WorldWideScience

Sample records for adeno-associated virus vector

  1. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  2. A novel and highly efficient production system for recombinant adeno-associated virus vector.

    Science.gov (United States)

    Wu, Zhijian; Wu, Xiaobing; Cao, Hui; Dong, Xiaoyan; Wang, Hong; Hou, Yunde

    2002-02-01

    Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/DeltaUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/DeltaUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28x10(4) particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  3. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    Science.gov (United States)

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  4. [Construction and identification of recombinant adeno-associated virus vector harboring fusion gene NT4-Apoptin-HA2-TAT].

    Science.gov (United States)

    Wang, Jian-Sheng; Zhang, Ming-Xin; Liu, De-Chun; Duan, Xiao-Yi; Zhou, Su-Na; Zhang, Guang-Jian; Yang, Guang-Xiao; Wang, Quan-Ying

    2008-08-01

    To construct a recombinant adeno-associated virus vector harboring fusion gene NT4-Apoptin-HA2-TAT, laying a foundation for gene therapy research of malignant tumors. The Apoptin and HA2-TAT gene were inserted in pUC19/NT4 vector after digested with restriction enzyme. The fusion gene of NT4-Apoptin-HA2-TAT was sub-cloned into the shuttle plasmid of adeno-associated virus; the products were co-transferred into HEK-293 cell line with helper plasmid pAAV/Ad and adeno-plasmid pFG140.The recombinant adeno-associated virus was produced by homologous recombination of above 3 plasmids in HEK-293 cells and its titer was measured by quantitative dot blot hybridization. The effect of AAV-NT4-Apoptin -HA2-TAT on HepG2 cell line was measured by a colorimetric 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The NT4-Apoptin-HA2-TAT was confirmed by restriction enzyme digestion and DNA sequencing. High titer of recombinant adeno-associated virus was obtained by homologous recombination in HEK-293 cells (3.14 x 10(15) pfu/L). AAV-NT4-Apoptin-HA2-TAT had strong deduce apoptosis effect on HepG2 cells. Compared with Adeno-associated mock virus and in normal cell line NIH3T3, Aden-associated virus NT4-Apoptin-HA2-TAT significantly decreased the survival rate of HepG2 cells. The recombinant adeno-associated virus vector encoding gene NT4-Apoptin-HA2-TAT has been successfully constructed in this experiment by molecular cloning and in vitro recombination techniques, laying a foundation for further research of gene therapy of cancer.

  5. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo.

    Science.gov (United States)

    Richter, M; Iwata, A; Nyhuis, J; Nitta, Y; Miller, A D; Halbert, C L; Allen, M D

    2000-04-27

    Adeno-associated virus (AAV) vectors might offer solutions for restenosis and angiogenesis by transducing nondividing cells and providing long-term gene expression. We investigated the feasibility of vascular cell transduction by AAV vectors in an in vivo rabbit carotid artery model. Time course of gene expression, inflammatory reaction to the vector, and effects of varying viral titer, exposure time, and intraluminal pressures on gene expression were examined. Recombinant AAV vectors with an Rous sarcoma virus promoter and alkaline phosphatase reporter gene were injected intraluminally into transiently isolated carotid segments. Following transduction, gene expression increased significantly over 14 days and then remained stable to 28 days, the last time point examined. Medial vascular smooth muscle cells were the main cell type transduced even with an intact endothelial layer. Increasing the viral titer and intraluminal pressure both enhanced transduction efficiency to achieve a mean of 34 +/- 7% of the subintimal layer of smooth muscle cells expressing gene product. A mild inflammatory reaction, composed of T cells with only rare macrophages, with minimal intimal thickening was demonstrated in 40% of transduced vessels; inflammatory cells were not detected in sham-operated control arteries. These findings demonstrate that AAV is a promising vector for intravascular applications in coronary and peripheral vascular diseases.

  6. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving...

  7. Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Anja K Gruenert

    Full Text Available Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2 vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss- DNA vector genome into double-stranded (ds- DNA. This step can be bypassed by using self-complementary (sc- AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV and 38.0±8.6% (ssAAV (p<0.001, respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.

  8. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?

    Science.gov (United States)

    Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L

    2017-06-01

    The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the

  9. Repeated Delivery of Adeno-Associated Virus Vectors to the Rabbit Airway

    Science.gov (United States)

    Beck, Suzanne E.; Jones, Lori A.; Chesnut, Kye; Walsh, Scott M.; Reynolds, Thomas C.; Carter, Barrie J.; Askin, Frederic B.; Flotte, Terence R.; Guggino, William B.

    1999-01-01

    Efficient local expression from recombinant adeno-associated virus (rAAV)-cystic fibrosis (CF) transmembrane conductance regulator (CFTR) vectors has been observed in the airways of rabbits and monkeys for up to 6 months following a single bronchoscopic delivery. However, it is likely that repeated administrations of rAAV vectors will be necessary for sustained correction of the CF defect in the airways. The current study was designed to test the feasibility of repeated airway delivery of rAAV vectors in the rabbit lung. After two doses of rAAV-CFTR to the airways, rabbits generated high titers of serum anti-AAV neutralizing antibodies. Rabbits then received a third dose of a rAAV vector containing the green fluorescent protein (GFP) reporter gene packaged in either AAV serotype 2 (AAV2) or serotype 3 (AAV3) capsids. Each dose consisted of 1 ml containing 5 × 109 DNase-resistant particles of rAAV vector, having no detectable replication-competent AAV or adenovirus. Three weeks later, GFP expression was observed in airway epithelial cells despite high anti-AAV neutralizing titers at the time of delivery. There was no significant difference in the efficiency of DNA transfer or expression between the rAAV3 and rAAV2 groups. No significant inflammatory responses to either repeated airway exposure to rAAV2-CFTR vectors or to GFP expression were observed. These experiments demonstrate that serum anti-AAV neutralizing antibody titers do not predict airway neutralization in vivo and that repeated airway delivery rAAV allows for safe and effective gene transfer. PMID:10516053

  10. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  11. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  12. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuohao [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kawabe, Yoshinori; Ito, Akira [Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kamihira, Masamichi, E-mail: kamihira@chem-eng.kyushu-u.ac.jp [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  13. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle

    Science.gov (United States)

    Schnepp, Bruce C.; Chulay, Jeffrey D.; Ye, Guo-Jie; Flotte, Terence R.; Trapnell, Bruce C.; Johnson, Philip R.

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects. PMID:26650966

  14. [Construction and identification of recombinant adeno-associated virus vector harboring fusion gene NT4-Ant-Shepherdin[79-87

    Science.gov (United States)

    Tang, Xiao-Jiang; Ping, Bao-Hua; Pan, Cheng-En; Yang, Guang-Xiao; Wang, Quan-Ying

    2008-12-01

    To construct a recombinant adeno-associated virus vector harboring fusion gene NT4-Ant-Shepherdin[79-87] and investigate Survivin as a anticancer therapeutic target by use of Shepherdin[79-87]. The gene of Ant-Shepherdin[79-87] was obtained by PCR and T-vector method. After inserted in PBV220-NT4 vector and digested with restricted enzyme, The fusion gene of NT4-Ant-Shepherdin[79-87] was sub-cloned into the shuttle plasmid of adeno-associated virus; the products were co-transferred into HEK-293 cell line with helper plasmid pAAV-Ad and adeno-plasmid pFG140. The recombinant adeno-associated virus was produced by homologous recombination of above 3 plasmids in HEK-293 cells and its titer was measured by Dot-blot hybridization. The effect of rAAV-NT4-Ant-Shepherdin[79-87] on A549 cell line was measured by a colorimetric 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. DNA sequencing results verified that the sequence of Ant-Shepherdin[79-87] was consistent with that we had designed. After transformed E.coli DH5alpha, a fragment of 321 bp was confirmed. High titer of recombinant adeno-associated virus was obtained by homologous recombination in HEK-293 cell lines (3.4x10(13)pfu/L). rAAV-NT4-Ant-Shepherdin[79-87] had strong induce apoptosis effect on A549 cells. The recombinant adeno-associated virus vector encoding fusion gene NT4-Ant-Shepherdin[79-87] is successfully constructed in this experiment by molecular cloning and in vitro recombination techniques, which provided the basis of further research of Survivin for cancer gene therapy.

  15. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  16. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors

    Science.gov (United States)

    Song, Sihong; Morgan, Michael; Ellis, Tamir; Poirier, Amy; Chesnut, Kye; Wang, Jianming; Brantly, Mark; Muzyczka, Nicholas; Byrne, Barry J.; Atkinson, Mark; Flotte, Terence R.

    1998-01-01

    Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-α promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 × 1013 particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 μg/ml in SCID and over 400 μg/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions. PMID:9826709

  17. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  18. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice

    Science.gov (United States)

    Goudy, Kevin; Song, Sihong; Wasserfall, Clive; Zhang, Y. Clare; Kapturczak, Matthias; Muir, Andrew; Powers, Matthew; Scott-Jorgensen, Marda; Campbell-Thompson, Martha; Crawford, James M.; Ellis, Tamir M.; Flotte, Terence R.; Atkinson, Mark A.

    2001-01-01

    The development of spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice provides for their use as a model of human type 1 diabetes. To test the feasibility of muscle-directed gene therapy to prevent type 1 diabetes, we developed recombinant adeno-associated virus (rAAV) vectors containing murine cDNAs for immunomodulatory cytokines IL-4 or IL-10. Skeletal muscle transduction of female NOD mice with IL-10, but not IL-4, completely abrogated diabetes. rAAV-IL-10 transduction attenuated the production of insulin autoantibodies, quantitatively reduced pancreatic insulitis, maintained islet insulin content, and altered splenocyte cytokine responses to mitogenic stimulation. The beneficial effects were host specific, as adoptive transfer of splenocytes from rAAV IL-10-treated animals rapidly imparted diabetes in naive hosts, and the cells contained no protective immunomodulatory capacity, as defined through adoptive cotransfer analyses. These results indicate the utility for rAAV, a vector with advantages for therapeutic gene delivery, to transfer immunoregulatory cytokines capable of preventing type 1 diabetes. In addition, these studies provide foundational support for the concept of using immunoregulatory agents delivered by rAAV to modulate a variety of disorders associated with deleterious immune responses, including allergic reactions, transplantation rejection, immunodeficiencies, and autoimmune disorders. PMID:11717448

  19. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors.

    Science.gov (United States)

    Guenzel, Adam J; Collard, Renata; Kraus, Jan P; Matern, Dietrich; Barry, Michael A

    2015-03-01

    Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined.

  20. Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Science.gov (United States)

    CHEN, SIFENG; KAPTURCZAK, MATTHIAS; LOILER, SCOTT A.; ZOLOTUKHIN, SERGEI; GLUSHAKOVA, OLENA Y.; MADSEN, KIRSTEN M.; SAMULSKI, RICHARD J.; HAUSWIRTH, WILLIAM W.; CAMPBELL-THOMPSON, MARTHA; BERNS, KENNETH I.; FLOTTE, TERENCE R.; ATKINSON, MARK A.; TISHER, C. CRAIG

    2006-01-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies. OVERVIEW SUMMARY Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been

  1. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  2. Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences

    OpenAIRE

    Weltner, J.; Anisimov, A.; Alitalo, K.; Otonkoski, T.; Trokovic, R.

    2012-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) by ectopic expression of key transcription factors. Current methods for the generation of integration-free iPSC are limited by the low efficiency of iPSC generation and by challenges in reprogramming methodology. Recombinant adeno-associated virus (rAAV) is a potent gene delivery vehicle capable of efficient transduction of transgenic DNA into cells. rAAV stays mainly as an episome in nondividing cells, and the extent ...

  3. Apparently nonspecific enzyme elevations after portal vein delivery of recombinant adeno-associated virus serotype 2 vector in hepatitis C virus-infected chimpanzees.

    Science.gov (United States)

    Flotte, Terence R; Goetzmann, Jason; Caridi, James; Paolillo, Joseph; Conlon, Thomas J; Potter, Mark; Mueller, Christian; Byrne, Barry J

    2008-07-01

    Hepatic gene transfer is envisioned as a substitute for protein replacement therapies, many of which are derived from blood products. Thus, the target populations may have a high prevalence of blood-borne pathogens, such as hepatitis C virus (HCV). We sought to determine whether the safety of recombinant adeno-associated virus serotype 2 (rAAV2) would be altered by preexisting HCV infection. Doses of approximately 1 x 10(13) vector genomes of an rAAV2-chimpanzee alpha(1)-antitrypsin (rAAV2-cAAT) vector were injected into the portal vein of each of three HCV genome-positive (HCV+) chimpanzees and three HCV-negative (HCV-) controls. Acute safety studies were performed up to 90 days after vector administration, along with analyses of the peripheral blood and liver tissue for rAAV2-cAAT genomes. Vector genome copy numbers in blood and liver tissue were similar in both groups. All animals demonstrated increases in liver and muscle enzyme levels after the pretreatment liver biopsy (5 days before vector injection) and after the vector injection. However, HCV+ animals demonstrated a substantially greater rise in aspartate aminotransferase, alanine aminotransferase, and creatinine phosphokinase values than HCV- animals. Histopathology demonstrated abnormal lipid accumulation (steatosis) in the hepatocytes of HCV+ animals, both before and after vector injection. These data indicate an increased susceptibility to subclinical liver toxicity from portal vein injection of rAAV2 in the presence of HCV infection.

  4. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  5. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made using a recombinant herpes simplex virus production method.

    Science.gov (United States)

    Chulay, Jeffrey D; Ye, Guo-Jie; Thomas, Darby L; Knop, David R; Benson, Janet M; Hutt, Julie A; Wang, Gensheng; Humphries, Margaret; Flotte, Terence R

    2011-02-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for gene therapy of alpha-1 antitrypsin (AAT) deficiency. A toxicology study in mice evaluated intramuscular injection of an rAAV vector expressing human AAT (rAAV-CB-hAAT) produced using a herpes simplex virus (HSV) complementation system or a plasmid transfection (TFX) method at doses of 3 × 10(11) vg (1.2 × 10(13) vg/kg) for both vectors and 2 × 10(12) vg (8 × 10(13) vg/kg) for the HSV-produced vector. The HSV-produced vector had favorable in vitro characteristics in terms of purity, efficiency of transduction, and hAAT expression. There were no significant differences in clinical findings or hematology and clinical chemistry values between test article and control groups and no gross pathology findings. Histopathological examination demonstrated minimal to mild changes in skeletal muscle at the injection site, consisting of focal chronic interstitial inflammation and muscle degeneration, regeneration, and vacuolization, in vector-injected animals. At the 3 × 10(11) vg dose, serum hAAT levels were higher with the HSV-produced vector than with the TFX-produced vector. With the higher dose of HSV-produced vector, the increase in serum hAAT levels was dose-proportional in females and greater than dose-proportional in males. Vector copy numbers in blood were highest 24 hr after dosing and declined thereafter, with no detectable copies present 90 days after dosing. Antibodies to hAAT were detected in almost all vector-treated animals, and antibodies to HSV were detected in most animals that received the highest vector dose. These results support continued development of rAAV-CB-hAAT for treatment of AAT deficiency.

  6. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  7. Adeno-associated Virus Vectors Efficiently Transduce Mouse and Rabbit Sensory Neurons Coinfected with Herpes Simplex Virus 1 following Peripheral Inoculation.

    Science.gov (United States)

    Watson, Zachary L; Ertel, Monica K; Lewin, Alfred S; Tuli, Sonal S; Schultz, Gregory S; Neumann, Donna M; Bloom, David C

    2016-09-01

    Following infection of epithelial tissues, herpes simplex virus 1 (HSV-1) virions travel via axonal transport to sensory ganglia and establish a lifelong latent infection within neurons. Recent studies have revealed that, following intraganglionic or intrathecal injection, recombinant adeno-associated virus (rAAV) vectors can also infect sensory neurons and are capable of stable, long-term transgene expression. We sought to determine if application of rAAV to peripheral nerve termini at the epithelial surface would allow rAAV to traffic to sensory ganglia in a manner similar to that seen with HSV. We hypothesized that footpad or ocular inoculation with rAAV8 would result in transduction of dorsal root ganglia (DRG) or trigeminal ganglia (TG), respectively. To test this, we inoculated the footpads of mice with various amounts of rAAV as well as rAAV capsid mutants. We demonstrated that this method of inoculation can achieve a transduction rate of >90% of the sensory neurons in the DRG that innervate the footpad. Similarly, we showed that corneal inoculation with rAAV vectors in the rabbit efficiently transduced >70% of the TG neurons in the optic tract. Finally, we demonstrated that coinfection of mouse footpads or rabbit eyes with rAAV vectors and HSV-1 resulted in colocalization in nearly all of the HSV-1-positive neurons. These results suggest that rAAV is a useful tool for the study of HSV-1 infection and may provide a means to deliver therapeutic cargos for the treatment of HSV infections or of dysfunctions of sensory ganglia. Adeno-associated virus (AAV) has been shown to transduce dorsal root ganglion sensory neurons following direct intraganglionic sciatic nerve injection and intraperitoneal and intravenous injection as well as intrathecal injection. We sought to determine if rAAV vectors would be delivered to the same sensory neurons that herpes simplex virus (HSV-1) infects when applied peripherally at an epithelial surface that had been treated to expose

  8. Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites.

    Science.gov (United States)

    Flotte, Terence R; Conlon, Thomas J; Poirier, Amy; Campbell-Thompson, Martha; Byrne, Barry J

    2007-03-01

    To translate the potential advantages of recombinant adeno-associated virus type 1 (rAAV1) vectors into a clinical application for muscle-directed gene therapy for alpha1 -antitrypsin (AAT) deficiency, we performed safety studies in 170 C57BL/6 mice and 26 New Zealand White rabbits. A mouse toxicology study included 8 cohorts of 10 mice each (5 per sex). Mice were killed either 21 or 90 days after intramuscular injection of doses ranging up to 1x10(13)vector genomes (VG), equivalent to 4 x 10(14)VG/kg. A mouse biodistribution study was performed in 5 cohorts of 10 mice, receiving intramuscular injections at the same doses; as well as in a lower dose cohort (3 x 10(8) VG; equivalent to 1.2 x 10(10)VG/kg); and in 4 other cohorts (excluding the vehicle control) injected with identical doses intravenously. Finally, biodistribution was examined in rabbits, with serial collection of blood and semen, as well as terminal tissue collection. Two significant findings were present, both of which were dose dependent. First, inflammatory cell infiltrates were detected at the site of injection 21, 60, or 90 days after intramuscular injection of 1 x 10(13)VG. This was not associated with loss of transgene expression. Second, vector DNA sequences were detected in most animals, levels being highest with the highest doses and earliest time points. Vector DNA was also present in liver, spleen, kidneys, and a number of other organs, including the gonads of animals receiving the highest dose. Likewise, vector DNA was present in the semen of male rabbits at higher doses. The copy number of vector DNA in the blood and semen declined over time throughout the study. These two dose-dependent findings have served to guide to the design of a phase 1 human trial of rAAV1-AAT.

