The inhibitions and the calcium levels of the serosal solution exhibited inverse relationship. Adenosine ...

  18. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate

    International Nuclear Information System (INIS)

    Garcia G, N.; Solis, D.; Ordonez R, E.

    2012-10-01

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP 2 O 7 ). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  19. Yeast double-stranded RNA virus L-A deliberately synthesizes RNA transcripts with 5'-diphosphate.

    Science.gov (United States)

    Fujimura, Tsutomu; Esteban, Rosa

    2010-07-23

    L-A is a persistent double-stranded RNA virus commonly found in the yeast Saccharomyces cerevisiae. Isolated L-A virus synthesizes positive strand transcripts in vitro. We found that the 5' termini of the transcripts are diphosphorylated. The 5'-terminal nucleotide is G, and GDP was the best substrate among those examined to prime the reaction. When GTP was used, the triphosphate of GTP incorporated into the 5'-end was converted to diphosphate. This activity was not dependent on host CTL1 RNA triphosphatase. The 5'-end of the GMP-primed transcript also was converted to diphosphate, the beta-phosphate of which was derived from the gamma-phosphate of ATP present in the polymerization reaction. These results demonstrate that L-A virus commands elaborate enzymatic systems to ensure its transcript to be 5'-diphosphorylated. Transcripts of M1, a satellite RNA of L-A virus, also had diphosphate at the 5' termini. Because viral transcripts are released from the virion into the cytoplasm to be translated and encapsidated into a new viral particle, a stage most vulnerable to degradation in the virus replication cycle, our results suggest that the 5'-diphosphate status is important for transcript stability. Consistent with this, L-A transcripts made in vitro are resistant to the affinity-purified Ski1p 5'-exonuclease. We also discuss the implication of these findings on translation of viral RNA. Because the viral transcript has no conventional 5'-cap structure, this work may shed light on the metabolism of non-self-RNA in yeast.

  20. Silver vanadium diphosphate Ag2VP2O8: Electrochemistry and characterization of reduced material providing mechanistic insights

    International Nuclear Information System (INIS)

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (Ag w V x P y O z ) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 , where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag 2 VO 2 PO 4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag 2 VP 2 O 8 . However, counter to Ag 2 VO 2 PO 4 reduction, Ag 2 VP 2 O 8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag 2 VP 2 O 8 with that of the proposed Li 2 VP 2 O 8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag 2 VP 2 O 8 materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag 2 VP 2 O 8 . Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 . ► In-situ formation of Ag 0 nanoparticles was observed upon electrochemical reduction. ► Structural analysis used to provide insight of the electrochemical behavior

  1. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  2. (D)-Ribose supplementation in the equine: lack of effect on glycated plasma proteins suggesting safety in humans.

    Science.gov (United States)

    Sinatra, Stephen T; Caiazzo, Corby

    2015-01-01

    d-Ribose is a popular dietary supplement for humans and the equine because of its crucial role in cellular bioenergetics. However, as a reducing sugar, it has been suggested that ingestion of d-ribose might promote the formation of glycated proteins in vivo with potential adverse consequences. The aim of this study was to examine if d-Ribose would promote the formation of glycated proteins in vivo following exercise in training thoroughbred racehorses. Two groups of horses received the supplement (30 and 50 g d-Ribose daily) for 17 weeks, during which period the horses were subjected to low-intensity exercises followed by high-intensity exercises. Blood samples were analyzed for glycated plasma proteins at baseline and following the 2 exercise regimens. This study shows that long-term ingestion of d-Ribose at 30-50 g a day does not promote the formation of glycated plasma proteins in thoroughbred racehorses. Ribose supplementation also protected the horses from cramping while enhancing muscle recovery at the same time. No adverse effects were reported. Ribose supplementation is safe and does not cause glycation in vivo. This investigation also establishes safety of d-Ribose in thoroughbred racehorses, suggesting similar implications in humans as well.

  3. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    NARCIS (Netherlands)

    Klauke, M.L.; Hoogerbrugge-van der Linden, N.; Budczies, J.; Bult, P.; Prinzler, J.; Radke, C.; van Krieken, J.H.; Dietel, M.; Denkert, C.; Muller, B.M.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic

  4. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Kori, Ayako; Ishihama, Akira

    2013-07-01

    Escherichia coli is able to utilize d-ribose as its sole carbon source. The genes for the transport and initial-step metabolism of d-ribose form a single rbsDACBK operon. RbsABC forms the ABC-type high-affinity d-ribose transporter, while RbsD and RbsK are involved in the conversion of d-ribose into d-ribose 5-phosphate. In the absence of inducer d-ribose, the ribose operon is repressed by a LacI-type transcription factor RbsR, which is encoded by a gene located downstream of this ribose operon. At present, the rbs operon is believed to be the only target of regulation by RbsR. After Genomic SELEX screening, however, we have identified that RbsR binds not only to the rbs promoter but also to the promoters of a set of genes involved in purine nucleotide metabolism. Northern blotting analysis indicated that RbsR represses the purHD operon for de novo synthesis of purine nucleotide but activates the add and udk genes involved in the salvage pathway of purine nucleotide synthesis. Taken together, we propose that RbsR is a global regulator for switch control between the de novo synthesis of purine nucleotides and its salvage pathway. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  6. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    National Research Council Canada - National Science Library

    Bhat, K. Ramachandra; Benton, Betty J; Ray, Radharaman

    2004-01-01

    Poly (ADP-ribose) polymerase (PARP) modulates several cellular functional proteins by a mechanism in which the proteins are poly-ADP-ribosylated by transferring the ADP-ribose moieties from the enzyme substrate NAD+ to the proteins...

  7. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  8. The crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with adenosine

    International Nuclear Information System (INIS)

    Giuseppe, P.O.; Meza, A.N.; Martins, N.H.; Santos, C.R.; Murakami, M.T.

    2012-01-01

    Full text: Purine nucleoside phosphorylases (PNPs) play a key role in the purine-salvage pathway in both prokaryotes and eukaryotes. Its ribosyltransferase activity is of great biotechnological interest due to potential application in the synthesis of nucleoside analogues used in the treatment of antiviral infections and in anticancer chemotherapy. Trimeric PNPs are found mainly in vertebrates and are specific for 6-oxo-purines whereas hexameric PNPs are prevalent in prokaryotes and exhibit a broad range of substrates including 6-oxo and 6-amino purines. BsPNP233, the hexameric PNP from B. subtilis, is able to catalyze the bioconversion of ribavirin, an anti-viral drug, and is relatively thermostable, being a good target for industrial use. Here we report the crystal structures of BsPNP233 in the apo form and in complex with adenosine solved at 2.65 and 1.91 resolution, respectively. The apo and ligand-bound BsPNP233 subunits superposed with an overall r.m.s. deviation of 0.31 for all Cα atoms, which suggests that no major conformational changes occur upon substrate binding. Based on the crystal structure of BsPNP233 in complex with adenosine we have defined the active site residues implicated in binding the ribose (H4 * , R43 * , M64, R87, E178, M179, E180) and the nitrogenous base (S90, C91, G92, S202, V177, F159). These residues are highly conserved among the bacterial hexameric PNPs, suggesting they share the same mode of interaction with the substrates. This work will probably contribute to a better understanding of the molecular basis for the broad substrate specificity of hexameric PNPs and to projects aiming the rational design of PNPs for industrial purposes. (author)

  9. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    Science.gov (United States)

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    Science.gov (United States)

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    Science.gov (United States)

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.

  12. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  13. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    International Nuclear Information System (INIS)

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-01-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [ 3 H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  14. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....

  15. Cloning and characterization of a thermostable 2- deoxy-D-ribose-5 ...

    African Journals Online (AJOL)

    Analysis of the presumptive 2-deoxy-D-ribose 5-phosphate aldolase gene from Aciduliprofundum boonei revealed an open reading frame (ORF) encoding 222 amino acids, which was subcloned and then expressed in Escherichia coli. The recombinant DERA protein was purified to apparent homogeneity. The enzyme ...

  16. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  17. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle.

    NARCIS (Netherlands)

    Pirinen, E.; Canto, C.; Jo, Y.S.; Morato, L.; Zhang, H.; Menzies, K.J.; Williams, E.G.; Mouchiroud, L.; Moullan, N.; Hagberg, C.; Li, W.; Timmers, S.; Imhof, R.; Verbeek, J.; Pujol, A.; Loon, B. van; Viscomi, C.; Zeviani, M.; Schrauwen, P.; Sauve, A.A.; Schoonjans, K.; Auwerx, J.

    2014-01-01

    We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show

  18. Efficient production of L-ribose with a recombinant Escherichia coli

    Science.gov (United States)

    A new synthetic platform with potential for the production of several rare sugars, with L-ribose being the model target, is described. The gene encoding the unique NAD-dependent mannitol-1-dehydrogenase (MDH) from Apium graveolens (garden celery) was synthetically constructed for optimal expression...

  19. Efficient Production of l-Ribose with a Recombinant Escherichia coli Biocatalyst▿

    Science.gov (United States)

    Woodyer, Ryan D.; Wymer, Nathan J.; Racine, F. Michael; Khan, Shama N.; Saha, Badal C.

    2008-01-01

    A new synthetic platform with potential for the production of several rare sugars, with l-ribose as the model target, is described. The gene encoding the unique NAD-dependent mannitol-1-dehydrogenase (MDH) from Apium graveolens (garden celery) was synthetically constructed for optimal expression in Escherichia coli. This MDH enzyme catalyzes the interconversion of several polyols and their l-sugar counterparts, including the conversion of ribitol to l-ribose. Expression of recombinant MDH in the active form was successfully achieved, and one-step purification was demonstrated. Using the created recombinant E. coli strain as a whole-cell catalyst, the synthetic utility was demonstrated for production of l-ribose, and the system was improved using shaken flask experiments. It was determined that addition of 50 to 500 μM ZnCl2 and addition of 5 g/liter glycerol both improved production. The final levels of conversion achieved were >70% at a concentration of 40 g/liter and >50% at a concentration of 100 g/liter. The best conditions determined were then scaled up to a 1-liter fermentation that resulted in 55% conversion of 100 g/liter ribitol in 72 h, for a volumetric productivity of 17.4 g liter−1 day−1. This system represents a significantly improved method for the large-scale production of l-ribose. PMID:18344327

  20. Molecular Toxicology of Chromatin: The Role of Poly(ADP-Ribose) in Gene Control.

    Science.gov (United States)

    1985-02-01

    Fractions 10-13 contain long chains, fractions 14-22 medium chains, and 23-36 short chains of poly (ADP-ribose). These pooled fractionswere desalted by a...lysine must be more specific than electrostatic attraction. Figure 3. illustrates that the modified enzyme can still serve as polymer acceptor, when

  1. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    -methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  2. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  3. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  4. Protective effect of D-ribose against inhibition of rats testes function at excessive exercise

    Directory of Open Access Journals (Sweden)

    Chigrinskiy E.A.

    2011-09-01

    Full Text Available An increasing number of research studies point to participation in endurance exercise training as having significant detrimental effects upon reproductive hormonal profiles in men. The means used for prevention and correction of fatigue are ineffective for sexual function recovery and have contraindications and numerous side effects. The search for substances effectively restoring body functions after overtraining and at the same time sparing the reproductive function, which have no contraindications precluding their long and frequent use, is an important trend of studies. One of the candidate substances is ribose used for correction of fatigue in athletes engaged in some sports.We studied the role of ribose deficit in metabolism of the testes under conditions of excessive exercise and the potentialities of ribose use for restoration of the endocrine function of these organs.45 male Wistar rats weighing 240±20 g were used in this study. Animals were divided into 3 groups (n=15: control; excessive exercise; excessive exercise and received ribose treatment. Plasma concentrations of lactic, β-hydroxybutyric, uric acids, luteinizing hormone, total and free testosterone were measured by biochemical and ELISA methods. The superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase activities and uric acids, malondialdehyde, glutathione, ascorbic acids, testosterone levels were estimated in the testes sample.Acute disorders of purine metabolism develop in rat testes under conditions of excessive exercise. These disorders are characterized by enhanced catabolism and reduced reutilization of purine mononucleotides and activation of oxidative stress against the background of reduced activities of the pentose phosphate pathway and antioxidant system. Administration of D-ribose to rats subjected to excessive exercise improves purine reutilization, stimulates the pentose phosphate pathway work

  5. 2'-C-Methyl analogues of selective adenosine receptor agonists: synthesis and binding studies.

    Science.gov (United States)

    Franchetti, P; Cappellacci, L; Marchetti, S; Trincavelli, L; Martini, C; Mazzoni, M R; Lucacchini, A; Grifantini, M

    1998-05-07

    2'-C-Methyl analogues of selective adenosine receptor agonists such as (R)-PIA, CPA, CCPA, NECA, and IB-MECA were synthesized in order to further investigate the subdomain that binds the ribose moiety. Binding affinities of these new compounds at A1 and A2A receptors in bovine brain membranes and at A3 in rat testis membranes were determined and compared. It was found that the 2'-C-methyl modification resulted in a decrease of the affinity, particularly at A2A and A3 receptors. When such modification was combined with N6-substitutions with groups which induce high potency and selectivity at A1 receptors, the high affinity was retained and the selectivity was increased. Thus, 2-chloro-2'-C-methyl-N6-cyclopentyladenosine (2'-Me-CCPA), which displayed a Ki value of 1.8 nM at A1 receptors, was selective for A1 vs A2A and A3 receptors by 2166- and 2777-fold, respectively, resulting in one of the most potent and A1-selective agonists so far known. In functional assay, this compound inhibited forskolin-stimulated adenylyl cyclase activity with an IC50 value of 13.1 nM, acting as a full agonist.

  6. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry.

    Science.gov (United States)

    Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas

    2016-10-24

    Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl 2 , CaCl 2 , SrCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , ZnCl 2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn 2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amyotrophic Lateral Sclerosis (ALS and Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Ana M. Sebastião

    2018-04-01

    Full Text Available In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS. Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR, most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  8. Adenosine deaminase activity of erythrocytes in hyperuricemia

    International Nuclear Information System (INIS)

    Krueger, W.; Richter, V.; Beenken, O.; Weinhold, D.; Hirschberg, K.; Rotzsch, W.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1982-01-01

    Erythrocytic adenosine deaminase (ADA) activity was determined in 55 patients with primary hyperuricemia and in 37 healthy control persons. Unlike the controls, the ADA activity in the patient group showed a two-peak response. Hyperuricemia patients with high ADA activity also exhibited increased uric acid excretion and elevated 15 N incorporation into uric acid. High activity values of erythrocytic ADA can be interpreted as an uric acid overproduction, giving hints for a therapeutic plan. (author)

  9. Amorpha-4,11-diene synthase: mechanism and stereochemistry of the enzymatic cyclization of farnesyl diphosphate.

    Science.gov (United States)

    Picaud, Sarah; Mercke, Per; He, Xiaofei; Sterner, Olov; Brodelius, Maria; Cane, David E; Brodelius, Peter E

    2006-04-15

    Recombinant amorpha-4,11-diene synthase from Artemisia annua, expressed in Escherichia coli, was incubated with the deuterium-labeled farnesyl diphosphates, (1R)-[1-(2)H]FPP, (1S)-[1-(2)H]FPP, and [1,1-(2)H2]FPP. GC-MS analysis of amorpha-4,11-diene formed from the deuterated FPPs shows that the deuterium atoms are retained in the product. Furthermore, analysis of the MS-spectra obtained with the differently labeled substrate indicates that the H-1si-proton of FPP is transferred during the cyclization reaction to carbon 10 of amorphadiene while the H-1re-proton of FPP is retained on C-6 of the product. Proton NMR and COSY experiments proved that the original H-1si-proton of FPP is located at C-10 of amorpha-4,11-diene as a result of a 1,3-hydride shift following initial 1,6-ring closure. The results obtained support the previously suggested mechanism for the cyclization of farnesyl diphosphate by amorph-4,11-diene synthase involving isomerization of FPP to (R)-nerolidyl diphosphate (NPP), ionization of NPP, and C-1,C-6-ring closure to generate a bisabolyl cation, followed by a 1,3-hydride shift, 1,10-ring closure to generate the amorphane skeleton, and deprotonation at either C-12 or C-13 to afford the final product (1S,6R,7R,10R)-amorpha-4,11-diene.

  10. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    International Nuclear Information System (INIS)

    Flentke, G.R.; Frey, P.A.

    1990-01-01

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K D of 0.110 mM and k inact of 0.84 min -1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD + . The inactivation of epimerase by uridine 5'-diphosphate [ 2 H 2 ]chloroacetol proceeds with a primary kinetic isotope effect (k H /k D ) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD + at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD + is proposed to be the chromophore with λ max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction

  11. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  12. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Gao Hong; Coyle, Donna L.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Elaine L.; Wang, Zhao-Qi; Jacobson, Myron K.

    2007-01-01

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  13. The fractionation of dinucleoside monophosphate and some trinucleoside diphosphate isonicotinoyl hydrazones by column chromatography

    Science.gov (United States)

    Hunt, John A.

    1970-01-01

    A column-chromatographic system using DEAE-cellulose and gradient elution with triethylammonium formate at pH4.0–3.5 is described. It is capable of separating the oligonucleotide isonicotinoyl hydrazones that are produced by nuclease digestion of RNA oxidized with periodate and coupled with isonicotinic acid hydrazide. Fifteen dinucleoside monophosphate isonicotinoyl hydrazones were characterized by their elution positions on the columns, so that all but two of them could readily be identified. Twelve trinucleoside diphosphate hydrazones were also characterized by their elution positions on the column. The application of this method of fractionation to terminal-sequence studies of RNA is discussed. PMID:5414095

  14. Molecular Mechanism of Distinct Salt-Dependent Enzyme Activity of Two Halophilic Nucleoside Diphosphate Kinases

    OpenAIRE

    Yamamura, Akihiro; Ichimura, Takefumi; Kamekura, Masahiro; Mizuki, Toru; Usami, Ron; Makino, Tsukasa; Ohtsuka, Jun; Miyazono, Ken-ichi; Okai, Masahiko; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg31 in NDK-q and Cys31 in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt conc...

  15. The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli.

    OpenAIRE

    Okada, K; Minehira, M; Zhu, X; Suzuki, K; Nakagawa, T; Matsuda, H; Kawamukai, M

    1997-01-01

    The Escherichia coli ispB gene encoding octaprenyl diphosphate synthase is responsible for the synthesis of the side chain of isoprenoid quinones. We tried to construct an E. coli ispB-disrupted mutant but could not isolate the chromosomal ispB disrupted mutant unless the ispB gene or its homolog was supplied on a plasmid. The chromosomal ispB disruptants that harbored plasmids carrying the ispB homologs from Haemophilus influenzae and Synechocystis sp. strain PCC6803 produced mainly ubiquino...

  16. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    Science.gov (United States)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could

  17. Cultured astrocytes do not release adenosine during hypoxic conditions

    OpenAIRE

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2011-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adeno...

  18. Measurement of plasma adenosine concentration: methodological and physiological considerations

    International Nuclear Information System (INIS)

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-01-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of [ 3 H]adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of [ 3 H]adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA

  19. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  20. Cardioprotection with adenosine: 'a riddle wrapped in a mystery'.

    Science.gov (United States)

    Przyklenk, Karin; Whittaker, Peter

    2005-07-01

    Review of the published literature on adenosine and cardioprotection could lead one to paraphrase the famous words of Sir Winston Churchill (Radio broadcast, 1 October 1939 (in reference to Russia)) and conclude: 'I cannot forecast to you the action of adenosine. It is a riddle wrapped in a mystery inside an enigma'. That is, although it is well-established that adenosine can render cardiomyocytes resistant to lethal ischemia/reperfusion-induced injury, new and intriguing insights continue to emerge as to the mechanisms by which adenosine might limit myocardial infarct size.

  1. Adenosine contribution to normal renal physiology and chronic kidney disease.

    Science.gov (United States)

    Oyarzún, Carlos; Garrido, Wallys; Alarcón, Sebastián; Yáñez, Alejandro; Sobrevia, Luis; Quezada, Claudia; San Martín, Rody

    2017-06-01

    Adenosine is a nucleoside that is particularly interesting to many scientific and clinical communities as it has important physiological and pathophysiological roles in the kidney. The distribution of adenosine receptors has only recently been elucidated; therefore it is likely that more biological roles of this nucleoside will be unveiled in the near future. Since the discovery of the involvement of adenosine in renal vasoconstriction and regulation of local renin production, further evidence has shown that adenosine signaling is also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the adaptive response to acute insults, such as ischemia. However, the most interesting finding was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically increased its signaling via the adenosine receptors may change, switching to a state that induces renal damage and produces phenotypic changes in resident cells. This review discusses the physiological and pathophysiological roles of adenosine and pays special attention to the mechanisms associated with switching homeostatic nucleoside levels to increased adenosine production in kidneys affected by CKD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  3. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain...... with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...

  4. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  5. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli.

    Science.gov (United States)

    Beigi, Maryam; Waltzer, Simon; Zarei, Mostafa; Müller, Michael

    2014-12-10

    The intermolecular asymmetric Stetter reaction is a rarely found biocatalysts transformation. MenD, the second enzyme of the menaquinone biosynthetic pathway, catalyzes as a physiological reaction a Stetter-like addition of α-ketoglutarate to isochorismate. The substrate range of MenD for similar 1,4-additions is highly restricted. All other thiamine diphosphate dependent enzymes known to act as stetterases are members of the PigD enzyme subfamily, which accept aliphatic and aromatic α,β-unsaturated ketones and thioesters as Michael acceptor substrates. Here, we describe the unexpected activity of MenD with short-chain α,β-unsaturated acids and derivatives as substrates in Stetter reactions. MenD possesses a characteristic substrate range with respect to Michael acceptor substrates which is distinctly different from the classical stetterases. This provides biocatalytic access to new types of products which are not related to the products currently accessible by thiamine diphosphate dependent enzyme catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    International Nuclear Information System (INIS)

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-01-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2 1 3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities

  7. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Jeudy, Sandra [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Coutard, Bruno [Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Lebrun, Régine [IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France)

    2005-06-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  8. Role of ribose deficit in rat testicular metabolism under conditions of overtraining.

    Science.gov (United States)

    Conway, V D; Race, B A; Chigrinskiy, E A

    2011-03-01

    Acute disorders of purine metabolism develop in rat testes under conditions of overtraining. These disorders are characterized by enhanced catabolism and reduced reutilization of purine mononucleotides and activation of lipid peroxidation of membrane structures against the background of reduced activities of the pentose cycle and antioxidant system. Administration of D-ribose to rats subjected to overtraining improves purine reutilization, stimulates the pentose cycle work, inhibits lipid peroxidation in membrane structures of the testes, and saves the testicular incretory function.

  9. FRET imaging of diatoms expressing a biosilica-localized ribose sensor.

    Directory of Open Access Journals (Sweden)

    Kathryn E Marshall

    Full Text Available Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification for localization of recombinant proteins in the biosilica cell wall. However, the full range of protein functionalities that can be accommodated by the modified porous biosilica has yet to be described. Our objective was to functionalize diatom biosilica with a reagent-less sensor dependent on ligand-binding and conformational change to drive FRET-based signaling capabilities. A fusion protein designed to confer such properties included a bacterial periplasmic ribose binding protein (R flanked by CyPet (C and YPet (Y, cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the CRY recombinant chimeric protein was confirmed by expression in E. coli prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of the recombinant CRY showed 97% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica localization exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 µM and 142.8 µM, respectively. The addition of the Sil3 tag did not alter the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated frustules in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand-binding and conformational change for FRET-signal generation.

  10. The mechanism of action of poly (ADP-ribose) polymerases inhibitors and its application perspective

    International Nuclear Information System (INIS)

    Huang Xiaofei; Cao Jianping

    2008-01-01

    Poly (ADP-ribose) polymerases (PARP) constitute a family of enzymes involved in the regulation of many cellular processes. It plays a vital role in many physical and physiopathological processes,, In the past ten years scientists have conducted extensive research on PARP and its inhibitors, among which the role of PARP inhihitors in radiosensitization, chemopotentiation and neuroprotection have been placed close attention. There have been several PARP inhibitors entering the clinical trials, which predicts its sound application perspectives. (authors)

  11. Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2014-07-01

    Full Text Available A set of bisphosphonate ethers has been prepared through sequential phosphonylation and alkylation of monophosphonate ethers. After formation of the corresponding phosphonic acid salts, these compounds were tested for their ability to inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS. Five of the new compounds show IC50 values of less than 1 μM against GGDPS with little to no activity against the related enzyme farnesyl diphosphate synthase (FDPS. The most active compound displayed an IC50 value of 82 nM when assayed with GGDPS, and no activity against FDPS even at a 10 μM concentration.

  12. Use of actin-bound adenosine 5'-diphosphate as a method to determine the specific 32P-radioactivity of the gamma-phosphoryl group of adenosine 5'-triphosphate in a highly compartmentalized cell, the platelet

    International Nuclear Information System (INIS)

    Verhoeven, A.J.; Cook, C.A.; Holmsen, H.

    1988-01-01

    Determination of the specific 32 P-radioactivity of cytoplasmic ATP in 32 P-Pi-labeled platelets is complicated by the presence of a large pool of metabolically inactive, granule-stored nucleotides. Moreover, our data show that the specific 32 P-radioactivity of cytoplasmic ATP is severely underestimated when determined in platelets after the complete secretion of granule-stored nucleotides, possibly due to isotopic dilution with granule-stored phosphate. As F-actin-bound ADP is ethanol-insoluble, this pool can be readily separated from the other nucleotide pools in platelets. Here we show that the specific 32 P-radioactivity of F-actin-bound ADP accurately reflects that of the gamma-phosphoryl group of cytoplasmic ATP. During uptake of 32 P-Pi by human platelets the specific 32 P-radioactivity of F-actin-bound ADP equals that of the monoester phosphates of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, which are in metabolic equilibrium with cytoplasmic ATP. Therefore, this method enables the determination of the specific 32 P-radioactivity of the gamma-phosphoryl group of cytoplasmic ATP in platelets even under short-term labeling conditions

  13. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    International Nuclear Information System (INIS)

    Liang, B.T.

    1989-01-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand [3H]-8-cyclopentyl-1,3-diproylxanthine ([3H]CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that [3H] CPX is an antagonist radioligand. Competition curves for [3H] CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific [3H]CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid)

  14. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors.

    Science.gov (United States)

    Islam, Rafiqul; Koizumi, Fumiaki; Kodera, Yasuo; Inoue, Kengo; Okawara, Tadashi; Masutani, Mitsuko

    2014-08-15

    Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes responsible for catalyzing the formation and degradation of poly(ADP-ribose) (PAR) polymers, respectively. Activation of PARP has been shown to be involved in cell death induced by genotoxic stimuli. On the other hand, genetic disruption of PARG also leads to increased level of cell death by accumulation of PAR. Unlike PARP, where significant medicinal effort has been expended to identify potent inhibitors, PARG has been insufficiently investigated as a molecular therapeutic target. In this study, we report the design, synthesis, and biological evaluation of phenolic hydrazide hydrazones as potent PARG inhibitors. Compounds 3d, 3e, 5d, 5e, 8a, 8b and 8c showed their ability to inhibit the catalytic activity of PARG in vitro with IC50 values of 1.0, 2.1, 3.1, 3.2, 3.1, 2.8 and 1.6 μM, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    Science.gov (United States)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  16. Effects of high doses of intracoronary adenosine on the assessment of fractional flow reserve

    Directory of Open Access Journals (Sweden)

    Ahmed Khashaba

    2014-03-01

    Conclusions: Intracoronary adenosine, at doses higher than currently suggested, lows obtaining FFR values similar to IV adenosine. Intravenous adenosine, which remains the gold standard, might thus be reserved for those lesions with equivocal FFR values.