  9. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction.

    Science.gov (United States)

    Tao, Yong; Huang, Mingqian; Shu, Yilai; Ruprecht, Adam; Wang, Hongyang; Tang, Yong; Vandenberghe, Luk H; Wang, Qiuju; Gao, Guangping; Kong, Wei-Jia; Chen, Zheng-Yi

    2018-01-22

    Hearing loss, including genetic hearing loss, is one of the most common forms of sensory deficits in humans with limited options of treatment. Adeno-associated virus (AAV)-mediated gene transfer has been shown to recover auditory functions effectively in mouse models of genetic deafness when delivered at neonatal stages. However, the mouse cochlea is still developing at those time points, whereas in humans, the newborn inner ears are already fully mature. For effective gene therapy to treat genetic deafness, it is necessary to determine whether AAV-mediated therapy can be equally effective in the fully mature mouse inner ear without causing damage to the inner ear. This study tested several AAV serotypes by canalostomy in adult mice. It is shown that most AAVs transduce the sensory inner hair cells efficiently, but are less efficient at transducing outer hair cells. A subset of AAVs also transduces non-sensory cochlear cell types. Neither the surgical procedure of canalostomy nor the AAV serotypes damage hair cells or impair normal hearing. The studies indicate that canalostomy can be a viable route for safe and efficient gene delivery, and they expand the repertoire of AAVs to target diverse cell types in the adult inner ear.

  10. Inflammation and Immune Response of Intra-Articular Serotype 2 Adeno-Associated Virus or Adenovirus Vectors in a Large Animal Model

    Directory of Open Access Journals (Sweden)

    Akikazu Ishihara

    2012-01-01

    Full Text Available Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad, serotype 2 adeno-associated virus vectors (rAAV2, or self-complementary (sc AAV2 vectors carrying green fluorescent protein (GFP. Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.

  11. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults.

    Science.gov (United States)

    Brantly, Mark L; Spencer, L Terry; Humphries, Margaret; Conlon, Thomas J; Spencer, Carolyn T; Poirier, Amy; Garlington, Wendy; Baker, Dawn; Song, Sihong; Berns, Kenneth I; Muzyczka, Nicholas; Snyder, Richard O; Byrne, Barry J; Flotte, Terence R

    2006-12-01

    A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) alpha1-antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male. All subjects were either homozygous for the most common AAT mutation (a missense mutation designated PI*Z) or compound heterozygous for PI*Z and another mutation known to cause disease. There were four dose cohorts, ranging from 2.1 x 10(12) vector genomes (VG) to 6.9 x 10(13) VG, with three subjects per cohort. Subjects were injected sequentially in a dose-escalating fashion with a minimum of 14 days between patients. Subjects who had been receiving AAT protein replacement discontinued that therapy 28 days before vector administration. There were no vector-related serious adverse events in any of the 12 participants. Vector DNA sequences were detected in the blood between 1 and 3 days after injection in nearly all patients receiving doses of 6.9 x 10(12) VG or higher. Anti-AAV2 capsid antibodies were present and rose after vector injection, but no other immune responses were detected. One subject who had not been receiving protein replacement exhibited low-level expression of wild-type M-AAT in the serum (82 nM), which was detectable 30 days after receiving an injection of 2.1 x 10(13) VG. Unfortunately, residual but declining M-AAT levels from the washout of the protein replacement elevated background levels sufficiently to obscure any possible vector expression in that range in most of the other individuals in the higher dose cohorts.

  12. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  13. Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo

    NARCIS (Netherlands)

    van Dijk, Remco; Montenegro-Miranda, Paula S.; Riviere, Christel; Schilderink, Ronald; ten Bloemendaal, Lysbeth; van Gorp, Jacqueline; Duijst, Suzanne; de Waart, Dirk R.; Beuers, Ulrich; Haisma, Hidde J.; Bosma, Piter J.

    2013-01-01

    Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase

  14. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  15. Introduction of tau mutation into cultured Rat1-R12 cells by gene targeting, using recombinant adeno-associated virus vector.

    Science.gov (United States)

    Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Kato, Nobumasa; Ebisawa, Takashi

    2009-07-01

    We aim to develop a cultured cell model, to serve as a system with which the altered circadian phenotypes produced by the clock gene variations could be studied in vitro. Tau mutation, which shortens the circadian period of hamsters and mice, was introduced into the CK1epsilon locus of cultured Rat1-R12 cells by gene targeting mediated by a recombinant adeno-associated virus (rAAV) vector. After transduction of Rat1-R12 cells with rAAV, about 0.14% of the drug-resistant cells underwent gene targeting at CK1epsilon locus. Of the three clones isolated, only one carried the targeted allele of tau mutation and two carried the targeted wild-type allele. The clone with the targeted tau mutant allele exhibited a significantly shorter circadian period compared to the clone with targeted wild-type allele. rAAV-mediated gene targeting in cultured somatic cells is a convenient and powerful tool for analyzing the phenotypic outcome of clock gene variations, and for elucidating the pathogenesis of the disorders associated with abnormal circadian rhythmicity.

  16. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  17. Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Demaster, Amanda; Luo, Xiaoyan; Curtis, Sarah; Williams, Kyha D.; Landau, Dustin J.; Drake, Elizabeth J.; Kozink, Daniel M.; Bird, Andrew; Crane, Bayley; Sun, Francis; Pinto, Carlos R.; Brown, Talmage T.; Kemper, Alex R.

    2012-01-01

    Abstract Glycogen storage disease type Ia (GSD-Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), primarily found in liver and kidney, which causes life-threatening hypoglycemia. Dogs with GSD-Ia were treated with double-stranded adeno-associated virus (AAV) vectors encoding human G6Pase. Administration of an AAV9 pseudotyped (AAV2/9) vector to seven consecutive GSD-Ia neonates prevented hypoglycemia during fasting for up to 8 hr; however, efficacy eventually waned between 2 and 30 months of age, and readministration of a new pseudotype was eventually required to maintain control of hypoglycemia. Three of these dogs succumbed to acute hypoglycemia between 7 and 9 weeks of age; however, this demise could have been prevented by earlier readministration an AAV vector, as demonstrated by successful prevention of mortality of three dogs treated earlier in life. Over the course of this study, six out of nine dogs survived after readministration of an AAV vector. Of these, each dog required readministration on average every 9 months. However, two were not retreated until >34 months of age, while one with preexisting antibodies was re-treated three times in 10 months. Glycogen content was normalized in the liver following vector administration, and G6Pase activity was increased in the liver of vector-treated dogs in comparison with GSD-Ia dogs that received only with dietary treatment. G6Pase activity reached approximately 40% of normal in two female dogs following AAV2/9 vector administration. Elevated aspartate transaminase in absence of inflammation indicated that hepatocellular turnover in the liver might drive the loss of vector genomes. Survival was prolonged for up to 60 months in dogs treated by readministration, and all dogs treated by readministration continue to thrive despite the demonstrated risk for recurrent hypoglycemia and mortality from waning efficacy of the AAV2/9 vector. These preclinical data support the further translation of AAV

  18. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  19. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  20. In vivo post-transcriptional gene silencing of alpha-1 antitrypsin by adeno-associated virus vectors expressing siRNA.

    Science.gov (United States)

    Cruz, Pedro E; Mueller, Christian; Cossette, Travis L; Golant, Alexandra; Tang, Qiushi; Beattie, Stuart G; Brantly, Mark; Campbell-Thompson, Martha; Blomenkamp, Keith S; Teckman, Jeffrey H; Flotte, Terence R

    2007-09-01

    alpha-1 Antitrypsin (AAT) deficiency is one of the most common genetic diseases in North America, with a carrier frequency of approximately 4% in the US population. Homozygosity for the most common mutation (Glu342Lys, PI(*)Z) leads to the synthesis of a mutant protein, which accumulates and polymerizes within hepatocytes rather than being efficiently secreted. This lack of secretion causes severe serum deficiency predisposing to chronic lung disease. Twelve to fifteen percent of patients with PI(*)ZZ also develop liver disease, which can be severe, even in infancy. This is thought to be due to toxic effects of the accumulated mutant Z-AAT within the hepatocyte. Thus, an approach to reduce AAT-deficient liver disease will likely require some mechanism to decrease the amount of Z-AAT within hepatocytes. In this report, we describe studies of small-interfering RNAs (siRNAs) designed to downregulate endogenous AAT within hepatocytes. Three different siRNA sequences were identified and cloned into a recombinant adeno-associated virus (rAAV) backbone, either singly or as a trifunctional (3X) construct. Each had activity independently, but the levels of AAT expression in cell culture models showed the greatest decrease with the 3X construct, resulting in levels that were five-fold lower than controls. The rAAV-3X-siRNA was then packaged into AAV8 capsids and used in vivo to transduce the livers of human Z-AAT overexpressing transgenic mice. Those studies showed a decrease in total human AAT, a clearing of Z-AAT accumulation by immunohistochemistry, and a decrease in monomer Z-AAT within the liver within 3 weeks after vector injection. The rAAV8-3X-siRNA vector may hold promise as a potential therapy for patients with AAT liver disease.

  1. Pharmacology of Recombinant Adeno-associated Virus Production

    Directory of Open Access Journals (Sweden)

    Magalie Penaud-Budloo

    2018-03-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input used in each platform and which related impurities can be expected in final products (output. The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious, residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses, and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.

  2. Delivery of recombinant adeno-associated virus by jet injection

    Czech Academy of Sciences Publication Activity Database

    Janousková, O.; Nellessen, T.; Štokrová, Jitka; Jinoch, P.; Šmahel, M.

    2003-01-01

    Roč. 12, č. 5 (2003), s. 687-691 ISSN 1107-3756 Institutional research plan: CEZ:AV0Z5052915 Keywords : jet injection * adeno-associated virus * gene therapy Subject RIV: EE - Microbiology, Virology Impact factor: 1.940, year: 2003

  3. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  4. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    Science.gov (United States)

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; Ferkol, Thomas; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be β-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag

  5. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  6. Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9

    Directory of Open Access Journals (Sweden)

    David H Stitelman

    2014-01-01

    Full Text Available Efficient gene transfer to muscle stem cells (satellite cells has not been achieved despite broad transduction of skeletal muscle by systemically administered adeno-associated virus serotype 2/9 (AAV-9 in mice. We hypothesized that cellular migration during fetal development would make satellite cells accessible for gene transfer following in utero intravascular injection. We injected AAV-9 encoding green fluorescent protein (GFP marker gene into the vascular space of mice ranging in ages from post-coital day 12 (E12 to postnatal day 1 (P1. Satellite cell transduction was examined using: immunohistochemistry and confocal microscopy, satellite cell migration assay, myofiber isolation and FACS analysis. GFP positive myofibers were detected in all mature skeletal muscle groups and up to 100% of the myofibers were transduced. We saw gestational variation in cardiac and skeletal muscle expression. E16 injection resulted in 27.7 ± 10.0% expression in satellite cells, which coincides with the timing of satellite cell migration, and poor satellite cell expression before and after satellite cell migration (E12 and P1. Our results demonstrate that efficient gene expression is achieved in differentiated myofibers and satellite cells after injection of AAV-9 in utero. These findings support the potential of prenatal gene transfer for muscle based treatment strategies.

  7. Factors influencing recombinant adeno-associated virus production.

    Science.gov (United States)

    Salvetti, A; Orève, S; Chadeuf, G; Favre, D; Cherel, Y; Champion-Arnaud, P; David-Ameline, J; Moullier, P

    1998-03-20

    Recombinant adeno-associated virus (rAAV) is produced by transfecting cells with two constructs: the rAAV vector plasmid and the rep-cap plasmid. After subsequent adenoviral infection, needed for rAAV replication and assembly, the virus is purified from total cell lysates through CsCl gradients. Because this is a long and complex procedure, the precise titration of rAAV stocks, as well as the measure of the level of contamination with adenovirus and rep-positive AAV, are essential to evaluate the transduction efficiency of these vectors in vitro and in vivo. Our vector core is in charge of producing rAAV for outside investigators as part of a national network promoted by the Association Française contre les Myopathies/Généthon. We report here the characterization of 18 large-scale rAAV stocks produced during the past year. Three major improvements were introduced and combined in the rAAV production procedure: (i) the titration and characterization of rAAV stocks using a stable rep-cap HeLa cell line in a modified Replication Center Assay (RCA); (ii) the use of different rep-cap constructs to provide AAV regulatory and structural proteins; (iii) the use of an adenoviral plasmid to provide helper functions needed for rAAV replication and assembly. Our results indicate that: (i) rAAV yields ranged between 10(11) to 5 x 10(12) total particles; (ii) the physical particle to infectious particle (measured by RCA) ratios were consistently below 50 when using a rep-cap plasmid harboring an ITR-deleted AAV genome; the physical particle to transducing particle ratios ranged between 400 and 600; (iii) the use of an adenoviral plasmid instead of an infectious virion did not affect the particles or the infectious particles yields nor the above ratio. Most of large-scale rAAV stocks (7/9) produced using this plasmid were free of detectable infectious adenovirus as determined by RCA; (iv) all the rAAV stocks were contaminated with rep-positive AAV as detected by RCA. In summary

  8. How to Successfully Screen Random Adeno-Associated Virus Display Peptide Libraries In Vivo.

    Science.gov (United States)

    Körbelin, Jakob; Trepel, Martin

    2017-06-01

    Adeno-associated virus (AAV) has emerged as a very promising gene therapy vector. To enable tissue-directed gene expression, many artificially generated AAV variants have been established, often isolated from large pools of mutated capsids. Random peptide libraries displayed on AAV capsids have been used successfully to select vectors targeted to a given target cell or tissue in vitro and in vivo. However, the published methodology for screening of AAV libraries to isolate vectors with selective tissue tropism after intravenous administration in vivo has not been described in sufficient detail to address all critical steps. A step-by-step protocol is provided here.

  9. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.

  10. Full-length dystrophin reconstitution with adeno-associated viral vectors.

    Science.gov (United States)

    Lostal, William; Kodippili, Kasun; Yue, Yongping; Duan, Dongsheng

    2014-06-01

    Duchenne muscular dystrophy (DMD) is the most common lethal muscle disorder in children. It is caused by mutations of the dystrophin gene. Adeno-associated virus (AAV)-mediated gene replacement therapy has been actively pursued to treat DMD. However, this promising therapeutic modality has been challenged by the small packaging capacity of the AAV vector. The size of the full-length dystrophin cDNA is >11 kb, while an AAV virus can carry only a 5 kb genome. Innovative high-capacity AAV vectors may offer an opportunity to express the full-length dystrophin coding sequence. Here we describe several sets of tri-AAV vectors for full-length human dystrophin delivery. In each set, the full-length human dystrophin cDNA was split into three fragments and independently packaged into separate recombinant AAV vectors. Each vector was engineered with unique recombination signals for directional recombination. Tri-AAV vectors were coinjected into the tibialis anterior muscle of dystrophin-deficient mdx4cv mice. Thirty-five days after injection, dystrophin expression was examined by immunofluorescence staining. Despite low reconstitution efficiency, full-length human dystrophin was successfully expressed from the tri-AAV vectors. Our results suggest that AAV can be engineered to express an extra-large (up to 15 kb) gene that is approximately three times the size of the wild-type AAV genome. Further optimization of the trivector strategy may expand the utility of AAV for human gene therapy.

  11. Biology of Adeno-Associated Viral Vectors in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Giridhar eMurlidharan

    2014-09-01

    Full Text Available Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS. In particular, Adeno-Associated Viruses (AAV have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.

  12. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  13. Adeno-associated virus-based gene therapy for inherited disorders.

    Science.gov (United States)

    Flotte, Terence R

    2005-12-01

    Adeno-associated virus vectors are capable of long-term gene transfer without obvious adverse effects in a number of animal models. Over the last two decades, preclinical and early phase clinical trials in cystic fibrosis and alpha-1 antitrypsin deficiency were undertaken to test the feasibility of this approach. The results of those studies have been important since they have indicated that in vivo gene transfer is feasible and relatively safe. In addition, a number of key limitations to the current generation of AAV2 gene therapy vectors have been defined. The information about these limitations has been used to develop newer AAV vector approaches, based on new mutant and alternative serotype capsids and enhanced promoter systems. The evaluation of safety and efficacy of these newer agents is ongoing.

  14. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    Science.gov (United States)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  15. Adeno-associated virus type 2 as an oncogenic virus in human hepatocellular carcinoma

    OpenAIRE

    Nault, Jean-Charles; Datta, Shalini; Imbeaud, Sandrine; Franconi, Andrea; Zucman-Rossi, Jessica

    2016-01-01

    Adeno-associated virus type 2 (AAV2) is a defective DNA virus that was previously considered to be non-pathogenic. We identified somatic AAV2 integration in a subset of 11 hepatocellular carcinomas (HCC) that mainly developed in normal liver without known etiology through recurrent insertional mutagenesis in cancer driver genes such as telomerase reverse transcriptase (TERT), cyclin A2 (CCNA2), cyclin E1 (CCNE1), tumor necrosis factor (ligand) superfamily, member 10 (TNFSF10), and lysine (K)-...

  16. Size does matter: overcoming the adeno-associated virus packaging limit

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2000-07-01

    Full Text Available Abstract Recombinant adeno-associated virus (rAAV vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm, which only permits the packaging of 4.7 kilobases (kb of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721 have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity.

  17. Size does matter: overcoming the adeno-associated virus packaging limit

    Science.gov (United States)

    Flotte, Terence R

    2000-01-01

    Recombinant adeno-associated virus (rAAV) vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm), which only permits the packaging of 4.7 kilobases (kb) of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721) have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity. PMID:11667959

  18. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  19. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease.

    Science.gov (United States)

    Gray-Edwards, Heather L; Randle, Ashley N; Maitland, Stacy A; Benatti, Hector R; Hubbard, Spencer M; Canning, Peter F; Vogel, Matthew B; Brunson, Brandon L; Hwang, Misako; Ellis, Lauren E; Bradbury, Allison M; Gentry, Atoska S; Taylor, Amanda R; Wooldridge, Anne A; Wilhite, Dewey R; Winter, Randolph L; Whitlock, Brian K; Johnson, Jacob A; Holland, Merilee; Salibi, Nouha; Beyers, Ronald J; Sartin, James L; Denney, Thomas S; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2017-09-18

    Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 10 13 vector genomes) or low (4.2 × 10 12 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.

  20. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  1. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    Science.gov (United States)

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  2. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression.

    Science.gov (United States)

    Mueller, Christian; Chulay, Jeffrey D; Trapnell, Bruce C; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A; McElvaney, Noel G; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R; Ye, Guo-Jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P; Vonderheide, Robert H; Hulme, Maigan A; Brusko, Todd M; Wilson, James M; Flotte, Terence R

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1-AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy.

  3. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  4. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    Science.gov (United States)

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction.

  5. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  6. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  7. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  8. Adeno-associated virus type 2 as an oncogenic virus in human hepatocellular carcinoma.

    Science.gov (United States)

    Nault, Jean-Charles; Datta, Shalini; Imbeaud, Sandrine; Franconi, Andrea; Zucman-Rossi, Jessica

    2016-03-01

    Adeno-associated virus type 2 (AAV2) is a defective DNA virus that was previously considered to be non-pathogenic. We identified somatic AAV2 integration in a subset of 11 hepatocellular carcinomas (HCC) that mainly developed in normal liver without known etiology through recurrent insertional mutagenesis in cancer driver genes such as telomerase reverse transcriptase (TERT), cyclin A2 (CCNA2), cyclin E1 (CCNE1), tumor necrosis factor (ligand) superfamily, member 10 (TNFSF10), and lysine (K)-specific methyltransferase 2B (KMT2B).

  9. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  10. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    International Nuclear Information System (INIS)

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.; Murrin, L. Charles; Lockridge, Oksana

    2006-01-01

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months in plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates

  11. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  12. Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid

    Science.gov (United States)

    Bell, Christie L.; Gurda, Brittney L.; Van Vliet, Kim; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering. PMID:22514350

  13. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  14. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  15. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  16. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...

  17. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2009-08-01

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  18. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  19. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  20. Proof-of-concept: neonatal intravenous injection of adeno-associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine.

    Science.gov (United States)

    Buckinx, R; Van Remoortel, S; Gijsbers, R; Waddington, S N; Timmermans, J-P

    2016-02-01

    Despite the success of viral vector technology in the transduction of the central nervous system in both preclinical research and gene therapy, its potential in neurogastroenterological research remains largely unexploited. This study asked whether and to what extent myenteric and submucosal neurons in the ileum and distal colon of the mouse were transduced after neonatal systemic delivery of recombinant adeno-associated viral vectors (AAVs). Mice were intravenously injected at postnatal day one with AAV pseudotypes AAV8 or AAV9 carrying a cassette encoding enhanced green fluorescent protein (eGFP) as a reporter under the control of a cytomegalovirus promoter. At postnatal day 35, transduction of the myenteric and submucosal plexuses of the ileum and distal colon was evaluated in whole-mount preparations, using immunohistochemistry to neurochemically identify transduced enteric neurons. The pseudotypes AAV8 and AAV9 showed equal potential in transducing the enteric nervous system (ENS), with 25-30% of the neurons expressing eGFP. However, the percentage of eGFP-expressing colonic submucosal neurons was significantly lower. Neurochemical analysis showed that all enteric neuron subtypes, but not glia, expressed the reporter protein. Intrinsic sensory neurons were most efficiently transduced as nearly 80% of calcitonin gene-related peptide-positive neurons expressed the transgene. The pseudotypes AAV8 and AAV9 can be employed for gene delivery to both the myenteric and the submucosal plexus, although the transduction efficiency in the latter is region-dependent. These findings open perspectives for novel preclinical applications aimed at manipulating and imaging the ENS in the short term, and in gene therapy in the longer term. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  1. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  2. Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

    Science.gov (United States)

    Haenraets, Karen; Foster, Edmund; Johannssen, Helge; Kandra, Vinnie; Frezel, Noémie; Steffen, Timothy; Jaramillo, Valeria; Paterna, Jean-Charles; Zeilhofer, Hanns Ulrich; Wildner, Hendrik

    2017-09-01

    Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

  3. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia. © 2015 International Society for

  4. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    Science.gov (United States)

    Flotte, Terence R; Trapnell, Bruce C; Humphries, Margaret; Carey, Brenna; Calcedo, Roberto; Rouhani, Farshid; Campbell-Thompson, Martha; Yachnis, Anthony T; Sandhaus, Robert A; McElvaney, Noel G; Mueller, Christian; Messina, Louis M; Wilson, James M; Brantly, Mark; Knop, David R; Ye, Guo-jie; Chulay, Jeffrey D

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes/kg (n=3 subjects/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  6. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  7. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  8. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Kaalberg, Emily E; Jiao, Chunhua; Riker, Megan J; Halder, Jennifer A; Luse, Meagan A; Han, Ian C; Russell, Stephen R; Sohn, Elliott H; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2018-02-23

    Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.

  9. Delivery of Adeno-Associated Virus Gene Therapy by Intravascular Limb Infusion Methods.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2015-09-01

    Recombinant adeno-associated virus (rAAV) can be delivered to the skeletal muscle of the limb (pelvic or thoracic) by means of regional intravascular delivery. This review summarizes the evolution of this technique to deliver rAAV either via the arterial blood supply or via the peripheral venous circulation. The focus of this review is on applications in large animal models, including preclinical studies. Based on this overview of past research, we aim to inform the design of preclinical and clinical studies.

  10. Inhalation of nebulized perfluorochemical enhances recombinant adenovirus and adeno-associated virus-mediated gene expression in lung epithelium.

    Science.gov (United States)

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J; Wang, Lili; Gao, Guang Ping; Kolls, Jay K; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J

    2012-04-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (pparallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression.

  11. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    Science.gov (United States)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  12. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches.

    Directory of Open Access Journals (Sweden)

    Li Xia

    Full Text Available Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs and 17% of outer hair cells (OHCs were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively was slightly higher, but the difference was not significant.

  13. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  14. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  15. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well...

  16. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    Science.gov (United States)

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-10-14

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland.

  17. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion.

    Science.gov (United States)

    Lerch, Thomas F; Xie, Qing; Chapman, Michael S

    2010-07-20

    Adeno-associated viruses (AAVs) are leading candidate vectors for human gene therapy. AAV serotypes have broad cellular tropism and use a variety of cellular receptors. AAV serotype 3 binds to heparan sulfate proteoglycan prior to cell entry and is serologically distinct from other serotypes. The capsid features that distinguish AAV-3B from other serotypes are poorly understood. The structure of AAV-3B has been determined to 2.6A resolution from twinned crystals of an infectious virus. The most distinctive structural features are located in regions implicated in receptor and antibody binding, providing insights into the cell entry mechanisms and antigenic nature of AAVs. We show that AAV-3B has a lower affinity for heparin than AAV-2, which can be rationalized by the distinct features of the AAV-3B capsid. The structure of AAV-3B provides an additional foundation for the future engineering of improved gene therapy vectors with modified receptor binding or antigenic characteristics. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials.

    Science.gov (United States)

    Gruntman, Alisha M; Su, Lin; Su, Qin; Gao, Guangping; Mueller, Christian; Flotte, Terence R

    2015-04-01

    Recombinant adeno-associated virus (rAAV) vectors are rapidly becoming the first choice for human gene therapy studies, as clinical efficacy has been demonstrated in several human trials and proof-of-concept data have been demonstrated for correction of many others. When moving into human use under the auspices of an FDA Investigational New Drug (IND) application, it is necessary to demonstrate the stability of vector material under various conditions of storage, dilution, and administration when used in humans. Limited data are currently available in the literature regarding vector compatibility and stability, leading most IND sponsors to repeat all necessary studies. The current study addresses this issue with an rAAV vector (rAAV1-CB-chAATmyc) containing AAV2-inverted terminal repeat sequences packaged into an AAV1 capsid. Aliquots of vector were exposed to a variety of temperatures, diluents, container constituents, and other environmental conditions, and its functional biological activity (after these various treatments) was assessed by measuring transgene expression after intramuscular injection in mice. rAAV was found to be remarkably stable at temperatures ranging from 4°C to 55°C (with only partial loss of potency after 20 min at 70°C), at pH ranging from 5.5 to 8.5, after contact with mouse or human serum (with or without complement depletion) or with gadolinium and after contact with glass, polystyrene, polyethylene, polypropylene, and stainless steel. The only exposure resulting in near-total loss of vector activity (10,000-fold loss) was UV exposure for 10 min. The stability of rAAV1 preparations bodes well for future dissemination of this therapeutic modality.

  19. Generation of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation

    Directory of Open Access Journals (Sweden)

    Naghmeh Ahmadiankia

    2013-07-01

    Full Text Available   Objective(s: Adeno-associated virus type 2 (AAV2 vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encoding capsid proteins with single, double or triple Y→F mutations.   Materials and Methods: A one-step, high-fidelity polymerase chain reaction (PCR cloning procedure involving the use of two partially overlapping primers to amplify a circular DNA template was applied to produce AAV2 cap genes encoding VP1 mutants with Y→F substitutions in residues 444, 500 or 730. The resulting constructs were used to make the different double and triple mutant by another round of PCR (Y444500F mutant, subcloning (Y444730F and Y500730F mutants or a combination of both techniques (Y444500730F mutant. Results: Nucleotide sequence analysis revealed successful introduction of the desired mutations in the AAV2 cap gene and showed the absence of any unintended mutations in the DNA fragments used to assemble the final set of AAV2 vector helper plasmids. The correctness of these plasmids was further confirmed by restriction mapping. Conclusion: PCR-based, single-step site-directed mutagenesis of circular DNA templates is a highly efficient and cost-effective method to generate AAV2 vector helper plasmids encoding mutant Cap proteins for the production of vector particles with increased gene transfer efficiency.

  20. Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex

    International Nuclear Information System (INIS)

    O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.

    2009-01-01

    Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R 448/585 , R 451/588 and R 350/487 from another subunit cluster at the center of the heparin footprint. The footprint is much more extensive than apparent through mutagenesis, including R 347/484 , K 395/532 and K 390/527 that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites

  1. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  2. Retargeting transposon insertions by the adeno-associated virus Rep protein

    Science.gov (United States)

    Ammar, Ismahen; Gogol-Döring, Andreas; Miskey, Csaba; Chen, Wei; Cathomen, Toni; Izsvák, Zsuzsanna; Ivics, Zoltán

    2012-01-01

    The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein–protein and protein–DNA interactions. PMID:22523082

  3. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  4. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform

    Directory of Open Access Journals (Sweden)

    Laura Adamson-Small

    2016-01-01

    Full Text Available Recombinant adeno-associated vectors based on serotype 9 (rAAV9 have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP and good manufacturing practice (GMP production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production.

  5. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  6. Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia.

    Science.gov (United States)

    Weinstein, David A; Correia, Catherine E; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E; Jordan, Juan; Andrutis, Karl; Chou, Janice Y; Byrne, Barry J; Mah, Cathryn S

    2010-07-01

    Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-alpha. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver.

  7. miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity.

    Science.gov (United States)

    Reid, C A; Boye, S L; Hauswirth, W W; Lipinski, D M

    2017-08-01

    The production of high-titer recombinant adeno-associated virus (rAAV) vector is essential for treatment of genetic diseases affecting the retina and choroid, where anatomical constraints may limit injectable volumes. Problematically, cytotoxicity arising from overexpression of the transgene during vector production frequently leads to a reduction in vector yield. Herein, we evaluate the use of microRNA (miRNA)-mediated silencing to limit overexpression of cytotoxic transgenes during packaging as a method of increasing vector yield. We examined if post-transcriptional regulation of transgenes during packaging via miRNA technology would lead to increased rAAV yields. Our results demonstrate that silencing of cytotoxic transgenes during production resulted in up to a 22-fold increase in vector yield. The inclusion of organ-specific miRNA sequences improved biosafety by limiting off-target expression following systemic rAAV administration. The small size (22-23 bp) of the target site allows for the inclusion of multiple copies into the vector with minimal impact on coding capacity. Taken together, our results suggest that inclusion of miRNA target sites into the 3'-untranslated region of the AAV cassette allow for silencing of cytotoxic transgenes during vector production leading to improved vector yield, in addition to increasing targeting specificity without reliance on cell-specific promoters.

  8. Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo.

    Science.gov (United States)

    Yu, Yongjiao; Fu, Lu; Jiang, Xiaoyu; Guan, Shanshan; Kuai, Ziyu; Kong, Wei; Shi, Yuhua; Shan, Yaming

    2016-12-01

    Despite unremitting efforts since the discovery of human immunodeficiency virus type 1 (HIV-1), an effective vaccine has not been generated. Viral vector-mediated transfer for expression of HIV-1 broadly neutralizing antibodies (BnAbs) is an attractive strategy. In this study, a recombinant adeno-associated virus 8 (rAAV8) vector was used to encode full-length antibodies against HIV-1 in 293T cells and Balb/c mice after gene transfer. The 10E8 or NIH45-46 BnAb was expressed from a single open reading frame by linking the heavy and light chains with a furin cleavage and a 2A self-processing peptide (F2A). The results showed that the BnAbs could be expressed in the 293T cell culture medium. A single intramuscular injection of rAAV8 led to long-term expression of BnAbs in Balb/c mice. The expressed antibodies in the supernatant of 293T cells and in Balb/c mice showed neutralization effects against HIV-1 pseudoviruses. Combined immunization of rAAV8 expressing 10E8 and rAAV8 expressing NIH45-46 in Balb/c mice could increase these neutralization effects on strains of HIV-1 sensitive to 10E8 or NIH45-46 antibody compared with a single injection of rAAV8 expressing either antibody alone. Therefore, the combined immunization may be a potential vaccine approach against HIV-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  10. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease.

  11. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer L Daily

    Full Text Available Angelman syndrome (AS, a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286 and Thr(305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  12. The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication.

    Science.gov (United States)

    Cao, Maohua; You, Hong; Hermonat, Paul L

    2014-01-01

    Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  13. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  14. Preclinical evaluation of radiation and systemic, RGD-targeted, adeno-associated virus phage-TNF gene therapy in a mouse model of spontaneously metastatic melanoma.

    Science.gov (United States)

    Quinn, T J; Healy, N; Sara, A; Maggi, E; Claros, C S; Kabarriti, R; Scandiuzzi, L; Liu, L; Gorecka, J; Adem, A; Basu, I; Yuan, Z; Guha, C

    2017-01-01

    The incidence of melanoma in the United States continues to rise, with metastatic lesions notoriously recalcitrant to therapy. There are limited effective treatment options available and a great need for more effective therapies that can be rapidly integrated in the clinic. In this study, we demonstrate that the combination of RGD-targeted adeno-associated virus phage (RGD-AAVP-TNF) with hypofractionated radiation therapy results in synergistic inhibition of primary syngeneic B16 melanoma in a C57 mouse model. Furthermore, this combination appeared to modify the tumor microenvironment, resulting in decreased Tregs in the draining LN and increased tumor-associated macrophages within the primary tumor. Finally, there appeared to be a reduction in metastatic potential and a prolongation of overall survival in the combined treatment group. These results indicate the use of targeted TNF gene therapy vector with radiation treatment could be a valuable treatment option for patients with metastatic melanoma.

  15. Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism.

    Science.gov (United States)

    Woodard, Kenton T; Liang, Katharine J; Bennett, William C; Samulski, R Jude

    2016-11-01

    Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy

  16. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S.; Odom, Guy L.; Hopkins, Stephanie; Case, Amanda; Wang, David B.; Chamberlain, Jeffrey S.; Garden, Gwenn A.

    2015-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre-recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. PMID:25708596

  17. Delivery and evaluation of recombinant adeno-associated viral vectors in the equine distal extremity for the treatment of laminitis.

    Science.gov (United States)

    Mason, J B; Gurda, B L; Van Wettere, A; Engiles, J B; Wilson, J M; Richardson, D W

    2017-01-01

    Our long-term aim is to develop a gene therapy approach for the prevention of laminitis in the contralateral foot of horses with major musculoskeletal injuries and non-weightbearing lameness. The goal of this study was to develop a practical method to efficiently deliver therapeutic proteins deep within the equine foot. Randomised in vivo experiment. We used recombinant adeno-associated viral vectors (rAAVs) to deliver marker genes using regional limb perfusion through the palmar digital artery of the horse. Vector serotypes rAAV2/1, 2/8 and 2/9 all successfully transduced equine foot tissues and displayed similar levels and patterns of transduction. The regional distribution of transduction within the foot decreased with decreasing vector dose. The highest transduction values were seen in the sole and coronary regions and the lowest transduction values were detected in the dorsal hoof-wall region. The use of a surfactant-enriched vector diluent increased regional distribution of the vector and improved the transduction in the hoof-wall region. The hoof-wall region of the foot, which exhibited the lowest levels of transduction using saline as the vector diluent, displayed a dramatic increase in transduction when surfactant was included in the vector diluent (9- to 81-fold increase). In transduced tissues, no significant difference was observed between promoters (chicken β-actin vs. cytomegalovirus) for gene expression. All horses tested for vector-neutralising antibodies were positive for serotype-specific neutralising antibodies to rAAV2/5. The current experiments demonstrate that transgenes can be successfully delivered to the equine distal extremity using rAAV vectors and that serotypes 2/8, 2/9 and 2/1 can successfully transduce tissues of the equine foot. When the vector was diluted with surfactant-containing saline, the level of transduction increased dramatically. The increased level of transduction due to the addition of surfactant also improved the

  18. Characterization of Adeno-Associated Viral Vector-Mediated Human Factor VIII Gene Therapy in Hemophilia A Mice.

    Science.gov (United States)

    Greig, Jenny A; Wang, Qiang; Reicherter, Amanda L; Chen, Shu-Jen; Hanlon, Alexandra L; Tipper, Christopher H; Clark, K Reed; Wadsworth, Samuel; Wang, Lili; Wilson, James M

    2017-05-01

    Adeno-associated viral (AAV) vectors are promising vehicles for hemophilia gene therapy, with favorable clinical trial data seen in the treatment of hemophilia B. In an effort to optimize the expression of human coagulation factor VIII (hFVIII) for the treatment of hemophilia A, an extensive study was performed with numerous combinations of liver-specific promoter and enhancer elements with a codon-optimized hFVIII transgene. After generating 42 variants of three reduced-size promoters and three small enhancers, transgene cassettes were packaged within a single AAV capsid, AAVrh10, to eliminate performance differences due to the capsid type. Each hFVIII vector was administered to FVIII knockout (KO) mice at a dose of 10 10 genome copies (GC) per mouse. Criteria for distinguishing the performance of the different enhancer/promoter combinations were established prior to the initiation of the studies. These criteria included prominently the level of hFVIII activity (0.12-2.12 IU/mL) and the pattern of development of anti-hFVIII antibodies. In order to evaluate the impact of capsid on hFVIII expression and antibody formation, one of the enhancer and promoter combinations that exhibited high hFVIII immunogenicity was evaluated using AAV8, AAV9, AAVrh10, AAVhu37, and AAVrh64R1 capsids. The capsids subdivided into two groups: those that generated anti-hFVIII antibodies in ≤20% of mice (AAV8 and AAV9), and those that generated anti-hFVIII antibodies in >20% of mice (AAVrh10, AAVhu37, and AAVrh64R1). The results of this study, which entailed extensive vector optimization and in vivo testing, demonstrate the significant impact that transcriptional control elements and capsid can have on vector performance.