  17. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Krath, Britta N.; Eriksen, Tina A.; Poulsen, Tim S.

    1999-01-01

    cDNAs specifying four active phosphoribosyl diphosphate synthase isozymes were isolated from an Arabidopsis thaliana cDNA library. In contrast to other phosphoribosyl diphosphate synthases the activity of two of the A. thaliana isozymes are independent of Pi. Amino acid sequence comparison...

  18. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2017-08-18

    The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4′ atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose–base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair–π stacking interactions also occur between ribose and aromatic amino acids in RNA–protein complexes.

  19. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine

    Czech Academy of Sciences Publication Activity Database

    Žurovec, Michal; Doležal, Tomáš; Gaži, Michal; Pavlová, Eva; Bryant, P. J.

    2002-01-01

    Roč. 99, č. 7 (2002), s. 4403-4408 ISSN 0027-8424 R&D Projects: GA ČR GA204/01/1022; GA AV ČR IAA5007107 Institutional research plan: CEZ:AV0Z5007907 Keywords : adenosine daminase * minimal medium Subject RIV: CE - Biochemistry Impact factor: 10.701, year: 2002

  20. Adenosine signaling in normal and sickle erythrocytes and beyond.

    Science.gov (United States)

    Zhang, Yujin; Xia, Yang

    2012-08-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and

  1. AMP Is an Adenosine A1 Receptor Agonist*

    Science.gov (United States)

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  2. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.Nuclear Smad function is negatively

  3. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  4. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a respons...

  5. Modulation of innate immunity by adenosine receptor stimulation

    NARCIS (Netherlands)

    Ramakers, B.P.C.; Riksen, N.P.; Hoeven, J.G. van der; Smits, P.; Pickkers, P.

    2011-01-01

    In the past decades, increased concentrations of the signaling molecule adenosine have been shown to play an important role in the prevention of tissue damage evoked by several stressful circumstances. During systemic inflammation, the circulating adenosine concentration increases rapidly, even up

  6. Adenosine deaminase activities and fasting blood glucose in obesity ...

    African Journals Online (AJOL)

    Background: A complex relationship seems to exist between adenosine deaminase (ADA) and insulin in obesity. Through its effect on adenosine, the enzyme can modulate the action of insulin and affect blood glucose while the administration of insulin is said to decrease the activities of the enzyme. Aim: To investigate the ...

  7. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of

  8. Norepinephrines effect on adenosine transport in the proximal straight tubule

    International Nuclear Information System (INIS)

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-01-01

    The effect of norepinephrine on C 14 -adenosine transport in the rabbit proximal tubule (S 2 ) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 μM) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C 14 -adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane

  9. Involvement of adenosine in the antiinflammatory action of ketamine.

    Science.gov (United States)

    Mazar, Julia; Rogachev, Boris; Shaked, Gad; Ziv, Nadav Y; Czeiger, David; Chaimovitz, Cidio; Zlotnik, Moshe; Mukmenev, Igor; Byk, Gerardo; Douvdevani, Amos

    2005-06-01

    Ketamine is an anesthetic drug. Subanesthetic doses of ketamine have been shown to reduce interleukin-6 concentrations after surgery and to reduce mortality and the production of tumor necrosis factor alpha and interleukin 6 in septic animals. Similarly, adenosine was shown to reduce tumor necrosis factor alpha and mortality of septic animals. The aim of this study was to determine whether adenosine mediates the antiinflammatory effects of ketamine. Sepsis was induced in mice by lipopolysaccharide or Escherichia coli inoculation. Leukocyte recruitment and cytokine concentrations were used as inflammation markers. Adenosine concentrations were assayed by high-performance liquid chromatography, and the involvement of adenosine in the effects of ketamine was demonstrated by adenosine receptor agonists and antagonists. Ketamine markedly reduced mortality from sepsis, leukocyte recruitment, and tumor necrosis factor-alpha and interleukin-6 concentrations. Ketamine administration in mice and rats was associated with a surge at 20-35 min of adenosine in serum (up to 5 microm) and peritoneal fluid. The adenosine A2A receptor agonist CGS-21680 mimicked the effect of ketamine in peritonitis, whereas the A2A receptor antagonists DMPX and ZM 241385 blocked its antiinflammatory effects. In contrast, A1 and A3 receptor antagonists had no effect. ZM 241385 reversed the beneficial effect of ketamine on survival from bacterial sepsis. The current data suggest that the sepsis-protective antiinflammatory effects of ketamine are mediated by the release of adenosine acting through the A2A receptor.

  10. Adenosine Deaminase Activity in Subjects with Normal Pregnancy ...

    African Journals Online (AJOL)

    BACKGROUND: Both pregnancy and adenosine deaminase (ADA) are associated with depressed cellular mediated immunity. There is little information on ADA activity in pregant Africans. OBJECTIVE: To determine the serum levels of adenosine deaminase (ADA) in normal pregnancy and pregnancy complicated by ...

  11. Overexpression of Farnesyl Diphosphate Synthase in Arabidopsis Mitochondria Triggers Light-dependent Lesion Formation and Alters Cytokinin Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Manzano, D.; Busquets, A.; Closa, M.; Hoyerová, Klára; Schaller, H.; Kamínek, Miroslav; Arró, M.; Ferrer, A.

    2006-01-01

    Roč. 61, 1-2 (2006), s. 195-213 ISSN 0167-4412 R&D Projects: GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * cytokinin * farnesyl diphosphate synthase * isoprenoid Subject RIV: EF - Botanics Impact factor: 3.577, year: 2006

  12. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 araispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Self irradiation effects on the thorium phosphate diphosphate dissolution (TPD): simulation by external irradiations

    International Nuclear Information System (INIS)

    Tamain, C.; Ozgumus, A.; Dacheux, N.; Garrido, F.; Thome, L.; Corbel, C.; Genet, M.

    2004-01-01

    The Thorium Phosphate Diphosphate (TPD), proposed as a ceramic for the long term immobilization of actinides, was externally irradiated with several ions and energies (but also with gamma rays) in order to simulate the self-irradiation. The influence of the electronic energy loss was first investigated. Thus, the XRD measurements have shown a complete amorphization of the material under 10 13 ions of Kr.cm -2 , while no significant structural change occurred after 5.10 13 S.cm -2 , 2.10 16 He.cm -2 or 320 kGy of dose of gamma rays. The dissolution of the raw and irradiated pellets was studied versus several parameters such as amorphized fraction, energy loss of incident ions, radiolytic species produced in situ in the leachate during irradiation (such as H 2 O 2 ), temperature and acidity. The results reveal an important increase of the dissolution kinetics for amorphized pellets compared to raw ceramic. (authors)

  14. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    Science.gov (United States)

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  15. Chloroquine diphosphate: a risk factor for herpes zoster in patients with dermatomyositis/polymyositis

    Directory of Open Access Journals (Sweden)

    Gilmara Franco da Cunha

    2013-05-01

    Full Text Available OBJECTIVES: Herpes zoster has been widely described in the context of different systemic autoimmune diseases but not dermatomyositis/polymyositis. Therefore, we analyzed the prevalence, risk factors and herpes zoster outcomes in this population. METHOD: A retrospective cohort study of herpes zoster infections in dermatomyositis/polymyositis patients was performed. The patients were followed at a tertiary center from 1991 to 2012. For the control group, each patient with herpes zoster was paired with two patients without herpes zoster. Patients were matched by gender and the type of myositis, age at myositis onset and disease duration. RESULTS: Of 230 patients, 24 (10.4% had a histories of herpes zoster (19 with dermatomyositis and five with polymyositis, two-thirds female. The mean age of the patients with herpes zoster was 44.6±16.8 years. No difference between the groups was found regarding cumulative clinical manifestations. Disease activity, autoantibody, muscle and leukogram parameters were also comparable between the groups. No differences in immunosuppressive (alone or in association with other immunosuppressive therapies or glucocorticoid (current use, medium dose and cumulative dose in the last two months therapies were found between patients with and without herpes zoster. However, a higher proportion of patients in the herpes zoster group received chloroquine diphosphate compared to the control group. All of the patients received acyclovir; 58.3% of patients had postherpetic neuralgia and no cases of recurrence were reported. Furthermore, individuals who were taking high prednisone doses at the time of the herpes zoster diagnosis had reduced levels of postherpetic neuralgia. CONCLUSIONS: These data suggest that chloroquine diphosphate could predispose patients with dermatomyositis/polymyositis to developing herpes zoster, particularly women and dermatomyositis patients.

  16. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.

    Science.gov (United States)

    Hurd, Matthew C; Kwon, Moonhyuk; Ro, Dae-Kyun

    2017-08-26

    Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX 8 W) motifs, and enzyme assays showed that the presence of both RRX 8 W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX 8 W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  18. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2AReceptor and CD26 Proteins.

    Science.gov (United States)

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  19. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  20. Structure-Based Scaffold Repurposing for G Protein-Coupled Receptors: Transformation of Adenosine Derivatives into 5HT2B/5HT2CSerotonin Receptor Antagonists.

    Science.gov (United States)

    Tosh, Dilip K; Ciancetta, Antonella; Warnick, Eugene; Crane, Steven; Gao, Zhan-Guo; Jacobson, Kenneth A

    2016-12-22

    Adenosine derivatives developed to activate adenosine receptors (ARs) revealed micromolar activity at serotonin 5HT 2B and 5HT 2C receptors (5HTRs). We explored the structure-activity relationship at 5HT 2 Rs and modeled receptor interactions in order to optimize affinity and simultaneously reduce AR affinity. Depending on N 6 substitution, small 5'-alkylamide modification maintained 5HT 2B R affinity, which was enhanced upon ribose substitution with rigid bicyclo[3.1.0]hexane (North (N)-methanocarba), e.g., N 6 -dicyclopropylmethyl 4'-CH 2 OH derivative 14 (K i 11 nM). 5'-Methylamide 23 was 170-fold selective as antagonist for 5HT 2B R vs 5HT 2C R. 5'-Methyl 25 and ethyl 26 esters potently antagonized 5HT 2 Rs with moderate selectivity in comparison to ARs; related 6-N,N-dimethylamino analogue 30 was 5HT 2 R-selective. 5' position flexibility of substitution was indicated in 5HT 2B R docking. Both 5'-ester and 5'-amide derivatives displayed in vivo t 1/2 of 3-4 h. Thus, we used G protein-coupled receptor modeling to repurpose nucleoside scaffolds in favor of binding at nonpurine receptors as novel 5HT 2 R antagonists, with potential for cardioprotection, liver protection, or central nervous system activity.

  1. Molecular basis for the regulation of hypoxia-inducible factor-1α levels by 2-deoxy-D-ribose.

    Science.gov (United States)

    Ikeda, Ryuji; Tabata, Sho; Tajitsu, Yusuke; Nishizawa, Yukihiko; Minami, Kentaro; Furukawa, Tatsuhiko; Yamamoto, Masatatsu; Shinsato, Yoshinari; Akiyama, Shin-Ichi; Yamada, Katsushi; Takeda, Yasuo

    2013-09-01

    The angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity, inhibits the upregulation of hypoxia-inducible factor (HIF) 1α, BNIP3 and caspase-3 induced by hypoxia. In the present study, we investigated the molecular basis for the suppressive effect of 2-deoxy-D-ribose on the upregulation of HIF-1α. 2-Deoxy-D-ribose enhanced the interaction of HIF-1α and the von Hippel-Lindau (VHL) protein under hypoxic conditions. It did not affect the expression of HIF-1α, prolyl hydroxylase (PHD)1/2/3 and VHL mRNA under normoxic or hypoxic conditions, but enhanced the interaction of HIF-1α and PHD2 under hypoxic conditions. 2-Deoxy-D-ribose also increased the amount of hydroxy-HIF-1α in the presence of the proteasome inhibitor MG-132. The expression levels of TP are elevated in many types of malignant solid tumors and, thus, 2-deoxy-D-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.

  2. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    Science.gov (United States)

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  3. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  4. Temporal variations of adenosine metabolism in human blood.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  5. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Evaluation of the sorption of Eu(III) in titanium diphosphate; Evaluacion de la sorcion de Eu(III) en difosfato de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M. [ININ, Carretera Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: hortiz@nuclear.inin.mx

    2007-07-01

    In this work its are presented: the synthesis, physicochemical characterization and the surface parameters estimation that can be related with the retention properties of the titanium diphosphate for the actinides of valence III (Pu, Am, Cm among others), using the Eu{sup 3+} like a chemical analog. The surface area, hydration time, zero charge point, density of active sites and the surface species distribution in the titanium diphosphate are reported. This information was used to explain the retention of the Eu(lll) in the surface of the titanium diphosphate. (Author)

  7. Regulation of rat hepatocyte function by P2Y receptors: focus on control of glycogen phosphorylase and cyclic AMP by 2-methylthioadenosine 5'-diphosphate.

    Science.gov (United States)

    Dixon, C Jane; Hall, John F; Webb, Tania E; Boarder, Michael R

    2004-10-01

    Hepatocyte function is regulated by several P2Y receptor subtypes. Here we report that 2-methylthioadenosine 5'-diphosphate (2-MeSADP), an agonist at P2Y(1), P2Y(12), and P2Y(13) receptors, potently (threshold 30 nM) stimulates glycogen phosphorylase in freshly isolated rat hepatocytes. Antagonism by N(6)-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS 2179) confirms that this response is mediated by P2Y(1) receptors. In addition, in these cells, both 2-MeSADP and UTP inhibited glucagon-stimulated cyclic AMP accumulation. This inhibitory effect of 2-MeSADP was not reversed by the P2Y(1) antagonists, adenosine-3'-phosphate-5'-phosphate (A3P5P) or MRS 2179, both in the range 1 to 300 microM, indicating that it was not mediated by P2Y(1) receptors. This contrasts with the increase in cytosolic free Ca(2+) concentration ([Ca(2+)](c)) induced by 2-MeSADP, which has shown to be inhibited by A3P5P. Pertussis toxin abolished the inhibitory effect of both UTP and 2-MeSADP. After culture of cells for 48 h, the ability of 2-MeSADP to inhibit cyclic AMP accumulation was greatly diminished. Reverse transcriptase-polymerase chain reaction analysis revealed that during this culture period, there was a decline in the ability to detect transcripts for P2Y(12) and P2Y(13) receptors, both of which are activated by 2-MeSADP and negatively coupled to adenylyl cyclase. However, in freshly isolated cells, the P2Y(12) and P2Y(13) receptor antagonist, 2-propylthio-beta,gamma-dichloromethylene-d-ATP (AR-C67085) (10 nM to 300 microM) did not alter the ability of 2-MeSADP to inhibit glucagon-stimulated cyclic AMP accumulation. We conclude that 2-MeSADP regulates rat hepatocyte glycogen phosphorylase by acting on P2Y(1) receptors coupled to raised [Ca(2+)](c), and by inhibiting cyclic AMP levels by an unknown G(i)-coupled receptor subtype, distinct from P2Y(1), P2Y(12), or P2Y(13) receptors.

  8. Enzymatic Redox Cascade for One-Pot Synthesis of Uridine 5′-Diphosphate Xylose from Uridine 5′-Diphosphate Glucose

    Science.gov (United States)

    Eixelsberger, Thomas; Nidetzky, Bernd

    2014-01-01

    Synthetic ways towards uridine 5′-diphosphate (UDP)-xylose are scarce and not well established, although this compound plays an important role in the glycobiology of various organisms and cell types. We show here how UDP-glucose 6-dehydrogenase (hUGDH) and UDP-xylose synthase 1 (hUXS) from Homo sapiens can be used for the efficient production of pure UDP-α-xylose from UDP-glucose. In a mimic of the natural biosynthetic route, UDP-glucose is converted to UDP-glucuronic acid by hUGDH, followed by subsequent formation of UDP-xylose by hUXS. The nicotinamide adenine dinucleotide (NAD+) required in the hUGDH reaction is continuously regenerated in a three-step chemo-enzymatic cascade. In the first step, reduced NAD+ (NADH) is recycled by xylose reductase from Candida tenuis via reduction of 9,10-phenanthrenequinone (PQ). Radical chemical re-oxidation of this mediator in the second step reduces molecular oxygen to hydrogen peroxide (H2O2) that is cleaved by bovine liver catalase in the last step. A comprehensive analysis of the coupled chemo-enzymatic reactions revealed pronounced inhibition of hUGDH by NADH and UDP-xylose as well as an adequate oxygen supply for PQ re-oxidation as major bottlenecks of effective performance of the overall multi-step reaction system. Net oxidation of UDP-glucose to UDP-xylose by hydrogen peroxide (H2O2) could thus be achieved when using an in situ oxygen supply through periodic external feed of H2O2 during the reaction. Engineering of the interrelated reaction parameters finally enabled production of 19.5 mM (10.5 g l−1) UDP-α-xylose. After two-step chromatographic purification the compound was obtained in high purity (>98%) and good overall yield (46%). The results provide a strong case for application of multi-step redox cascades in the synthesis of nucleotide sugar products. PMID:26190959

  9. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Yáñez, L; Vidrio, S; Díaz-Muñoz, M

    1995-02-01

    Adenosine proved to be an effective hepatoprotector increasing the survival rate of rats receiving lethal doses of CCl4. Searching for the mechanism of action, we found that adenosine transiently prevents the necrotic liver damage associated to an acute CCl4 treatment. The antilipoperoxidative action of the nucleoside was evidenced by a decrease of TBA-reactive products and the diene conjugates elicited by the hepatotoxin. Adenosine's protective effect was demonstrated by reverting the decrease of cytochrome P-450 while preserved intact the activity of the microsomal enzyme glucose-6-phosphatase. CCl4 promoted an increase in the oxidant stress through an enhancement in oxidized glutathione levels. This action was also completely counteracted by the nucleoside. Adenosine was unable to prevent CCl4 activation and, even, increased .CCl3 formation in the presence of PBN in vivo. However, in the presence of the nucleoside, irreversible binding of 14CCl4 to the microsomal lipid fraction of the treated animals was decreased. These results suggest that adenosine protective action might be exerted at the level of the propagation reaction following CCl4 activation. Two possible mechanisms were associated to the nucleoside protection: (1) the peroxide-metabolyzed enzymes, GSH-per, showed a marked increase after 30 minutes of adenosine treatment, which was potentiated by the hepatotoxin, suggesting an important role of this enzyme in the nucleoside's action; (2) the adenosine catabolism induced an increase in uric acid level, and allopurinol, a purine metabolism inhibitor, prevented such elevation as well as the antilipoperoxidative action of adenosine and the increase of GSH-per associated with the nucleoside treatment. These facts strongly suggest that the protective effect elicited by adenosine is not a direct one, but rather is related to its catabolic products, such as uric acid, which has been recognized as a free radical scavenger.

  10. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  11.  Poly(ADP-ribose polymerase (PARP inhibitors in BRCA1/2 cancer therapy

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2012-06-01

    Full Text Available  A majority of currently used anticancer drugs belong to a group of chemical agents that damage DNA. The efficiency of the treatment is limited by effective DNA repair systems functioning in cancer cells. Many chemotherapeutic compounds cause strong systemic toxicity. Therefore, there is still a need for new anticancer agents which are less toxic for nontransformed cells and selectively kill cancer cells. One of the most promising molecular targets in cancer therapy is poly(ADP-ribose polymerases (PARP. PARP play an essential role in repairing DNA strand breaks. Small molecule inhibitors of these enzymes have been developed and have proved to be extremely toxic for cancer cells that lack the functional BRCA1 and BRCA2 proteins that are involved in homologous recombination, a complex repair mechanism of DNA double strand breaks. Mutations in BRCA1/2 genes are associated with genetically inherited breast and ovarian cancers. Therefore PARP inhibitors may prove to be very effective and selective in the treatment of these cancer types. This review is focused on the function of BRCA1/2 proteins and poly(ADP-ribose polymerases in DNA repair systems, especially in the homologous recombination process. A short history of the studies that led to synthesis of high specificity small molecule PARP inhibitors is also presented, as well as the results of clinical trials concerning the most effective PARP inhibitors in view of their potential application in oncological treatment, particularly breast cancers.

  12. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  13. PROTEOLYTIC DEGRADATION OF POLY (ADP-RIBOSE POLYMERASE IN RATS WITH CARRAGEENAN-INDUCED GASTROENTEROCOLITIS

    Directory of Open Access Journals (Sweden)

    Tkachenko A. S.

    2017-12-01

    Full Text Available The aim of the research was to study the activity of poly (ADP-ribose polymerase in small intestinal homogenate of rats with chronic carrageenan-induced gastroenterocolitis, as well as mechanisms of regulation of the enzyme in this pathology. Twenty Wistar Albino Glaxo rats were divided into two groups. Animals of group 1 (n = 10 consumed 1 % carrageenan solution for 28 days, which resulted in the development of gastroenterocolitis confirmed morphologically. The control group consisted of intact animals (n = 10. The activity of poly (ADP-ribose polymerase (PARP in the homogenate of small intestine, as well as caspase-3, matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 serum levels were determined. Obtained data were statistically processed using the Mann-Whitney U test and calculating median and interquartile range (Me, 25th–75th percentile with the help of the GraphPad Prism 5 application. The development of carrageenan-induced gastroenterocolitis was accompanied by an increase in caspase-3, MMP-2, MMP-9 concentrations in blood serum and a decrease in the activity of PARP in small intestinal homogenates. The reduced activity of PARP in chronic carrageenan-induced gastroenterocolitis may be due to the proteolysis of this enzyme under the action of caspase-3, MMP-2, and MMP-9.

  14. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism.

    Science.gov (United States)

    Matsumura, N; Tanuma, S

    1998-12-18

    The NAD+ glycohydrolase homogeneously purified from bovine brain cytosol was found to catalyze the synthesis and hydrolysis of cyclic ADP-ribose (cADPR). Although the formation of cADPR from NAD+ does not exceed about 2% of the reaction products, the cyclase activity is clearly evidenced by its conversion of NGD+ to cyclic GDP-ribose (cGDPR), which cannot be hydrolyzed to GDPR. Importantly, a steep increase in cADPR hydrolytic activity was observed at cADPR concentrations above 60 microM, which could be reproduced on a Hill curve with a Hill coefficient of 2. Thus, the allosteric binding of cADPR to the NAD+ glycohydrolase (E) molecule promotes the hydrolysis of cADPR. These results suggest that NAD+ hydrolysis to ADPR and nicotinamide catalyzed by the NAD+ glycohydrolase occurs through the formation of a cADPR. E. cADP-ribosyl complex. The low production of cADPR by NAD+ glycohydrolase compared with invertebrate ADP-ribosyl cyclase is believed to be attributable to the fast hydrolysis of cADPR by the allosteric effect of cADPR bound to the same enzyme that produces it. Copyright 1998 Academic Press.

  16. Photoaffinity labeling of myosin subfragment-one-with 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Mahmood, R.

    1985-01-01

    The photoaffinity analogue 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz 2 ATP) contains the photoreactive benzophenone group esterified at the 2' or 3' hydroxyl groups of ribose. MgBz 2 ADP has a single binding site on skeletal myosin chymotryptic subfragment-one (SF 1 ) with a binding constant of 3.2 x 10 5 M -1 . Bz 2 ATP is also a substrate for the ATPase activity of SF 1 in the presence of different cations. The irradiation of SF 1 with [ 3 H]Bz 2 ATP photoinactivates the ATPase activity with concomitant incorporation of the analogue into the enzyme. Polyacrylamide gel electrophoresis of photolabeled SF 1 after milk trypsin digestion shows that all three tryptic peptides, 25 K, 50K, and 20 K, and both light chains are labeled. The presence of ATP during irradiation reduces labeling of the 50 K peptide only indicating that the other peptides are non-specifically labeled. To reduce the non-specific labeling [ 3 H]Bz 2 ATP is trapped on SF 1 by cross-linking the two reactive thiols, SH 1 and SH 2 , by N,N'-p-phenylene dimaleimide or Co(II)/Co(III) phenanthroline complexes. The Co(II)/Co(III) phenanthroline modified [ 14 C]Bz 2 ATP-SF 1 , after proteolytic digestion, yields five labeled peptides which were purified by gel filtration and high performance liquid chromatography

  17. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yuki Matsuba

    Full Text Available We recently reported that three genes involved in the biosynthesis of monoterpenes in trichomes, a cis-prenyltransferase named neryl diphosphate synthase 1 (NDPS1 and two terpene synthases (TPS19 and TPS20, are present in close proximity to each other at the tip of chromosome 8 in the genome of the cultivated tomato (Solanum lycopersicum. This terpene gene "cluster" also contains a second cis-prenyltransferase gene (CPT2, three other TPS genes, including TPS21, and the cytochrome P450-oxidoreductase gene CYP71BN1. CPT2 encodes a neryneryl diphosphate synthase. Co-expression in E. coli of CPT2 and TPS21 led to the formation of the diterpene lycosantalene, and co-expression in E. coli of CPT2, TPS21 and CYP71BN1 led to the formation of lycosantalonol, an oxidation product of lycosantalene. Here we show that maximal expression of all three genes occurs in the petiolule part of the leaf, but little expression of these genes occurs in the trichomes present on the petiolules. While lycosantalene or lycosantalonol cannot be detected in the petiolules of wild-type plants (or anywhere else in the plant, lycosantalene and lycosantalonol are detected in petiolules of transgenic tomato plants expressing CPT2 under the control of the 35S CaMV promoter. These results suggest that lycosantalene and lycosantalonol are produced in the petiolules and perhaps in other tissues of wild-type plants, but that low rate of synthesis, controlled by the rate-limiting enzyme CPT2, results in product levels that are too low for detection under our current methodology. It is also possible that these compounds are further modified in the plant. The involvement of CPT2, TPS21 and CYP71BN1 in a diterpenoid biosynthetic pathway outside the trichomes, together with the involvement of other genes in the cluster in the synthesis of monoterpenes in trichomes, indicates that this cluster is further evolving into "sub-clusters" with unique biochemical, and likely physiological, roles.

  18. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum.

    Science.gov (United States)

    Matsuba, Yuki; Zi, Jiachen; Jones, A Daniel; Peters, Reuben J; Pichersky, Eran

    2015-01-01

    We recently reported that three genes involved in the biosynthesis of monoterpenes in trichomes, a cis-prenyltransferase named neryl diphosphate synthase 1 (NDPS1) and two terpene synthases (TPS19 and TPS20), are present in close proximity to each other at the tip of chromosome 8 in the genome of the cultivated tomato (Solanum lycopersicum). This terpene gene "cluster" also contains a second cis-prenyltransferase gene (CPT2), three other TPS genes, including TPS21, and the cytochrome P450-oxidoreductase gene CYP71BN1. CPT2 encodes a neryneryl diphosphate synthase. Co-expression in E. coli of CPT2 and TPS21 led to the formation of the diterpene lycosantalene, and co-expression in E. coli of CPT2, TPS21 and CYP71BN1 led to the formation of lycosantalonol, an oxidation product of lycosantalene. Here we show that maximal expression of all three genes occurs in the petiolule part of the leaf, but little expression of these genes occurs in the trichomes present on the petiolules. While lycosantalene or lycosantalonol cannot be detected in the petiolules of wild-type plants (or anywhere else in the plant), lycosantalene and lycosantalonol are detected in petiolules of transgenic tomato plants expressing CPT2 under the control of the 35S CaMV promoter. These results suggest that lycosantalene and lycosantalonol are produced in the petiolules and perhaps in other tissues of wild-type plants, but that low rate of synthesis, controlled by the rate-limiting enzyme CPT2, results in product levels that are too low for detection under our current methodology. It is also possible that these compounds are further modified in the plant. The involvement of CPT2, TPS21 and CYP71BN1 in a diterpenoid biosynthetic pathway outside the trichomes, together with the involvement of other genes in the cluster in the synthesis of monoterpenes in trichomes, indicates that this cluster is further evolving into "sub-clusters" with unique biochemical, and likely physiological, roles.