  19. Synthetic adeno-associated viral vector efficiently targets mouse and non-human primate retina in vivo.

    Science.gov (United States)

    Carvalho, Livia S; Xiao, Ru; Wassmer, Sarah; Langsdorf, Aliete; Zinn, Eric; Pacouret, Simon; Shah, Samiksha; Comander, Jason I; Kim, Leo; Lim, Laurence; Vandenberghe, Luk H

    2018-01-12

    Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. RPE and rods, and to a lesser extent, cone photoreceptors can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of RPE and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and INL neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.

  20. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  1. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  2. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    Science.gov (United States)

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  3. Adeno-associated viral vector serotype 5 poorly transduces liver in rat models.

    Directory of Open Access Journals (Sweden)

    Paula S Montenegro-Miranda

    Full Text Available Preclinical studies in mice and non-human primates showed that AAV serotype 5 provides efficient liver transduction and as such seems a promising vector for liver directed gene therapy. An advantage of AAV5 compared to serotype 8 already shown to provide efficient correction in a phase 1 trial in patients suffering from hemophilia B, is its lower seroprevalence in the general population. Our goal is liver directed gene therapy for Crigler-Najjar syndrome type I, inherited severe unconjugated hyperbilirubinemia caused by UGT1A1 deficiency. In a relevant animal model, the Gunn rat, we compared the efficacy of AAV 5 and 8 to that of AAV1 previously shown to be effective. Ferrying a construct driving hepatocyte specific expression of UGT1A1, both AAV8 and AAV1 provided an efficient correction of hyperbilirubinemia. In contrast to these two and to other animal models AAV5 failed to provide any correction. To clarify whether this unexpected finding was due to the rat model used or due to a problem with AAV5, the efficacy of this serotype was compared in a mouse and two additional rat strains. Administration of an AAV5 vector expressing luciferase under the control of a liver specific promoter confirmed that this serotype poorly performed in rat liver, rendering it not suitable for proof of concept studies in this species.

  4. Attenuation of Dengue Virus Infection by Adeno-Associated Virus-Mediated siRNA Delivery

    Science.gov (United States)

    2004-08-09

    and effective prophylaxis or treatment for dengue virus (DEN) infection, a category A mosquito - borne human pathogen, is a critical global priority...through Aedes aegypti mosquito bites, and resident skin DCs are regarded as the targets of DEN infection [12]. DCs are thought to be 10-fold more per...do not induce production of neutralizing antibodies that could reduce transgene function. They possess a broad-range of tissue tropism and the

  5. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    Science.gov (United States)

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-11-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  6. Recombinant Adeno-associated virus (rAAV)-mediated transduction and optogenetic manipulation of cortical neurons in vitro

    Science.gov (United States)

    Lange, Wienke; Jin, Lei; Maybeck, Vanessa; Meisenberg, Annika; Baumann, Arnd; Offenhäusser, Andreas

    2014-03-01

    Genetically encoded light-sensitive proteins can be used to manipulate and observe cellular functions. According to different modes of action, these proteins are divided into actuators like the blue-light gated cation channel Channelrhodopsin-2 (ChR2) and detectors like the calcium sensor GCaMP. In order to optogenetically control and study the activity of rat primary cortical neurons, we established a transduction procedure using recombinant Adeno-associated viruses (rAAVs) as gene-ferries. Thereby, we achieved high transduction rates of these neurons with ChR2. In ChR2 expressing neurons, action potentials could be repeatedly and precisely elicited with laser pulses and measured via patch clamp recording.

  7. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  8. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  9. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  10. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin.

    Science.gov (United States)

    Murphy, J E; Zhou, S; Giese, K; Williams, L T; Escobedo, J A; Dwarki, V J

    1997-12-09

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes mellitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2-5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity.

  11. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  12. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2005-02-01

    Full Text Available Abstract Despite many decades of drug development, effective therapies for neuropathic pain remain elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial activation or its downstream consequences. While several glial-selective drugs have been successful in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of the present studies was to explore a novel approach for controlling neuropathic pain. Here, an adeno-associated viral (serotype II; AAV2 vector was created that encodes the anti-inflammatory cytokine, interleukin-10 (IL-10. This anti-inflammatory cytokine is known to suppress the production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10 vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially infects meningeal cells surrounding the CSF space. Taken together, these data provide initial support that intrathecal gene therapy to drive the production of IL-10 may prove to be an efficacious treatment for neuropathic pain.

  13. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  14. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  15. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna

    2005-01-01

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  16. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  17. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  18. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  19. Latent Adeno-Associated Virus Infection Elicits Humoral but Not Cell-Mediated Immune Responses in a Nonhuman Primate Model

    Science.gov (United States)

    Hernandez, Yosbani J.; Wang, Jianming; Kearns, William G.; Loiler, Scott; Poirier, Amy; Flotte, Terence R.

    1999-01-01

    Latent infection with wild-type (wt) adeno-associated virus (AAV) was studied in rhesus macaques, a species that is a natural host for AAV and that has some homology to humans with respect to the preferred locus for wt AAV integration. Each of eight animals was infected with an inoculum of 1010 IU of wt AAV, administered by either the intranasal, intramuscular, or intravenous route. Two additional animals were infected intranasally with wt AAV and a helper adenovirus (Ad), while one additional animal was inoculated with saline intranasally as a control. There were no detectable clinical or histopathologic responses to wt AAV administration. Molecular analyses, including Southern blot, PCR, and fluorescence in situ hybridization, were performed 21 days after infection. These studies indicated that AAV DNA sequences persisted at the sites of administration, albeit at low copy number, and in peripheral blood mononuclear cells. Site-specific integration into the AAVS1-like locus was observed in a subset of animals. All animals, except those infected by the intranasal route with wt AAV alone, developed a humoral immune response to wt AAV capsid proteins, as evidenced by a ≥fourfold rise in anti-AAV neutralizing titers. However, only animals infected with both wt AAV and Ad developed cell-mediated immune responses to AAV capsid proteins. These findings provide some insights into the nature of anti-AAV immune responses that may be useful in interpreting results of future AAV-based gene transfer studies. PMID:10482608

  20. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus

    Science.gov (United States)

    Smith, Richard H.; Hallwirth, Claus V.; Westerman, Michael; Hetherington, Nicola A.; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B.; Koonin, Eugene V.; Agbandje-McKenna, Mavis; Kotin, Robert M.; Alexander, Ian E.

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV “fossils” provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  1. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  2. Sendai virosomal infusion of an adeno-associated virus-derived construct containing neuropeptide Y into primary rat brain cultures.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; Elmstrom, K; Gao, Y; Meyer, E M

    1995-05-05

    A novel neuronal gene-delivery system was investigated in primary neuron-enriched cultures with respect to driving the expression of neuropeptide Y (NPY). This delivery system consists of an adeno-associated virus-derived (AAV) plasmid, pJDT95npy, encapsulated in reconstituted Sendai virosomes. pJDT95npy contains full length rat NPY cDNA inserted downstream from the P40 promoter in a cap-gene deleted AAV-derived construct. The rep-sequences under control of the P5 and P19 promoters are intact. Virosomally encapsulated pJDT95npy drove the expression of NPY mRNAs, predominantly by P40. Total cellular NPY immunoreactivity and release in the presence of depolarization increased following pJDT95npy-transfection. Neither empty virosomes nor virosomes containing pJDT95 affected NPY mRNA expression or immunoreactivity. This study demonstrates that an AAV-derived plasmid can drive exogenous gene expression in intact neurons after infusion by Sendai virosomes.

  3. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery.

    Directory of Open Access Journals (Sweden)

    Qinghao Xu

    Full Text Available We report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5 was constructed to express green fluorescent protein (GFP and a small interfering RNA (siRNA targeting mammalian target of rapamycin (mTOR. The AAV vectors were injected via an intrathecal catheter. We observed profound GFP expression in lumbar DRG neurons beginning at 2-week post-injection. Of those neurons, over 85% were large to medium-diameter and co-labeled with NF200, a marker for myelinated fibers. Western blotting of mTOR revealed an 80% reduction in the lumbar DRGs (L4-L6 of rats treated with the active siRNA vectors compared to the control siRNA vector. Gene knockdown became apparent as early as 7-day post-injection and lasted for at least 5 weeks. Importantly, mTOR knockdown occurred in large (NF200 and small-diameter neurons (nociceptors. The viral administration induced an increase of Iba1 immunoreactivity in the DRGs, which was likely attributed to the expression of GFP but not siRNA. Rats with mTOR knockdown in DRG neurons showed normal general behavior and unaltered responses to noxious stimuli. In conclusion, intrathecal AAV5 is a highly efficient vehicle to deliver siRNA and generate gene knockdown in DRG neurons. This will be valuable for both basic research and clinic intervention of diseases involving primary sensory neurons.

  4. Recombinant adeno-associated virus expressing a p53-derived apoptotic peptide (37AA) inhibits HCC cells growth in vitro and in vivo.

    Science.gov (United States)

    Zhang, Hongyong; Wang, Yufeng; Bai, Yanxia; Shao, Yuan; Bai, Jigang; Ma, Zhenhua; Liu, Qingguang; Wu, Shengli

    2017-03-07

    Recent studies have confirmed that a p53-derived apoptotic peptide (37AA) could act as a tumor suppressor inducing apoptosis in multiple tumor cells through derepressing p73. However, the tumor suppressive effects of recombinant adeno-associated virus (rAAV) expressing 37AA on HCC cells are still unknown. In this study, we successfully constructed a recombinant rAAV expressing 37AA. In vitro and in vivo assays showed that transfection of NT4-37AA/rAAV in HCC cells strongly suppressed cell proliferation, induced apoptosis, and up-regulated the cellular expression of p73. NT4-37AA/rAAV transfection markedly slowed Huh-7 xenografted tumor growth in murine. Pretreatment of HCC cells with p73 siRNA abrogated these effects of NT4-37AA/rAAV. Furthermore, we found that expression of p73 was upregulated and the formation of P73/iASSP complex was prevented when 37AA was introduced into HCC cells. Taken together, these results indicate that introduction of 37AA into HCC cells with a rAAV vector may lead to the development of broadly applicable agents for the treatment of HCC, and the mechanism may, at least in part, be associated with the upregulation of p73 expression and reduced level of P73/iASSP complex.

  5. Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1.

    Science.gov (United States)

    Franzoso, Francesca D; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F; Sutter, Sereina O; Tobler, Kurt; Vogt, Bernd; Greber, Urs F; Büning, Hildegard; Ackermann, Mathias; Fraefel, Cornel

    2017-08-01

    Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G 2 -phase cells, while HSV-1 DNA replication is restricted to G 1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G 2 -phase cells, suggesting that the preference for S/G 2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G 2 -phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time

  6. Adeno-Associated Virus Serotype 8 Gene Transfer Rescues a Neonatal Lethal Murine Model of Propionic Acidemia

    Science.gov (United States)

    Chandler, Randy J.; Chandrasekaran, Suma; Carrillo-Carrasco, Nuria; Senac, Julien S.; Hofherr, Sean E.; Barry, Michael A.

    2011-01-01

    Abstract Propionic acidemia (PA) is an autosomal recessive disorder of metabolism caused by a deficiency of propionyl-coenzyme A carboxylase (PCC). Despite optimal dietary and cofactor therapy, PA patients still suffer from lethal metabolic instability and experience multisystemic complications. A murine model of PA (Pcca–/–) of animals that uniformly die within the first 48 hr of life was used to determine the efficacy of adeno-associated viral (AAV) gene transfer as a potential therapy for PA. An AAV serotype 8 (AAV8) vector was engineered to express the human PCCA cDNA and delivered to newborn mice via an intrahepatic injection. Greater than 64% of the Pcca–/– mice were rescued after AAV8-mediated gene transfer and survived until day of life 16 or beyond. Western analysis of liver extracts showed that PCC was completely absent from Pcca–/– mice but was restored to greater than wild-type levels after AAV gene therapy. The treated Pcca–/– mice also exhibited markedly reduced plasma levels of 2-methylcitrate compared with the untreated Pcca–/– mice, which indicates significant PCC enzymatic activity was provided by gene transfer. At the time of this report, the oldest treated Pcca–/– mice are over 6 months of age. In summary, AAV gene delivery of PCCA effectively rescues Pcca–/– mice from neonatal lethality and substantially ameliorates metabolic markers of the disease. These experiments demonstrate a gene transfer approach using AAV8 that might be used as a treatment for PA, a devastating and often lethal disorder desperately in need of new therapeutic options. PMID:20950151

  7. Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously Promoting Immune Resistance and Robust Gene Delivery.

    Science.gov (United States)

    Kim, Yoojin; Kim, Eunmi; Oh, Seokmin; Yoon, Ye-Eun; Jang, Jae-Hyung

    2018-01-01

    In addition to the ability to boost gene delivery efficiency in many therapeutically relevant cells, the capability of circumventing neutralizing antibody (NAb) inactivation is a key prerequisite that gene carriers must fulfill for their extensive applications as therapeutic agents in many gene therapy trials, especially for cancer treatments. This study revealed that a genetically engineered adeno-associated virus (AAV) variant, AAVr3.45, inherently possesses dual beneficial properties as a gene carrier: (i) efficiently delivering therapeutic genes to many clinically valuable cells (e.g., stem or cancer cells) and (ii) effectively bypassing immunoglobulin (IgG) neutralization. Detailed interpretation of the structural features of AAVr3.45, which was previously engineered from AAV2, demonstrated that the LATQVGQKTA peptide at the heparan sulfate proteoglycan binding domain, especially the presence of cationic lysine on the peptide, served as a key motif for dramatically enhancing its gene delivery capabilities, ultimately broadening its tropisms for many cancer cell lines. Furthermore, the substitution of valine on the AAV2 capsid at the amino acid 719 site to methionine functioned as a coordinator for promoting viral resistance against IgG inactivation. The NAb-resistant characteristics of AAVr3.45 were possibly associated with the LATQVGQKTA sequence itself, indicating that its synergistic cooperation with the point mutation (V719M) is required for maximizing its ability to evade NAb inactivation. The potential of AAVr3.45 as a cancer gene therapy agent was confirmed by provoking apoptosis in breast adenocarcinoma by efficiently delivering a pro-apoptotic gene, BIM (Bcl-2-like protein 11), under high titers of human IgG. Thus, the superior aspects of the NAb-resistant AAVr3.45 as a potential therapeutic agent for systemic injection approaches, especially for cancer gene therapy, were highlighted in this study.

  8. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  9. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  10. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures.

    Science.gov (United States)

    Cecchini, Sylvain; Virag, Tamas; Kotin, Robert M

    2011-08-01

    The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 10(6) cells/ml, ≥ 10(16) purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.

  12. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    Science.gov (United States)

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. (c) 2007 John Wiley & Sons, Ltd.

  13. Cervical cancer isolate PT3, super-permissive for adeno-associated virus replication, over-expresses DNA polymerase delta, PCNA, RFC and RPA.

    Science.gov (United States)

    Kang, Bum Yong; You, Hong; Bandyopadhyay, Sarmistha; Agrawal, Nalini; Melchert, Russell B; Basnakian, Alexei G; Liu, Yong; Hermonat, Paul L

    2009-04-23

    Adeno-associated virus (AAV) type 2 is an important virus due to its use as a safe and effective human gene therapy vector and its negative association with certain malignancies. AAV, a dependo-parvovirus, autonomously replicates in stratified squamous epithelium. Such tissue occurs in the nasopharynx and anogenitals, from which AAV has been clinically isolated. Related autonomous parvoviruses also demonstrate cell tropism and preferentially replicate in oncogenically transformed cells. Combining these two attributes of parvovirus tropism, squamous and malignant, we assayed if AAV might replicate in squamous cervical carcinoma cell isolates. Three primary isolates (PT1-3) and two established cervical cancer cell lines were compared to normal keratinocytes (NK) for their ability to replicate AAV. One isolate, PT3, allowed for high levels of AAV DNA replication and virion production compared to others. In research by others, four cellular components are known required for in vitro AAV DNA replication: replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and DNA polymerase delta (POLD1). Thus, we examined PT3 cells for expression of these components by DNA microarray and real-time quantitative PCR. All four components were over-expressed in PT3 over two representative low-permissive cell isolates (NK and PT1). However, this super-permissiveness did not result in PT3 cell death by AAV infection. These data, for the first time, provide evidence that these four cellular components are likely important for AAV in vivo DNA replication as well as in vitro. These data also suggest that PT3 will be a useful reagent for investigating the AAV-permissive transcriptome and AAV anti-cancer effect.

  14. Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency.

    Science.gov (United States)

    Burnett, John R; Hooper, Amanda J

    2009-12-01

    Amsterdam Molecular Therapeutics BV is developing alipogene tiparvovec (Glybera, AMT-011, AAV1-LPLS447X), a Ser(447)X variant of the human lipoprotein lipase (LPL) gene (LPLSer(447)X) in an adeno-associated virus vector, as a potential intramuscular gene therapy for the treatment of LPL deficiency. Familial LPL deficiency is a rare, autosomal-recessive disorder of lipoprotein metabolism that is characterized by severe hypertriglyceridemia with episodes of abdominal pain, acute pancreatitis and eruptive cutaneous xanthomatosis. The lack of functional LPL in patients with LPL deficiency causes an accumulation of triglyceride (TG)-rich lipoproteins in the plasma. The LPLSer(447)X variant is associated with decreased levels of plasma TGs and increased HDL cholesterol concentrations compared with wild-type LPL. Preclinical studies evaluating alipogene tiparvovec in a mouse model of LPL deficiency demonstrated a long-term, dose-dependent correction of the lipid abnormalities. The first clinical trials in patients with LPL deficiency appear promising, with a significant decrease in the levels of plasma TGs observed in the first 3 months following the administration of alipogene tiparvovec, and an increase in local LPL activity and protein levels observed after 6 months. In addition, a decrease in pancreatitis frequency was observed during a 3-year follow-up period. At the time of publication, a phase II/III trial in patients with LPL deficiency, being conducted to further support the submission of an MAA to the EMEA for alipogene tiparvovec, was ongoing. The compound is also under investigation for the treatment of type V hyperlipoproteinemia, Syndrome X and non-alcoholic steatohepatitis.