  19. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor.

    NARCIS (Netherlands)

    Paiva, M.; Riksen, N.P.; Davidson, S.M.; Hausenloy, D.J.; Monteiro, P.; Goncalves, L.; Providencia, L.; Rongen, G.A.P.J.M.; Smits, P.; Mocanu, M.M.; Yellon, D.M.

    2009-01-01

    Metformin improves cardiovascular outcomes in patients with type 2 diabetes compared with other glucose-lowering drugs. Experimental studies have shown that metformin can increase the intracellular concentration of adenosine monophosphate, which is a major determinant of the intracellular formation

  20. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Hochachka and Somero 2002). Therefore, some animals have to initiate anaerobic metabolism to meet part of energy needs (Costanzo et al. 2004; Colson-Proch et al. 2009). Adenosine monophosphate-activated protein kinase.

  1. Adenosine-deaminase (ADA activity in Psoriasis (A Preliminary Study

    Directory of Open Access Journals (Sweden)

    S D Chaudhry

    1988-01-01

    Full Text Available Study of adenosine-deaminase activity ′in 23 patients hav-mg psoriasis compared with an equal number of healthy controls revealed significantly high ADA-activity in the psotiatic patients.

  2. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and...

  3. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Cao, R; Yin, F; Hudock, M; Guo, R; Song, Y; No, J; Bergan, K; Leon, A; et al,

    2009-01-01

    Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.

  4. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase.

    Science.gov (United States)

    Turner, Glenn W; Croteau, Rodney

    2004-12-01

    We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.

  5. Adenosine deaminase organic effect in normal and abnormal cerebrospinal fluid

    International Nuclear Information System (INIS)

    Hamad, A.M.; Samarai, M.A.

    2007-01-01

    To study the effect of the organic substances on adenosine deaminase (ADA) activity in normal and abnormal cerebrospinal fluid (CSF). Various concentrations of 2-mercaptopurine, Ame-tycine, Adenosine analogues (Guanine, Thymine) and ATP were tested to see their effect on ADA activity in normal and abnormal CSF. ADA activity in normal and abnormal CSF was remarkably decreased with the increasing of concentrations of substances tested. These effects may have important therapeutic implications. (author)

  6. The Role of Adenosine A2BR in Metastatic Melanoma

    Science.gov (United States)

    2017-07-01

    tumors were harvested, digested in collagenase I with DNAse 1 and stained with antibodies for immune cells markers and analyzed on a BD LSR Fortessa...Evidence indicates that adenosine receptor A2AR plays a role in inhibiting immune cells whereas A2BR is likely most critical on tumor cells and tumor ...endothelium. We propose that elimination of adenosine A2B receptor signaling in endothelial cells and tumor cells will result in a decrease of primary

  7. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  8. Poly(ADP-ribose) Glycohydrolase and Poly(ADP-ribose)-interacting Protein Hrp38 Regulate Pattern Formation during Drosophila Eye Development

    Science.gov (United States)

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V.

    2013-01-01

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that Poly(ADP-ribose) Glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases. PMID:23711619

  9. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization

    OpenAIRE

    Dautant , Alain; Meyer , Philippe; Georgescauld , Florian

    2017-01-01

    International audience; Most oligomeric proteins become active only after assembly, but why oligomerization is required to support function is not well understood. Here, we address this question using the WT and a destabilized mutant (D93N) of the hexameric nucleoside diphosphate kinase from the pathogen Mycobacterium tuberculosis (Mt-NDPK). The conformational dynamics and oligomeric states of each were analyzed during unfolding/folding by Hydrogen/Deuterium exchange mass spectrometry (HDX-MS...

  10. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G

    1996-01-01

    in buffers containing 5% methanol allows unambiguous distinction between serine/threonine and histidine phosphorylation (O-phosphomonoesters and phosphoramide, respectively) since under these conditions only one type of residue is dephosphorylated. The addition of 5% methanol to all buffers was indispensable...... phosphate transfer activity of nucleoside diphosphate kinase (NDP kinase). Nonetheless, a significant degree of autophosphorylation on other residues has been reported by several laboratories, and the hypothesis has been advanced that this nonhistidine phosphorylation may play an important role in NDP...

  11. Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Non-diphosphate Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    O' Dowd, Bing [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA; Williams, Sarah [Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla CA 92093 USA; Wang, Hongxin [Department of Chemistry, University of California, 1 Shields Avenue Davis CA 95616 USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley CA 94720 USA; No, Joo Hwan [Center for Biophysics and Computational Biology, Urbana, IL (United States); Rao, Guodong [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA; Wang, Weixue [Center for Biophysics and Computational Biology, Urbana, IL (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla CA 92093 USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla CA 92093 USA; National Biomedical Computation Resource, University of California at San Diego, La Jolla CA 92093 USA; Cramer, Stephen P. [Department of Chemistry, University of California, 1 Shields Avenue Davis CA 95616 USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley CA 94720 USA; Oldfield, Eric [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA

    2017-04-07

    Isoprenoid biosynthesis is an important area for anti-infective drug development. One isoprenoid target described is (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase (IspH), which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H + /2e - reduction. IspH contains a 4 Fe-4 S cluster, and in this work, we first investigated how small molecules bound to the cluster by using HYSCORE and NRVS spectroscopies. The results of these, as well as other structural and spectroscopic investigations, led to the conclusion that, in most cases, ligands bound to IspH 4 Fe-4 S clusters by η 1 coordination, forming tetrahedral geometries at the unique fourth Fe, ligand side chains preventing further ligand (e.g., H 2 O, O 2 ) binding. Based on these ideas, we used in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analogue with a K i value of ≈500 nm against Pseudomonas aeruginosa IspH.

  12. Structural and Electrical Conductivity Properties of a Newly Synthesized 3-Methoxybenzylammonium Cation Diphosphate

    Directory of Open Access Journals (Sweden)

    A. Elboulali

    2012-01-01

    Full Text Available The structure of the newly synthesized material, [3-(CH3OC6H4CH2NH3]2H2P2O7 can be described as inorganic layers (H2P2O72-n stacked perpendicular to the c-axis at z = 0 and z = 1/2 interleaved with organic cations [3-(CH3OC6H4CH2NH3]+. The connection of the independent entities are assured by a set of N—H…O and C—H…O H-bonds in addition to electrostatic and Van der Waals interactions, generating a non-centrosymetric three-dimensional network. On the basis of electrical conductivity measurements, it was found that, at higher temperature conductivity increases linearly, showing medium conducting behaviour of the organic diphosphate salt with values lying in the range of σ= 0.69 10−4 Ω−1cm−1 at 328 K to 2.66 10−4 Ω−1cm−1 at 405 K and activation energy of Ea = 0.23 eV. Its characterization by IR absorption spectroscopy is described too.

  13. Chemical interaction of potassium diphosphate with cadmium nitrate in aqueous solution

    International Nuclear Information System (INIS)

    Kokhanovskij, V.V.

    1993-01-01

    Formation of low-soluble compounds in 1.5 mol/l isomolar cross section of K 4 P 2 O 7 -Cd(NO 3 ) 2 -H 2 O system was studied. Liquid phases are studied by the methods of refractometry and pH value measuring, an solid ones - by the methods of chemical and X-ray phase analysis, IR spectroscopy, chromatography and microscopy. Three individual chemical compounds K 2 CdP 2 O 7 x 4H 2 O, K 2 Cd 3 (P 2 O 7 ) 2 x 3H 2 O and Cd 2 P 2 O 7 x 3.5H 2 O and some their mixtures were isolated and investigated. It is shown that doulble diphosphate K 6 Cd(P 2 O 7 ) 2 x 6H 2 O does not precipitate spontanously, but instead of it in wide region of system K 2 CdP 2 O 7 x 4H 2 O crystallizes as elongated acicular crystals or as thin plates of improper form

  14. Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases.

    Science.gov (United States)

    Yamamura, Akihiro; Ichimura, Takefumi; Kamekura, Masahiro; Mizuki, Toru; Usami, Ron; Makino, Tsukasa; Ohtsuka, Jun; Miyazono, Ken-ichi; Okai, Masahiko; Nagata, Koji; Tanokura, Masaru

    2009-06-03

    Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg(31) in NDK-q and Cys(31) in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt concentrations, and revealed that 1), NDK-q is present as a hexamer under a wide range of salt concentrations (0.2-4 M NaCl), whereas NDK-s is present as a hexamer at an NaCl concentration above 2 M and as a dimer at NaCl concentrations below 1 M; 2), dimeric NDK-s has lower activity than hexameric NDK-s; and 3), dimeric NDK-s has higher helicity than hexameric NDK-s. We also determined the crystal structure of hexameric NDK-q, and revealed that Arg(31) plays an important role in stabilizing the hexamer. Thus the substitution of Arg (as in NDK-q) to Cys (as in NDK-s) at position 31 destabilizes the hexameric assembly, and causes dissociation to less active dimers at low salt concentrations.

  15. Surface and micellar properties of Chloroquine Diphosphate and its interactions with surfactants and Human Serum Albumin

    International Nuclear Information System (INIS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-01-01

    Highlights: ► Free energy of adsorption is more negative than free energy of micellization. ► Shifts in UV/Visible spectra in presence of SDS indicated interaction of CLQ with SDS. ► The decrease in fluorescence intensity of HSA by CLQ shows its binding with HSA. -- Abstract: This manuscript addresses the physicochemical behavior of an antimalarial drug Chloroquine Diphosphate (CLQ) as well as its interaction with anionic surfactants and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solubilization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (K x ), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has also been analyzed by using UV/Visible and fluorescence spectroscopy. The values of drug-protein binding constant, number of binding sites and free energy of binding were calculated

  16. α-Methylation enhances the potency of isoprenoid triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors.

    Science.gov (United States)

    Matthiesen, Robert A; Varney, Michelle L; Xu, Pauline C; Rier, Alex S; Wiemer, David F; Holstein, Sarah A

    2018-01-15

    Disruption of protein geranylgeranylation via inhibition of geranylgeranyl diphosphate synthase (GGDPS) represents a novel therapeutic strategy for a variety of malignancies, especially those characterized by excessive protein secretion such as multiple myeloma. Our work has demonstrated that some isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. Here we present the synthesis and biological evaluation of a new series of isoprenoid triazoles modified by incorporation of a methyl group at the α-carbon. These studies reveal that incorporation of an α-methyl substituent enhances the potency of these compounds as GGDPS inhibitors, and, in the case of the homogeranyl/homoneryl series, abrogates the effects of olefin stereochemistry on inhibitory activity. The incorporation of the methyl group allowed preparation of a POM-prodrug, which displayed a 10-fold increase in cellular activity compared to the corresponding salt. These studies form the basis for future preclinical studies investigating the anti-myeloma activity of these novel α-methyl triazole bisphosphonates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin.

    Science.gov (United States)

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2006-06-28

    Geosmin is responsible for the characteristic odor of moist soil. Incubation of recombinant germacradienol synthase, encoded by the SCO6073 (SC9B1.20) gene of the Gram-positive soil bacterium Streptomyces coelicolor, with farnesyl diphosphate (2, FPP) in the presence of Mg2+ gave a mixture of (4S,7R)-germacra-1(10)E,5E-diene-11-ol (3) (74%), (-)-(7S)-germacrene D (4) (10%), geosmin (1) (13%), and a hydrocarbon, tentatively assigned the structure of octalin 5 (3%). Individual incubations of recombinant germacradienol synthase with [1,1-2H2]FPP (2a), (1R)-[1-2H]-FPP (2b), and (1S)-[1-2H]-FPP (2c), as well as with FPP (2) in D2O, and GC-MS analysis of the resulting deuterated products supported a mechanism of geosmin formation involving proton-initiated cyclization and retro-Prins fragmentation of the initially formed germacradienol to give intermediate 5, followed by protonation of 5, 1,2-hydride shift, and capture of water.

  18. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate

    International Nuclear Information System (INIS)

    Finck, N.

    2006-10-01

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  19. Adenosine-5?-phosphosulfate ? a multifaceted modulator of bifunctional 3?-phospho-adenosine-5?-phosphosulfate synthases and related enzymes

    OpenAIRE

    Mueller, Jonathan W; Shafqat, Naeem

    2013-01-01

    All sulfation reactions rely on active sulfate in the form of 3?-phospho-adenosine-5?-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5?-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides...

  20. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McGuire, James N

    2004-01-01

    possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s at 65 degrees C, respectively, for the B. subtilis enzyme. Chemical cross-linking shows that both enzymes...... are hexamers. Vmax is determined as 440 micromol.min(-1).mg protein(-1) and Km values for ATP and ribose 5-phosphate are determined as 310 and 530 microM, respectively, for the B. caldolyticus enzyme. The enzyme requires 50 mM Pi as well as free Mg2+ for maximal activity. Manganese ion substitutes for Mg2......+, but only at 30% of the activity obtained with Mg2+. ADP and GDP inhibit the B. caldolyticus enzyme in a cooperative fashion with Hill coefficients of 2.9 for ADP and 2.6 for GDP. Ki values are determined as 113 and 490 microm for ADP and GDP, respectively. At low concentrations ADP inhibition is linearly...

  1. Inhibition of DNA Binding by the Phosphorylation of Poly ADP-Ribose Polymerase Protein Catalyzed by Protein Kinase C

    Science.gov (United States)

    1993-04-21

    glycohydrolase and ADP-ribose polymerase (3). Besides enzymatic activities, ADPRT possesses significant colligative properties towards DNA termini and certain...differentiation of particular cell types (3). The biochemical role of ADPRT in living cells in most probably related to both catalytic and colligative properties

  2. Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor-induced inflammatory response in rheumatoid synovial fibroblasts

    NARCIS (Netherlands)

    García, S.; Bodaño, A.; Pablos, J. L.; Gómez-Reino, J. J.; Conde, C.

    2008-01-01

    To investigate the effect of poly(ADP-ribose) polymerase (PARP) inhibition on the production of inflammatory mediators and proliferation in tumour necrosis factor (TNF)-stimulated fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Cultured FLS from patients with RA were

  3. A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter.

    Science.gov (United States)

    Naula, Christina M; Logan, Flora J; Logan, Flora M; Wong, Pui Ee; Barrett, Michael P; Burchmore, Richard J

    2010-09-24

    Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the protozoan parasite Leishmania. These transporters, called LmGT1, LmGT2, and LmGT3, are homologous to the well characterized glucose transporter (GLUT) family of mammalian glucose transporters. We have demonstrated that LmGT proteins are important for parasite viability. Here we show that one of these transporters, LmGT2, is a more effective carrier of the pentose sugar d-ribose than LmGT3, which has a 6-fold lower relative specificity (V(max)/K(m)) for ribose. A pair of threonine residues, located in the putative extracellular loops joining transmembrane helices 3 to 4 and 7 to 8, define a filter that limits ribose approaching the exofacial substrate binding pocket in LmGT3. When these threonines are substituted by alanine residues, as found in LmGT2, the LmGT3 permease acquires ribose permease activity that is similar to that of LmGT2. The location of these residues in hydrophilic loops supports recent suggestions that substrate recognition is separated from substrate binding and translocation in this important group of transporters.

  4. Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles.

    Science.gov (United States)

    Steer, Andrew M; Bia, Nicolas; Smith, David K; Clarke, Paul A

    2017-09-25

    Understanding the prebiotic genesis of 2-deoxy-d-ribose, which forms the backbone of DNA, is of crucial importance to unravelling the origins of life, yet remains open to debate. Here we demonstrate that 20 mol% of proteinogenic amino esters promote the selective formation of 2-deoxy-d-ribose over 2-deoxy-d-threopentose in combined yields of ≥4%. We also demonstrate the first aldol reaction promoted by prebiotically-relevant proteinogenic amino nitriles (20 mol%) for the enantioselective synthesis of d-glyceraldehyde with 6% ee, and its subsequent conversion into 2-deoxy-d-ribose in yields of ≥ 5%. Finally, we explore the combination of these two steps in a one-pot process using 20 mol% of an amino ester or amino nitrile promoter. It is hence demonstrated that three interstellar starting materials, when mixed together with an appropriate promoter, can directly lead to the formation of a mixture of higher carbohydrates, including 2-deoxy-d-ribose.

  5. Thrombomodulin Is Silenced in Malignant Mesothelioma by a Poly(ADP-ribose) Polymerase-1-mediated Epigenetic Mechanism

    Czech Academy of Sciences Publication Activity Database

    Nocchi, L.; Tomasetti, M.; Amati, M.; Neužil, Jiří; Santarelli, L.; Saccucci, F.

    2011-01-01

    Roč. 286, č. 22 (2011), s. 19478-19488 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA204/08/0811 Institutional research plan: CEZ:AV0Z50520701 Keywords : Thrombomodulin gene promoter * malignant mesothelioma * poly(ADP-ribose) polymerase-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  6. The Role of Poly(ADP-ribose Polymerase-1 in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Samuel García

    2015-01-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.

  7. The in vitro screening of aromatic amides as potential inhibitors of poly (ADP-ribose) polymerase

    International Nuclear Information System (INIS)

    Brown, D.M.; Horsman, M.R.; Lee, W.W.; Brown, J.M.

    1984-01-01

    It is now well established that the chromosomal enzyme poly (ADP-ribose) polymerase (ADPRP) is involved in the repair of DNA damage caused by ionizing radiation and alkylating agents, although the mechanisms involved are still not clear. ADPRP inhibitors include thymidine, nicotinamides, benzamides and methyl xanthines. The authors have demonstrated that these compounds are effective inhibitors of X-ray-induced potentially lethal damage repair (PLDR). More recently, they have shown that the cytotoxicity of the bifunctional alkylating L-phenylalanine mustard (L-PAM) was enhanced in vitro and in vivo by 3-aminobenzamide, nicotinamide and caffeine, although in the latter case pharmacokinetic changes could have contributed to the enhanced killing. The authors have examined a series of substituted carbocyclic and heterocyclic aromatic amides as potential inhibitors of ADPRP. The effect of these compounds on ADPRP activity in vitro as well as their effect on the repair of X-ray and alkylation damage in vitro are presented

  8. Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark.

    Science.gov (United States)

    Lodhi, Niraj; Kossenkov, Andrew V; Tulin, Alexei V

    2014-06-01

    Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  10. Extracellular adenosine controls NKT-cell-dependent hepatitis induction.

    Science.gov (United States)

    Subramanian, Meenakshi; Kini, Radhika; Madasu, Manasa; Ohta, Akiko; Nowak, Michael; Exley, Mark; Sitkovsky, Michail; Ohta, Akio

    2014-04-01

    Extracellular adenosine regulates inflammatory responses via the A2A adenosine receptor (A2AR). A2AR deficiency results in much exaggerated acute hepatitis, indicating nonredundancy of adenosine-A2AR pathway in inhibiting immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. An A2AR agonist abolished NKT-cell-dependent induction of acute hepatitis by concanavalin A (Con A) or α-galactosylceramide in mice, corresponding to downregulation of activation markers and cytokines in NKT cells and of NK-cell co-activation. These results show that A2AR signaling can downregulate NKT-cell activation and suppress NKT-cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-galactosylceramide induced more severe hepatitis in A2AR-deficient mice than in WT controls. Transfer of A2AR-deficient NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT-cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT-cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    Science.gov (United States)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  12. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Liu W

    2014-11-01

    Full Text Available Weixi Liu,1 Menashi A Cohenford,1–3 Leslie Frost,3 Champika Seneviratne,4 Joel A Dain1 1Department of Chemistry, University of Rhode Island, Kingston, RI, USA; 2Department of Integrated Science and Technology, 3Department of Chemistry, Marshall University, Huntington, WV, USA; 4Department of Chemistry, College of the North Atlantic, Labrador, NL, Canada Abstract: Formation of advanced glycation end products (AGEs by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs on the D-ribose glycation of bovine serum albumin (BSA. A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. Keywords: gold nanoparticles, glycation, AGEs, GNPs, BSA

  13. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  14. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Science.gov (United States)

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  15. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  16. Adenosine receptor agonists modulate visceral hyperalgesia in the rat.

    Science.gov (United States)

    Sohn, Chong-Il; Park, Hyo Jin; Gebhart, G F

    2008-06-01

    Adenosine is an endogenous modulator of nociception. Its role in visceral nociception, particularly in visceral hyperalgesia, has not been studied. The aim of this study was to determine the effects of adenosine receptor agonists in a model of visceral hyperalgesia. The visceromotor response (VMR) in rats to colorectal distension (CRD; 80 mmHg, 20 seconds) was quantified by electromyographic recordings from the abdominal musculature. Three hours after the intracolonic administration of zymosan (25 mg/mL, 1 mL), VMRs to CRD were measured before and after either subcutaneous or intrathecal administration of an adenosine receptor agonist. Subcutaneous injection of 5'-N-ethylcarboxyamidoadenosine (NECA; an A1 and A2 receptor agonist), R(-)-N6-(2-phenylisopropyl)-adenosine (R-PIA; a selective A1 receptor agonist), or CGS-21680 hydrochloride (a selective A2a receptor agonist) dose-dependently (10-100 mg/kg) attenuated the VMR to CRD, although hindlimb weakness occurred at the higher doses tested. Intrathecal administration of NECA or R-PIA dose-dependently (0.1-1.0 microg/kg) decreased the VMR, whereas CGS-21680 hydrochloride was ineffective over the same concentration range. Higher intrathecal doses of the A1/A2 receptor agonist NECA produced motor weakness. Adenosine receptor agonists are antihyperalgesic, but also produce motor weakness at high doses. However, activation of the spinal A1 receptor significantly attenuates the VMR to CRD without producing motor weakness.

  17. Poly(ADP-ribose) polymerase, a potential target for drugs: Cellular regulatory role of the polymer and the polymerase protein mediated by catalytic and macromolecular colligative actions (Review).

    Science.gov (United States)

    Kun

    1998-08-01

    The cellular coenzymatic role of NAD, being a pleiotropic cofactor for diverse cellular reactions, is extended to poly(ADP-ribose) and to the highly abundant nuclear protein, poly(ADP-ribose) polymerase, with special focus on the pharmacological action of ligands on the latter. The polymer is defined to possess a helical configuration. From direct analyses of the polymer under physiological conditions, it is concluded that the polymerase is dormant in normal tissues, but is activated under certain pathological conditions: malignancy, retroviral integrate containing cells, and in a variety of inflammatory states. The interaction of poly(ADP-ribose) polymerase ligands with the DNA component of the active poly (ADP-ribose) polymerase - DNA complex is shown. A major cellular function of the poly(ADP-ribose) polymerase protein is its binding capacity to a large number of nuclear proteins and DNA sites, an effect which is induced by drugs that inhibit the polymerase activity. The malignancy-reverting effect of poly(ADP-ribose) polymerase ligand drugs is illustrated in chemically and oncovirally transformed cancer cells. The poly(ADP-ribose) polymerase ligand-induced cessation of HIV replication is analyzed. Peroxynitrite-induced DNA damage-initiated pathological responses are shown to be inhibited by a specific poly(ADP-ribose) polymerase ligand. The irreversibly acting C-NO drugs oxidize asymmetric zinc fingers [poly(ADP-ribose) polymerase, HIV gag-precursor protein] and act as anti-cancer and anti-HIV agents, an effect that is regulated by cellular concentration of GSH.

  18. Correlation between blood adenosine metabolism and sleep in humans.

    Science.gov (United States)

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  19. Fractional Flow Reserve: Intracoronary versus intravenous adenosine induced maximal coronary hyperemia

    Directory of Open Access Journals (Sweden)

    P.S. Sandhu

    2013-03-01

    Conclusions: This study suggests that IC adenosine is equivalent to IV infusion for the determination of FFR. The administration of IC adenosine is easy to use, cost effective, safe and associated with fewer systemic events.

  20. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  1. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . Firstly, spontaneous ribose-independent mutants were isolated. The locus for this lesion, rpiR, was mapped to 93 min on the linkage map, and the gene order zje::Tn10-rpiR-mel-zjd::Tn10-psd-purA was established. Secondly, ribose prototrophs resulted from the cloning of the rpiB gene on a multicopy plasmid...

  2. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Aripirala, Srinivas [Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States); Gonzalez-Pacanowska, Dolores [López-Neyra Institute of Parasitology and Biomedicine, 18001 Granada (Spain); Oldfield, Eric [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kaiser, Marcel [University of Basel, Petersplatz 1, CH-4003 Basel (Switzerland); Amzel, L. Mario, E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Gabelli, Sandra B., E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States)

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  3. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    International Nuclear Information System (INIS)

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-01-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  5. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    Science.gov (United States)

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.

  6. Intravenous adenosine for surgical management of penetrating heart wounds.

    Science.gov (United States)

    Kokotsakis, John; Hountis, Panagiotis; Antonopoulos, Nikolaos; Skouteli, Elian; Athanasiou, Thanos; Lioulias, Achilleas

    2007-01-01

    Accurate suturing of penetrating cardiac injuries is difficult. Heart motion, ongoing blood loss, arrhythmias due to heart manipulation, and the near-death condition of the patient can all affect the outcome. Rapid intravenous injection of adenosine induces temporary asystole that enables placement of sutures in a motionless surgical field. Use of this technique improves surgical conditions, and it is faster than other methods. Herein, we describe our experience with the use of intravenous adenosine to successfully treat 3 patients who had penetrating heart wounds.

  7. Uridine 5'-diphosphate-xylose: anthocyanidin 3-O-glucose-xylosyltransferase from petals of Matthiola incana R.Br.

    Science.gov (United States)

    Teusch, M

    1986-12-01

    Petals of genetically defined lines of Matthiola incana R.Br. contain a glycosyltransferase which catalyzes the transfer of the xylosyl moiety of uridine 5'-diphosphate-xylose to the glucose of cyanidin 3-glucoside. The enzyme also uses 3-glucosides of pelargonidin and delphinidin, cyanidin 3-(p-coumaroyl)-glucoside and 3-(caffeoyl)-glucoside as substrates. The xylosyltransferase exhibits a pH optimum of 6.5. The enzyme activity depends on the stage of bud and flower development. Accumulation of cyanidin 3-glucoside during flower development is correlated with xylosyltransferase activity.

  8. Activation of ATPase activity of simian virus 40 large T antigen by the covalent affinity analog of ATP, fluorosulfonylbenzoyl 5'-adenosine.

    Science.gov (United States)

    Bradley, M K

    1990-01-01

    Fluorosulfonylbenzoyl 5'-adenosine (FSBA) bound to one site in simian virus 40 large T antigen (T) and covalently modified greater than 95% of the molecules in a complete reaction. This analog for ATP specifically cross-links to the Mg-phosphate pocket in ATP-binding sites. Cyanogen bromide cleavage and tryptic digestion of [14C]FSBA-labeled protein, paired with T-specific monoclonal antibody analyses, were used to map the site in T to a tryptic peptide just C terminal to the PAb204 epitope. The location of the FSBA linkage was consistent with the predicted tertiary structure of the ATP-binding region in T described previously (M. K. Bradley, T. F. Smith, R. H. Lathrop, D. M. Livingston, and T. A. Webster, Proc. Natl. Acad. Sci. USA 84:4026-4030, 1987). Binding of FSBA to T was cooperative, implying an interaction between two binding sites. This could occur if the protein formed a dimer, and it is known that the ATPase activity is associated with a dimeric T. Most interesting was the activation of the ATPase when up to 50% of T was bound by the analog. The effect was also produced by preincubation with millimolar concentrations of ATP or the nonhydrolyzable analog gamma beta-methylene 5'-adenosine diphosphate at elevated temperatures. When greater than 50% of T was modified by FSBA, the ATPase was inhibited as the analog cross-linked to the second, previously activated, binding site. These data support a dual function for the one ATP-binding site in T as both regulatory and catalytic. Images PMID:1697910

  9. The thorium phosphate diphosphate as a ceramic for the actinides immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N.; Thomas, A.C.; Chassigneux, B.; Brandel, V.; Genet, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1999-07-01

    Considering that phosphate matrices like apatites or monazites could be potential candidates for the immobilization of actinides, the thorium phosphates chemistry has been completely reexamined. Among the solids synthesized, the Thorium Phosphate Diphosphate (namely TPD) was obtained after heating at 1250 degrees Celsius for 10 hours whatever the chemical way of synthesis using dry or wet chemistry methods, whatever the thorium salt and the phosphating reagent used in the condition to respect the initial mole ratio Th/PO{sub 4}=2/3. The ab initio structure determination was achieved on powder and single crystal and led to an orthorhombic unit cell. In this structure, the thorium atoms are eightfold coordinated. The substitution of thorium atoms by tetravalent actinides leading to the formation of Th{sub 4-x}M{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} (M=U, Np, Pu) solid solutions (respectively TUPD, TNPD, TPPD) was also investigated. For each actinide, several solid solutions were synthesized. The linear decrease of the unit cell parameters and volume refined as a function of the x value has been observed. It confirms that solid solutions are well formed. The equations obtained by linear regression are in very good agreement with the ionic radii reported in the literature for U{sup 4+}, Np{sup 4+} and Pu{sup 4+} in the eightfold coordination. The maximum substitution of Th{sup 4+} by each tetravalent actinide has been determined as well as the corresponding Maximum Mole Loading (MML) and Maximum Weight Loading (MWL). It appeared that the TPD structure allows the replacement of thorium by large amounts of tetravalent uranium, neptunium and plutonium. Pellets of TPD and TUPD solid solutions were prepared and the corresponding densities determined. They correspond to 95-99 % of the values calculated from crystallographic data. In order to study the resistance of these materials (TPD, TUPD, TPPD) to aqueous alteration, leaching tests were achieved in distilled water and

  10. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  11. Comparison of the novel vasodilator uridine triphosphate and adenosine for the measurement of fractional flow reserve

    DEFF Research Database (Denmark)

    Sivertsen, Jacob; Jensen, Jan Skov; Galatius, Søren

    2014-01-01

    and IC infusion (using a microcatheter in the coronary ostium). Standard IV adenosine infusion (140 μg/kg/min) was compared to 8 equimolar incremental doses of IC UTP and IC adenosine (20, 40, 60, 80, 160, 240, 320 and 640 μg/min) in a randomized order. Across all doses, ΔFFR[IC UTP - IC adenosine...

  12. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  13. New and convenient synthesis of 2-deoxy-D-ribose from 2,4-O-ethylidene-D-erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Hauske, J.R.; Rapoport, H.

    1979-01-01

    A new synthesis is described of 2-deoxy-D-erythro-pentose (2-deoxy-D-ribose,2-deoxy-D-arabinose (1)), starting from D-glucose. The synthesis proceeds through direct olefination of 2,4-O-ethylidene-D-erythrose (2) by addition of the stabilized ylides generated from dimethylphosphorylmethyl phenyl sulfide (4) and the corresponding sulfoxide 5. These afford the key intermediates, thio-enol ether 7 and ..cap alpha..,..beta..-unsaturated sulfoxide 8, which when subjected to mercuric ion assisted hydrolysis gave high yields of 2-deoxy-D-ribose (1). This facile chain extension of 2 required its existance as a monomer, and conditions effective for obtaining the monomer have been developed. Detailed /sup 1/H and /sup 13/C NMR studies of these compounds are presented.

  14. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  16. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbanion intermediate.

    Science.gov (United States)

    Grazi, E

    1975-10-01

    The rate of oxidation of ferricyanide of the aldolase-dihydroxyacetone phosphate complex was measured under different conditions. The following conclusions are drawn. 1. In the cleavage of fructose diphosphate, catalysed by native aldolase, the steady-state concentration of the enzyme-dihydroxyacetone phosphate carbanion intermediate represents less than 6% of the total enzyme-substrate intermediates. 2. Fructose diphosphate and dihydroxyacetone phosphate compete for the four catalytic sites on aldolase, the binding of fructose diphosphate being about twice as tight. 3. The equilibrium concentration of the carbanion intermediate formed by reaction of carboxypeptidase-treated aldolase with dihydroxyacetone phosphate is independent of pH between 5.0 and 9.0. The rates of fromation of the carbanion intermediate and of the reverse reaction are, however, concomitantly increased by increasing pH between 5.0 and 6.5.

  17. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  18. Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina.

    Science.gov (United States)

    Macaluso, Claudio; Frishman, Laura J; Frueh, Beatrice; Kaelin-Lang, Alain; Onoe, Shoken; Niemeyer, Günter

    2003-01-01

    It has been postulated that the major physiological role of adenosine is protection of the central nervous system in conditions such as ischemia, hypoxia, or prolonged neuronal excitation. Under these conditions adenosine is released, and exerts multiple effects, including vasodilation, inhibition of neuronal activity, and enhancement of glycogenolysis, resulting in neuroprotection. In this article, published as well as unpublished data on the multiple effects of exogenous adenosine and application of adenosine-related agents, performed using the arterially perfused cat eye, will be reviewed and discussed within the framework of the neuroprotective role of adenosine. The isolated, arterially perfused eye preparation has the advantage of combining integrity of the eye structure, exact control of arterial concentration and timing of applied pharmacological agents, and access to electrophysiological parameters of both retina and optic nerve, as well as the ability to control and monitor perfusate flow. The absence of red blood cells in the perfusate prevents adenosine from being metabolized prior to reaching the eye.

  19. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  20. Safety of adenosine in stress cerebral perfusion imaging

    International Nuclear Information System (INIS)

    Hu Pengcheng; Gu Yushen; Liu Wenguan; Xiu Yan; Zhu Weimin; Chen Shuguang; Shi Hongcheng

    2009-01-01

    Objective: To evaluate the safety of adenosine as pharmacological stress agents in stress cerebral perfusion imaging. Methods: Eighty patients under investigation for suspected cerebral vessel disease were recruited. Each had a resting scan and a stress scan on different days. The adenosine stress protocol was as same as the protocol used in adenosine stress myocardial perfusion imaging. Subjective and objective side-effects were investigated during pharmacological stress procedure. Results: All patients completed the 6 min infusion protocol without premature termination on safety criteria or due to intolerable symptoms. 46 patients had mild side effects. 20 patients (25%) had dizziness, 12 patients (15%) had palpitation, 1 patient (1%) was hypotensive, 7 patients (9%) had dyspnoea, 4 patients (5%) felt hot, 3 patients (4%) had sweat, 4 patients (5%) had nausea, 6 patients (8%) had flushing, 19 patients (24%) had chest pain, 6 patients (8%) had abdomen pain, 3 patients (4%) had abnormal taste and 1 patient (1%) were thirsty. Transient ST change occurred in only 1 patient. Conclusion: Adenosine stress cerebral perfusion imaging is a safe diagnostic method with mild side effects. (authors)

  1. PET imaging of adenosine A2A receptors

    NARCIS (Netherlands)

    Zhou, Xiaoyun

    2017-01-01

    This thesis describes the development and evaluation of [11C]preladenant as a novel radioligand for in vivo imaging of adenosine A2A receptors in the brain with positron-emission tomography (PET). The 11C-labeled drug [11C]preladenant was produced with high radiochemical yield and specific activity.

  2. Adenosine Deaminase Activity in Diabetic and Obese Patients ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA) commonly associated with severe combined immunodeficiency disease believed to be an important enzyme for the modulation of bioactivity of insulin. The clinical significance in Metabolic Diseases patients in South Eastern Nigeria was studied. Body Mass Index (BMI), Fating Blood Glucose, ...

  3. Spectral studies of lanthanide-nucleic acid component interaction: complexes of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di- and adenosine 5' tri-phosphates with praseodymium(III)

    International Nuclear Information System (INIS)

    Joseph, George; Anjaiah, K.; Misra, S.N.

    1990-01-01

    The interactions of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di-and adenosine 5'-tri-phosphates with praseodymium(III) have been studied in different stoichiometries and at varying hydrogen ion concentrations by absorption spectral studies. The sharp bands in the spectra have been individually analysed by Gaussian curve analysis, and various spectral parameters have been computed using partial and multiple regression methods on an HP-1000/45 computer. The changes in and the magnitudes of these parameters have been correlated with the degrees of outer- and inner-sphere coordination around praseodymium(III). Crystalline complexes of the type: Pr(nucleotide) 2 (H 2 O) 2 (where nucleotide = AMP, ADP and ATP) have been characterized on the basis of analytical, IR and 1 H NMR spectral data. These studies indicate that the binding of the nucleotide is through phosphoric oxygen. These complexes in aqueous medium show significant ionization which supports the observed weak 4f-4f bands, lower values of nephelauxetic effect and the parameters derived from coulombic and spin-orbit interactions. (author). 3 t abs., 28 refs

  4. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  5. Plasma Adenosine Deaminase Enzyme Reduces with Treatment of ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma Adenosine Deaminase Enzyme Reduces with Treatment of Pulmonary Tuberculosis in Nigerian Patients: Indication for. Diagnosis and Treatment Monitoring. Ige O.a, Edem V.F.b and Arinola O.G.b,*. aDepartment of Medicine, University of Ibadan, Ibadan, Nigeria b Department of Chemical Pathology,. University of ...

  6. Myocardial glucose uptake and breakdown during adenosine-induced vasodilation.

    Science.gov (United States)

    Turnheim, K; Donath, R; Weissel, M; Kolassa, N

    1976-09-30

    In isolated K+ (16.2 mM)-arrested cat hearts perfused at constant pressure adenosine infusions (0.8 mumoles - min-1 - 100 g-1 for 10 min) caused an increase in myocardial 14C-glucose uptake and release of 14CO2 + H14CO3- AND 14C-lactate simultaneously with a rise in coronary flow. The ratio of the release of 14CO2 + H14CO3- to that of 14C-lactate and the specific activity of lactate in the effuate were not altered. In K+ -arrested hearts perfused with constant volume neither glucose uptake nor glucose breakdown were influenced by 0.8 or 100 mumoles - min-1 - 100 g-1 adenosine with 0.1 - 5 mM glucose in the perfusion medium. It is concluded that adenosine does not affect directly the myocardial glucose carrier system, aerobic or anaerobic glucose breakdown or glycogenolysis, but enhances glucose uptake secondarily by increasing coronary flow. This interpretation is substantiated by the finding that mechanically produced increases in perfusion volume caused similar increases in myocardial glucose uptake as were observed with comparable adenosine-induced coronary flow increments.

  7. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... ... Journal of Genetics; Volume 95; Issue 4. Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. CHENCUI HUANG KUN YU HUIYANG HUANG HAIHUI YE. RESEARCH ARTICLE Volume 95 Issue 4 December 2016 pp ...

  8. Validity of serum Adenosine deaminase in diagnosis of tuberculosis ...

    African Journals Online (AJOL)

    Introduction: Tuberculosis is one of the most important infectious causes of death worldwide. Ziehl-Neelsen staining of sputum has high specificity in tuberculosis endemic countries, but modest sensitivity which varies among laboratories. This study was set up to investigate the diagnostic value of serum Adenosine ...

  9. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    CHENCUI HUANG

    Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. CHENCUI HUANG1, KUN YU1, HUIYANG HUANG1,2 and HAIHUI YE1,2∗. 1College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China.

  10. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain. [Huang C., Yu K., Huang H. and Ye H. 2016 Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. J. Genet.

  11. Contributory role of adenosine deaminase in metabolic syndrome ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA) is an enzyme of purine metabolism commonly associated with severe combined immunodeficiency disease and believed to modulate bioactivity of insulin. Its contributory role in patients with metabolic syndrome (having features such as obesity, insulin resistance, fasting hyperglycaemia, lipid ...

  12. Respiratory gating in cardiac PET: Effects of adenosine and dipyridamole.

    Science.gov (United States)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E; Kjær, Andreas; Hasbak, Philip

    2017-12-01

    Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. Forty-eight patients were randomized to adenosine or dipyridamole cardiac stress 82 RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4.7) min -1 , P PET, a dipyridamole stress protocol is recommended as it, compared to adenosine, causes a more uniform respiration and results in a higher frequency of successful respiratory gating and thereby superior imaging quality.

  13. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  14. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    International Nuclear Information System (INIS)

    Ulrich, F.

    1988-01-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [ 3 H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA

  15. Differential Role of Poly(ADP-ribose polymerase in D. discoideum growth and development

    Directory of Open Access Journals (Sweden)

    Begum Rasheedunnisa

    2011-03-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  16. ADP ribose is an endogenous ligand for the purinergic P2Y1 receptor.

    Science.gov (United States)

    Gustafsson, Amanda Jabin; Muraro, Lucia; Dahlberg, Carin; Migaud, Marie; Chevallier, Olivier; Khanh, Hoa Nguyen; Krishnan, Kalaiselvan; Li, Nailin; Islam, Md Shahidul

    2011-02-10

    The mechanism by which extracellular ADP ribose (ADPr) increases intracellular free Ca(2+) concentration ([Ca(2+)](i)) remains unknown. We measured [Ca(2+)](i) changes in fura-2 loaded rat insulinoma INS-1E cells, and in primary β-cells from rat and human. A phosphonate analogue of ADPr (PADPr) and 8-Bromo-ADPr (8Br-ADPr) were synthesized. ADPr increased [Ca(2+)](i) in the form of a peak followed by a plateau dependent on extracellular Ca(2+). NAD(+), cADPr, PADPr, 8Br-ADPr or breakdown products of ADPr did not increase [Ca(2+)](i). The ADPr-induced [Ca(2+)](i) increase was not affected by inhibitors of TRPM2, but was abolished by thapsigargin and inhibited when phospholipase C and IP(3) receptors were inhibited. MRS 2179 and MRS 2279, specific inhibitors of the purinergic receptor P2Y1, completely blocked the ADPr-induced [Ca(2+)](i) increase. ADPr increased [Ca(2+)](i) in transfected human astrocytoma cells (1321N1) that express human P2Y1 receptors, but not in untransfected astrocytoma cells. We conclude that ADPr is a specific agonist of P2Y1 receptors. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly.

    Science.gov (United States)

    Chang, Paul; Coughlin, Margaret; Mitchison, Timothy J

    2009-11-01

    Poly(ADP-ribose) (pADPr), made by PARP-5a/tankyrase-1, localizes to the poles of mitotic spindles and is required for bipolar spindle assembly, but its molecular function in the spindle is poorly understood. To investigate this, we localized pADPr at spindle poles by immuno-EM. We then developed a concentrated mitotic lysate system from HeLa cells to probe spindle pole assembly in vitro. Microtubule asters assembled in response to centrosomes and Ran-GTP in this system. Magnetic beads coated with pADPr, extended from PARP-5a, also triggered aster assembly, suggesting a functional role of the pADPr in spindle pole assembly. We found that PARP-5a is much more active in mitosis than interphase. We used mitotic PARP-5a, self-modified with pADPr chains, to capture mitosis-specific pADPr-binding proteins. Candidate binding proteins included the spindle pole protein NuMA previously shown to bind to PARP-5a directly. The rod domain of NuMA, expressed in bacteria, bound directly to pADPr. We propose that pADPr provides a dynamic cross-linking function at spindle poles by extending from covalent modification sites on PARP-5a and NuMA and binding noncovalently to NuMA and that this function helps promote assembly of exactly two poles.

  18. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose.

    Science.gov (United States)

    Durner, J; Wendehenne, D; Klessig, D F

    1998-08-18

    Reactive oxygen species are believed to perform multiple roles during plant defense responses to microbial attack, acting in the initial defense and possibly as cellular signaling molecules. In animals, nitric oxide (NO) is an important redox-active signaling molecule. Here we show that infection of resistant, but not susceptible, tobacco with tobacco mosaic virus resulted in enhanced NO synthase (NOS) activity. Furthermore, administration of NO donors or recombinant mammalian NOS to tobacco plants or tobacco suspension cells triggered expression of the defense-related genes encoding pathogenesis-related 1 protein and phenylalanine ammonia lyase (PAL). These genes were also induced by cyclic GMP (cGMP) and cyclic ADP-ribose, two molecules that can serve as second messengers for NO signaling in mammals. Consistent with cGMP acting as a second messenger in tobacco, NO treatment induced dramatic and transient increases in endogenous cGMP levels. Furthermore, NO-induced activation of PAL was blocked by 6-anilino-5,8-quinolinedione and 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalin-1-one, two inhibitors of guanylate cyclase. Although 6-anilino-5,8-quinolinedione fully blocked PAL activation, inhibition by 1H-(1,2,4)-oxadiazole[4, 3-a]quinoxalin-1-one was not entirely complete, suggesting the existence of cGMP-independent, as well as cGMP-dependent, NO signaling. We conclude that several critical players of animal NO signaling are also operative in plants.

  19. Inhibitors of poly (ADP-ribose) polymerase and their enhancement of alkylating agent cytotoxicity in vivo

    International Nuclear Information System (INIS)

    Horsman, M.R.; Brown, D.M.; Hirst, D.G.; Brown, J.M.

    1984-01-01

    The chromosomal enzyme poly (ADP-ribose) polymerase (ADPRP) is involved in the repair of DNA damage caused by both ionizing radiation and alkylating agents. The authors have shown that certain inhibitors of this enzyme decrease potentially lethal damage repair after X-rays. The aim of the present study was to investigate the possible enhancement of alkylating agent damage in vivo by several of these ADPRP inhibitors. 3-aminobenzamide (200 mg/kg), caffeine (200 mg/kg), or nicotinamide (1000 mg/kg) given to RIF-1-tumor-bearing mice immediately before a dose of melphalan (L-PAM) (8 mg/kg) produced enhancement of tumor response as demonstrated by an in vivo in vitro tumor excision assay. Caffeine and nicotinamide provided the greatest enhancement of L-PAM cytotoxicity with at least a 100-fold increase in killing. Data are presented on the mechanism by which these drugs and other more potent inhibitors enhance the tumor cell killing by L-PAM and other alkylating agents

  20. Antioxidant Effects of Potassium Ascorbate with Ribose Therapy in a Case with Prader Willi Syndrome

    Directory of Open Access Journals (Sweden)

    C. Anichini

    2012-01-01

    Full Text Available Oxidative stress (OS is involved in several human diseases, including obesity, diabetes, atherosclerosis, carcinogenesis, as well as genetic diseases. We previously found that OS occurs in Down Syndrome as well as in Beckwith-Wiedemann Syndrome (BWS. Here we describe the clinical case of a female patient with Prader Willi Syndrome (PWS, a genomic imprinting disorder, characterized by obesity, atherosclerosis and diabetes mellitus type 2, pathologies in which a continuous and important production of free radicals takes place. We verified the presence of OS by measuring a redox biomarkers profile including total hydroperoxides (TH, non protein-bound iron (NPBI, thiols (SH, advanced oxidation protein products (AOPP and isoprostanes (IPs. Thus we introduced in therapy an antioxidant agent, namely potassium ascorbate with ribose (PAR, in addition to GH therapy and we monitored the redox biomarkers profile for four years. A progressive decrease in OS biomarkers occurred until their normalization. In the meantime a weight loss was observed together with a steady growth in standards for age and sex.

  1. Acceptors for poly(ADP-ribose) in irradiated Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Xue, L.Y.; Sokany, N.M.; Friedman, L.R.; Oleinick, N.L.

    1985-01-01

    Strand breaks in DNA, as produced by ionizing radiation, stimulate the synthesis of poly(ADP-ribose) (pADPR) by the nuclear enzyme pADPR transferase (ADPRT). The polymer is covalently bound to chromatin-associated proteins and may function in repair of DNA lesions. When total /sup 32/P-pADPR-protein is analyzed by electrophoresis on SDS-polyacrylamide gels, the major radioactive bands correspond to the 116 kD ADPRT and the low molecular weight (histone) region. On two-dimensional gels (isoelectric focusing followed by SDS-PAGE) several ADP-ribosylated species can be detected in each molecular weight range. The intensity of label in each species is greater for proteins isolated from irradiated (10 or 100 Cy) rather than control cells. For detailed analysis of histones, the authors incubated isolated nuclei with /sup 32/P-NAD, extracted histones in acid, and subjected them to electrophoresis in acid-urea gels. Specific radiation-induced increases in pADPR were seen on some nucleosomal core histone bands but not on histone H1. The results suggest that radiation-induced strand breaks stimulate ADPRT to modify core histones; the resultant increase in negative charge could loosen nucleosomal structure, permitting access of repair enzymes to the DNA lesions

  2. An assay to measure poly(ADP ribose glycohydrolase (PARG activity in cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dominic I. James

    2016-09-01

    Full Text Available After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP ribose (PAR polymerases (PARPs are broken down by the enzyme poly(ADP ribose glycohydrolase (PARG. Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS. Lastly, the assay has been shown to be robust over a period of several years.

  3. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric; Amzel, L. Mario (UIUC); (JHU-MED)

    2010-11-15

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groups of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.

  4. Novel limonene phosphonate and farnesyl diphosphate analogues: design, synthesis, and evaluation as potential protein-farnesyl transferase inhibitors.

    Science.gov (United States)

    Eummer, J T; Gibbs, B S; Zahn, T J; Sebolt-Leopold, J S; Gibbs, R A

    1999-02-01

    Limonene and its metabolite perillyl alcohol are naturally-occurring isoprenoids that block the growth of cancer cells both in vitro and in vivo. This cytostatic effect appears to be due, at least in part, to the fact that these compounds are weak yet selective and non-toxic inhibitors of protein prenylation. Protein-farnesyl transferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Therefore, several alpha-hydroxyphosphonate derivatives of limonene were designed and synthesized as potentially more potent FTase inhibitors. A noteworthy feature of the synthesis was the use of trimethylsilyl triflate as a mild, neutral deprotection method for the preparation of sensitive phosphonates from the corresponding tert-butyl phosphonate esters. Evaluation of these compounds demonstrates that they are exceptionally poor FTase inhibitors in vitro (IC50 > or = 3 mM) and they have no effect on protein farnesylation in cells. In contrast, farnesyl phosphonyl(methyl)phosphinate, a diphosphate-modified derivative of the natural substrate farnesyl diphosphate, is a very potent FTase inhibitor in vitro (Ki=23 nM).

  5. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Yu; Sun, Mingxue; Xu, Sha; Zhou, Jingwen

    2016-07-01

    In order to improve the availability of geranyl diphosphate (GPP) in the mevalonate pathway for enhancing (S)-linalool production in Saccharomyces cerevisiae. A (S)-linalool synthase (LIS): AaLS1 from Actinidia arguta was coexpressed with FPPS with different peptide linkers to redirect the flux from geranyl diphosphate (GPP) to (S)-linalool production in S. cerevisiae. The strain with the best peptide linker ((GGGGS)3 ), produced 101·55 ± 2·97 μg l(-1) (S)-linalool, a 69·7% increase compared to those with two independent LIS and FPPS expressed. In a 3-l fermenter, the (S)-linalool titre was further improved to 240·64 ± 5·31 μg l(-1) . The results demonstrate that the fusion proteins catalysing consecutive steps in a metabolic pathway significantly improved the (S)-linalool production with GPP as precursor. The fusion protein strategy co-expressing AaLS1 and FPPS, assembled with a long peptide linker made S. cerevisiae produced the highest reported (S)-Linalool titre to date. © 2016 The Society for Applied Microbiology.

  6. Production, purification, crystallization and preliminary X-ray diffraction studies of the nucleoside diphosphate kinase b from Leishmania major

    International Nuclear Information System (INIS)

    Tonoli, Celisa Caldana Costa; Vieira, Plinio Salmazo; Ward, Richard John; Arni, Raghuvir Krishnaswamy; Oliveira, Arthur Henrique Cavalcante de; Murakami, Mario Tyago

    2009-01-01

    Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the nucleoside diphosphate kinase b from Leishmania major are reported. The crystals belonged to the trigonal space group P3 2 21 and diffracted to 2.18 Å resolution. Nucleoside diphosphate kinases (NDKs; EC 2.7.4.6) play an essential role in the synthesis of nucleotides from intermediates in the salvage pathway in all parasitic trypanosomatids and their structural studies will be instrumental in shedding light on the biochemical machinery involved in the parasite life cycle and host–parasite interactions. In this work, NDKb from Leishmania major was overexpressed in Escherichia coli, purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The NDK crystal diffracted to 2.2 Å resolution and belonged to the trigonal crystal system, with unit-cell parameters a = 114.2, c = 93.9 Å. Translation-function calculations yielded an unambiguous solution in the enantiomorphic space group P3 2 21

  7. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress.

    Science.gov (United States)

    Schroeder, Rebekka Y; Zhu, Anting; Eubel, Holger; Dahncke, Kathleen; Witte, Claus-Peter

    2018-01-01

    Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  9. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  10. Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver

    Directory of Open Access Journals (Sweden)

    Chen Ren

    2012-10-01

    Full Text Available Abstract Background Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. Results To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629 encoding isopentenyl diphosphate isomerase (IPI was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line control. Conclusions Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our

  11. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    Science.gov (United States)

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  12. Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis

    NARCIS (Netherlands)

    Ducluzeau, A-L.; Wamboldt, Y.; Elowsky, C.G.; Mackenzie, S.A.; Schuurink, R.C.; Basset, G.J.

    2012-01-01

    Ubiquinone (coenzyme Q) is the generic name of a class of lipid-soluble electron carriers formed of a redox active benzoquinone ring attached to a prenyl side chain. The length of the latter varies among species, and depends upon the product specificity of a trans-long-chain prenyl diphosphate

  13. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show that ...

  14. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...

  15. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    Science.gov (United States)

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  16. Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity.

    Science.gov (United States)

    Poppe, Daniel; Doerr, Jonas; Schneider, Marion; Wilkens, Ruven; Steinbeck, Julius A; Ladewig, Julia; Tam, Allison; Paschon, David E; Gregory, Philip D; Reik, Andreas; Müller, Christa E; Koch, Philipp; Brüstle, Oliver

    2018-03-28

    As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Theoretical pKa prediction of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc

    Science.gov (United States)

    Vipperla, Bhavaniprasad; Griffiths, Thomas M.; Wang, Xingyong; Yu, Haibo

    2017-01-01

    The pKa value of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc (UDP-GlcNAc) has been successfully calculated using density functional theory methods in conjunction with the Polarizable Continuum Models. Theoretical methods were benchmarked over a dataset comprising of alkyl phosphates. B3LYP/6-31+G(d,p) calculations using SMD solvation model provide excellent agreement with the experimental data. The predicted pKa for UDP-GlcNAc is consistent with most recent NMR studies but much higher than what it has long been thought to be. The importance of this study is evident that the predicted pKa for UDP-GlcNAc supports its potential role as a catalytic base in the substrate-assisted biocatalysis.

  18. The regulatory effect of nucleoside diphosphate kinase on G-protein and G-protein mediated phospholipase C.

    Science.gov (United States)

    Zhang, D; Chang, K

    1995-03-01

    The effect of nucleoside diphosphate kinase (NDPK) on the activity of guanine nucleotide regulatory protein (G-protein) mediated phospholipase C (PLC) and on the [35S] GTPT tau S binding of G-protein was investigated in this work in order to demonstrate the mechanism behind the regulation of G-protein and its effector PLC by NDPK. The stimulation of PLC in turkey erythrocyte membrane by both GTP and GTP tau S indicated that the PLC stimulation was mediated by G-protein. NDPK alone stimulated PLC activity, as well as the stimulation in the presence of GTP and GDP, in a dose-dependent manner. However, NDPK inhibited GTP tau S-stimulated PLC. Furthermore, NDPK inhibited [35S]GTP tau S binding of purified Gi-protein in a non-competitive manner. A hypothesis implying an important role of direct interaction of G-protein and NDPK in the regulation of their functions is suggested and discussed.