  15. Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons.

    Science.gov (United States)

    Foust, Kevin D; Poirier, Amy; Pacak, Christina A; Mandel, Ronald J; Flotte, Terence R

    2008-01-01

    Targeting lower motor neurons (LMNs) for gene delivery could be useful for disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. LMNs reside in the ventral gray matter of the spinal cord and send axonal projections to innervate skeletal muscle. Studies have used intramuscular injections of adeno-associated virus type 2 (AAV2) to deliver viral vectors to LMNs via retrograde transport. However, treating large areas of the spinal cord in a human would require numerous intramuscular injections, thereby increasing viral titer and risk of immune response. New AAV serotypes, such as AAV8, have a dispersed transduction pattern after intravenous or intraperitoneal injection in neonatal mice, and may transduce LMNs by retrograde transport or through entry into the nervous system. To test LMN transduction after systemic injection, we administered recombinant AAV8 (rAAV8) carrying the green fluorescent protein (GFP) gene by intravenous or intraperitoneal injection to neonatal mice on postnatal day 1. Tissues were harvested 5 and 14 days postinjection and analyzed by real-time polymerase chain reaction and GFP immunohistochemistry to assess the presence of AAV genomes and GFP expression, respectively. Spinal cords were positive for AAV genomes at both time points. GFP immunohistochemistry revealed infrequent labeling of LMNs across all time points and injection routes. Somewhat surprisingly, there was extensive labeling of fibers in the dorsal horns and columns, indicating dorsal root ganglion transduction across all time points and injection routes. Our data suggest that systemic injection of rAAV8 is not an effective delivery route to target lower motor neurons, but could be useful for targeting sensory pathways in chronic pain.

  16. Adeno-associated virus-mediated neuroglobin overexpression ameliorates the N-methyl-N-nitrosourea-induced retinal impairments: a novel therapeutic strategy against photoreceptor degeneration

    Directory of Open Access Journals (Sweden)

    Tao Y

    2017-10-01

    Full Text Available Ye Tao,1,* Zhen Yang,2,* Wei Fang,2 Zhao Ma,3 Yi Fei Huang,1 Zhengwei Li4 1Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 2Department of Neurosurgery, Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, 3Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 4Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Retinal degeneration (RD is a heterogeneous group of inherited dystrophies leading to blindness. The N-methyl-N-nitrosourea (MNU-administered mouse is used as a pharmacologically induced RD animal model in various therapeutic investigations. The present study found the retinal neuroglobin (NGB expression in the MNU-administered mice was significantly lower than in normal controls, suggesting NGB was correlated with RD. Subsequently, an adeno-associated virus (AAV-2-mCMV-NGB vector was delivered into the subretinal space of the MNU-administered mice. The retinal NGB expression of the treated eye was upregulated significantly in both protein and mRNA levels. Further, we found NGB overexpression could alleviate visual impairments and morphological devastations in MNU-administered mice. NGB overexpression could rectify apoptotic abnormalities and ameliorate oxidative stress in MNU-administered mice, thereby promoting photoreceptor survival. The cone photoreceptors in MNU-administered mice were also sensitive to AAV-mediated NGB overexpression. Taken together, our findings suggest that manipulating NGB bioactivity via gene therapy may represent a novel therapeutic strategy against RD. Future elucidation of the exact role of NGB would advance our knowledge about the pathological mechanisms underlying RD. Keywords: neuroglobin, retinal degeneration

  17. Using FRAP or FRAPA to Visualize the Movement of Fluorescently Labeled Proteins or Cellular Organelles in Live Cultured Neurons Transformed with Adeno-Associated Viruses.

    Science.gov (United States)

    Tevet, Yaara; Gitler, Daniel

    2016-01-01

    Fluorescence recovery after photobleaching (FRAP) and fluorescence redistribution after photoactivation (FRAPA) are complementary methods used to gauge the movement of proteins or sub-resolution organelles within cells. Using these methods we can determine the nature of the movement of labeled particles, whether it is random, constrained, or active, the coefficient of diffusion if applicable, binding and unbinding constants, and the direction of active transport. These two techniques have been extensively utilized to probe the cell biology of neurons. A practical outline of FRAP and FRAPA in cultured neurons is presented, including the preparation of the neurons and their infection with adeno-associated viral vectors. Considerations in planning such experiments are provided.

  18. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  19. Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery

    Directory of Open Access Journals (Sweden)

    Harrison C Brown

    2014-01-01

    Full Text Available Clinical data support the feasibility and safety of adeno-associated viral (AAV vectors in gene therapy applications. Despite several clinical trials of AAV-based gene transfer for hemophilia B, a unique set of obstacles impede the development of a similar approach for hemophilia A. These include (i the size of the factor VIII (fVIII transgene, (ii humoral immune responses to fVIII, (iii inefficient biosynthesis of human fVIII, and (iv AAV vector immunity. Through bioengineering approaches, a novel fVIII molecule, designated ET3, was developed and shown to improve biosynthetic efficiency 10- to 100-fold. In this study, the utility of ET3 was assessed in the context of liver-directed, AAV-mediated gene transfer into hemophilia A mice. Due to the large size of the expression cassette, AAV-ET3 genomes packaged into viral particles as partial genome fragments. Despite this potential limitation, a single peripheral vein administration of AAV-ET3 into immune-competent hemophilia A mice resulted in correction of the fVIII deficiency at lower vector doses than previously reported for similarly oversized AAV-fVIII vectors. Therefore, ET3 appears to improve vector potency and mitigate at least one of the critical barriers to AAV-based clinical gene therapy for hemophilia A.

  20. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk

    OpenAIRE

    Stefan Wagner; Rosemary Thresher; Ross Bland; Götz Laible

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on ade...

  1. In vivo expression of human ATP:cob(I)alamin adenosyltransferase (ATR) using recombinant adeno-associated virus (rAAV) serotypes 2 and 8.

    Science.gov (United States)

    Erger, Kirsten E; Conlon, Thomas J; Leal, Nicole A; Zori, Robert; Bobik, Thomas A; Flotte, Terence R

    2007-06-01

    Methylmalonic aciduria (MMA) is an autosomal recessive disease with symptoms that include ketoacidosis, lethargy, recurrent vomiting, dehydration, respiratory distress, muscular hypotonia and death due to methylmalonic acid levels that are up to 1000-fold greater than normal. CblB MMA, a subset of the mutations leading to MMA, is caused by a deficiency in the enzyme cob(I)alamin adenosyltransferase (ATR). No animal model currently exists for this disease. ATR functions within the mitochondria matrix in the final conversion of cobalamin into coenzyme B(12), adenosylcobalamin (AdoCbl). AdoCbl is a required coenzyme for the mitochondrial enzyme methylmalonyl-CoA mutase (MCM). The human ATR cDNA was cloned into a recombinant adeno-associated virus (rAAV) vector and packaged into AAV 2 or 8 capsids and delivered by portal vein injection to C57/Bl6 mice at a dose of 1 x 10(10) and 1 x 10(11) particles. Eight weeks post-injection RNA, genomic DNA and protein were then extracted and analyzed. Using primer pairs specific to the cytomegalovirus (CMV) enhancer/chicken beta-actin (CBAT) promoter within the rAAV vectors, genome copy numbers were found to be 0.03, 2.03 and 0.10 per cell in liver for the rAAV8 low dose, rAAV8 high dose and rAAV2 high dose, respectively. Western blotting performed on mitochondrial protein extracts demonstrated protein levels were comparable to control levels in the rAAV8 low dose and rAAV2 high dose animals and 3- to 5-fold higher than control levels were observed in high dose animals. Immunostaining demonstrated enhanced transduction efficiency of hepatocytes to over 40% in the rAAV8 high dose animals, compared to 9% and 5% transduction in rAAV2 high dose and rAAV8 low dose animals, respectively. These data demonstrate the feasibility of efficient ATR gene transfer to the liver as a prelude to future gene therapy experiments.

  2. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  3. Sequential Adeno-Associated Viral Vector Serotype 9-Green Fluorescent Protein Gene Transfer Causes Massive Inflammation and Intense Immune Response in Rat Striatum.

    Science.gov (United States)

    Yang, Chun; Hao, Fei; He, Jun; Lu, Tao; Klein, Ronald L; Zhao, Li-Ru; Duan, Wei-Ming

    2016-07-01

    Green fluorescent protein (GFP) is a broadly used live cell reporter for gene transduction although side effects associated with GFP in gene transfer are reported. The present study was designed to systematically examine host responses, including inflammatory and immune responses, induced by persistent overexpression of the GFP gene mediated by adeno-associated viral vector serotype 9 (AAV9), and their effects on GFP gene transduction in rat striatum. Our results show that host responses against AAV9-GFP transduction, and GFP transgene expression in the striatum exhibited a temporal and dose-dependent pattern. Both muscular and striatal delivery of AAV9-GFP increased levels of inflammation and immune reactions against sequential AAV9-GFP transduction in the striatum, leading to reduced levels of GFP expression. We also observed that rat sera from sequential administrations of AAV9-GFP group had significantly higher levels of neutralizing antibody against AAV9 vectors when compared with the age-matched rats. As excessive GFP can trigger vigorous inflammation and intense immune response after GFP gene transduction, the use of GFP as a live cell marker protein should be deliberated, especially in repeated administration studies.

  4. Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland.

    Directory of Open Access Journals (Sweden)

    Dariya Momot

    Full Text Available In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (10(8, 10(9, 10(10, or 4.4 × 10(10 vector particles/gland or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe.

  5. Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol

    Science.gov (United States)

    Prada, Carlos E; Lopez, Marcos; Castillo, Victor; Echeverria, Luis Eduardo; Serrano, Norma

    2016-01-01

    Background Recent progress in the pathophysiology of heart failure (HF) has led to the development of new therapeutic options such as gene therapy and the use of adeno-associated viral (AAV) vectors. Despite the promising results in early clinical trials of gene therapy for HF, various obstacles have been faced, such as the presence of neutralizing antibodies (NAbs) against the capsid vectors. NAb activity limits vector transduction levels and therefore diminishes the final therapeutic response. Recent studies evaluating the prevalence of NAbs in various populations found considerable geographic variability for each AAV serotype. However, the levels of NAbs in Latin American populations are unknown, becoming a limiting factor to conducting AAV vector therapeutic trials in this population. Objective The goal of this study is to determine for the first time, the prevalence of anti-AAV NAbs for the serotypes 1, 2, and 9 in HF patients from the city of Bucaramanga, Colombia, using the in vitro transduction inhibition assay. Methods We will conduct a cross-sectional study with patients who periodically attend the HF clinic of the Cardiovascular Foundation of Colombia and healthy volunteers matched for age and sex. For all participants, we will evaluate the NAb levels against serotypes AAV1, AAV2, and AAV9. We will determine NAb levels using the in vitro transduction inhibition assay. In addition, participants will answer a survey to evaluate their epidemiological and socioeconomic variables. Participation in the study will be voluntary and all participants will sign an informed consent document before any intervention. Results The project is in the first phase: elaboration of case report forms and the informed consent form, and design of the recruitment strategy. Patient recruitment is expected to begin in the spring of 2016. We expect to have preliminary results, including the titer of the viral vectors, multiplicity of infections that we will use for each serotype

  6. Adeno-associated viral vector 2.9 thymosin ß4 application attenuates rejection after heart transplantation: results of a preclinical study in the pig.

    Science.gov (United States)

    Postrach, Johannes; Schmidt, Maximilian; Thormann, Michael; Thein, Eckart; Burdorf, Lars; Reichart, Bruno; Sotlar, Karl; Walz, Christoph; Faber, Claudius; Bauer, Andreas; Schmoeckel, Michael; Kupatt, Christian; Hinkel, Rabea

    2014-10-27

    Graft survival is the most important factor for morbidity and mortality in cardiac transplantation. Improved immunosuppression significantly reduced early graft rejection. However, acute rejection may predispose to chronic rejection. Targeting both phases of the recipient's immune-reactivity by means of long-acting recombinant adeno-associated viral vectors (AAVs) encoding anti-inflammatory and cardioprotective factors appears to be a promising therapeutic approach. We investigate thymosin ß4 (Tß4) possessing anti-inflammatory and prosurvival abilities, as a means for pretransplant gene therapy. Heterotopic, abdominal transplantation of cardiac allografts into landrace or into Munich mini pigs (n=5 per group) was performed. Transplants were transduced with AAV2.9 before transplantation by means of in situ perfusion of the donor organ. Vascuar endothelial growth factor and AAV2.9.Tß4 or AAV2.9.LacZ were added to the autologous blood used for perfusing the grafts for a period of 45 min. Immunosuppression was applied for 10 days after the operation. Transgene expression, capillary density, graft function, survival, and rejection were assessed. The AAV2.9 transduction induced robust overexpression of the transgene. In addition, Tß4 ameliorated inflammation, necrosis, vascular reaction (acute rejection) and in parallel improved capillary density. In addition, graft survival was significantly prolonged (10±3 days AAV2.9.LacZ vs. 31±4 days AAV2.9.Tß4). In the mini pig model, regional myocardial function of the grafts was improved by Tß4 transduction compared to LacZ (9.1%±0.9% subendocardial segment shortening in AAV2.9.LacZ vs. 15.8%±2.3% in AAV2.9.Tß4). In situ AAV2.9-mediated gene transfer of thymosin β4 attenuated graft rejection in a heterotopic heart transplantation model. Perioperative cardioprotection by means of gene therapy might improve graft survival in cardiac allotransplantation.

  7. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord

    NARCIS (Netherlands)

    Eaton, M J; Blits, B; Ruitenberg, Marc J; Verhaagen, J; Oudega, M.

    2002-01-01

    Changing the levels of neurotrophins in the spinal cord micro-environment after nervous system injury has been proposed to recover normal function, such that behavioral response to peripheral stimuli does not lead to chronic pain. We have investigated the effects of recombinant adeno-associated

  8. Sample Stacking Provides Three Orders of Magnitude Sensitivity Enhancement in SDS Capillary Gel Electrophoresis of Adeno-Associated Virus Capsid Proteins.

    Science.gov (United States)

    Zhang, Chao-Xuan; Meagher, Michael M

    2017-03-21

    Size-based protein analysis utilizing only 25 ng of total proteins has been realized by sodium dodecyl sulfate capillary gel electrophoresis (SDS CGE) with head-column field-amplified sample stacking as an online sample preconcentration technique. This method has been used as a replacement of SDS-PAGE for purity analysis of adeno-associated virus (AAV) therapeutic products of different serotypes and transgenes. A limit of detection of 0.2 ng/mL (3.3 pM) capsid proteins was achieved with convenient UV absorbance detection at 214 nm, equivalent to 20 pg of protein (330 attomole) loaded in the autosampler vial. For purity analysis, only 25 ng of total AAV capsid proteins (4.3 femtomole virus particles) were loaded to the autosampler vial. The sensitivity is comparable to silver-stained SDS-PAGE. The RSD of purity measurement was 0.0-0.8%, comparable to conventional SDS CGE utilizing 0.1-0.5 mg proteins. The new method provided 3 orders of magnitude sensitivity enhancement as compared to conventional SDS CGE. It shares all the advantages of conventional SDS CGE (labor-saving, easy automation, and convenient quantitation) and also the high sensitivity of silver stained SDS-PAGE. The sample stacking SDS CGE technique can be adopted for size-based analysis of other types of proteins. It is especially useful when protein quantity or concentration is not sufficient for regular SDS CGE or SDS-PAGE assay.

  9. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    Science.gov (United States)

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway.

  10. Recombinant adeno-associated virus-mediated gene delivery of long chain acyl coenzyme A dehydrogenase (LCAD) into LCAD-deficient mice.

    Science.gov (United States)

    Beattie, Stuart G; Goetzman, Eric; Tang, Qiuishi; Conlon, Thomas; Campbell-Thompson, Martha; Matern, Dietrich; Vockley, Jerry; Flotte, Terence R

    2008-10-01

    Very long chain acyl coenzyme A (CoA) dehydrogenase (VLCAD) deficiency is a relatively common mitochondrial beta-oxidation disorder. The most severe form of VLCAD deficiency presents with neonatal cardiomyopathy and hepatic failure and is generally fatal within the first year of life. Mice deficient for long chain acyl CoA dehydrogenase (LCAD) closely resemble the clinical syndrome observed in VLCAD-deficient humans. Recombinant adeno-associated viral (rAAV) vectors with pseudotype capsids were investigated for their potential towards correcting the phenotype observed in mice heterozygous (+/-) for LCAD (i.e. liver and muscle steatosis). rAAV containing the mouse LCAD cDNA (mLCAD) under the transcriptional control of the CMV/chicken beta-actin hybrid promoter were injected intramuscularly into the tibialis anterior (TA) muscle of LCAD(+/-) mice or injected into the portal vein to transduce hepatocytes. Ten weeks post-injection of rAAV1-mLCAD into the TA muscle, significantly increased levels of mLCAD within mitochondria were demonstrated by immunostaining of TA sections, immunoblotting of mitochondrial isolates and by the electron transfer flavoprotein (ETF) fluorescence reduction enzyme activity assay. Magnetic resonance spectroscopy of vector-injected TA muscle demonstrated a reduction in the lipid content compared to phosphate-buffered saline-injected mice, whereas a systemic effect was observed as a reduction in liver macrosteatosis. Eight weeks after portal vein injection of rAAV8-mLCAD into LCAD(+/-) mice, increased levels of mLCAD within hepatocyte mitochondria were demonstrated by immunostaining and also by the ETF assay. Scoring of the hepatosteatosis observed in partially deficient LCAD mice indicated a reduction in the lipid content within livers of vector-treated mice. These studies show that rAAV-mediated delivery of mLCAD was efficient and led to an amelioration of local and systemic pathologies observed in partially deficient LCAD mice. Copyright (c

  11. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  12. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  13. Specific gene expression in mouse cortical astrocytes is mediated by a 1740bp-GFAP promoter-driven combined adeno-associated virus 2/5/7/8/9.