  19. [Content of free and bound thiamine diphosphate in the liver hyaloplasm of vitamine B1 deficient rats].

    Science.gov (United States)

    Ostrovskiĭ, Iu M; Voskoboev, A I; Gritsenko, E A; Grushnik, V V

    1979-01-01

    The amount of free and protein-bound thiamin diphosphate (TDP) in the liver hyaloplasm of B1 vitamin deficient rats has been measured. In the norm the content of protein-bound TDP remains stable (4.5--4.7 micrograms/g tissue) and does not grow upon thiamin injections. The level of the free coenzyme varies appreciably: in the B1-avitaminotic state the content of free TDP decreases, and in the B1-saturated condition it may exceed the norm 4 times. In the liver this enzyme occurs only as a holoenzyme. In case of B1 vitamin deficiency in the diet the transketolase apoform cannot be detected in the liver. A new model for rapid generation of B1-avitaminosis characterized by a significantly lower level of free and bound TDP is described.

  20. Adenosine versus intravenous calcium channel antagonists for supraventricular tachycardia.

    Science.gov (United States)

    Alabed, Samer; Sabouni, Ammar; Providencia, Rui; Atallah, Edmond; Qintar, Mohammed; Chico, Timothy Ja

    2017-10-12

    People with supraventricular tachycardia (SVT) frequently are symptomatic and present to the emergency department for treatment. Although vagal manoeuvres may terminate SVT, they often fail, and subsequently adenosine or calcium channel antagonists (CCAs) are administered. Both are known to be effective, but both have a significant side effect profile. This is an update of a Cochrane review previously published in 2006. To review all randomised controlled trials (RCTs) that compare effects of adenosine versus CCAs in terminating SVT. We identified studies by searching CENTRAL, MEDLINE, Embase, and two trial registers in July 2017. We checked bibliographies of identified studies and applied no language restrictions. We planned to include all RCTs that compare adenosine versus a CCA for patients of any age presenting with SVT. We used standard methodological procedures as expected by Cochrane. Two review authors independently checked results of searches to identify relevant studies and resolved differences by discussion with a third review author. At least two review authors independently assessed each included study and extracted study data. We entered extracted data into Review Manager 5. Primary outcomes were rate of reversion to sinus rhythm and major adverse effects of adenosine and CCAs. Secondary outcomes were rate of recurrence, time to reversion, and minor adverse outcomes. We measured outcomes by calculating odds ratios (ORs) and assessed the quality of primary outcomes using the GRADE approach through the GRADEproGDT website. We identified two new studies for inclusion in the review update; the review now includes seven trials with 622 participants who presented to an emergency department with SVT. All included studies were RCTs, but only three described the randomisation process, and none had blinded participants, personnel, or outcome assessors to the intervention given. Moderate-quality evidence shows no differences in the number of people reverting to

  1. 5'-C-Ethyl-tetrazolyl-N(6)-substituted adenosine and 2-chloro-adenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists.

    Science.gov (United States)

    Petrelli, Riccardo; Torquati, Ilaria; Kachler, Sonja; Luongo, Livio; Maione, Sabatino; Franchetti, Palmarisa; Grifantini, Mario; Novellino, Ettore; Lavecchia, Antonio; Klotz, Karl-Norbert; Cappellacci, Loredana

    2015-03-12

    A series of N(6)-substituted-5'-C-(2-ethyl-2H-tetrazol-5-yl)-adenosine and 2-chloro-adenosine derivatives was synthesized as novel, highly potent dual acting hA1AR agonists and hA3AR antagonists, potentially useful in the treatment of glaucoma and other diseases. The best affinity and selectivity profiles were achieved by N(6)-substitution with a 2-fluoro-4-chloro-phenyl- or a methyl- group. Through an in silico receptor-driven approach, the molecular bases of the hA1- and hA3AR recognition and activation of this series of 5'-C-ethyl-tetrazolyl derivatives were explained.

  2. Characterization of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) gene from Ginkgo biloba.

    Science.gov (United States)

    Kim, Sang-Min; Kim, Soo-Un

    2010-02-01

    Diterpene trilactone ginkgolides, one of the major constituents of Ginkgo biloba extract, have shown interesting bioactivities including platelet-activating factor antagonistic activity. 1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS), converting 2-C-methyl-d-erythritol-2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate, is the penultimate enzyme of the seven-step 2-C-methyl-d-erythritol 4-phosphate pathway that supplies building blocks for plant isoprenoids of plastid origin such as ginkgolides and carotenoids. Here, we report on the isolation and characterization of the full-length cDNA encoding HDS (GbHDS, GenBank accession number: DQ251630) from G. biloba. Full-length cDNA of GbHDS, 2,763 bp long, contained an ORF of 2,226 bp encoding a protein composed of 741 amino acids. The theoretical molecular weight and pI of the deduced mature GbHDS of 679 amino acid residues are 75.6 kDa and 5.5, respectively. From 2 weeks after initiation of the culture onward, transcription level of this gene in the ginkgo embryo roots increased to about two times higher than that in the leaves. GbHDS was predicted to possess chloroplast transit peptide of 62 amino acid residues, suggesting its putative localization in the plastids. The transient gene expression in Arabidopsis protoplasts confirmed that the transit peptide was capable of delivering the GbHDS protein from the cytosol into the chloroplasts. The isolation and characterization of GbHDS gene enabled us to further understand the role of GbHDS in the terpenoid biosynthesis in G. biloba.

  3. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    Science.gov (United States)

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  4. Synthesis of adenosine triphosphate tritiated in position 2 and 8

    International Nuclear Information System (INIS)

    Cossery, Jean-Michel

    1986-01-01

    Adenosine triphosphate or ATP is an important molecule present at the cellular level in many fundamental biochemical mechanism, and the study of its metabolism is therefore of particular interest. In this thesis for pharmacy graduation, the author first describes the different steps of synthesis and purification leading to chloride-2-ATP, a precursor of the final tritiated molecule. Then, the author explains the tritiation of this molecule to obtain an ATP tritiated in position 2 and in position 8 [fr

  5. Moonlighting adenosine deaminase: a target protein for drug development.

    Science.gov (United States)

    Cortés, Antoni; Gracia, Eduard; Moreno, Estefania; Mallol, Josefa; Lluís, Carme; Canela, Enric I; Casadó, Vicent

    2015-01-01

    Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest. © 2014 Wiley Periodicals, Inc.

  6. The impact of adenosine pharmacologic stress combined with low-level exercise in patients undergoing myocardial perfusion imaging (BIWAKO adenosine-Ex trial)

    International Nuclear Information System (INIS)

    Monzen, Hajime; Hara, Masatake; Hirata, Makoto

    2011-01-01

    The combination of adenosine infusion with low-level exercise has become a common approach for inducing stress during stress myocardial perfusion imaging (MPI). We investigated stress MPI performed by combined low-level exercise and adenosine infusion. This combined protocol can decrease adverse reactions and reduce the effect of scattered rays from the liver. Subjects were clinically referred for a 53-min rest-stress Tc-99m Sestamibi MPI procedure using BIWAKO PROTOCOL. Ninety-eight patients (44.5%) underwent adenosine infusion with ergometer exercise testing and 122 patients (55.5%) underwent adenosine infusion without exercise testing. We evaluated the liver/heart (L/H) uptake ratio, background activity in the upper mediastinum, and adverse reactions. The L/H ratio and background activity were lower in the adenosine-exercise group than in the adenosine-non-exercise group (1.8±0.54 vs. 2.1±0.62, P<0.0056; 43.1±12.2 vs. 61.5±15.4, P<0.0001). The adenosine-exercise group had fewer adverse reactions than the adenosine-non-exercise group (11.2 vs. 19.7%). All of the adverse reactions were minor, with the exception of severe back pain in one case. The incidence of adverse reactions in our study was lower than that in previous studies for unknown reason. Adenosine infusion in combination with low-level exercise seems to result in higher-quality images and fewer adverse reactions than adenosine infusion without exercise. The combined protocol decreases adverse reactions and improves the quality of myocardial perfusion images by decreasing background activity. (author)

  7. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments.

    Science.gov (United States)

    Mishima, Shinpei; Ohtomo, Yoko; Kakegawa, Takeshi

    2016-06-01

    Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been

  8. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  9. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    Science.gov (United States)

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  10. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Larsen, Sara C; Leutert, Mario; Bilan, Vera

    2017-01-01

    remained a difficult challenge. Here, we describe a detailed protocol for unbiased analysis of ADP-ribosylated proteins and their ADP-ribose acceptor sites under physiological conditions. The method relies on the enrichment of mono-ADP-ribosylated peptides using the macrodomain Af1521 in combination...... with liquid chromatography-high-resolution tandem MS (LC-MS/MS). The 5-day protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture stage all the way through to data processing using the MaxQuant software suite....

  11. Does interstitial adenosine mediate acute hibernation of guinea pig myocardium?

    Science.gov (United States)

    Gao, Z P; Downey, H F; Fan, W L; Mallet, R T

    1995-06-01

    The aim was to test the role of interstitial adenosine in protective downregulation of myocardial energy demand during myocardial hibernation. Isolated working guinea pig hearts, perfused with glucose fortified Krebs-Henseleit, were subjected to 60 min global low flow ischaemia followed by 30 min reperfusion. Left ventricular performance was assessed from heart rate-developed pressure product and pressure-volume work. Cytosolic energy level was indexed by creatine phosphate and ATP phosphorylation potentials measured in snap frozen myocardium. Lactate and purine nucleosides (adenosine, inosine) were measured in venous effluent. When coronary flow was lowered by 80% for 60 min, heart rate-pressure product and pressure-volume work fell 87% and 75%, respectively, and stabilised at these low levels, but fully recovered when flow was restored. Myocardial ATP phosphorylation potential fell by 67% during the first 10 min of ischaemia, but subsequently recovered to preischaemic levels despite continuing ischaemia, indicating down-regulation of myocardial energy demand. Lactate release increased about 10-fold during ischaemia and remained increased until reperfusion. Purine nucleoside release varied reciprocally with phosphorylation potential, peaking at 10 min of ischaemia, then gradually returning to the preischaemic level during the subsequent 50 min of ischaemia. The ecto 5'-nucleotidase inhibitor alpha,beta-methylene adenosine 5'-diphosphonate (50 microM) decreased ischaemic purine nucleoside release by 41%, but did not attenuate postischaemic contractile recovery. The unspecific adenosine receptor antagonist 8-p-sulphophenyl theophylline (8-SPT, 20 microM) doubled ischaemic lactate release and lowered coronary venous purine nucleoside release by 21%. 8-SPT increased phosphorylation potential at 10 min ischaemia relative to untreated hearts, but blunted the subsequent rebound of phosphorylation potential. 8-SPT treatment during ischaemia resulted in a significantly

  12. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  13. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    Science.gov (United States)

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P < .05 was considered statistically significant. A significant increase in PARP activity was observed under ischemic and diabetic conditions that correlated with delayed wound healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P < .05) by day 7 with the addition of PJ34. PARP inhibition promoted angiogenesis at the ischemic and diabetic wound beds as evidenced by significantly higher levels of endothelial cell markers (vascular endothelial growth factor receptor 2 [VEGFR2] and endothelial nitric oxide synthase) in mice treated with PJ34 compared with controls. Flow cytometry

  14. Traditional Acupuncture Triggers a Local Increase in Adenosine in Human Subjects

    OpenAIRE

    Takano, Takahiro; Chen, Xiaolin; Luo, Fang; Fujita, Takumi; Ren, Zeguang; Goldman, Nanna; Zhao, Yuanli; Markman, John D.; Nedergaard, Maiken

    2012-01-01

    Acupuncture is a form of Eastern medicine that has been practiced for centuries. Despite its long history and worldwide application, the biological mechanisms of acupuncture in relieving pain have been poorly defined. Recent studies in mice, however, demonstrate that acupuncture triggers increases in interstitial adenosine, which reduces the severity of chronic pain through adenosine A1 receptors, suggesting that adenosine-mediated antinociception contributes to the clinical benefits of acupu...

  15. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    OpenAIRE

    Chee, Hyun Keun; Oh, S. June

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine ...

  16. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  17. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  18. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  19. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  20. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    Science.gov (United States)

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthesis of P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate for the investigation of biosynthesis of O-antigenic polysaccharides in Pseudomonas aeruginosa and Escherichia coli O104.

    Science.gov (United States)

    Torgov, Vladimir; Danilov, Leonid; Utkina, Natalia; Veselovsky, Vladimir; Brockhausen, Inka

    2017-12-01

    Two new phenoxyundecyl diphosphate sugars were synthesized for the first time: P 1 -(11-phenoxyundecyl)-P 2 - (2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P 1 -(11-phenoxyundecyl)-P 2 -(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate to study the third step of biosynthesis of the repeating units of O-antigenic polysaccharides in Pseudomonas aeruginosa and E.coli O104 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sachiko [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Tanaka, Masakazu [Department of Microbiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka 573-1010 (Japan); Sato, Teruaki [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Ida, Chieri [Department of Applied Life Studies, College of Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi 467-8610 (Japan); Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Moss, Joel [Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590 (United States); Miwa, Masanao, E-mail: m_miwa@nagahama-i-bio.ac.jp [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2016-08-05

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  3. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    International Nuclear Information System (INIS)

    Yamashita, Sachiko; Tanaka, Masakazu; Sato, Teruaki; Ida, Chieri; Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke; Moss, Joel; Miwa, Masanao

    2016-01-01

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  4. The 22G>A polymorphism in the adenosine deaminase gene impairs catalytic function but does not affect reactive hyperaemia in humans in vivo.

    NARCIS (Netherlands)

    Riksen, N.P.; Franke, B.; Broek, P. van den; Naber, M.; Smits, P.; Rongen, G.A.P.J.M.

    2008-01-01

    OBJECTIVES: During ischaemia, the extracellular concentration of the endogenous nucleoside adenosine increases rapidly. Subsequent adenosine receptor stimulation induces various effects, including vasodilation, which can protect the tissue against the ischaemic insult. Adenosine deaminase (ADA) is

  5. d-Allose Catabolism of Escherichia coli: Involvement of alsI and Regulation of als Regulon Expression by Allose and Ribose

    Science.gov (United States)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase gene) were Als−. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired. PMID:10559180

  6. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial

    DEFF Research Database (Denmark)

    Cannon, Christopher P; Husted, Steen; Harrington, Robert A

    2007-01-01

    of platelet inhibition than clopidogrel in patients with stable coronary artery disease. METHODS: A total of 990 patients with NSTE-ACS, treated with aspirin and standard therapy for ACS, were randomized in a 1:1:1 double-blind fashion to receive either twice-daily AZD6140 90 mg, AZD6140 180 mg.......96, respectively, vs. clopidogrel); the major bleeding rates were 6.9%, 7.1%, and 5.1%, respectively (p = 0.91 and p = 0.35, respectively, vs. clopidogrel). Although not statistically significant, favorable trends were seen in the Kaplan-Meier rates of myocardial infarction (MI) over the entire study period (MI: 5...

  7. Adenosine and extracellular volume in radiocontrast media-induced nephropathy.

    Science.gov (United States)

    Erley, C M; Heyne, N; Rossmeier, S; Vogel, T; Risler, T; Osswald, H

    1998-09-01

    Renal hemodynamic changes could play a key role in radiocontrast media-induced nephropathy (RCIN), although the pathophysiological mechanisms are unclear. We investigated the role of adenosine in RCIN caused by sodium diatrizoate (Urografin, 3 ml/kg) in nitro-L-Arg methyl ester (L-NAME)-hypertensive rats in different hydration states [eight weeks of L-NAME (50 mg/liter) in drinking water; high or low sodium intake for the last two weeks]. In clearance experiments under thiobutabarbital anesthesia in these previously mentioned animals, glomerular filtration rate (GFR), renal blood flow (RBF), and mean arterial pressure (MAP) were measured in the presence or absence of the adenosine A1-receptor antagonist 8-cyclopropyl-1,3-dipropylxanthine (DPCPX, 100 microg/kg bolus plus 10 microg/kg/hr). DPCPX or pretreatment did not change control hemodynamics. Contrast medium caused GFR and RBF to fall significantly in volume-depleted rats (from 0.29 +/- 0.02 to 0.21 +/- 0.02 ml/min/100 g and 5.4 +/- 0.3 to 4.0 +/- 0.4 ml/min, respectively) without change in MAP. In volume-expanded rats, changes were not significant (0.25 +/- 0.01 to 0.24 +/- 0.02 ml/min/100 g and 5.6 +/- 0.3 to 5.3 +/- 0.4 ml/min, respectively). In the volume-depleted rats, changes were prevented by DPCPX (0.27 +/- 0.02 to 0.24 +/- 0.02 ml/min/100 g and 4.8 +/- 0.1 to 5.0 +/- 0.1 ml/min, respectively). The acute hemodynamic effects elicited by contrast medium in L-NAME hypertensive rats thus can be prevented by volume expansion. Adenosine, via A1-receptors, contributes to the adverse effects of contrast media.

  8. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  9. Differential response of Drosophila cell lines to extracellular adenosine

    Czech Academy of Sciences Publication Activity Database

    Fleischmannová, J.; Kučerová, Lucie; Šandová, Kateřina; Steinbauerová, Veronika; Brož, Václav; Šimek, Petr; Žurovec, Michal

    2012-01-01

    Roč. 42, č. 5 (2012), s. 321-331 ISSN 0965-1748 R&D Projects: GA MŠk(CZ) LC06077 Grant - others:AV ČR(CZ) KJB501410801; European Community´s Seventh Framwork Programme (FP7/2007-2013)(CZ) 229518 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : adenosine recycling * nucleoside transport * Mbn2 Subject RIV: CE - Biochemistry Impact factor: 3.234, year: 2012 http://www.sciencedirect.com/science/article/pii/S0965174812000033

  10. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome

    Science.gov (United States)

    Ferré, Sergi; Quiroz, César; Guitart, Xavier; Rea, William; Seyedian, Arta; Moreno, Estefanía; Casadó-Anguera, Verònica; Díaz-Ríos, Manuel; Casadó, Vicent; Clemens, Stefan; Allen, Richard P.; Earley, Christopher J.; García-Borreguero, Diego

    2018-01-01

    The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory

  11. The Role of Adenosine Receptors in Psychostimulant Addiction

    Directory of Open Access Journals (Sweden)

    Inmaculada Ballesteros-Yáñez

    2018-01-01

    Full Text Available Adenosine receptors (AR are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS, adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC, through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A, as well as with other subtypes (e.g., A2A/D2, opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are

  12. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-01-01

    Full Text Available The symptomatology of Restless Legs Syndrome (RLS includes periodic leg movements during sleep (PLMS, dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R

  13. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate; Effets de la temperature sur les mecanismes d'interaction entre les ions europium (3) et uranyle et le diphosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Finck, N

    2006-10-15

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  14. Backbone 1H, 13C, 15N NMR assignments of the unliganded and substrate ternary complex forms of mevalonate diphosphate decarboxylase from Streptococcus pneumoniae.

    Science.gov (United States)

    Reuther, Guido; Harris, Richard; Girvin, Mark; Leyh, Thomas S

    2011-04-01

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of diphosphomevalonate (DPM) to produce isopentenyl diphosphate (IPP), the molecular "building block" for more than 25,000 distinct isoprenoids, including cholesterol, steroid hormones and terpenoids. Here, we present the first backbone assignment of Streptococcus pneumoniae MDD in the unliganded state and in a ternary complex with DPM and AMPPCP--a nucleotide analogue unable to transfer the γ-phosphoryl group. The secondary chemical shifts for the unliganded form are in good agreement with the crystal structure of Streptococcus pyogenes (~70% sequence identity). The addition of substrate and nucleotide to the enzyme results in chemical shift changes of cross peaks that correspond to residues in the binding pocket.

  15. Organization of Monoterpene Biosynthesis in Mentha. Immunocytochemical Localizations of Geranyl Diphosphate Synthase, Limonene-6-Hydroxylase, Isopiperitenol Dehydrogenase, and Pulegone Reductase1

    Science.gov (United States)

    Turner, Glenn W.; Croteau, Rodney

    2004-01-01

    We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (−)-(4S)-limonene-6-hydroxylase, peppermint (−)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (−)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (−)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity. PMID:15542490

  16. Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme.

    Science.gov (United States)

    Hori, Mika; Fujikawa, Katsuyoshi; Kasai, Hiroshi; Harashima, Hideyoshi; Kamiya, Hiroyuki

    2005-01-02

    To determine whether the Orf17 (NtpA) protein of Escherichia coli, a MutT-type enzyme, functions as a hydrolyzing enzyme for a damaged deoxyribonucleotide, we purified the recombinant Orf17 protein and incubated it with oxidized deoxyribonucleotides. Of the deoxyribonucleoside 5'-triphosphates tested, 8-hydroxy-2'-deoxyadenosine 5'-triphosphate was hydrolyzed by this protein. Unexpectedly, the Orf17 protein degraded 8-hydroxy-2'-deoxyadenosine 5'-diphosphate 2.3-fold more efficiently than the corresponding triphosphate. Thus, this protein is the first MutT-type enzyme that hydrolyzes both the triphosphate and diphosphate derivatives of a deoxyribonucleoside, with similar efficiencies. These results suggest that the Orf17 protein may be involved in the hydrolysis of oxidized dATP and dADP.

  17. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  18. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  19. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...G, Pacher P, Deitch EA, Vizi ES. Pharmacol Ther. 2007 Feb;113(2):264-75. Epub 2006 Sep 14. (.png) (.svg) (.html) (.csml) Show Shapi...ng of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Title Shapi

  20. Hyaluronidase treatment of coronary glycocalyx increases reactive hyperemia but not adenosine hyperemia in dog hearts

    NARCIS (Netherlands)

    VanTeeffelen, Jurgen W. G. E.; Dekker, Simone; Fokkema, Dirk S.; Siebes, Maria; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    Because adenosine is commonly used for inducing maximal coronary hyperemia in the clinic, it is imperative that adenosine- induced hyperemia ( AH) resembles coronary hyperemia that can be attained by endogenous stimuli. In the present study we hypothesized that coronary reactive hyperemia ( RH) is

  1. Adenosine dry powder inhalation for bronchial challenge testing, part 2 : Proof of concept in asthmatic subjects

    NARCIS (Netherlands)

    Lexmond, Anne J.; van der Wiel, Erica; Hagedoorn, Paul; Bult, Wouter; Frijlink, Henderik W.; ten Hacken, Nick H. T.; de Boer, Anne H.

    Adenosine is an indirect stimulus to assess bronchial hyperresponsiveness (BHR2) in asthma. Bronchial challenge tests are usually performed with nebulised solutions of adenosine 5′-monophosphate (AMP3). The nebulised AMP test has several disadvantages, like long administration times and a

  2. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in hum...

  3. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514 ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  4. [Cloning and functional characterization of a cDNA encoding isopentenyl diphosphate isomerase involved in taxol biosynthesis in Taxus media].

    Science.gov (United States)

    Shen, Tian; Qiu, Fei; Chen, Min; Lan, Xiao-zhong; Liao, Zhi-hua

    2015-05-01

    Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.

  5. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    Science.gov (United States)

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Solid-State NMR, Crystallographic, and Computational Investigation of Bisphosphonates and Farnesyl Diphosphate Synthase-Bisphosphonate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mao,J.; Mukherjee, S.; Zhang, Y.; Cao, R.; Sanders, J.; Song, Y.; Zhang, Y.; Meints, G.; Gao, Y.; et al.

    2006-01-01

    Bisphosphonates are a class of molecules in widespread use in treating bone resorption diseases and are also of interest as immunomodulators and anti-infectives. They function by inhibiting the enzyme farnesyl diphosphate synthase (FPPS), but the details of how these molecules bind are not fully understood. Here, we report the results of a solid-state {sup 13}C, {sup 15}N, and {sup 31}P magic-angle sample spinning (MAS) NMR and quantum chemical investigation of several bisphosphonates, both as pure compounds and when bound to FPPS, to provide information about side-chain and phosphonate backbone protonation states when bound to the enzyme. We then used computational docking methods (with the charges assigned by NMR) to predict how several bisphosphonates bind to FPPS. Finally, we used X-ray crystallography to determine the structures of two potent bisphosphonate inhibitors, finding good agreement with the computational results, opening up the possibility of using the combination of NMR, quantum chemistry and molecular docking to facilitate the design of other, novel prenytransferase inhibitors.

  7. Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance.

    Science.gov (United States)

    Bozzolan, F; Siaussat, D; Maria, A; Durand, N; Pottier, M-A; Chertemps, T; Maïbèche-Coisne, M

    2014-10-01

    Uridine diphosphate UDP-glycosyltransferases (UGTs) are detoxification enzymes widely distributed within living organisms. They are involved in the biotransformation of various lipophilic endogenous compounds and xenobiotics, including odorants. Several UGTs have been reported in the olfactory organs of mammals and involved in olfactory processing and detoxification within the olfactory mucosa but, in insects, this enzyme family is still poorly studied. Despite recent transcriptomic analyses, the diversity of antennal UGTs in insects has not been investigated. To date, only three UGT cDNAs have been shown to be expressed in insect olfactory organs. In the present study, we report the identification of eleven putative UGTs expressed in the antennae of the model pest insect Spodoptera littoralis. Phylogenetic analysis revealed that these UGTs belong to five different families, highlighting their structural diversity. In addition, two genes, UGT40R3 and UGT46A6, were either specifically expressed or overexpressed in the antennae, suggesting specific roles in this sensory organ. Exposure of male moths to the sex pheromone and to a plant odorant differentially downregulated the transcription levels of these two genes, revealing for the first time the regulation of insect UGTs by odorant exposure. Moreover, the specific antennal gene UGT46A6 was upregulated by insecticide topical application on antennae, suggesting its role in the protection of the olfactory organ towards xenobiotics. This work highlights the structural and functional diversity of UGTs within this highly specialized tissue. © 2014 The Royal Entomological Society.

  8. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization.

    Science.gov (United States)

    Dautant, Alain; Meyer, Philippe; Georgescauld, Florian

    2017-06-13

    Most oligomeric proteins become active only after assembly, but why oligomerization is required to support function is not well understood. Here, we address this question using the wild type (WT) and a destabilized mutant (D93N) of the hexameric nucleoside diphosphate kinase from the pathogen Mycobacterium tuberculosis (Mt-NDPK). The conformational dynamics and oligomeric states of each were analyzed during unfolding and/or folding by hydrogen/deuterium exchange mass spectrometry (HDX-MS) at peptide resolution and by additional biochemical techniques. We found that WT and D93N native hexamers present a stable core and a flexible periphery, the latter being more flexible for the destabilized mutant. Stable but inactive species formed during unfolding of D93N and folding of WT were characterized. For the first time, we show that both of these species are nativelike dimers, each of its monomers having a major subdomain folded, while a minor subdomain (Kpn/α 0 ) remains unfolded. The Kpn/α 0 subdomain, which belongs to the catalytic site, becomes structured only upon hexamerization, explaining why oligomerization is required for NDPK activity. Further HDX-MS studies are necessary to establish the general activation mechanism for other homo-oligomers.

  9. Global warming, plant paraquat resistance, and light signal transduction through nucleoside diphosphate kinase as a paradigm for increasing food supply.