    Science.gov (United States)

    Meng, Xiandong; Yang, Feng; Ouyang, Tangpeng; Liu, Bing; Wu, Chen; Jiang, Wen

    2015-04-23

    We sought to demonstrate the in vivo transduction efficiency and tropism range in astrocytes of a combined-serotype adeno associated virus (AAV2/5/7/8/9). To control expression of enhanced green fluorescent protein (EGFP), a 1740bp glial fibrillary acidic protein (GFAP) promoter was obtained and ligated into vectors of each AAV serotype (2/5/7/8/9). Purified AAVs were then injected into the somatosensory cortex of C57BL/6J mice. Cell-type specific antibodies and subsequent immunofluorescence were used to identify astrocytes (GFAP), neurons (neuronal nuclear antigen, NeuN), microglia (ionized calcium-binding adapter molecule 1, Iba1), and oligodendrocytes (myelin basic protein, MBP), whereby, EGFP expression was measured in each cell type at 1-4 weeks post-injection. Our results indicated that the majority of astrocytes expressed EGFP, while only a small number of neurons expressed EGFP. Both microglia and oligodendrocytes lacked EGFP expression after viral injection. Quantitative analyses revealed that the percentage of EGFP-positive astrocytes was about 98% after viral injection, while the EGFP-positive neuronal percentage was less than 2%. Thus, this study shows that using a combined-serotype AAV carrying a 1740bp GFAP promoter results in successful, cell-type specific infection of the central nervous system, with robust gene expression in murine astrocytes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  15. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

    Czech Academy of Sciences Publication Activity Database

    Tadokoro, T.; Miyanohara, A.; Navarro, M.; Kamizato, K.; Juhás, Štefan; Juhásová, Jana; Maršala, S.; Platoshyn, O.; Curtis, E.; Gabel, B.; Ciacci, J. D.; Lukáčová, N.; Bimbová, K.; Maršala, M.

    2017-01-01

    Roč. 125, č. 13 (2017), č. článku e55770. ISSN 1940-087X R&D Projects: GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 Keywords : AAV9 * adult mouse Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 1.232, year: 2016

  16. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.

    Science.gov (United States)

    Jin, Lei; Lange, Wienke; Kempmann, Annika; Maybeck, Vanessa; Günther, Anne; Gruteser, Nadine; Baumann, Arnd; Offenhäusser, Andreas

    2016-09-10

    In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Effective relief of neuropathic pain by adeno-associated virus-mediated expression of a small hairpin RNA against GTP cyclohydrolase 1

    Directory of Open Access Journals (Sweden)

    Chang Jin

    2009-11-01

    Full Text Available Abstract Background Recent studies show that transcriptional activation of GTP cyclohydrolase I (GCH1 in dorsal root ganglia (DRG is significantly involved in the development and persistency of pain symptoms. We thus hypothesize that neuropathic pain may be attenuated by down-regulation of GCH1 expression, and propose a gene silencing system for this purpose. Results To interrupt GCH1 synthesis, we designed a bidirectional recombinant adeno-associated virus encoding both a small hairpin RNA against GCH1 and a GFP reporter gene (rAAV-shGCH1. After rAAV-shGCH1 was introduced into the sciatic nerve prior to or following pain-inducing surgery, therapeutic efficacy and the underlying mechanisms were subsequently validated in animal models. The GFP expression data indicates that rAAV effectively delivered transgenes to DRG. Subsequently reduced GCH1 expression was evident from immunohistochemistry and western-blotting analysis. Along with the down-regulation of GCH1, the von Frey test correspondingly indicated a sharp decline in pain symptoms upon both pre- and post-treatment with rAAV-shGCH1. Interestingly, GCH1 down-regulation additionally led to decreased microglial activation in the dorsal horn, implying an association between pain attenuation and reduced inflammation. Conclusion Therefore, the data suggests that GCH1 levels can be reduced by introducing rAAV-shGCH1, leading to pain relief. Based on the results, we propose that GCH1 modulation may be developed as a clinically applicable gene therapy strategy to treat neuropathic pain.

  18. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    Science.gov (United States)

    Smith, R H; Spano, A J; Kotin, R M

    1997-06-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences.

  19. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer

    Science.gov (United States)

    Wang, Xiaofeng; Liu, Xinyang; Huang, Mingzhu; Gan, Lu; Cheng, Yufan; Li, Jin

    2016-01-01

    Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy. PMID:27009837

  20. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  1. Systemic Errors in Quantitative Polymerase Chain Reaction Titration of Self-Complementary Adeno-Associated Viral Vectors and Improved Alternative Methods

    Science.gov (United States)

    Fagone, Paolo; Wright, J. Fraser; Nathwani, Amit C.; Nienhuis, Arthur W.; Davidoff, Andrew M.

    2012-01-01

    Abstract Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities. PMID:22428975

  2. Adeno-Associated Virus Serotype 9–Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Tijana Knezevic, PhD

    2016-12-01

    Full Text Available Mutations in Bcl-2–associated athanogene 3 (BAG3 were associated with skeletal muscle dysfunction and dilated cardiomyopathy. Retro-orbital injection of an adeno-associated virus serotype 9 expressing BAG3 (rAAV9-BAG3 significantly (p < 0.0001 improved left ventricular ejection fraction, fractional shortening, and stroke volume 9 days post-injection in mice with cardiac dysfunction secondary to a myocardial infarction. Furthermore, myocytes isolated from mice 3 weeks after injection showed improved cell shortening, enhanced systolic [Ca2+]i and increased [Ca2+]i transient amplitudes, and increased maximal L-type Ca2+ current amplitude. These results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.

  3. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial.

    Science.gov (United States)

    Rakoczy, Elizabeth P; Lai, Chooi-May; Magno, Aaron L; Wikstrom, Matthew E; French, Martyn A; Pierce, Cora M; Schwartz, Steven D; Blumenkranz, Mark S; Chalberg, Thomas W; Degli-Esposti, Mariapia A; Constable, Ian J

    2015-12-12

    Neovascular, or wet, age-related macular degeneration causes central vision loss and represents a major health problem in elderly people, and is currently treated with frequent intraocular injections of anti-VEGF protein. Gene therapy might enable long-term anti-VEGF therapy from a single treatment. We tested the safety of rAAV.sFLT-1 in treatment of wet age-related macular degeneration with a single subretinal injection. In this single-centre, phase 1, randomised controlled trial, we enrolled patients with wet age-related macular degeneration at the Lions Eye Institute and the Sir Charles Gairdner Hospital (Nedlands, WA, Australia). Eligible patients had to be aged 65 years or older, have age-related macular degeneration secondary to active subfoveal choroidal neovascularisation, with best corrected visual acuity (BCVA) of 3/60-6/24 and 6/60 or better in the other eye. Patients were randomly assigned (3:1) to receive either 1 × 10(10) vector genomes (vg; low-dose rAAV.sFLT-1 group) or 1 × 10(11) vg (high-dose rAAV.sFLT-1 group), or no gene-therapy treatment (control group). Randomisation was done by sequential group assignment. All patients and investigators were unmasked. Staff doing the assessments were masked to the study group at study visits. All patients received ranibizumab at baseline and week 4, and rescue treatment during follow-up based on prespecified criteria including BCVA measured on the Early Treatment Diabetic Retinopathy Study (EDTRS) scale, optical coherence tomography, and fluorescein angiography. The primary endpoint was ocular and systemic safety. This trial is registered with ClinicalTrials.gov, number NCT01494805. From Dec 16, 2011, to April 5, 2012, we enrolled nine patients of whom eight were randomly assigned to receive either intervention (three patients in the low-dose rAAV.sFLT-1 group and three patients in the high-dose rAAV.sFLT-1 group) or no treatment (two patients in the control group). Subretinal injection of r

  4. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  5. Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses

    NARCIS (Netherlands)

    Lukashov, V. V.; Goudsmit, J.

    2001-01-01

    The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41

  6. Correction: The state of the art of adeno-associated virus-based vectors in gene therapy

    Directory of Open Access Journals (Sweden)

    Nardi Nance

    2010-01-01

    Full Text Available Abstract It has come to our attention that, on writing our manuscript (dos Santos Coura and Nardi, 2007, we unintentionally included unquoted passages from the work by Wu et al. (2006, collected during the period when we were doing extensive readings on the subject, and not adequately referenced. We regret this error and offer our sincere apologies.

  7. Bone Marrow Transplantation Augments the Effect of Brain- and Spinal Cord-Directed Adeno-Associated Virus 2/5 Gene Therapy by Altering Inflammation in the Murine Model of Globoid-Cell Leukodystrophy

    Science.gov (United States)

    Reddy, Adarsh S.; Kim, Joong H.; Hawkins-Salsbury, Jacqueline A.; Macauley, Shannon L.; Tracy, Elisabeth T.; Vogler, Carole A.; Han, Xialin; Song, Sheng-Kwei; Wozniak, David F.; Fowler, Stephen C.; Klein, Robyn S.; Sands, Mark S.

    2012-01-01

    Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear. In addition, the therapeutic efficacy may have been limited since the CNS-directed gene therapy was restricted to the forebrain and thalamus. In the current study, intrathecal and intracerebellar injections were added to the therapeutic regimen and the mechanism of synergy between BMT and gene therapy was determined. Although AAV2/5 alone provided supraphysiological levels of GALC activity and reduced psychosine levels in both the brain and spinal cord, it significantly increased CNS inflammation. Bone marrow transplantation alone provided essentially no GALC activity to the CNS and did not reduce psychosine levels. When AAV2/5 is combined with BMT, there are sustained improvements in motor function and the median life span is increased to 123 d (range, 92–282 d) compared with 41 d in the untreated twitcher mice. Interestingly, addition of BMT virtually eliminates both the disease and AAV2/5-associated inflammatory response. These data suggest that the efficacy of AAV2/5-mediated gene therapy is limited by the associated inflammatory response and BMT synergizes with AAV2/5 by modulating inflammation. PMID:21734286

  8. Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression

    Science.gov (United States)

    Mueller, Christian; Chulay, Jeffrey D.; Trapnell, Bruce C.; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A.; McElvaney, Noel G.; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N.; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R.; Ye, Guo-jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P.; Vonderheide, Robert H.; Hulme, Maigan A.; Brusko, Todd M.; Wilson, James M.; Flotte, Terence R.

    2013-01-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1–AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy. PMID:24231351

  9. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  10. Optimization of design and production strategies for novel adeno-associated viral display peptide libraries.

    Science.gov (United States)

    Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M

    2017-08-01

    Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.

  11. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice.

    Science.gov (United States)

    Xu, L; Daly, T; Gao, C; Flotte, T R; Song, S; Byrne, B J; Sands, M S; Parker Ponder, K

    2001-03-20

    Although AAV vectors show promise for hepatic gene therapy, the optimal transcriptional regulatory elements have not yet been identified. In this study, we show that an AAV vector with the CMV enhancer/chicken beta-actin promoter results in 9.5-fold higher expression after portal vein injection than an AAV vector with the EF1 alpha promoter, and 137-fold higher expression than an AAV vector with the CMV promoter/enhancer. Although induction of the acute-phase response with the administration of lipopolysaccharide (LPS) activated the CMV promoter/enhancer from the context of an adenoviral vector in a previous study, LPS resulted in only a modest induction of this promoter from an AAV vector in vivo. An AAV vector with the CMV-beta-actin promoter upstream of the coagulation protein human factor X (hFX) was injected intravenously into neonatal mice. This resulted in expression of hFX at 548 ng/ml (6.8% of normal) for up to 1.2 years, and 0.6 copies of AAV vector per diploid genome in the liver at the time of sacrifice. Neonatal intramuscular injection resulted in expression of hFX at 248 ng/ml (3.1% of normal), which derived from both liver and muscle. We conclude that neonatal gene therapy with an AAV vector with the CMV-beta-actin promoter might correct hemophilia due to hFX deficiency.

  12. Intracellular localization of adeno-associated viral proteins expressed in insect cells.

    Science.gov (United States)

    Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A

    2011-01-01

    Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  13. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  14. Recombinant adeno-associated virus-, polyethylenimine/plasmid- and lipofectamine/carboxyfluorescein-labeled small interfering RNA-based transfection in retinal pigment epithelial cells with ultrasound and/or SonoVue.

    Science.gov (United States)

    Li, Hongli; Wan, Caifeng; Li, Fenghua

    2015-05-01

    The present study was conducted to investigate the efficacy and safety of ultrasound (US)‑mediated transfection of the type 2 recombinant adeno‑associated virus (AAV) vectors encoding the enhanced green fluorescent protein (EGFP) gene (rAAV), polyethylenimine (PEI)/plasmid EGFP‑N1 (pDNA) or lipofectamine (L)/carboxyfluorescein (FAM)‑labeled small interfering RNA (siRNA) in the human ARPE‑19 retinal pigment epithelial (RPE) cell line, with or without the addition of SonoVue. Cultured RPE cells were exposed to US, with or without SonoVue under different conditions, including variation in the intensity and duration of treatment, and the dose of microbubbles. The effects of ultrasound‑targeted microbubble destruction (UTMD) on the structure of pDNA and the transfection ability of rAAV, PEI/pDNA and L/siRNA were also evaluated. Furthermore, the effect of UTMD on RPE cells was evaluated at 0 and 24 h following UTMD. US‑mediated transfection (USMT) significantly increased L/siRNA transfection efficiency, as measured by the transgene expression per cell and the percentage of transfected cells. UTMD significantly increased rAAV and PEI/pDNA transfer to RPE cells. UTMD‑mediated rAAV or PEI/pDNA delivery was more effective than USMT‑mediated delivery of siRNA. Evaluating cell viability at 24 h post‑UTMD provided more valuable information than immediate evaluation following UTMD. Furthermore, there was minimal cytotoxicity and minimal change to the structure of pDNA under the optimal parameters. UTMD/US may be of use in enhancing rAAV, PEI/pDNA and L/siRNA transgene expression of ARPE‑19 cells in vitro. Studies on the transfection of different nucleotides (such as pDNA and siRNA) and different types of vectors (chemical and biological) mediated by UTMD may provide useful information to guide future in vivo and transfection studies.

  15. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  16. Viruses vector control proposal: genus Aedes emphasis

    Directory of Open Access Journals (Sweden)

    Nelson Nogueira Reis

    2017-07-01

    Full Text Available The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness.

  17. Plant Virus Expression Vector Development: New Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen Hefferon

    2014-01-01

    Full Text Available Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.

  18. Data-driven identification of potential Zika virus vectors

    Science.gov (United States)

    Evans, Michelle V; Dallas, Tad A; Han, Barbara A; Murdock, Courtney C; Drake, John M

    2017-01-01

    Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. DOI: http://dx.doi.org/10.7554/eLife.22053.001 PMID:28244371

  19. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  20. Virus recombinant associés à l'adénovirus : développement des procédés et application du transfert de gène pour la dystrophie musculaire

    OpenAIRE

    Dias Florencio Leite, Gabriella

    2017-01-01

    The interest of recombinant Adeno-Associated Virus (rAAV) vectors for research and clinical purposes in the treatment of genetic diseases have led to the rapid evolution of methods for AAV production in the last two decades (Ayuso et al., 2010). Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. In addition, the specificity of the treatment can be increased when the right serotype is chosen to ta...

  1. Evolutionary dynamics of dengue virus populations within the mosquito vector.

    Science.gov (United States)

    Lambrechts, Louis; Lequime, Sebastian

    2016-12-01

    To date, dengue virus evolution has mainly been addressed by studies conducted at the between-host level. Like other pathogens with high mutation rate and rapid replication, dengue viruses also evolve during the course of an infection. Over the last few years, the advent of deep-sequencing technologies has facilitated studies of dengue virus populations at the within-host level. Here, we review recent advances on the evolutionary dynamics of dengue virus populations within their mosquito vector. We discuss how identifying the evolutionary forces acting on dengue virus populations within the mosquito can shed light on the processes underlying vector-virus interactions and the evolution of epidemiologically relevant traits. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Vaccinia virus as an expression vector.

    Science.gov (United States)

    Talavera, A; Rodriguez, J M

    1992-01-01

    Vaccinia virus (Vv) is a member of the genus Orthopoxvirus, one of seven genera included in the family Poxviridae. Most of these viruses infect vertebrates (Orthopoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus, and Parapoxvirus), but one genus, Entomopoxvirus, infects insects. It is interesting to note that the Fibroma and Mixoma viruses of the leporipoxvirus genus cause tumors in their hosts (rabbits), these being the only tumorigenic viruses in the family (1,2).

  3. A stable RNA virus-based vector for citrus trees

    International Nuclear Information System (INIS)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-01-01

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees

  4. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  5. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  6. Virus infection of a weed increases vector attraction to and vector fitness on the weed

    Science.gov (United States)

    Chen, Gong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Fang, Yong; Shi, Xiaobin; Zhang, Youjun

    2013-01-01

    Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China. PMID:23872717

  7. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Directory of Open Access Journals (Sweden)

    Brittany L. Dodson

    2017-03-01

    Full Text Available Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  8. Potential for biological control of rice yellow mottle virus vectors ...

    African Journals Online (AJOL)

    Insect pests and disease infestations are the primary constraints in rice (Oryza sativa) production systems in Africa and Asia. ... Unfortunately, 2002 - 2004, two sampling methods were combined to assess the population of insects vectors of rice yellow mottle virus (RYMV) in the three major irrigated rice ecosystems in ...

  9. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  10. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Vectors of Crimean Congo Hemorrhagic Fever Virus in Iran

    Directory of Open Access Journals (Sweden)

    Zakkyeh Telmadarraiy

    2015-10-01

    Full Text Available Background: Ticks are important vectors and reservoirs of Crimean Congo Hemorrhagic Fever (CCHF virus. Human beings may be infected whenever the normal life cycle of the infected ticks on non- human vertebrate hosts is interrupted by the undesirable presence of humans in the cycle. A total of 26 species of Argasid and Ixodid ticks have been recorded in Iran; including nine Hyalomma, two Rhipicephalus, two Dermacentor, five Haemaphysalis, two Boophilus, one Ixodes and two Argas as well as three Ornithodoros species as blood sucking ectoparasites of livestock and poultries. The present paper reviews tick vectors of CCHF virus in Iran, focusing on the role of ticks in different provinces of Iran using reverse transcription polymerase chain reaction (RT-PCR assay.Methods: During ten years study, 1054 tick specimens; including two species of Argasidae and 17 species of Ixodidae were examined for their infection to CCHF virus genome. The output of all studies as well as related publications were discussed in the current paper.Results: The results show that Rhipicephalus sanguineus, Hyalomma marginatum, H. anatolicum, H. asiaticum and H. dromedarii were known as the most frequent species which were positive for CCHF virus.Conclusion: The status of ticks which were positive for CCHF virus revealed that unlike the most common idea that Hyalomma species are the most important vectors of CCHF virus, other ticks including Rhipicephalus,Haemaphysalis and Dermacentor can be reservoir of this virus; thus, considering geographical distribution, type of host and environmental conditions, different tick control measurements should be carried out in areas with high incidence of CCHF disease.

  12. Nonreciprocal Pseudotyping: Murine Leukemia Virus Proteins Cannot Efficiently Package Spleen Necrosis Virus-Based Vector RNA

    OpenAIRE

    Certo, Jeanine L.; Shook, Betsy F.; Yin, Philip D.; Snider, John T.; Hu, Wei-Shau

    1998-01-01

    It has been documented that spleen necrosis virus (SNV) can package murine leukemia virus (MLV) RNA efficiently and propagate MLV vectors to the same titers as it propagates SNV-based vectors. Although the SNV packaging signal (E) and MLV packaging signal (Ψ) have little sequence homology, similar double-hairpin RNA structures were predicted and supported by experimental evidence. To test whether SNV RNA can be packaged by MLV proteins, we modified an SNV vector to be expressed in an MLV-base...

  13. Virusoverdracht en vectorbestrijding in pootaardappelgewassen = Virus transmission and vector control in seed potatoes (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Wolf, van der J.P.M.

    1961-01-01

    The extensive literature concerning leafroll virus, virus Y and their vector Myzus persicae Sulz. was surveyed. The relations between virus, aphid and plant were discussed. In virus spread, endogenous infection (spread of virus within the field whereby virus diseased plants act as sources of

  14. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  15. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    Science.gov (United States)

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  16. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  17. Can Viruses be Modified to Achieve Sustained Gene Transfer?

    Directory of Open Access Journals (Sweden)

    Hildegund CJ Ertl

    2011-07-01

    Full Text Available It is very easy to replace a faulty gene in an immunocompromised mouse. First, one takes a well-characterized virus, such as an adenovirus or an adeno-associated virus, and incorporates the correct version of the faulty gene together with some regulatory sequences into the genome. Then, one transduces the recombinant genome into helper cells, which will add the viral capsid. At last, one injects the resulting viral vector into the sick mouse, and the mouse is cured. It is not that easy in an immunocompetent mouse, let alone in a human, as over the eons the immune system evolved to eliminate viruses regardless if they penetrate as dangerous pathogens or are injected by a well-meaning gene therapist. Here we offer our perspective on the potential of how viral vectors achieve sustained gene transfer in the face of a hostile immune system.

  18. Status and prospects of plant virus control through interference with vector transmission

    NARCIS (Netherlands)

    Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L.

    2013-01-01

    Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus–vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers,

  19. Use of genetically modified viruses and genetically engineered virus-vector vaccines: environmental effects.

    Science.gov (United States)

    Chan, Vivian S W

    2006-11-01

    Despite major therapeutic advances, infectious diseases remain highly problematic. Recent advancements in technology in producing DNA-based vaccines, together with the growing knowledge of the immune system, have provided new insights into the identification of the epitopes needed to target the development of highly targeted vaccines. Genetically modified (GM) viruses and genetically engineered virus-vector vaccines possess significant unpredictability and a number of inherent harmful potential hazards. For all these vaccines, safety assessment concerning unintended and unwanted side effects with regard to targeted vaccinees has always been the main focus. Important questions concerning effects on nontargeted individuals within the same species or other species remain unknown. Horizontal transfer of genes, though lacking supportive experimental or epidemiological investigations, is well established. New hybrid virus progenies resulting from genetic recombination between genetically engineered vaccine viruses and their naturally occurring relatives may possess totally unpredictable characteristics with regard to host preferences and disease-causing potentials. Furthermore, when genetically modified or engineered virus particles break down in the environment, their nuclei acids are released. Appropriate risk management is the key to minimizing any potential risks to humans and environment resulting from the use of these GM vaccines. There is inadequate knowledge to define either the probability of unintended events or the consequences of genetic modifications. The objective of this article is to highlight the limitations in environmental risk assessment and raise awareness of the potential risks involving the use of genetically modified viruses and genetically engineered virus-vector vaccines.

  20. Satellite panicum mosaic virus coat protein enhances the performance of plant virus gene vectors.

    Science.gov (United States)

    Everett, Anthany L; Scholthof, Herman B; Scholthof, Karen-Beth G

    2010-01-05

    The coat protein of satellite panicum mosaic virus (SPCP) is known to effectively protect its cognate RNA from deleterious events, and here, we tested its stabilizing potential for heterologous virus-based gene vectors in planta. In support of this, a Potato virus X (PVX) vector carrying the SPMV capsid protein (PVX-SPCP) gene was stable for at least three serial systemic passages through Nicotiana benthamiana. To test the effect of SPCP in trans, PVX-SPCP was co-inoculated onto N. benthamiana together with a Tomato bushy stunt virus (TBSV) vector carrying a green fluorescent protein (GFP) gene that normally does not support systemic GFP expression. In contrast, co-inoculation of TBSV-GFP plus PVX-SPCP resulted in GFP accumulation and concomitant green fluorescent spots in upper, non-inoculated leaves in a temperature-responsive manner. These results suggest that the multifaceted SPMV CP has intriguing effects on virus-host interactions that surface in heterologous systems.

  1. Enhancers Are Major Targets for Murine Leukemia Virus Vector Integration

    Science.gov (United States)

    De Ravin, Suk See; Su, Ling; Theobald, Narda; Choi, Uimook; Macpherson, Janet L.; Poidinger, Michael; Symonds, Geoff; Pond, Susan M.; Ferris, Andrea L.; Hughes, Stephen H.

    2014-01-01

    ABSTRACT Retroviral vectors have been used in successful gene therapies. However, in some patients, insertional mutagenesis led to leukemia or myelodysplasia. Both the strong promoter/enhancer elements in the long terminal repeats (LTRs) of murine leukemia virus (MLV)-based vectors and the vector-specific integration site preferences played an important role in these adverse clinical events. MLV integration is known to prefer regions in or near transcription start sites (TSS). Recently, BET family proteins were shown to be the major cellular proteins responsible for targeting MLV integration. Although MLV integration sites are significantly enriched at TSS, only a small fraction of the MLV integration sites (integration map of more than one million integration sites from CD34+ hematopoietic stem cells transduced with a clinically relevant MLV-based vector. The integration sites form ∼60,000 tight clusters. These clusters comprise ∼1.9% of the genome. The vast majority (87%) of the integration sites are located within histone H3K4me1 islands, a hallmark of enhancers. The majority of these clusters also have H3K27ac histone modifications, which mark active enhancers. The enhancers of some oncogenes, including LMO2, are highly preferred targets for integration without in vivo selection. IMPORTANCE We show that active enhancer regions are the major targets for MLV integration; this means that MLV preferentially integrates in regions that are favorable for viral gene expression in a variety of cell types. The results provide insights for MLV integration target site selection and also explain the high risk of insertional mutagenesis that is associated with gene therapy trials using MLV vectors. PMID:24501411

  2. Potato virus X and Tobacco mosaic virus-based vectors compatible with the Gateway-TM cloning system

    NARCIS (Netherlands)

    Lacorte, C.C.; Ribeiro, S.G.; Lohuis, H.; Goldbach, R.W.; Prins, M.W.

    2010-01-01

    Virus-based expression vectors are important tools for high-level production of foreign proteins and for gene function analysis through virus induced gene silencing. To exploit further their advantages as fast, high yield replicons, a set of vectors was produced by converting and adapting Potato

  3. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use.

    Science.gov (United States)

    Dawson, William O; Folimonova, Svetlana Y

    2013-01-01

    Virus-based expression vectors are commonplace tools for the production of proteins or the induction of RNA silencing in herbaceous plants. This review considers a completely different set of uses for viral vectors in perennial fruit and nut crops, which can be productive for periods of up to 100 years. Viral vectors could be used in the field to modify existing plants. Furthermore, with continually emerging pathogens and pests, viral vectors could express genes to protect the plants or even to treat plants after they become infected. As technologies develop during the life span of these crops, viral vectors can be used for adding new genes as an alternative to pushing up the crop and replanting with transgenic plants. Another value of virus-based vectors is that they add nothing permanently to the environment. This requires that effective and stable viral vectors be developed for specific crops from endemic viruses. Studies using viruses from perennial hosts suggest that these objectives could be accomplished.

  4. Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel

    2015-01-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  5. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  6. The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors

    Directory of Open Access Journals (Sweden)

    Murad Ghanim

    2013-06-01

    Full Text Available Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed.

  7. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  8. Highly efficient virus-induced gene silencing in apple and soybean by apple latent spherical virus vector and biolistic inoculation.

    Science.gov (United States)

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the analysis of the gene function in plants within a short time. However, in woody fruit tree like apple, some of Solanum crops, and soybean, it is generally difficult to inoculate virus vector by conventional inoculation methods. Here, we show efficient VIGS in apple and soybean by Apple latent spherical virus (ALSV) vector and biolistic inoculation. The plants inoculated with ALSV vectors by particle bombardment showed uniform silenced phenotypes of target genes within 2-3 weeks post inoculation.

  9. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    Science.gov (United States)

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  10. Virus-Induced Gene Silencing in Maize with a Foxtail mosaic virus Vector.

    Science.gov (United States)

    Mei, Yu; Whitham, Steven A

    2018-01-01

    Virus-induced gene silencing (VIGS) is a powerful technology for rapidly and transiently knocking down the expression of plant genes to study their functions. A VIGS vector for maize derived from Foxtail mosaic virus (FoMV), a positive-sense single-stranded RNA virus, was recently developed. A cloning site created near the 3' end of the FoMV genome enables insertion of 200-400 nucleotide fragments of maize genes targeted for silencing. The recombinant FoMV clones are inoculated into leaves of maize seedlings by biolistic particle delivery, and silencing is typically observed within 2 weeks after inoculation. This chapter provides a protocol for constructing FoMV VIGS clones and inoculating them into maize seedlings.

  11. Eilat virus displays a narrow mosquito vector range.

    Science.gov (United States)

    Nasar, Farooq; Haddow, Andrew D; Tesh, Robert B; Weaver, Scott C

    2014-12-17

    Most alphaviruses are arthropod-borne and utilize mosquitoes as vectors for transmission to susceptible vertebrate hosts. This ability to infect both mosquitoes and vertebrates is essential for maintenance of most alphaviruses in nature. A recently characterized alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani s.I. is unable to replicate in vertebrate cell lines. The EILV host range restriction occurs at both attachment/entry as well as genomic RNA replication levels. Here we investigated the mosquito vector range of EILV in species encompassing three genera that are responsible for maintenance of other alphaviruses in nature. Susceptibility studies were performed in four mosquito species: Aedes albopictus, A. aegypti, Anopheles gambiae, and Culex quinquefasciatus via intrathoracic and oral routes utilizing EILV and EILV expressing red fluorescent protein (-eRFP) clones. EILV-eRFP was injected at 10(7) PFU/mL to visualize replication in various mosquito organs at 7 days post-infection. Mosquitoes were also injected with EILV at 10(4)-10(1) PFU/mosquito and virus replication was measured via plaque assays at day 7 post-infection. Lastly, mosquitoes were provided bloodmeals containing EILV-eRFP at doses of 10(9), 10(7), 10(5) PFU/mL, and infection and dissemination rates were determined at 14 days post-infection. All four species were susceptible via the intrathoracic route; however, replication was 10-100 fold less than typical for most alphaviruses, and infection was limited to midgut-associated muscle tissue and salivary glands. A. albopictus was refractory to oral infection, while A. gambiae and C. quinquefasciatus were susceptible only at 10(9) PFU/mL dose. In contrast, A. aegypti was susceptible at both 10(9) and 10(7) PFU/mL doses, with body infection rates of 78% and 63%, and dissemination rates of 26% and 8%, respectively. The exclusion of vertebrates in its maintenance cycle may have facilitated the adaptation of EILV to a single

  12. Tubular structure induced by a plant virus facilitates viral spread in its vector insect.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available Rice dwarf virus (RDV replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.

  13. Varroa destructor, a potential vector of Israeli Acute Paralysis Virus in honey bees, Apis mellifera

    Science.gov (United States)

    Although the role of the parasitic mite, Varroa destructor, as a vector in transmission of viruses between honey bees is well established, no study has shown that it can similarly transmit Israeli Acute Paralysis Virus (IAPV), a virus that was found to be associated with Colony Collapse Disorder (CC...

  14. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    Science.gov (United States)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  15. Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus

    Directory of Open Access Journals (Sweden)

    Zhong Zou

    2014-06-01

    Full Text Available Duck Tembusu virus (DTMUV is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined. In this study, duck enteritis virus (DEV was examined as a candidate vaccine vector to deliver the envelope (E of DTMUV. A modified mini-F vector was inserted into the SORF3 and US2 gene junctions of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC of C-KCE (vBAC-C-KCE. The envelope (E gene of DTMUV was inserted into the C-KCE genome through the mating-assisted genetically integrated cloning (MAGIC strategy, resulting in the recombinant vector, pBAC-C-KCE-E. A bivalent vaccine C-KCE-E was generated by eliminating the BAC backbone. Immunofluorescence and western blot analysis results indicated that the E proteins were vigorously expressed in C-KCE-E-infected chicken embryo fibroblasts (CEFs. Duck experiments demonstrated that the insertion of the E gene did not alter the protective efficacy of C-KCE. Moreover, C-KCE-E-immunized ducks induced neutralization antibodies against DTMUV. These results demonstrated, for the first time, that recombinant C-KCE-E can serve as a potential bivalent vaccine against DEV and DTMUV.

  16. Vectores recombinantes basados en el virus Vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis

    OpenAIRE

    Pérez Jiménez, Eva; Larraga, Vicente; Esteban, Mariano

    2005-01-01

    Vectores recombinantes basados en el virus vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis. Los vectores de la invención contienen secuencias codificantes de la proteína LACK, preferentemente insertadas en el locus de hemaglutinina del virus y bajo el control de un promotor que permite su expresión a lo largo del ciclo de infección del virus. Son vectores seguros, estables, que dan lugar a una potente respuesta inmune que confiere protección frente a la leishmaniasis,...

  17. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS1[OPEN

    Science.gov (United States)

    2018-01-01

    Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors. PMID:29127260

  18. An ImprovedBrome mosaic virusSilencing Vector: Greater Insert Stability and More Extensive VIGS.

    Science.gov (United States)

    Ding, Xin Shun; Mannas, Stephen W; Bishop, Bethany A; Rao, Xiaolan; Lecoultre, Mitchell; Kwon, Soonil; Nelson, Richard S

    2018-01-01

    Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 ( HSP70-1 ) inserts in Nicotiana benthamiana and maize ( Zea mays ). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70 , silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors. © 2018 American Society of Plant Biologists. All Rights Reserved.

  19. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  20. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system.

    Science.gov (United States)

    Chen, Michael Y; Hoffer, Alan; Morrison, Paul F; Hamilton, John F; Hughes, Jeffrey; Schlageter, Kurt S; Lee, Jeongwu; Kelly, Brandon R; Oldfield, Edward H

    2005-08-01

    Achieving distribution of gene-carrying vectors is a major barrier to the clinical application of gene therapy. Because of the blood-brain barrier, the distribution of genetic vectors to the central nervous system (CNS) is even more challenging than delivery to other tissues. Direct intraparenchymal microinfusion, a minimally invasive technique, uses bulk flow (convection) to distribute suspensions of macromolecules widely through the extracellular space (convection-enhanced delivery [CED]). Although acute injection into solid tissue is often used for delivery of oligonucleotides, viruses, and liposomes, and there is preliminary evidence that certain of these large particles can spread through the interstitial space of the brain by the use of convection, the use of CED for distribution of viruses in the brain has not been systematically examined. That is the goal of this study. Investigators used a rodent model to examine the influence of size, osmolarity of buffering solutions, and surface coating on the volumetric distribution of virus-sized nanoparticles and viruses (adeno-associated viruses and adenoviruses) in the gray matter of the brain. The results demonstrate that channels in the extracellular space of gray matter in the brain are large enough to accommodate virus-sized particles and that the surface characteristics are critical determinants for distribution of viruses in the brain by convection. These results indicate that convective distribution can be used to distribute therapeutic viral vectors in the CNS.

  1. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  2. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  3. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  4. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus

    Science.gov (United States)

    He, Wen-Bo; Li, Jie; Liu, Shu-Sheng

    2015-01-01

    Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen. PMID:25567524

  5. Vector-Borne Transmission Imposes a Severe Bottleneck on an RNA Virus Population

    OpenAIRE

    Forrester, Naomi L.; Guerbois, Mathilde; Seymour, Robert L.; Spratt, Heidi; Weaver, Scott C.

    2012-01-01

    RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via...

  6. Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci.

    Science.gov (United States)

    Pakkianathan, Britto Cathrin; Kontsedalov, Svetlana; Lebedev, Galina; Mahadav, Assaf; Zeidan, Muhammad; Czosnek, Henryk; Ghanim, Murad

    2015-10-01

    Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it contributes to the

  7. Parainfluenza virus 5-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Chen, Zhenhai

    2018-03-01

    Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative-sense, nonsegmented, single-stranded RNA virus belonging to the Paramyxoviridae family. Parainfluenza virus 5 is an excellent viral vector and has been used as a live vaccine for kennel cough for many years in dogs without any safety concern. It can grow to high titers in many cell types, and its genome is stable even in the presence of foreign gene insertions. So far, PIV5 has been used to develop vaccines against influenza virus, respiratory syncytial virus, rabies virus, and Mycobacterium tuberculosis, demonstrating its ability to elicit robust and protective immune responses in preclinical animal models. Parainfluenza virus 5-based vaccines can be administered intranasally, intramuscularly, or orally. Interestingly, prior exposure of PIV5 does not prevent a PIV5-vectored vaccine from generating robust immunity, indicating that the vector can be used more than once. Here, these encouraging results are reviewed together along with discussion of the desirable advantages of the PIV5 vaccine vector to aid future vaccine design and to accelerate progression of PIV5-based vaccines into clinical trials. Copyright © 2018 John Wiley & Sons, Ltd.

  8. AAV VECTORS VACCINES AGAINST INFECTIOUS DISEASES

    Directory of Open Access Journals (Sweden)

    Karen eNieto

    2014-01-01

    Full Text Available Since their discovery as a tool for gene transfer, vectors derived from the Adeno-Associated Virus (AAV have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus (Ad, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of the immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody (Ab response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.