    Science.gov (United States)

    Hasunuma, Kohji; Yoshida, Yusuke; Haque, Mohamed Emdadul; Wang, Ni-yan; Fukamatsu, Yosuke; Miyoshi, Osamu; Lee, Bumkyu

    2011-10-01

    Light signal transduction was studied in extracts of mycelia of the fungus Neurospora crassa, and the third internodes of dark-grown Pisum sativum cv Alaska. Both processes increased the phosphorylation of nucleoside diphosphate kinase (NDPK). NDPK may function as a carrier of reduction equivalents, as it binds NADH, thereby providing electrons to transform singlet oxygen to superoxide by catalases (CAT). As the C-termini of NDPK interact with CAT which receive singlet oxygen, emitted from photoreceptors post light perception (which is transmitted to ambient triplet oxygen), we hypothesize that this may increase phospho-NDPK. Singlet oxygen, emitted from the photoreceptor, also reacts with unsaturated fatty acids in membranes thereby forming malonedialdehyde, which in turn could release ions from, e.g., the thylacoid membrane thereby reducing the rate of photosynthesis. A mutant of Alaska pea, which exhibited two mutations in chloroplast NDPK-2 and one mutation in mitochondrial localized NDPK-3, was resistant to reactive oxygen species including singlet oxygen and showed an increase in the production of carotenoids, anthocyanine, and thereby could reduce the concentration of singlet oxygen. The reduction of the concentration of singlet oxygen is predicted to increase the yield of crop plants, such as Alaska pea, soybean, rice, wheat, barley, and sugarcane. This approach to increase the yield of crop plants may contribute not only to enhance food supply, but also to reduce the concentration of CO(2) in the atmosphere.

  10. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    Science.gov (United States)

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; palkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; palkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (pAlkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac

  11. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  12. Diagnostic significance of adenosine deaminase in pleural tuberculosis

    International Nuclear Information System (INIS)

    Khurshid, R.; Shore, N.; Saleem, M.; Zameer, N.

    2009-01-01

    Tuberculosis (TB) is a major cause of pleural effusion, which in TB usually has lymphocytic and exudative characteristics. Analysis of adenosine deaminase (ADA) activity is a very useful diagnostic approach to achieve a more rapid and precise diagnosis in cases of Pleural TB (pTB). Fifty male and fifty female patients presenting with tuberculosis pleural effusion was included in the study. The patients were taken from the medical ward of Sir Ganga Ram Hospital between September 2001 and September 2002. Activity of Adenosine Deaminase (ADA) was estimated by the technique of Sodium dodecyl sulphate electrophoresis (SDS-EF) using 10% polyacrylamide gel. Mean age of males was 45.72+-19.22 years and of female was 43.74+-16.09 years. Mean protein level was 3.39+-0.24 g/dl in males, and it was 3.02+-0.26 g/dl in females. Mean specific gravity both in males and females was 1.020+-0.01. The results show an increased level of enzyme ADA in patients as compared to normal subjects. Estimation of ADA activity may provide basis for rapid and efficient diagnosis of pleural TB in different clinical settings. However study should be extended to larger number of patients to reach a better conclusion. (author)

  13. Evaluation of usefulness of pleural fluid adenosine deaminase in diagnosing tuberculous pleural effusion from empyema

    Directory of Open Access Journals (Sweden)

    Vijetha Shenoy

    2014-02-01

    Full Text Available Objective: To evaluate the utility of adenosine deaminase activity in the pleural fluid for the diagnosis of tuberculous pleural effusion from empyema of non-tubercular origin. Method: A retrospective analysis of data was performed on patients who were diagnosed to have tuberculous pleural effusion and empyema of non tubercular origin. Among 46 patients at Kasturba Hospital, Manipal University, Manipal, Karnataka, India, from November 201 2 to February 2013 who underwent pleural fluid adenosine deaminase estimation, 25 patients with tuberculous pleural effusion and 21 patients with empyema were diagnosed respectively. Adenosine deaminase in pleural fluid is estimated using colorimetric, Galanti and Guisti method. Results: Pleural fluid Adenosine Deaminase levels among tuberculous pleural effusion(109.38依 53.83 , empyema (141.20依71.69 with P=0.27. Conclusion: Pleural fluid adenosine deaminase alone cannot be used as a marker for the diagnosis of tuberculous pleural effusion.

  14. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  15. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism

    Czech Academy of Sciences Publication Activity Database

    Downey, Alan Michael; Pohl, Radek; Roithová, J.; Hocek, Michal

    2017-01-01

    Roč. 23, č. 16 (2017), s. 3910-3917 ISSN 0947-6539 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA16-00178S Institutional support: RVO:61388963 Keywords : epoxides * glycosylation * nucleosides * riboses * synthesis design Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 5.317, year: 2016

  16. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao

    2005-01-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3 1 21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  17. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  18. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chassé, Maggie H.; Muthurajan, Uma M.; Clark, Nicholas J.; Kramer, Michael A.; Chakravarthy, Srinivas; Irving, Thomas; Luger, Karolin [Children; (IIT); (Colorado); (Amgen)

    2018-01-18

    Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.

  19. Current Status of Poly(ADP-ribose Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    David J. Hiller

    2012-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2 negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in the absence of therapy. Research has now further differentiated breast cancer into subtypes based on genetic expression patterns. One of these subtypes, basal-like, frequently overlaps with the clinical picture of TNBC. Additionally, both TNBC and basal-like breast cancer link to BRCA mutations. Recent pharmaceutical advances have created a class of drugs, poly(ADP-ribose polymerase (PARP inhibitors, which are showing potential to effectively treat these patients. The aim of this paper is to summarize the basis behind PARP inhibitors and update the current status of their development in clinical trials for the treatment of TNBC.

  20. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  1. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans.

    Science.gov (United States)

    Gagnon, Steve N; Hengartner, Michael O; Desnoyers, Serge

    2002-11-15

    Poly(ADP-ribose) polymerases (PARPs) are an expanding, well-conserved family of enzymes found in many metazoan species, including plants. The enzyme catalyses poly(ADP-ribosyl)ation, a post-translational modification that is important in DNA repair and programmed cell death. In the present study, we report the finding of an endogenous source of poly(ADP-ribosyl)ation in total extracts of the nematode Caenorhabditis elegans. Two cDNAs encoding highly similar proteins to human PARP-1 (huPARP-1) and huPARP-2 are described, and we propose to name the corresponding enzymes poly(ADP-ribose) metabolism enzyme 1 (PME-1) and PME-2 respectively. PME-1 (108 kDa) shares 31% identity with huPARP-1 and has an overall structure similar to other PARP-1 subfamily members. It contains sequences having considerable similarity to zinc-finger motifs I and II, as well as with the catalytic domain of huPARP-1. PME-2 (61 kDa) has structural similarities with the catalytic domain of PARPs in general and shares 24% identity with huPARP-2. Recombinant PME-1 and PME-2 display PARP activity, which may partially account for the similar activity found in the worm. A partial duplication of the pme-1 gene with pseudogene-like features was found in the nematode genome. Messenger RNA for pme-1 are 5'-tagged with splice leader 1, whereas those for pme - 2 are tagged with splice leader 2, suggesting an operon-like expression for pme - 2. The expression pattern of pme-1 and pme-2 is also developmentally regulated. Together, these results show that PARP-1 and -2 are conserved in evolution and must have important functions in multicellular organisms. We propose using C. elegans as a model to understand better the functions of these enzymes.

  2. Mechanism of adenylate kinase. Dose adenosine 5'-triphosphate bind to the adenosine 5'-monophosphate site

    Energy Technology Data Exchange (ETDEWEB)

    Shyy, Y.J.; Tian, G.; Tsai, M.D.

    1987-10-06

    Although the subtrate binding properties of adenylate kinase (AK) have been studied extensively by various biochemical and biophysical techniques, it remains controversial whether uncomplexed adenosine 5'-triphosphate (ATP) binds to the adenosine 5'-monophosphate (AMP) site of AK. The authors present two sets of experiments which argue against binding of ATP to the AMP site. (a) /sup 31/P nuclear magnetic resonance titration of ATP with AK indicated a 1:1 stoichiometry on the basis of changes in coupling constants and line widths. This ruled out binding of ATP to both sites. (b) ATP and MgATP were found to behave similarly by protecting AK from spontaneous inactivation while AMP showed only a small degree of protection. Such inactivation could also be protected or reversed by dithioerythritol and is most likely due to oxidation of sulfhydryl groups, one of which (cysteine-25) is located near the MgATP site. The results support binding of ATP to the MgATP site predominantly, instead of the AMP site, in the absence of Mg/sup 2 +/.

  3. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.

    Science.gov (United States)

    Tanner, K G; Landry, J; Sternglanz, R; Denu, J M

    2000-12-19

    Conflicting reports have suggested that the silent information regulator 2 (SIR2) protein family employs NAD(+) to ADP-ribosylate histones [Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. (1999) Cell 99, 735-745; Frye, R. A. (1999) Biochem. Biophys. Res. Commun. 260, 273-279], deacetylate histones [Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. & Sternglanz, R. (2000) Proc. Natl. Acad. Sci. USA 97, 5807-5811; Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C. & Boeke, J. D. (2000) Proc. Natl. Acad. Sci. USA 97, 6658-6663], or both [Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. (2000) Nature (London) 403, 795-800]. Uncovering the true enzymatic function of SIR2 is critical to the basic understanding of its cellular function. Therefore, we set out to authenticate the reaction products and to determine the intrinsic catalytic mechanism. We provide direct evidence that the efficient histone/protein deacetylase reaction is tightly coupled to the formation of a previously unidentified acetyl-ADP-ribose product (1-O-acetyl-ADP ribose). One molecule of NAD(+) and one molecule of acetyl-lysine are readily catalyzed to one molecule of deacetylated lysine, nicotinamide, and 1-O-acetyl-ADP-ribose. A unique reaction mechanism involving the attack of enzyme-bound acetate or the direct attack of acetyl-lysine on an oxocarbenium ADP-ribose intermediate is proposed. We suggest that the reported histone/protein ADP-ribosyltransferase activity is a low-efficiency side reaction that can be explained through the partial uncoupling of the intrinsic deacetylation and acetate transfer to ADP-ribose.

  4. Synthetic Lethality Triggered by Combining Olaparib with BRCA2-Rad51 Disruptors.

    Science.gov (United States)

    Falchi, Federico; Giacomini, Elisa; Masini, Tiziana; Boutard, Nicolas; Di Ianni, Lorenza; Manerba, Marcella; Farabegoli, Fulvia; Rossini, Lara; Robertson, Janet; Minucci, Saverio; Pallavicini, Isabella; Di Stefano, Giuseppina; Roberti, Marinella; Pellicciari, Roberto; Cavalli, Andrea

    2017-10-20

    In BRCA2-defective cells, poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitors can trigger synthetic lethality, as two independent DNA-repairing mechanisms are simultaneously impaired. Here, we have pharmacologically induced synthetic lethality, which was triggered by combining two different small organic molecules. When administered with a BRCA2-Rad51 disruptor in nonmutant cells, Olaparib showed anticancer activity comparable to that shown when administered alone in BRCA2-defective cells. This strategy could represent an innovative approach to anticancer drug discovery and could be extended to other synthetic lethality pathways.

  5. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    DEFF Research Database (Denmark)

    Mirza, Mansoor R; Monk, Bradley J; Herrstedt, Jørn

    2016-01-01

    Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum......-sensitive, recurrent ovarian cancer. Methods In this randomized, double-blind, phase 3 trial, patients were categorized according to the presence or absence of a germline BRCA mutation (gBRCA cohort and non-gBRCA cohort) and the type of non-gBRCA mutation and were randomly assigned in a 2:1 ratio to receive niraparib...

  6. Study of the irradiation effects on thorium phosphate diphosphate ({beta}-TPD): consequences on its chemical durability; Etude des effets d'irradiation sur le phosphate diphosphate de thorium ({beta}-PDT): consequences sur la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C

    2005-12-15

    Since Thorium Phosphate Diphosphate (beta-TPD) can be considered as a potential host matrix for long-term storage in underground repository, it is necessary to study the irradiation effects on the structure of this ceramics and the consequences on its chemical durability. Sintered samples of beta-TPD and of associated solid solutions of beta-TUPD were irradiated under ion beams and then altered in aqueous solutions. Depending on the electronic LET value, beta-TPD can be completely or partly amorphized. Furthermore, the ability of recrystallization of the amorphous material by thermal annealing was also demonstrated. Some leaching tests, realized on these irradiated samples, have shown a significant effect of the amorphous fraction on the normalized dissolution rate which was increased by a factor of 10 from the crystallized to the fully amorphized material. Correlatively, the amorphous fraction also modified the delay to reach the saturation conditions associated to the thermodynamic equilibria involved. On the other hand, it exhibited no influence neither on other kinetic parameters, such as activation energy of the dissolution process or partial order related to the proton concentration, nor on the nature of the neo-formed phase formed at the saturation of the leachate and identified as Thorium Phosphate Hydrogeno-Phosphate Hydrate (TPHPH). Beta-TUPD samples were also irradiated by gamma and alpha rays during leaching tests to study the effects of radiolysis in the leaching medium on the normalized leaching rate. It appeared that the radiolytic species occurring in the dissolution mechanism were unstable, disappearing quickly when stopping the irradiation. (author)

  7. The thorium phosphate diphosphate as matrix for radioactive waste conditioning: radionuclide immobilization and behavior under irradiation; Le phosphate diphosphate de thorium, matrice pour le conditionnement des dechets radioactifs: immobilisation de radionucleides, comportement sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pichot, Erwan [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-13

    The aim of this work was to perform successively the decontamination of liquid solutions and the final immobilization of radionuclide storage using the same matrix. For this, thorium phosphate-diphosphate (TPD) of the formula Th{sub 4}P{sub 6}O{sub 23}, is proposed as a very resistant to water corrosion matrix. A new compound, thorium phosphate hydrogeno-phosphate (TPHP) of the formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), nH{sub 2}O with n=3-7 was synthesized and characterized. Heated at 1100 deg.C it is transformed into the TDP. Ion exchange properties of TPHP were investigated. The exchange yields of imponderable caesium, strontium and americium ion onto TPHP (NaNO{sub 3} 0.1 M media at pH=6) are equal to 60% for the first one and 100% for the two others. The results interpreted in terms of ion-exchange led to determine selectivity coefficient values for each cation and suggested that only hydrated ions are exchanged. While the TPD is proposed for the high level nuclear waste storage, the irradiation effects, particularly structural modifications were studied using both {gamma} irradiation and charged particle irradiation. ESR and TL methods were carried out in order to identify radicals created during gamma radiation exposure. Correlation between ESR and TL experiments performed at room temperature clearly show three of PO{sub 3}{sup 2-} species and one POO{center_dot} species of free radicals. We have shown that Au-ion irradiation in the range of MeV energy involved TPD structure and chemical modifications. Important sputtering was interpreted in terms of local thermal chemical decomposition. We have shown, at room temperature, that the amorphization dose for heavy ion irradiation is between 0.1 to 0.4 dpa. (author) 146 refs., 46 figs., 21 tabs.

  8. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization.

    Science.gov (United States)

    Alam, M Samiul; Costales, Matthew G; Cavanaugh, Christopher; Williams, Kristina

    2015-05-05

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  9. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  10. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  11. Adenosine for postoperative analgesia: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia.We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR, and 95% confidence intervals (CI were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials.In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1. The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1, but the rate of PONV occurrence was greater in the remifentanil subgroup (P 0.1.Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function.

  12. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  13. Incorporation of tetravalent actinides in three phosphated matrices: britholite, monazite/brabandite and thorium phosphate diphosphate (β-TPD)

    International Nuclear Information System (INIS)

    Terra, O.

    2005-03-01

    Three phosphate based ceramics were studied for the immobilization of tri- and tetravalent actinides: britholite Ca 9 Nd 1-x An x IV (PO 4 ) 5-x (SiO 4 ) 1+x F 2 , monazite/brabantite solid solutions Ln 1-2x III Ca x An x IP O 4 and Thorium Phosphate Diphosphate (β-TPD) Th 4- xAn x IV (PO 4 ) 4 P 2 O 7 . For each material, the incorporation of thorium and uranium (IV) was studied as a surrogate of plutonium. This work was the early beginning of the incorporation of 239 Pu and/or 238 Pu in order to evaluate the effects of α-decay on the three crystallographic structures. The incorporation of tetravalent cations was carried out by dry chemistry methods, using mechanical grinding to improve the reactivity of the initial mixture then the homogeneity of final solid prepared after calcination at high temperature (1200-1400 deg C). For britholites, the thorium incorporation was complete for weight loading up to 20 wt.%, leading to the preparation of homogeneous and single phase solid solutions when using the coupled substitution (Nd 3+ , PO 4 3- ) ↔ (Th 4+ , SiO 4 4- ). Due to redox problems, the incorporation of uranium was limited to 5 to 8 wt.% and always led to a two-phase mixture of U-britholite and CaU 2 O 5+y . The preparation of homogeneous solid solutions of β-TUPD and of brabantites containing thorium and uranium samples was successfully obtained using three steps of mechanical grinding/calcination. For each matrix, dense pellets were prepared prior to the study of their chemical behaviour during leaching tests. The chemical durability of brabantites and β-TUPD were found to be close to that reported in literature. The formation of neo-formed phases was also evidenced onto the surface of Th-britholite samples. (author)

  14. Clinical effects of Ganglioside and fructose-1, 6-diphosphate on neonatal heart and brain injuries after Asphyxia.

    Science.gov (United States)

    Zhu, Xiaojing; Li, Hongya; Zhang, Congmin

    2017-01-01

    To study the clinical effect of ganglioside (GM) and fructose-1, 6-diphosphate (FDP) on neonatal heart and brain injuries after asphyxia. Ninety-one neonates with asphyxia neonatal heart and brain injuries were randomly divided into an observation group and a control group. Both groups were given symptomatic treatment as soon as possible. On this basis, the observation group was given 200 mL of 5% glucose injection and 20 mg of GM and 250 mg/kg·d FDP by intravenous infusion. The above two drugs were given once a day for 14 days. The control group was given 20 mL of 5% glucose injection, 2 mL of cerebrolysin and 250 mg/kg·d FDP by intravenous infusion, once a day for 14 days. Both groups were administered on the first day after admission, and the course of treatment was 14 days. The treatment outcomes of the two groups were compared by detecting the levels of glycogen phosphorylase isoenzyme BB (GPBB), cTn-I and CK-MB, MRI results and Neonatal Behavioral Neurological Assessment (NBNA) scores before and after treatment. The levels of GPBB, cTn-I and CK-MB in the observation group were significantly higher than those of normal neonates. After treatment, the levels of cTn-I and CK-MB in the observation group were closer to those of normal neonates compared with the control group, with significant differences (PNeonatal heart and brain injuries after asphyxia can be well treated by combining GM with FDP.

  15. Adenosine-Loaded Dissolving Microneedle Patches to Improve Skin Wrinkles, Dermal Density, Elasticity, and Hydration.

    Science.gov (United States)

    Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Rye, J; Baek, J; Jung, H

    2018-03-25

    Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P microneedle patches had a long-lasting effect on the average wrinkle depth (P microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Voigtlander, Thomas; Magedanz, Annett; Schmermund, Axel [Cardiovascular Center Bethanien (CCB), Frankfurt (Germany); Bramlage, Peter [Technical University of Dresden, Dresden (Germany); Elsaesser, Amelie [University of Mainz, Mainz (Germany); Kauczor, Hans-Ulrich; Mohrs, Oliver K. [University of Heidelberg, Heidelberg (Germany)

    2011-08-15

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 {+-} 9 years) received adenosine (140 {mu}g/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 {+-} 11.7 versus 82.4 {+-} 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 {+-} 1.9% versus 97 {+-} 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 {+-} 24.0 versus 140.9 {+-} 25.7 mmHg; diastolic: 80.2 {+-} 12.5 mmHg versus 78.9 {+-} 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  17. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    International Nuclear Information System (INIS)

    Voigtlander, Thomas; Magedanz, Annett; Schmermund, Axel; Bramlage, Peter; Elsaesser, Amelie; Kauczor, Hans-Ulrich; Mohrs, Oliver K.

    2011-01-01

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 ± 9 years) received adenosine (140 μg/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 ± 11.7 versus 82.4 ± 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 ± 1.9% versus 97 ± 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 ± 24.0 versus 140.9 ± 25.7 mmHg; diastolic: 80.2 ± 12.5 mmHg versus 78.9 ± 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  18. 8-Azaxanthine derivatives as antagonists of adenosine receptors.

    Science.gov (United States)

    Franchetti, P; Messini, L; Cappellacci, L; Grifantini, M; Lucacchini, A; Martini, C; Senatore, G

    1994-09-02

    A series of 1,3-dimethyl- and 1,3-dipropyl-8-azaxanthines, substituted at the N8 or N7 position with substituents which usually increase the affinity of the xanthines for the adenosine receptors, was synthesized and studied in radioligand binding experiments. The substitution of CH with N at the 8-position of both theophylline and caffeine dramatically reduced the affinity, as demonstrated by the fact that 8-azatheophylline and 8-azacaffeine were inert. The introduction of a methyl group at 8-position of 8-azatheophylline restored the antagonistic activity at A2 receptors, while a 8-cycloalkyl substituent increased the affinity for both receptor subtypes. A more favorable effect on affinity was produced by the substitution of the 7-methyl group in 8-azacaffeine with cycloalkyl groups. 7-Cyclopentyl-1,3-dimethyl-8-azaxanthine was 3 times more potent than caffeine at A1 receptors and 6 times less active at A2 receptors. On the contrary, the 7-cyclohexyl-1,3-dimethyl-8-azaxanthine was more potent than caffeine at A2 receptors. The substitution of 1- and 3-methyl groups with propyl in both 7- and 8-substituted 8-azatheophylline increased remarkably the affinity for A1 receptors. The 7-cyclopentyl-1,3-dipropyl-8-azaxanthine appears to be one of the most potent and selective among 7-alkyl-substituted xanthines at A1 receptors so far known. Because the 8-aza analogues of 8-substituted 1,3-dialkylxanthine were in any case less active than the corresponding xanthine derivatives, it was confirmed that the hydrogen atom at the 7-position of xanthines plays an important role in the binding to adenosine receptors.

  19. Regional distribution of high affinity binding of 3H-adenosine in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Traversa, U.; Puppini, P.; de Angelis, L.; Vertua, R.

    1984-06-01

    The high and low affinity adenosine binding sites with Kd values ranging respectively from 0.8 to 1.65 microM and from 3.1 to 13.86 microM were demonstrated in the following rat brain areas: cortex, hippocampus, striatum, cerebellum, diencephalon, and pons-medulla. Adenosine receptors involved in the high affinity binding seem to be mainly Ra-type. The analysis of the regional distribution of 3H-Adenosine showed the highest levels of specific binding in striatum and hippocampus; somewhat smaller values in cortex, cerebellum, and diencephalon, and even lower in pons-medulla.

  20. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  1. Dopamine/adenosine interactions involved in effort-related aspects of food motivation.

    Science.gov (United States)

    Salamone, John D; Correa, Merce

    2009-12-01

    Nucleus accumbens dopamine (DA) is involved in effort-related aspects of food motivation. Accumbens DA depletions reduce the tendency of rats to work for food, and alter effort-related choice, but leave other aspects of food motivation and appetite intact. DA and adenosine receptors interact to regulate effort-related processes. Adenosine A(2A) antagonists can reverse the effects of DA D(2) antagonists on effort-related choice, and intra-accumbens injections of a adenosine A(2A) agonist produce effects that are similar to those produced by accumbens DA depletion or antagonism. These studies have implications for understanding the neurochemical interactions that underlie activational aspects of motivation.

  2. Dopamine/adenosine interactions involved in effort-related aspects of food motivation

    OpenAIRE

    Salamone, John D.; Correa, Merce

    2009-01-01

    Nucleus accumbens dopamine (DA) is involved in effort-related aspects of food motivation. Accumbens DA depletions reduce the tendency of rats to work for food, and alter effort-related choice, but leave other aspects of food motivation and appetite intact. DA and adenosine receptors interact to regulate effort-related processes. Adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and intra-accumbens injections of a adenosine A2A agonist produce eff...

  3. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  4. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  5. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    International Nuclear Information System (INIS)

    Delamere, N.A.; Socci, R.R.; King, K.L.

    1990-01-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin

  6. Phospholipid-nucleoside conjugates: the aggregational characteristics and morphological aspects of selected 1-. beta. -D-arabinofuranosylcytosine 5'-diphosphate-L-1,2-diacylglycerols

    Energy Technology Data Exchange (ETDEWEB)

    Maccoss, M. (Argonne National Lab., IL); Edwards, J.J.; Seed, T.M.; Spragg, S.P.

    1982-01-01

    1-..beta..-D-Arabinofuranosylcytosine 5'-diphosphate-1,2-diacylglycerols have previously been shown to be promising candidates as prodrugs of the clinically useful antileukemic agent 1-..beta..-D-arabinofuranosylcytosine. Because of the amphipathic nature of these liponucleotides and the potential that their morphological state may mediate their biological activity, it was necessary to undertake detailed studies of their aggregational and morphological characteristics. When samples of 1-..beta..-D-arabinofuranosylcytosine 5'-diphosphate-L-1,2-diacylglycerols (containing either dimyristoyl, dipalmitoyl or distearoyl fatty acid side chains) were prepared in buffered saline solutions using sonication methods, the morphological nature of the resulting aggregate was shown to be related to temperature and the length of the side chain. When sonicated at low temperatures all the above-mentioned derivatives gave turbid solutions containing large bilayer sheets. As the temperature was raised, a transition temperature was reached at which a stable three-dimensional cross-linked network of small interlocking bilayer stacks was formed. This turbidity transition temperature was directly related to the chain length of the fatty acid side chain. Sonication at temperatures close to this turbidity transition temperature produced small disc-shaped micellar structures. These micelles were shown to exist in another aggregational equilibrium consisting of a stacking-destacking process, the position within this equilibrium being dependent upon the concentration. In contrast, a sample of 1-..beta..-D-arabinofuranosylcytosine 5'-diphosphate-L-1,2-dioleoylglycerol (which contains an unsaturated carbon-carbon bond in each of the fatty acid side chains) was shown to give a multilamellar liposome structure when sonicated in buffered saline at temperatures above its turbidity transition temperature.

  7. The N-terminus and the Chain-length Determination (CLD) Domain Play a Role in the Length of the Isoprenoid Product of the Bifunctional Toxoplasma gondii Farnesyl-diphosphate Synthase

    Science.gov (United States)

    Li, Zhu-Hong; Cintrón, Roxana; Koon, Noah A.; Moreno, Silvia N.J.