  9. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  10. Lentiviral vectors can be used for full-length dystrophin gene therapy.

    Science.gov (United States)

    Counsell, John R; Asgarian, Zeinab; Meng, Jinhong; Ferrer, Veronica; Vink, Conrad A; Howe, Steven J; Waddington, Simon N; Thrasher, Adrian J; Muntoni, Francesco; Morgan, Jennifer E; Danos, Olivier

    2017-03-06

    Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.

  11. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  12. Ebola virus and arthropods: a literature review and entomological consideration on the vector role.

    Science.gov (United States)

    Dutto, M; Bertero, M; Petrosillo, N; Pombi, M; Otranto, D

    2016-10-01

    Ebola virus is a pathogen responsible for a severe disease that affects humans and several animal species. To date, the natural reservoir of this virus is not known with certainty, although it is believed that fruit bats (Chiroptera: Pteropodidae) play an important role in maintaining the virus in nature. Although information on viral transmission from animals to humans is not clear, the role of arthropods has come under suspicion. In this article, we review the potential role of arthropods in spreading Ebola virus, acting as mechanical or biological vectors.

  13. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein.

    Directory of Open Access Journals (Sweden)

    Miyabi Hirano

    Full Text Available The development of gene therapy techniques to introduce transgenes that promote neuronal survival and protection provides effective therapeutic approaches for neurological and neurodegenerative diseases. Intramuscular injection of adenoviral and adeno-associated viral vectors, as well as lentiviral vectors pseudotyped with rabies virus glycoprotein (RV-G, permits gene delivery into motor neurons in animal models for motor neuron diseases. Recently, we developed a vector with highly efficient retrograde gene transfer (HiRet by pseudotyping a human immunodeficiency virus type 1 (HIV-1-based vector with fusion glycoprotein B type (FuG-B or a variant of FuG-B (FuG-B2, in which the cytoplasmic domain of RV-G was replaced by the corresponding part of vesicular stomatitis virus glycoprotein (VSV-G. We have also developed another vector showing neuron-specific retrograde gene transfer (NeuRet with fusion glycoprotein C type, in which the short C-terminal segment of the extracellular domain and transmembrane/cytoplasmic domains of RV-G was substituted with the corresponding regions of VSV-G. These two vectors afford the high efficiency of retrograde gene transfer into different neuronal populations in the brain. Here we investigated the efficiency of the HiRet (with FuG-B2 and NeuRet vectors for retrograde gene transfer into motor neurons in the spinal cord and hindbrain in mice after intramuscular injection and compared it with the efficiency of the RV-G pseudotype of the HIV-1-based vector. The main highlight of our results is that the HiRet vector shows the most efficient retrograde gene transfer into both spinal cord and hindbrain motor neurons, offering its promising use as a gene therapeutic approach for the treatment of motor neuron diseases.

  14. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence

    Science.gov (United States)

    Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.

    2017-01-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564

  15. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins.

    Science.gov (United States)

    Hefferon, Kathleen Laura

    2012-11-10

    Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication.

    Science.gov (United States)

    Taylor, Jason A; Vojtech, Lucia; Bahner, Ingrid; Kohn, Donald B; Laer, Dorothee Von; Russell, David W; Richard, Robert E

    2008-01-01

    Gene therapy has the potential to control human immunodeficiency virus (HIV) in patients who do not respond to traditional antiviral therapy. In this study, we tested foamy virus (FV) vectors expressing three anti-HIV transgenes, both individually and in a combination vector. The transgenes tested in this study are RevM10, a dominant negative version of the viral rev protein, Sh1, a short hairpin RNA directed against a conserved overlapping sequence of tat and rev, and membrane-associated C46 (maC46), a membrane-attached peptide that blocks HIV cell entry. FV vectors efficiently transduce hematopoietic stem cells and, unlike lentivirus (LV) vectors, do not share viral proteins with HIV. The titers of the FV vectors described in this study were not affected by anti-HIV transgenes. On a direct comparison of FV vectors expressing the individual transgenes, entry inhibition using the maC46 transgene was found to be the most effective at blocking HIV replication. A clinically relevant FV vector expressing three anti-HIV transgenes effectively blocked HIV infection in primary macrophages derived from transduced, peripheral blood CD34-selected cells and in a cell line used for propagating HIV, CEMx174. These results suggest that there are potential benefits of using FV vectors in HIV gene therapy.

  17. Data on interaction between adeno-associated virus and U87 cell via cRGD chemical modification

    Directory of Open Access Journals (Sweden)

    Chuanling Zhang

    2016-06-01

    Full Text Available RGD tripeptide is a specific, high-affinity ligand for integrin, which is highly expressed in cancer cells. We previously reported that cRGD chemically modified AAV2 (AAV2N587+1/azido+RGD showed significantly enhanced infectivity compared to RGD genetically inserted AAV2 (AAV2N587+RGD (10.1016/j.biomaterials.2015.11.066 [1]. Herein we provide the binding ability analysis of RGD modified AAV2 and U87 cell by flow cytometry and the theoretical working model of RGD–αvβ3 integrin interaction.

  18. Product-Related Impurities in Clinical-Grade Recombinant AAV Vectors: Characterization and Risk Assessment

    Directory of Open Access Journals (Sweden)

    J. Fraser Wright

    2014-03-01

    Full Text Available Adeno-associated virus (AAV-based vectors expressing therapeutic genes continue to demonstrate great promise for the treatment of a wide variety of diseases and together with other gene transfer vectors represent an emerging new therapeutic paradigm comparable in potential impact on human health to that achieved by recombinant proteins and vaccines. A challenge for the current pipeline of AAV-based investigational products as they advance through clinical development is the identification, characterization and lot-to-lot control of the process- and product-related impurities present in even highly purified preparations. Especially challenging are AAV vector product-related impurities that closely resemble the vector itself and are, in some cases, without clear precedent in established biotherapeutic products. The determination of acceptable levels of these impurities in vectors prepared for human clinical product development, with the goal of new product licensure, requires careful risk and feasibility assessment. This review focuses primarily on the AAV product-related impurities that have been described in vectors prepared for clinical development.

  19. Study of Viral Vectors in a Three-dimensional Liver Model Repopulated with the Human Hepatocellular Carcinoma Cell Line HepG2

    Science.gov (United States)

    Hiller, Thomas; Röhrs, Viola; Dehne, Eva-Maria; Wagner, Anke; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2016-01-01

    This protocol describes the generation of a three-dimensional (3D) ex vivo liver model and its application to the study and development of viral vector systems. The model is obtained by repopulating the extracellular matrix of a decellularized rat liver with a human hepatocyte cell line. The model permits studies in a vascularized 3D cell system, replacing potentially harmful experiments with living animals. Another advantage is the humanized nature of the model, which is closer to human physiology than animal models. In this study, we demonstrate the transduction of this liver model with a viral vector derived from adeno-associated viruses (AAV vector). The perfusion circuit that supplies the 3D liver model with media provides an easy means to apply the vector. The system permits monitoring of the major metabolic parameters of the liver. For final analysis, tissue samples can be taken to determine the extent of recellularization by histological techniques. Distribution of the virus vector and expression of the delivered transgene can be analyzed by quantitative PCR (qPCR), Western blotting and immunohistochemistry. Numerous applications of the vector model in basic research and in the development of gene therapeutic applications can be envisioned, including the development of novel antiviral therapeutics, cancer research, and the study of viral vectors and their potential side effects. PMID:27805597

  20. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  1. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  2. Vector competence of Brazilian Aedes aegypti and Ae. albopictus for a Brazilian yellow fever virus isolate.

    Science.gov (United States)

    Johnson, Barbara W; Chambers, Trudy V; Crabtree, Mary B; Filippis, Ana M B; Vilarinhos, Paulo T R; Resende, Marcelo C; Macoris, Maria de Lourdes G; Miller, Barry R

    2002-01-01

    Because the potential urban yellow fever (YF) mosquito vectors Aedes aegypti and Ae. albopictus are at historical highs in Brazil, both in terms of density and geographical range, we assessed the risk of an urban YF epidemic in Brazil. We evaluated and confirmed in a laboratory setting the vector competence of Brazilian Ae. aegypti for a currently circulating strain of YF virus, and investigated the potential for Brazilian Ae. albopictus to transmit YF.

  3. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors

    Directory of Open Access Journals (Sweden)

    Richardson Jason H

    2009-07-01

    Full Text Available Abstract Background Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1. Results Among indices of vector competence examined, the proportion of mosquitoes with a midgut infection, viral RNA concentration in the body, and quantity of virus disseminated to the head/legs (but not the proportion of infected mosquitoes with a disseminated infection strongly depended on the specific combinations of isofemale families and viral isolates, demonstrating significant G × G interactions. Conclusion Evidence for genetic specificity of interactions in our simple experimental design indicates that vector competence of Ae. aegypti for DENV is likely governed to a large extent by G × G interactions in genetically diverse, natural populations. This result challenges the general relevance of conclusions from laboratory systems that consist of a single combination of mosquito and DENV genotypes. Combined with earlier evidence for fine-scale genetic structure of natural Ae. aegypti populations, our finding indicates that the necessary conditions for local DENV adaptation to mosquito vectors are met.

  4. Evaluating the feeding preferences of West Nile virus mosquito vectors using bird-baited traps

    OpenAIRE

    Victoriano Llopis, Isis; Tomassone, Laura; Grego, Elena; Serrano, Emmanuel; Mosca, Andrea; Vaschetti, Gabriella; Andrade, Daniela; Rossi, Luca

    2016-01-01

    Background The total contact rates (TCRs) between mosquito vectors and their potential hosts have a serious impact on disease transmission dynamics. Culex pipiens (sensu stricto) (s.s.) is considered the main vector of the West Nile Virus (WNV) in Europe and birds are the reservoir hosts. The results of our previous study showed that WNV seroreactors are significantly more prevalent among raptors compared to a range of other wild avian groups. The current study aims to assess the role of bird...

  5. Vector-borne transmission imposes a severe bottleneck on an RNA virus population.

    Science.gov (United States)

    Forrester, Naomi L; Guerbois, Mathilde; Seymour, Robert L; Spratt, Heidi; Weaver, Scott C

    2012-09-01

    RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study.

  6. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

    Directory of Open Access Journals (Sweden)

    Indira S. Harahap-Carrillo

    2015-07-01

    Full Text Available Vaccines against dengue virus (DV are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII from DV 2 envelope protein (E, which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S in order to display DV 2 DIII on a virus-like particle (VLP, thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko, eliciting robust neutralizing responses (averages against MV (1:1280 NT90, hepatitis B virus (787 mIU/mL, and DV2 (1:160 NT50 in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV.

  7. Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin

    Directory of Open Access Journals (Sweden)

    Marlena M. Westcott

    2018-03-01

    Full Text Available Recombinant vesicular stomatitis virus (VSV is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R and M51R VSV that produces flagellin (M51R-F as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu and low-dose (105 pfu vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.

  8. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  9. High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors

    Directory of Open Access Journals (Sweden)

    Lindbo John A

    2007-08-01

    Full Text Available Abstract Background Plants are increasingly being examined as alternative recombinant protein expression systems. Recombinant protein expression levels in plants from Tobacco mosaic virus (TMV-based vectors are much higher than those possible from plant promoters. However the common TMV expression vectors are costly, and at times technically challenging, to work with. Therefore it was a goal to develop TMV expression vectors that express high levels of recombinant protein and are easier, more reliable, and more cost-effective to use. Results We have constructed a Cauliflower mosaic virus (CaMV 35S promoter-driven TMV expression vector that can be delivered as a T-DNA to plant cells by Agrobacterium tumefaciens. Co-introduction (by agroinfiltration of this T-DNA along with a 35S promoter driven gene for the RNA silencing suppressor P19, from Tomato bushy stunt virus (TBSV resulted in essentially complete infection of the infiltrated plant tissue with the TMV vector by 4 days post infiltration (DPI. The TMV vector produced between 600 and 1200 micrograms of recombinant protein per gram of infiltrated tissue by 6 DPI. Similar levels of recombinant protein were detected in systemically infected plant tissue 10–14 DPI. These expression levels were 10 to 25 times higher than the most efficient 35S promoter driven transient expression systems described to date. Conclusion These modifications to the TMV-based expression vector system have made TMV vectors an easier, more reliable and more cost-effective way to produce recombinant proteins in plants. These improvements should facilitate the production of recombinant proteins in plants for both research and product development purposes. The vector should be especially useful in high-throughput experiments.

  10. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore.

    Science.gov (United States)

    Wong, Pei-Sze Jeslyn; Li, Mei-zhi Irene; Chong, Chee-Seng; Ng, Lee-Ching; Tan, Cheong-Huat

    2013-01-01

    Zika virus (ZIKV) is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV. To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80-85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi). Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious. The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.

  11. Aedes (Stegomyia albopictus (Skuse: a potential vector of Zika virus in Singapore.

    Directory of Open Access Journals (Sweden)

    Pei-Sze Jeslyn Wong

    Full Text Available Zika virus (ZIKV is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80-85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi. Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.

  12. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce

    OpenAIRE

    Díaz Desani, Beatriz M.; Biurrun, R.; Moreno, Aránzazu; Nebreda, Miguel; Fereres, Alberto

    2006-01-01

    Ultraviolet (UV)-absorbing plastic films are being used as a photoselective barrier to control insect vectors and associated virus diseases in different horticultural crops. A 2-year experiment was carried out in northeastern Spain (Navarra) to evaluate the impact of a UV-blocking film (AD-IR AV) on the population density of insect pests and the spread of insect-transmitted virus diseases associated with head lettuce [Lactuca sativa (L.)]. Results showed that the UV-absorbing plastic film did...

  13. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    International Nuclear Information System (INIS)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre; Lang, Sabine; Klumpp, Sherry A.; Watanabe, Daisuke; Bronson, Roderick T.; Lifson, Jeffrey D.; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Knipe, David M.; Desrosiers, Ronald C.

    2007-01-01

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS

  14. [Rapid selection of recombinant orf virus expression vectors using green fluorescent protein].

    Science.gov (United States)

    Zhang, Jiachun; Guo, Xianfeng; Zhang, Min; Wu, Feifan; Peng, Yongzheng

    2016-01-01

    To construct a universal, highly attenuated orf virus expression vector for exogenous genes using green fluorescent protein (GFP) as the reporter gene. The flanking regions of the ORFV132 of orf virus DNA were amplified by PCR to construct the shuttle plasmid pSPV-132LF-EGFP-132RF. The shuttle plasmid was transfected into OFTu cells and GFP was incorporated into orf virus IA82Delta 121 by homologous recombination. The recombinant IA82Delta121-V was selected by green fluorescent signal. The deletion gene was identified by PCR and sequencing. The effects of ORFV132 knockout were evaluated by virus titration and by observing the proliferation of the infected vascular endothelial cells in vitro. The recombinant orf virus IA82Delta121-V was obtained successfully and quickly, and the deletion of ORFV132 did not affect the replication of the virus in vitro but reduced its virulence. Green fluorescent protein is a selectable marker for rapid, convenient and stable selection of the recombinant viruses. Highly attenuated recombinant orf virus IA82Delta121-V can serve as a new expression vector for exogenous genes.

  15. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  16. Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2014-08-01

    Full Text Available Background/Aims: Vectors derived from adeno-associated viruses (AAVs are important gene delivery tools for treating pulmonary diseases. Phosphorylation of surface-exposed tyrosine residues from AAV2 capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. We evaluated the pulmonary transduction efficiency of AAV8 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Male C57BL/6 mice (20-25 g, n=24 were randomly assigned into three groups: control group animals received intratracheal (i.t. instillation of saline (50 μl, wild-type AAV8 group, and capsid mutant Y733F AAV8 group, which received (i.t. AAV8 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics and morphometry, vector transduction (immunohistochemistry and mRNA expression of eGFP, and inflammatory cytokines and growth factor expression were analyzed. Results: Tyrosine-mutant AAV8 vectors displayed significantly increased transduction efficiency in the lung compared with their wild-type counterparts. No significant differences were observed in lung mechanics and morphometry between experimental groups. There was no evidence of inflammatory response in any group. Conclusion: AAV8 vectors may be useful for new therapeutic strategies for the treatment of pulmonary diseases.

  17. Pseudacteon decapitating flies: Potential vectors of a fire ant virus?

    International Nuclear Information System (INIS)

    Valles, S.M.; Porter, S.D.

    2007-01-01

    Solenopsis invicta virus (SINV-1) is a positive-stranded RNA virus recently found to infect all stages of the red imported fire ant, Solenopsis invicta (Valles et al. 2004; Valles and Strong 2005). SINV-1 and a second genotype have been tentatively assigned to the Dicistroviridae (Mayo 2002). Infected individuals or colonies did not exhibit any immediate, discernible symptoms in the field. However, under stress from introduction into the laboratory, brood death was often observed among infected colonies, ultimately leading to the death of the entire colony (Valles et al. 2004). These characteristics are consistent with other insect-infecting positive-stranded RNA viruses. They often persist as inapparent, asymptomatic infections that, under certain conditions, induce replication within the host, resulting in observable symptoms and often death (Christian and Scotti 1998; Fernandez et al. 2002). The SINV infection rate among colonies was reported to be around 25% in Gainesville, Florida (Valles et al. 2004; Valles and Strong 2005). SINV vertical and horizontal transmission were inferred based on RT-PCR detection of virus genome in eggs and successful colony to colony transfer under lab conditions (Valles et al. 2004). However, the exact mechanisms by which the virus is spread from nest to nest in the field are unknown. Our results indicate that SINV does not replicate within Pseudacteon decapitating flies that parasitize S. invicta. Flies appeared to develop normally from SINV-infected S. invicta workers. Mechanical transmission of SINV to uninfected ants by oviposition appears unlikely

  18. Construction of PVX virus-expression vector to express enterotoxin ...

    African Journals Online (AJOL)

    Potato X potyvirus (PVX)-based vector has been comprehensively applied in transient expression system. In order to produce the heterologous proteins more quickly and stably, the ClaI and NotI enzyme sites were introduced into the Enterotoxin fusion gene LTB-ST by polymerase chain reaction (PCR) and the LTB-ST ...

  19. potential for biological control of rice yellow mottle virus vectors

    African Journals Online (AJOL)

    Administrator

    irrigated fields, samplings occurred between December and April. Rearing using dead insects was conducted simultaneously in the laboratory to identify the parasitoid insect species. From samples obtained at different sites: (i) the dominant structure of the RYMV insect vectors