    2015-01-01

    Toxoplasma gondii possesses a bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS) that synthesizes C15 and C20 isoprenoid diphosphates from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This enzyme has a unique arrangement of the 4th and 5th amino acid upstream to the First Aspartic Rich Domain (FARM) where the 4th amino acid is aromatic and the 5th is a cysteine. We mutated these amino acids converting the enzyme to an absolute FPPS by changing the cysteine to a tyrosine. The enzyme could be converted to an absolute GGPPS by changing both the 4th and 5th amino acids to alanines. We also constructed four mutated TgFPPSs whose regions around the first aspartate-rich motif were replaced with the corresponding regions of FPP synthases from Arabidopsis thaliana or Saccharomyces cerevisiae or with the corresponding regions of GGPP synthases from Homo sapiens or S. cerevisiae. We determined that the presence of a cysteine at the 4th position is essential for the TgFPPS bifunctionality. We also found that the length of the N-terminal domain has a role in determining the specificity and the length of the isoprenoid product. Phylogenetic analysis supports the grouping of this enzyme with other Type I FPPSs but the biochemical data indicates that TgFPPS has unique characteristics that differentiate it from mammalian FPPSs and GGPPSs and is therefore an important drug target. PMID:22931372

  8. Adenosine triphosphate-magnesium dichloride during hyperdynamic porcine endotoxemia: Effects on hepatosplanchnic oxygen exchange and metabolism

    NARCIS (Netherlands)

    Asfar, Pierre; Nalos, Marek; Pittner, Antje; Theisen, Marc; Ichai, Carole; Ploner, Franz; Georgieff, Michael; Ince, Can; Brückner, Uwe Bernd; Leverve, Xavier Maurice; Radermacher, Peter; Froeba, Gebhard

    2002-01-01

    OBJECTIVE: To assess the effects of adenosine triphosphate-magnesium dichloride (ATP-MgCl2) on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy metabolism over 24 hrs of hyperdynamic normotensive porcine endotoxemia. DESIGN: Prospective, randomized, controlled experimental

  9. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    Continued progress has been made toward each of the Specific Aims (SAs) 1 and 2 (SA 3 completed) of our research project, Caffeine, adenosine receptors and estrogen in toxin models of Parkinson's disease...

  10. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.

    Science.gov (United States)

    Du, Xuewen; Li, Junfeng; Gao, Yuan; Kuang, Yi; Xu, Bing

    2012-02-18

    The use of enzyme to instruct the self-assembly of the nucleoside of adenosine in water provides a new class of molecular nanofibers/hydrogels as functional soft materials. This journal is © The Royal Society of Chemistry 2012

  11. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas

    2006-01-01

    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD......) diets for a minimum of 10 days before telemetric blood pressure and urinary excretion measurements in metabolic cages. On the NS diet, daytime and nighttime mean arterial blood pressure (MAP) was 7-10 mmHg higher in A1R-/- than in A1R+/+ mice. HS diet did not affect the MAP in A1R-/- mice....... The elevated plasma renin concentrations found in the A1R-/- mice could also result in increased blood pressure. Our results confirm that adenosine, acting through the adenosine A1 receptor, plays an important role in regulating blood pressure, renin release, and sodium excretion....

  12. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...

  13. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  14. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate; Influencia de la temperatura en la sorcion de uranio (VI) en difosfato de circonio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Solis, D. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.mx [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP{sub 2}O{sub 7}). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  15. Human adenosine deaminase: properties and turnover in cultured T and B lymphoblasts

    International Nuclear Information System (INIS)

    Daddona, P.E.

    1981-01-01

    In this study, the properties and rate of turnover of adenosine deaminase are compared in cultured human T and B lymphoblast cell lines. 1) Relative to B lymphoblasts, the level of adenosine deaminase activity in extracts of T lymphoblast cell lines (MOLT-4, RPMI-8402, CCRF-CEM, and CCRF-HSB-2) is elevated 7-14-fold and differs by 2-fold between the C cell lines. 2) In both T and B lymphoblast extracts, the enzyme is apparently identical, based on K/sub m/ for adenosine and deoxyadenosine, K/sub i/ for inosine, V/sub max/ for adenosine, /sub S20,w/, isoelectric pH, and heat stability. Furthermore, by radioimmunoassay, the quantity of adenosine deaminase-immunocreative protein is proportional to the level of enzyme activity in all cell lines studies. 3) Using a purification and selective immunoprecipitation technique, the enzyme turnover could be assessed in cell lines labeled with [ 35 S]methionine. The apparent rate of adenosine deaminase synthesis, relative to total protein, is 2-fold faster in both T cell lines (RPMI-8402 and CCRF-CEM) than in the B cell lines (MGL-8 and GM-130). The apparent half-life (tsub1/2) for the enzyme degradation is 19 and 39 h, respectively, in CCFR-CEM and RPMI-8402, while the tsub1/2 in both B cell lines is 7-9 h. From the net rate of synthesis and degradation, the T cell lines, respectively, exhibit approximately a 6- and 12-fold difference in adenosine deaminase turnover relative to B cells, consistent with the observed differences in enzyme activity. This study suggests that while adenosine deaminase is apparently identical in both T and B lymphoblast cell lines, alterations in both the rate of enzyme synthesis and degradation contribute to its high steady state level in T cells

  16. Time Window Is Important for Adenosine Preventing Cold-induced Injury to the Endothelium.

    Science.gov (United States)

    Li, Yan; Hu, Xiao-Xia; Fu, Li; Chen, Jing; Lu, Li-He; Liu, Xiang; Xu, Zhe; Zhou, Li; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2017-06-01

    Cold cardioplegia is used to induce heart arrest during cardiac surgery. However, endothelial function may be compromised after this procedure. Accordingly, interventions such as adenosine, that mimic the effects of preconditioning, may minimize endothelial injury. Herein, we investigated whether adenosine prevents cold-induced injury to the endothelium. Cultured human cardiac microvascular endothelial cells were treated with adenosine for different durations. Phosphorylation and expression of endothelial nitric oxide synthase (eNOS), p38MAPK, ERK1/2, and p70S6K6 were measured along with nitric oxide (NO) production using diaminofluorescein-2 diacetate (DAF-2DA) probe. Cold-induced injury by hypothermia to 4°C for 45 minutes to mimic conditions of cold cardioplegia during open heart surgery was induced in human cardiac microvascular endothelial cells. Under basal conditions, adenosine stimulated NO production, eNOS phosphorylation at serine 1177 from 5 minutes to 4 hours and inhibited eNOS phosphorylation at threonine 495 from 5 minutes to 6 hours, but increased phosphorylation of ERK1/2, p38MAPK, and p70S6K only after exposure for 5 minutes. Cold-induced injury inhibited NO production and the phosphorylation of the different enzymes. Importantly, adenosine prevented these effects of hypothermic injury. Our data demonstrated that adenosine prevents hypothermic injury to the endothelium by activating ERK1/2, eNOS, p70S6K, and p38MAPK signaling pathways at early time points. These findings also indicated that 5 minutes after administration of adenosine or release of adenosine is an important time window for cardioprotection during cardiac surgery.

  17. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.)

    International Nuclear Information System (INIS)

    Chivot, J.J.; Depernet, D.; Caen, J.

    1970-01-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 μM adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [fr

  18. Effects of adenosine on the organ injury and dysfunction caused by hemorrhagic shock

    International Nuclear Information System (INIS)

    Soliman, M.M.

    2009-01-01

    Objectives: Adenosine has been shown in animal and human studies to decrease the post-ischemic myocardial injury by lowering the levels of tumor necrosis factor-a. The objectives of the study was to examine the protective effects of adenosine on the organ injury (liver, kidney, pancreas) associated with hemorrhagic shock in rats. Methodology: The study was conducted at Cardiovascular Physiology laboratory, King Saud University, Riyadh in 2007-2008. Anesthetized male Sprague- Dawley rats were assigned to hemorrhage and resuscitation treated with 20mM adenosine , untreated, or similar time matched control groups (n=6 per group). Rats were hemorrhaged for one hour using a reservoir model. Arterial blood pressure was monitored for one hour, and maintained at a mean arterial blood pressure of 40 mmHg. Adenosine 20mM was injected intra-arterially, before resuscitation in the adenosine treated group. Resuscitation was performed by re infusion of the sheded blood for 30 minutes. Arterial blood samples were analyzed for biochemical indicators of multiple organ injury: 1) liver function: aspartate aminotransferase (AST), alanine aminotransferase (ALT), 2) renal function: urea and creatinine, 3) pancreatic function: amylase. Results: In the control group there was no significant rise in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. While in the adenosine treated group, resuscitation from one hour of hemorrhagic shock resulted in significant rises in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. Treatment of rats with 20mM adenosine before resuscitation following one hour of hemorrhagic shock decreased the multiple organ injury and dysfunction caused by hemorrhagic shock. Conclusion: Adenosine attenuated the renal, liver and pancreatic injury caused by hemorrhagic shock and resuscitation in rats. Thus

  19. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis.

    Science.gov (United States)

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-11-01

    Lactobacillus wasatchensis sp. nov. has been studied for growth and gas formation in a control Cheddar cheese and in cheese supplemented with 0.5% ribose, 0.5% galactose, or 0.25% ribose plus 0.25% galactose using regular and accelerated cheese ripening temperatures of 6 and 12°C, respectively. Milk was inoculated with (1) Lactococcus lactis starter culture, or (2) Lc. lactis starter culture plus Lb. wasatchensis (10(4) cfu/mL). In the control cheese with no added Lb. wasatchensis, starter numbers decreased from 10(7) initially to ~10(4) cfu/g over 23 wk of ripening at 6°C. When the cheese was ripened at 12°C, or if Lb. wasatchensis was added, the final starter counts were 1 log lower. In contrast, nonstarter lactic acid bacteria in the cheese increased from cheese with no added Lb. wasatchensis, levels of Lb. wasatchensis were initially below the enumeration threshold but counts of up to 10(3) cfu/g were detected after 23 wk. When the cheese was inoculated with Lb. wasatchensis, it could be enumerated throughout ripening, with final levels at 23 wk being dependent on whether ribose had been added to the cheese curd. With added ribose (with or without added galactose), Lb. wasatchensis grew to 10(7) to 10(8) cfu/g after 23 wk, whereas without added ribose it was 1 log lower. In all cheeses with added Lb. wasatchensis, greater gas formation was observed at 12°C, with most gas production occurring after ~16 wk. Very little gas production was detected in cheese without added Lb. wasatchensis ripened at 12°C or in cheese with added Lb. wasatchensis ripened at 6°C. Adding a combination of ribose and galactose caused more gas formation, putatively because of the ability of Lb. wasatchensis to co-utilize both sugars and grow to high numbers, and then produce gas from galactose as ribose levels were depleted. Even without sugar supplementation, gas was observed in cheese with added Lb. wasatchensis after 16 wk. We also observed that Lb. wasatchensis could grow to

  20. Gamma-ray induced DNA breaks and repair studied by immuno-labelling of poly(ADP-ribose) polymerase (PARP) in chinese hamster ovary cells (CHO)

    International Nuclear Information System (INIS)

    Bidon, N.; Noel, G.; Averbeck, D.; Varlet, P.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly(ADP-ribose)polymerase is a nuclear ubiquitous enzyme capable of binding to DNA breaks. Chinese hamster ovary cells were (CHO-K1) cultured on slides and γ-irradiated ( 137 Cs) at a high (12.8 Gy/min) or medium dose rate (5 Gy/min), and immuno-labelling against (ADP-ribose) polymers immediately or three hours after irradiation. Quantification and localisation of γ-ray induced breaks was performed by confocal microscopy. The results show a dose effect relationship, a dose-rate effect and the signal disappearance after 3 hours at 37 deg.C. The presence of PARP activity appears to reflect γ-rays induced DNA fragmentation. (authors)

  1. METABOLISM OF d-RIBOSE-1-C14 AND C14-LABELED d-GLUCONATE IN AN ENZYME SYSTEM OF THE GENUS PROPIONIBACTERIUM

    Science.gov (United States)

    Stjernholm, Rune L.; Flanders, Frank

    1962-01-01

    Stjernholm, Rune L. (Western Reserve University, Cleveland, Ohio) and Frank Flanders. Metabolism of d-ribose-1-C14 and C14-labeled d-gluconate in an enzyme system of the genus Propionibacterium. J. Bacteriol. 84:563–568. 1962.—Ribose-1-C14 and potassium gluconate labeled in different positions were incubated with cell-free extracts of Propionibacterium shermanii. The resulting propionate, acetate, and succinate were isolated and the C14 distribution determined by degradation. It is proposed that the extensive randomization observed is caused by the conversion of the labeled substrates to fructose-6-phosphate via the transketolase-transaldolase sequence followed by the Embden-Meyerhof pathway, and that the triosephosphates produced by these metabolic routes are metabolized via pyruvate to succinate and propionate. PMID:13984204

  2. The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance.

    Directory of Open Access Journals (Sweden)

    Hermann Bauer

    Full Text Available The t-haplotype, a variant form of the t-complex region on mouse chromosome 17, acts as selfish genetic element and is transmitted at high frequencies (> 95% from heterozygous (t/+ males to their offspring. This phenotype is termed transmission ratio distortion (TRD and is caused by the interaction of the t-complex responder (Tcr with several quantitative trait loci (QTL, the t-complex distorters (Tcd1 to Tcd4, all located within the t-haplotype region. Current data suggest that the distorters collectively impair motility of all sperm derived from t/+ males; t-sperm is rescued by the responder, whereas (+-sperm remains partially dysfunctional. Recently we have identified two distorters as regulators of RHO small G proteins. Here we show that the nucleoside diphosphate kinase gene Nme3 acts as a QTL on TRD. Reduction of the Nme3 dosage by gene targeting of the wild-type allele enhanced the transmission rate of the t-haplotype and phenocopied distorter function. Genetic and biochemical analysis showed that the t-allele of Nme3 harbors a mutation (P89S that compromises enzymatic activity of the protein and genetically acts as a hypomorph. Transgenic overexpression of the Nme3 t-allele reduced t-haplotype transmission, proving it to be a distorter. We propose that the NME3 protein interacts with RHO signaling cascades to impair sperm motility through hyperactivation of SMOK, the wild-type form of the responder. This deleterious effect of the distorters is counter-balanced by the responder, SMOK(Tcr, a dominant-negative protein kinase exclusively expressed in t-sperm, thus permitting selfish behaviour and preferential transmission of the t-haplotype. In addition, the previously reported association of NME family members with RHO signaling in somatic cell motility and metastasis, in conjunction with our data involving RHO signaling in sperm motility, suggests a functional conservation between mechanisms for motility control in somatic cells and

  3. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal.

    Science.gov (United States)

    Van Dort, Christa J; Baghdoyan, Helen A; Lydic, Ralph

    2009-01-21

    During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.

  4. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease

    International Nuclear Information System (INIS)

    Coyne, E.P.; Belvedere, D.A.; Vande Streek, P.R.; Weiland, F.L.; Evans, R.B.; Spaccavento, L.J.

    1991-01-01

    Adenosine is an endogenously produced compound that has significant effects as a coronary and systemic vasodilator. Previous studies suggest that intravenous infusion of adenosine, coupled with thallium-201 scintigraphy, may have specific value as a noninvasive means of evaluating coronary artery disease. The purpose of this study was to compare the diagnostic value of adenosine thallium testing with that of standard exercise thallium testing. One hundred subjects were studied with exercise thallium imaging and thallium imaging after adenosine infusion, including 47 with angiographically proved coronary artery disease and 53 control subjects. The overall sensitivity of the thallium procedures was 81% for the exercise study and 83% for the adenosine study (p = NS); the specificity was 74% for the exercise study and 75% for the adenosine study (p = NS). The diagnostic accuracy of the exercise study was 77% and that of the adenosine study was 79%. Ninety-four percent of subjects had an adverse effect due to the adenosine infusion; however, most of these effects were mild and well tolerated. All adverse effects abated within 30 to 45 s of the termination of the study, consistent with the very brief half-life of the agent. Thus, thallium-201 scintigraphy after intravenous infusion of adenosine has a diagnostic value similar to that of exercise thallium testing for evaluation of coronary artery disease. Adenosine thallium testing may be particularly useful in evaluating patients unable to perform treadmill exercise testing

  5. Synthesis of new acadesine (AICA-riboside) analogues having acyclic D-ribityl or 4-hydroxybutyl chains in place of the ribose.

    Science.gov (United States)

    D'Errico, Stefano; Oliviero, Giorgia; Borbone, Nicola; Amato, Jussara; Piccialli, Vincenzo; Varra, Michela; Mayol, Luciano; Piccialli, Gennaro

    2013-08-06

    The antiviral activity of certain acyclic nucleosides drew our attention to the fact that the replacement of the furanose ring by an alkyl group bearing hydroxyl(s) could be a useful structural modification to modulate the biological properties of those nucleosides. Herein, we report on the synthesis of some novel acadesine analogues, where the ribose moiety is mimicked by a D-ribityl or by a hydroxybutyl chain.

  6. Elastic-plastic fracture toughness and rising JR-curve behavior of cortical bone is partially protected from irradiation-sterilization-induced degradation by ribose protectant.

    Science.gov (United States)

    Woodside, Mitchell; Willett, Thomas L

    2016-12-01

    This study tested the hypothesis that pre-treating cortical bone with ribose would protect the rising fracture resistance curve behavior and crack initiation fracture toughness of both bovine and human cortical bone from the degrading effects of γ-irradiation sterilization. A ribose pre-treatment (1.8 M for bovine, and 1.2 M for human, in PBS at 60 °C for 24 h) was applied to single-edge notched bending fracture specimens prior to sterilization with a 33 kGy dose of γ-irradiation. Fracture resistance curves were generated with a single specimen method using an optical crack length measurement technique. The effect of the treatment on overall fracture resistance behavior, crack initiation fracture toughness, and tearing modulus was compared with non-irradiated and conventionally irradiation sterilized controls. Hydrothermal isometric tension testing was used to examine collagen network connectivity and thermal stability to explore relationships between collagen network quality and fracture resistance. The ribose pre-treatment successfully protected the crack growth initiation fracture toughness of bovine and human bone by 32% and 63%, respectively. The rising JR-curve behavior was also partially protected. Furthermore, collagen connectivity and thermal stability followed similar patterns to those displayed by fracture toughness. This paper demonstrates that the fracture toughness of irradiation-sterilized bone tissue can be partially protected with a ribose pre-treatment. This new approach shows potential for the production and clinical application of sterilized allografts with improved mechanical performance and durability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The 2.2 Å Resolution Structure of RpiB/AlsB from Escherichia coli Illustrates a New Approach to the Ribose-5-phosphate Isomerase Reaction

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C. Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M.; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L.

    2009-01-01

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E. coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E. coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2 Å resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type αβα-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown. PMID:14499611

  8. The 2.2 A resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction.

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L

    2003-10-03

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E.coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E.coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2A resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type alphabetaalpha-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown.

  9. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  10. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  11. KF polymerase-based fluorescence aptasensor for the label-free adenosine detection.

    Science.gov (United States)

    Liao, Dongli; Jiao, Huping; Wang, Bin; Lin, Quan; Yu, Cong

    2012-02-21

    We have developed a simple, inexpensive, and label-free method for the selective detection of adenosine. Klenow fragment polymerase (KF polymerase) is a commonly-used 5' to 3' DNA polymerase, it also has 3' to 5' exonuclease activity that can digest single-stranded DNA. An adenosine binding DNA aptamer was employed, the aptamer was split into two pieces of single-stranded DNA (aptamer-A1 + aptamer-A2). Without the addition of adenosine, aptamer-A1 and aptamer-A2 existed as single-stranded DNA which could be efficiently degraded by the exonuclease activity of KF polymerase. Much reduced background fluorescence was obtained when SYBR Green dye was added. However, in the presence of adenosine, aptamer-A1 and aptamer-A2 bound to adenosine, and hybridization of the complementary sequences resulted in the formation of a duplex DNA structure, which could initiate DNA polymerization. The addition of SYBR Green dye resulted in a very high fluorescence enhancement, which could be used for the quantification of adenosine.

  12. Purine molecules as hypnogenic factors role of adenosine, ATP, and caffeine.

    Science.gov (United States)

    Díaz-Muñoz, M; Salín-Pascual, R

    2010-12-01

    Purines are ubiquitous molecules with important roles in the regulation of metabolic networks and signal transduction events. In the central nervous system, adenosine and ATP modulate the sleep-wake cycle, acting as ligands of specific transmembrane receptors and as allosteric effectors of key intracellular enzymes for brain energy expenditure. Two types of adenosine receptors seem to be relevant to the sleep function, A1 and A2A. Caffeine, an antagonist of adenosine receptors, has been used as a tool in some of the studies reviewed in the present chapter. Possible changes in adenosine functioning due to the aging process have been observed in animal models and abnormalities in the adenosine system could also explain primary insomnia or the reduced amount of delta sleep and increased sensitivity to caffeine in some subjects with sleep deficits. Caffeine is a methylated-derivate of xanthine with profound effects on the onset and quality of sleep episodes. This purine acts principally as an antagonist of the A2A receptors. Adenosine and ATP in the nervous system are the bridge between metabolic activity, recovery function, and purinergic transmission that underlies the daily wake-sleep cycle in mammals. Modulators of purine actions have the potential to alleviate insomnia and other sleep disorders based on their physiopathological role during the sleep process.

  13. Adenosine signaling promotes regeneration of pancreatic β-cells in vivo

    Science.gov (United States)

    Andersson, Olov; Adams, Bruce A.; Yoo, Daniel; Ellis, Gregory C.; Gut, Philipp; Anderson, Ryan M.; German, Michael S.; Stainier, Didier Y. R.

    2012-01-01

    Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β-cells is still needed. Using a zebrafish model of diabetes, we screened ~7000 small molecules to identify enhancers of β-cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β-cell regeneration was the adenosine agonist 5′-N-Ethylcarboxamidoadenosine (NECA), which acting through the adenosine receptor A2aa increased β-cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β-cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β-cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes. PMID:22608007

  14. Safety of adenosine stress myocardial perfusion imaging by a one-route infusion protocol

    International Nuclear Information System (INIS)

    Kawai, Yuko; Kishino, Koh

    2006-01-01

    When adenosine stress testing is performed, a vein is generally accessed in each arm. To determine whether the one-route infusion protocol, that is, infusion via one upper arm vein, is safe, myocardial perfusion imaging was performed during adenosine stress testing in patients with angina pectoris. Sixty-six consecutive patients (43 men, 68±11 years of age) with suspected coronary artery disease were enrolled in this study. For the stress test, adenosine was injected at 120 μg/kg/min for 6 minutes. Systolic blood pressure, diastolic blood pressure, and heart rate did not show any significant changes after injection of the adenosine and radioisotope (RI) tracer. Adverse events during infusion of the adenosine were seen in 42 (64%) patients and included chest discomfort/oppression in 17 (26%) and dyspnea/throat discomfort in 15 (23%). On the other hand, adverse events just after infusion of the RI tracer occurred in 5 (8%) patients and included chest oppression in 2 (3%) and dyspnea in 1 (2%). Almost all adverse events disappeared quickly without treatment. Therefore, we concluded that adenosine stress myocardial perfusion imaging using a one-route infusion protocol is safe and useful to do for patients unable to secure veins in both arms. (author)

  15. Neurological and histological consequences induced by in vivo cerebral oxidative stress: evidence for beneficial effects of SRT1720, a sirtuin 1 activator, and sirtuin 1-mediated neuroprotective effects of poly(ADP-ribose) polymerase inhibition.

    Science.gov (United States)

    Gueguen, Cindy; Palmier, Bruno; Plotkine, Michel; Marchand-Leroux, Catherine; Besson, Valérie C

    2014-01-01

    Poly(ADP-ribose)polymerase and sirtuin 1 are both NAD(+)-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribose)polymerase, decreases NAD(+) level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribose)polymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribose)polymerase inhibition restores NAD(+) level and sirtuin 1 activity in vitro. In vitro sirtuin 1 induction protects neurons from cell loss induced by oxidative stress. In this context, the role of sirtuin 1 and its involvement in beneficial effects of poly(ADP-ribose)polymerase inhibition were evaluated in vivo in a model of cerebral oxidative stress induced by intrastriatal infusion of malonate in rat. Malonate promoted a NAD(+) decrease that was not prevented by 3-aminobenzamide, a poly(ADP-ribose)polymerase inhibitor, at 4 and 24 hours. However, 3-aminobenzamide increased nuclear SIRT1 activity/expression ratio after oxidative stress. Malonate induced a neurological deficit associated with a striatal lesion. Both were reduced by 3-aminobenzamide and SRT1720, a sirtuin 1 activator, showing beneficial effects of poly(ADP-ribose)polymerase inhibition and sirtuin 1 activation on oxidative stress consequences. EX527, a sirtuin 1 inhibitor, given alone, modified neither the score nor the lesion, suggesting that endogenous sirtuin 1 was not activated during cerebral oxidative stress. However, its association with 3-aminobenzamide suppressed the neurological improvement and the lesion reduction induced by 3-aminobenzamide. The association of 3-aminobenzamide with SRT1720, the sirtuin 1 activator, did not lead to a better protection than 3-aminobenzamide alone. The present data represent the first demonstration that the sirtuin 1 activator SRT1720 is neuroprotective during in vivo cerebral oxidative stress. Furthermore sirtuin 1 activation is involved in the beneficial effects of poly(ADP-ribose)polymerase inhibition after in vivo cerebral oxidative stress.

  16. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    hypoxia-reoxygenation. Low mu M concentrations of MnDPDP and its metabolite Mn dipyridoxyl ethylene-diamine (MnPLED) dismutated (.)O(2)(-), but showed no activity in Fenton or catalase reactions. MnDPDP 30 mu M improved contractile function and reduced enzyme release in rat hearts during reoxygenation...

  17. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers

    Science.gov (United States)

    Okazaki, Arimichi; Gameiro, Paulo A.; Christodoulou, Danos; Laviollette, Laura; Schneider, Meike; Chaves, Frances; Stemmer-Rachamimov, Anat; Yazinski, Stephanie A.; Lee, Richard; Stephanopoulos, Gregory; Zou, Lee

    2017-01-01

    Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel–Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL–/– RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL–/– cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor–induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra–S phase checkpoint, and suppressed the growth of VHL–/– RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL–/– cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC. PMID:28346230

  18. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  19. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Ciulli, Alessio [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Lobley, Carina M. C. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Tuck, Kellie L. [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Smith, Alison G. [Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA (United Kingdom); Blundell, Tom L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Abell, Chris, E-mail: ca26@cam.ac.uk [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-02-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP{sup +} that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP{sup +}, with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes.

  20. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    International Nuclear Information System (INIS)

    Ciulli, Alessio; Lobley, Carina M. C.; Tuck, Kellie L.; Smith, Alison G.; Blundell, Tom L.; Abell, Chris

    2007-01-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP + that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP + , with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes

  1. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  2. The plant hormone abscisic acid stimulates the proliferation of human hemopoietic progenitors through the second messenger cyclic ADP-ribose.

    Science.gov (United States)

    Scarfì, Sonia; Fresia, Chiara; Ferraris, Chiara; Bruzzone, Santina; Fruscione, Floriana; Usai, Cesare; Benvenuto, Federica; Magnone, Mirko; Podestà, Marina; Sturla, Laura; Guida, Lucrezia; Albanesi, Ennio; Damonte, Gianluca; Salis, Annalisa; De Flora, Antonio; Zocchi, Elena

    2009-10-01

    Abscisic acid (ABA) is a hormone involved in pivotal physiological functions in higher plants, such as response to abiotic stress and control of seed dormancy and germination. Recently, ABA was demonstrated to be autocrinally produced by human granulocytes, beta pancreatic cells, and mesenchymal stem cells (MSC) and to stimulate cell-specific functions through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). Here we show that ABA expands human uncommitted hemopoietic progenitors (HP) in vitro, through a cADPR-mediated increase of the intracellular calcium concentration ([Ca(2+)](i)). Incubation of CD34(+) cells with micromolar ABA also induces transcriptional effects, which include NF-kappaB nuclear translocation and transcription of genes encoding for several cytokines. Human MSC stimulated with a lymphocyte-conditioned medium produce and release ABA at concentrations sufficient to exert growth-stimulatory effects on co-cultured CD34(+) cells, as demonstrated by the inhibition of colony growth in the presence of an anti-ABA monoclonal antibody. These results provide a remarkable example of conservation of a stress hormone and of its second messenger from plants to humans and identify ABA as a new hemopoietic growth factor involved in the cross-talk between HP and MSC.

  3. Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger.

    Science.gov (United States)

    Bruzzone, Santina; Bodrato, Nicoletta; Usai, Cesare; Guida, Lucrezia; Moreschi, Iliana; Nano, Rita; Antonioli, Barbara; Fruscione, Floriana; Magnone, Mirko; Scarfì, Sonia; De Flora, Antonio; Zocchi, Elena

    2008-11-21

    Abscisic acid (ABA) is a plant stress hormone recently identified as an endogenous pro-inflammatory cytokine in human granulocytes. Because paracrine signaling between pancreatic beta cells and inflammatory cells is increasingly recognized as a pathogenetic mechanism in the metabolic syndrome and type II diabetes, we investigated the effect of ABA on insulin secretion. Nanomolar ABA increases glucose-stimulated insulin secretion from RIN-m and INS-1 cells and from murine and human pancreatic islets. The signaling cascade triggered by ABA in insulin-releasing cells sequentially involves a pertussis toxin-sensitive G protein, cAMP overproduction, protein kinase A-mediated activation of the ADP-ribosyl cyclase CD38, and cyclic ADP-ribose overproduction. ABA is rapidly produced and released from human islets, RIN-m, and INS-1 cells stimulated with high glucose concentrations. In conclusion, ABA is an endogenous stimulator of insulin secretion in human and murine pancreatic beta cells. Autocrine release of ABA by glucose-stimulated pancreatic beta cells, and the paracrine production of the hormone by activated granulocytes and monocytes suggest that ABA may be involved in the physiology of insulin release as well as in its dysregulation under conditions of inflammation.

  4. Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose.

    Science.gov (United States)

    Yang, Sung-Yong; Lee, Sanghoon; Pyo, Min Cheol; Jeon, Hyeonjin; Kim, Yoonsook; Lee, Kwang-Won

    2017-04-15

    High amounts of waste products generated from fish-processing need to be disposed of despite their potential nutritional value. A variety of methods, such as enzymatic hydrolysis, have been developed for these byproducts. In the current study, we investigated the physicochemical, biological and antioxidative properties of fish protein hydrolysates (FPH) conjugated with ribose through the Maillard reaction. These glycated conjugates of FPH (GFPH) had more viscous rheological properties than FPH and exhibited higher heat, emulsification and foaming stability. They also protected liver HepG2 cells against t-BHP-induced oxidative stress with enhanced glutathione synthesis in vitro. Furthermore, it was shown that GFPH induced upregulation of phase II enzyme expression, such as that of HO-1 and γ-GCL, via nuclear translocation of Nrf2 and phosphorylation of ERK. Taken together, these results demonstrate the potential of GFPH for use as a functional food ingredient with improved rheological and antioxidative properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Kinetics of Glycoxidation of Bovine Serum Albumin by Glucose, Fructose and Ribose and Its Prevention by Food Components

    Directory of Open Access Journals (Sweden)

    Izabela Sadowska-Bartosz

    2014-11-01

    Full Text Available The aim of this study was to compare the kinetics of the glycoxidation of bovine serum albumin (BSA as a model protein by three sugars: glucose, fructose and ribose, using fluorometric measurements of the content of advanced glycation end products (AGEs, protein-bound fructosamine, dityrosine, N'-formylkynurenine, kynurenine, tryptophan, the content of advanced oxidation protein products (AOPP, protein carbonyl groups, as well as thiol groups. Moreover, the levels of glycoalbumin and AGEs were determined by using an enzyme-linked immunosorbent assay. Based on the kinetic results, the optimal incubation time for studies of the modification of the glycoxidation rate by additives was chosen, and the effects of 25 compounds of natural origin on the glycoxidation of BSA induced by various sugars were examined. The same compounds were found to have different effects on glycoxidation induced by various sugars, which suggests caution in extrapolation from experiments based on one sugar to other sugars. From among the compounds tested, the most effective inhibitors of glycoxidation were: polyphenols, pyridoxine and 1-cyano-4-hydroxycinnamic acid.

  6. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  7. Differences in the regulation by poly(ADP-ribose) of repair of DNA damage from alkylating agents and ultraviolet light according to cell type

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Bodell, W.J.; Morgan, W.F.; Zelle, B.

    1983-08-10

    Inhibition of poly(ADP-ribose) synthesis by 3-aminobenzamide in various human and hamster cells influenced the responses to DNA damage from methyl methanesulfonate, but not from ultraviolet light. After exposure to methyl methanesulfonate, 3-aminobenzamide increased the strand break frequency in all cell types studied, but only stimulated repair replication in lymphoid and HeLa cells, suggesting these are independent effects. 3-Aminobenzamide also inhibited the pathway for de novo synthesis of DNA purines, suggesting that some of its effects may be due to disturbance of precursor pathways and irrelevant to the role of poly(ADP-ribose) in repair. Previous claims that 3-aminobenzamide stimulates repair synthesis after exposure to UV light are probably artifacts, because the stimulations are only observed in lymphocytes in the presence of a high concentration of hydroxyurea that itself inhibits repair. The initial inhibition of semiconservative DNA synthesis and the excision of the major alkylation products and pyrimidine dimers were unaffected by 3-aminobenzamide. In general poly(ADP-ribose) synthesis appears to be uniquely involved in regulating the ligation stage of repair of alkylation damage but not ultraviolet damage. By regulating the ligation efficiency, poly(ADP-ribosylation) modulates the dynamic balance between incision and ligation, so as to minimize the frequency of DNA breaks. The ligation stage of repair of UV damage appears different and is not regulated by poly(ADP-ribosylation).

  8. Adenosine signaling in reserpine-induced depression in rats.

    Science.gov (United States)

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On the structure of thorium and americium adenosine triphosphate complexes

    International Nuclear Information System (INIS)

    Mostapha, Sarah; Berton, Laurence; Boubals, Nathalie; Zorz, Nicole; Charbonnel, Marie-Christine; Fontaine-Vive, Fabien; Den Auwer, Christophe; Solari, Pier Lorenzo

    2014-01-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electro-spray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes. (authors)

  10. On the structure of thorium and americium adenosine triphosphate complexes.

    Science.gov (United States)

    Mostapha, Sarah; Fontaine-Vive, Fabien; Berthon, Laurence; Boubals, Nathalie; Zorz, Nicole; Solari, Pier Lorenzo; Charbonnel, Marie Christine; Den Auwer, Christophe

    2014-11-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electrospray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes.

  11. Where is electronic energy stored in adenosine triphosphate?

    Science.gov (United States)

    Arabi, Alya A; Matta, Chérif F

    2009-04-09

    The gas-phase electronic energy of the hydrolysis of methyl triphosphate, a model of adenosine 5'-triphosphate (ATP), is partitioned into local (atomic and group) contributions. A modified definition of Lipmann's "group transfer potential" is proposed on the basis of the partitioning of the total electronic energy into atomic contributions within the framework of the quantum theory of atoms in molecules (QTAIM). The group transfer potential is defined here as the sum of the atomic energies forming the group in ATP minus the sum of the energies of the same atoms in inorganic phosphate. It is found that the transfer potential of the terminal phosphate group in ATP is significantly reduced, from +241.7 to +73.1 kcal/mol, as a result of complexation with magnesium. This is accompanied by a concomitant change in the energy of reaction from -168.6 to -24.9 kcal/mol. Regions within ATP where the electronic energy changes the most upon hydrolysis are identified. The study is conducted at the DFT/B3LYP/6-31+G(d,p) level of theory.

  12. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  13. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  14. Adenosine-Induced Atrial Fibrillation: Localized Reentrant Drivers in Lateral Right Atria due to Heterogeneous Expression of Adenosine A1 Receptors and GIRK4 Subunits in the Human Heart.

    Science.gov (United States)

    Li, Ning; Csepe, Thomas A; Hansen, Brian J; Sul, Lidiya V; Kalyanasundaram, Anuradha; Zakharkin, Stanislav O; Zhao, Jichao; Guha, Avirup; Van Wagoner, David R; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Biesiadecki, Brandon J; Hummel, John D; Weiss, Raul; Fedorov, Vadim V

    2016-08-09

    Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; Phearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; Phuman heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. © 2016 American Heart Association, Inc.

  15. In vitro suppression of K65R reverse transcriptase-mediated tenofovir- and adefovir-5'-diphosphate resistance conferred by the boranophosphonate derivatives.

    Science.gov (United States)

    Frangeul, Antoine; Barral, Karine; Alvarez, Karine; Canard, Bruno

    2007-09-01

    9-[2-(Boranophosphonomethoxy)ethyl]adenine diphosphate (BH(3)-PMEApp) and (R)-9-[2-(boranophosphonomethoxy)propyl]adenine diphosphate (BH(3)-PMPApp), described here, represent the first nucleoside phosphonates modified on their alpha-phosphates that act as efficient substrates for the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). These analogues were synthesized and evaluated for their in vitro activity against wild-type (WT), K65R, and R72A RTs. BH(3)-PMEApp and BH(3)-PMPApp exhibit the same inhibition properties as their nonborane analogues on WT RT. However, K65R RT was found hypersensitive to BH(3)-PMEApp and as sensitive as WT RT to BH(3)-PMPApp. Moreover, the presence of the borane group restores incorporation of the analogue by R72A HIV RT, the latter being nearly inactive with regular nucleotides. The BH(3)-mediated suppression of HIV-1 RT resistance, formerly described with nucleoside 5'-(alpha-p-borano)-triphosphate analogues, is thus also conserved at the phosphonate level. The present results show that an alpha-phosphate modification is also possible and interesting for phosphonate analogues, a result that might find application in the search for a means to control HIV RT-mediated drug resistance.

  16. Release of adenosine from human neutrophils stimulated by platelet activating factor, leukotriene B4 and opsonized zymosan

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1992-01-01

    Full Text Available Isolated human polymorphonuclear leukocytes (PMNL stimulated by platelet activating factor (PAF, leukotriene B4 (LTB4 or opsonized zymosan (OZ released adenosine measured by thermospray high performance liquid chromatography mass spectrometry in the cell-free supernatants. Stimulation by PAF or LTB4 resulted in a bellshaped concentration-effect curve; 5 × 10−7 M PAF, 10−8 M LTB4 and 500 μg ml−1 OZ induced peak adenosine release, thus cytotoxic concentrations did not elevate adenosine level in the supernatants. Therefore adenosine release was characteristic of viable cells. As calculated from concentration-effect curves, the rank order of potency for adenosine release was PAF > LTB > OZ. These resuits suggest that adenosine, when bound specifically to membrane receptor sites, may initiate signal transduction, and, in co-operation with other inflammatory mediators, may modulate phagocyte function, e.g. production of chemoluminescence (CL.

  17. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum.

    Science.gov (United States)

    Melani, Alessia; Corti, Francesca; Stephan, Holger; Müller, Christa E; Donati, Chiara; Bruni, Paola; Vannucchi, Maria Giuliana; Pedata, Felicita

    2012-01-01

    In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively. In the presence of the novel ecto-ATPase inhibitor, PV4 (100 nmol/L), the extracellular concentration of ATP increased 12-fold to ~360 nmol/L but the adenosine concentration was not altered. This demonstrates that, under physiological conditions, adenosine is not a product of extracellular ATP. In the first 4h after ischemia, adenosine increased to ~690 nmol/L and ATP to ~50 nmol/L. In the presence of PV4 the extracellular concentration of ATP was in the range of 450 nmol/L and a significant decrease in extracellular adenosine (to ~270 nmol/L) was measured. The contribution of extracellular ATP to extracellular adenosine was maximal in the first 20 min after ischemia onset. Furthermore we demonstrated, by immunoelectron microscopy, the presence of the concentrative nucleoside transporter CNT2 on plasma and vesicle membranes isolated from the rat striatum. These results are in favor that adenosine is transported in vesicles and is released in an excitation-secretion manner under in vivo physiological conditions. Early after ischemia, extracellular ATP is hydrolyzed by ecto-nucleotidases which significantly contribute to the increase in extracellular adenosine. To establish the contribution of extracellular ATP to adenosine might constitute the basis for devising a correct putative purinergic strategy aimed at protection from ischemic damage

  18. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  19. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Gopinath, G.; Naojee, S.A.; Croasdale, J.; Johnson, G.; Hilson, A.J.W.; Buscombe, J.R.

    2003-01-01

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  20. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  1. Safety of and tolerance to adenosine infusion for myocardial perfusion single-photon emission computed tomography in a Japanese population.

    Science.gov (United States)

    Hatanaka, Kunihiko; Doi, Masayuki; Hirohata, Satoshi; Kamikawa, Shigeshi; Kaji, Yoko; Katoh, Tsutomu; Kusachi, Shozo; Ninomiya, Yoshifumi; Ohe, Tohru

    2007-06-01

    Adenosine has been available for use in myocardial perfusion single-photon emission computed tomography (SPECT) in Japan since 2005. The purpose of this study was to evaluate the safety of and tolerance to thallium-201 myocardial perfusion SPECT with intravenous adenosine infusion in Japanese patients with suspected coronary artery disease. Two hundred and six consecutive patients who underwent an adenosine infusion (120 mug . kg(-1) . min(-1)) SPECT at Sumitomo Besshi Hospital (Niihama, Japan) were investigated. The effects of adenosine infusion were monitored for each patient. A coronary angiography was performed in 81 patients. Adenosine infusion significantly decreased blood pressure and increased heart rate. Adverse reactions were observed in 161 patients (78.2%). Most reactions were transient, disappearing soon after the termination of adenosine infusion. No serious adverse reactions, such as acute myocardial infarction or death, occurred. Adenosine infusion was terminated in 3 patients (1.5%) because of near syncope or sustained 2:1 atrioventricular block. Electrocardiographic changes occurred in 15 patients (7.3%). Self-assessed scoring after SPECT showed that the patients were very tolerant (74.6% of 177 patients) of adenosine infusion myocardial SPECT. The sensitivity and specificity were 75.0% and 69.7%, respectively. Adenosine infusion myocardial SPECT is safe and well tolerated in the Japanese population, despite the frequent occurrence of minor adverse reactions.

  2. Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes.

    Science.gov (United States)

    Nassi, Alberto; Malorgio, Francesca; Tedesco, Serena; Cignarella, Andrea; Gaion, Rosa Maria

    2016-02-16

    Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. Male Sprague-Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological

  3. Artificial oxygen carrier with pharmacologic actions of adenosine-5'-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions.

    Science.gov (United States)

    Simoni, Jan; Simoni, Grace; Moeller, John F; Feola, Mario; Wesson, Donald E

    2014-08-01

    Effective artificial oxygen carriers may offer a solution to tackling current transfusion medicine challenges such as blood shortages, red blood cell storage lesions, and transmission of emerging pathogens. These products, could provide additional therapeutic benefits besides oxygen delivery for an array of medical conditions. To meet these needs, we developed a hemoglobin (Hb)-based oxygen carrier, HemoTech, which utilizes the concept of pharmacologic cross-linking. It consists of purified bovine Hb cross-linked intramolecularly with open ring adenosine-5'-triphosphate (ATP) and intermolecularly with open ring adenosine, and conjugated with reduced glutathione (GSH). In this composition, ATP prevents Hb dimerization, and adenosine promotes formation of Hb polymers as well as counteracts the vasoconstrictive and pro-inflammatory properties of Hb via stimulation of adenosine receptors. ATP also serves as a regulator of vascular tone through activation of purinergic receptors. GSH blocks Hb's extravasation and glomerular filtration by lowering the isoelectric point, as well as shields heme from nitric oxide and reactive oxygen species. HemoTech and its manufacturing technology have been broadly tested, including viral and prion clearance validation studies and various nonclinical pharmacology, toxicology, genotoxicity, and efficacy tests. The clinical proof-of-concept was carried out in sickle cell anemia subjects. The preclinical and clinical studies indicate that HemoTech works as a physiologic oxygen carrier and has efficacy in treating: (i) acute blood loss anemia by providing a temporary oxygen bridge while stimulating an endogenous erythropoietic response; (ii) sickle cell disease by counteracting vaso-occlusive/inflammatory episodes and anemia; and (iii) ischemic vascular diseases particularly thrombotic and restenotic events. The pharmacologic cross-linking of Hb with ATP, adenosine, and GSH showed usefulness in designing an artificial oxygen carrier for

  4. Nicotinamide starvation and inhibition of poly(ADP-Ribose) synthesis enhance the induced mutation in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Okada, Gensaku; Kaneko, Ichiro; Mitsui, Hideki.

    1987-01-01

    The effects of nicotinamide (NA) deficiency and added NA and 3-aminobenzamide (3AB) on the cytotoxicity and the induction of mutations in Chinese hamster V79-14 cells were investigated. In NA deficiency the addition of NA (up to 4 mM) and 3AB (up to 7.5 mM) was not cytotoxic. The presence of NA prior to exposure to mitomycin C (MMC) or γ-rays produced a dose-dependent increase in the relative cloning ability of DNA-damaged cells. The lethality of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was significantly potentiated by pre-treatment with 5 mM 3AB, but no potentiation by 3AB was observed for MMC, ultraviolet (UV)-B light, or γ-rays. Among cells pre-cultured in NA-free medium there were increased frequencies of mutations at both the hypoxanthineguanine phosphoribosyltransferase (HGPRT) and the adenine phosphoribosyltransferase (APRT) loci following DNA damage. The enhancing effect by NA deficiency was time-dependent. Incubation with NA prior to DNA damage produced a significant reduction in the frequency of mutations. The addition of 3AB to the nicotinamide adenine dinucleotide (NAD + )-depleted cell cultures before or after the DNA damage also strongly increased the frequency of induced mutations, with increasing concentrations of 3AB up to 5 mM, but the frequency was reduced at higher concentrations. The interaction between NA deficiency and the addition of 3AB appears to act synergistically on mutation induction. A correlation was observed between the potential of inhibiting poly (ADP-ribose) polymerase and the enhancement of mutation frequency. (author)

  5. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    Science.gov (United States)

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  6. Regulation of Renin Release via Cyclic ADP-Ribose-Mediated Signaling: Evidence from Mice Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2013-01-01

    Full Text Available Background/Aims: Despite extensive studies, the intracellular regulatory mechanism of renin production and release is still poorly understood. The present study was designed to test whether CD38-ADP-ribosylcyclase signaling pathway contributes to the regulation of renin production and release, and to examine whether CD38 gene knockout (CD38-/- can change this important renal endocrinal function. Methods: ADP–ribosylcyclase activity was estimated utilizing HPLC, cADPR levels from western blot, plasma renin activity from RIA kit, urinary sodium and potassium excretion from fame photometry. Results: The expression of CD38 and the activity of ADP-ribosylcyclase to produce cyclic ADP-ribose (cADPR were nearly abolished in the kidney from CD38-/- mice, indicating that CD38 gene is a major enzyme responsible for the generation of cADPR in vivo. Mice lacking CD38 gene showed increased plasma renin activity (PRA in either conscious or anesthetized status (P+/+ and CD38-/- mice. In acute experiments, it was demonstrated that plasma renin activity (PRA significantly increased upon isoprenaline infusion in CD38-/- mice compared to CD38+/+ mice. Accompanied with such increase in PRA, glomerular filtration rate (GFR, renal blood flow (RBF, urine volume (UV and sodium excretion (UNaV more significantly decreased in CD38-/- than CD38+/+ mice. Similarly, more increases in PRA but more decreases in GFR, RBF, UV and UNaV were observed in CD38-/- than CD38+/+ mice when they had a low renal perfusion pressure (RPP. Conclusion: CD38-cADPR-mediated signaling may importantly contribute to the maintenance of low PRA and participate in the regulation of renal hemodynamics and excretory function in mice.

  7. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  8. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    Science.gov (United States)

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Acute rejection after kidney transplantation promotes graft fibrosis with elevated adenosine level in rat.

    Directory of Open Access Journals (Sweden)

    Mingliang Li

    Full Text Available Chronic allograft nephropathy is a worldwide issue with the major feature of progressive allograft fibrosis, eventually ending with graft loss. Adenosine has been demonstrated to play an important role in process of fibrosis. Our study aimed to investigate the relationship between adenosine and fibrosis in renal allograft acute rejection in rat.Wistar rats and SD rats were selected as experimental animals. Our study designed two groups. In the allograft transplantation group, kidneys of Wistar rats were orthotopically transplanted into SD rat recipients, the same species but not genetically identical, to induce acute rejection. Kidney transplantations of SD rats to SD rats which were genetically identical were served as the control. We established rat models and detected a series of indicators. All data were analyzed statistically. P<0.05 was considered statistically significant.Compared with the control group, levels of adenosine increased significantly in the allograft transplantation group, in which acute rejection was induced (P<0.05. Progressive allograft fibrosis as well as collagen deposition were observed.These findings suggested that level of adenosine was upregulated in acute rejection after kidney allograft transplantation in rat. Acute rejection may promote renal allograft fibrosis via the adenosine signaling pathways.

  10. Circadian variations of adenosine level in blood and liver and its possible physiological significance.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Díaz-Muñoz, M; Villalobos, R; Glender, W; Vidrio, S; Suárez, J; Yañez, L

    1983-09-12

    The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.

  11. Coronary Vasospasm While Treating Supraventricular Tachycardia: Is Adenosine Really to Blame?

    Science.gov (United States)

    Quevedo, Henry C.; Pinto Miranda, Veronica; Sequeira, Rafael F.

    2013-01-01

    Coronary artery spasm has been reported during adenosine stress testing. Herein, we describe a transient ST-segment elevation following adenosine therapy for supraventricular tachycardia. A 38-year-old male presented to the emergency department with palpitations. Electrocardiogram showed supraventricular tachycardia with short RP interval. Vagal maneuvers were unsuccessful. Adenosine was then administered in two successive injections of 6 and 12 mg dosages, respectively. A subsequent 12-lead electrocardiogram revealed ST-segment elevation in inferior leads with reciprocal changes. Coronary angiography disclosed nonobstructive coronary disease. A postprocedure electrocardiogram exhibited normal sinus rhythm with nonspecific T wave abnormalities. Cardiac biomarkers were elevated with a peak troponin I of 0.32. Echocardiogram depicted bicuspid aortic valve and normal systolic function. Electrophysiological study revealed a concealed left accessory pathway and successful radiofrequency ablation was performed. Given the dynamic changes in the electrocardiogram, we hypothesize that this event was most likely a coronary vasospasm. The mechanism of coronary spasm following adenosine injection remains uncertain. Potential mediators include KATP channels and adenosine-2 receptors. PMID:24826297

  12. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass.

    Science.gov (United States)

    Kerbaul, François; Bénard, Frédéric; Giorgi, Roch; Youlet, By; Carrega, Louis; Zouher, Ibrahim; Mercier, Laurence; Gérolami, Victoria; Bénas, Vincent; Blayac, Dorothée; Gariboldi, Vlad; Collart, Frédéric; Guieu, Régis

    2008-08-01

    Adenosine (ADO) is an endogenous nucleoside, which has been involved in blood pressure failure during severe systemic inflammatory response syndrome (severe SIRS) after cardiac surgery with cardiopulmonary bypass (CPB). Adenosine acts via its receptor subtypes, namely A1, A2A, A2B, or A3. Because A2A receptors are implicated in vascular tone, their expression might contribute to severe SIRS. We compared adenosine plasma levels (APLs) and A2A ADO receptor expression (ie, B, K, and mRNA amount) in patients with or without postoperative SIRS. : This was a prospective comparative observational study. Forty-four patients who underwent cardiac surgery involving CPB. Ten healthy subjects served as controls. Among the patients, 11 presented operative vasoplegia and postoperative SIRS (named complicated patients) and 33 were without vasoplegia or SIRS (named uncomplicated patients). Adenosine plasma levels, K, B, and mRNA amount (mean +/- SD) were measured on peripheral blood mononuclear cells. Adenosine plasma levels, B, and K were significantly higher in complicated patients than in uncomplicated patients (APLs: 2.7 +/- 1.0 vs 1.0 +/- 0.5 micromol l, P SIRS after CPB.

  13. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  14. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    Science.gov (United States)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  15. Adenosine Deaminase Inhibitor EHNA Exhibits a Potent Anticancer Effect Against Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakajima

    2015-01-01

    Full Text Available Background/Aims: Malignant pleural mesothelioma (MPM is an aggressive malignant tumor and an effective therapy has been little provided as yet. The present study investigated the possibility for the adenosine deaminase (ADA inhibitor EHNA as a target of MPM treatment. Methods: MTT assay, TUNEL staining, monitoring of intracellular adenosine concentrations, and Western blotting were carried out in cultured human MPM cell lines without and with knocking-down ADA. The in vivo effect of EHNA was assessed in mice inoculated with NCI-H2052 MPM cells. Results: EHNA induced apoptosis of human MPM cell lines in a concentration (0.01-1 mM- and treatment time (24-48 h-dependent manner, but such effect was not obtained with another ADA inhibitor pentostatin. EHNA increased intracellular adenosine concentrations in a treatment time (3-9 h-dependent manner. EHNA-induced apoptosis of MPM cells was mimicked by knocking-down ADA, and the effect was neutralized by the adenosine kinase inhibitor ABT-702. EHNA clearly suppressed tumor growth in mice inoculated with NCI-H2052 MPM cells. Conclusion: The results of the present study show that EHNA induces apoptosis of MPM cells by increasing intracellular adenosine concentrations, to convert to AMP, and effectively prevents MPM cell proliferation. This suggests that EHNA may be useful for treatment of the tragic neoplasm MPM.

  16. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  17. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda.

    Science.gov (United States)

    Kim, Sang-Min; Kuzuyama, Tomohisa; Kobayashi, Akio; Sando, Tomoki; Chang, Yung-Jin; Kim, Soo-Un

    2008-01-01

    Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.

  18. Effect of fructose diphosphate combined with large-dose vitamin C therapy on the myocardial oxidative stress injury after neonatal asphyxia

    Directory of Open Access Journals (Sweden)

    Chun-Hua Liang1

    2017-04-01

    Full Text Available Objective: To study the effect of fructose diphosphate combined with large-dose vitamin C therapy on the myocardial oxidative stress injury after neonatal asphyxia. Methods: 40 patients with neonatal asphyxia who were treated in our hospital between June 2013 and April 2016 were collected and divided into the control group (n=20 who received large-dose vitamin C therapy and the observation group (n=20 who received fructose diphosphate combined with large-dose vitamin C therapy according to the double-blind randomized control method, and the treatment lasted for 10 d. Immediately after admission and after 10 d of treatment, RIA method was used to detect the serum levels of oxidative stress indexes, color Doppler diasonograph was used to determine left cardiac function parameters, and the myocardial enzyme spectrum detector was used to determine myocardial enzyme spectrum index levels. Results: Immediately after admission, the differences in the systemic oxidative stress degree, the left cardiac function damage degree and the myocardial enzyme spectrum index levels were not statistically significant between two groups of patients (P>0.05. After 10 d of treatment, serum malondialdehyde (MDA, advanced oxidation protein products (AOPP, creatine kinase isoenzyme (CK-MB, N-terminal pro-brain natriuretic peptide (Nt-proBNP, heart-type fatty acid-binding protein (H-FABP and troponin I (cTnI contents of observation group were lower than those of control group (P<0.05 while superoxide dismutase (SOD content was higher than that of control group (P<0.05, and the left cardiac function parameter ejection time (ET level was higher than that of control group (P<0.05 while left ventricular isovolumetric contraction time (ICT and left ventricular isovolumetric relaxation time (IRT levels were lower than those of control group (P<0.05. Conclusion: Fructose diphosphate combined with large-dose vitamin C can reduce the systemic oxidative stress of neonatal asphyxia

  19. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role.

    Science.gov (United States)

    Kovacs-Kasa, Anita; Kim, Kyung Mi; Cherian-Shaw, Mary; Black, Stephen M; Fulton, David J; Verin, Alexander D

    2018-08-01

    We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling.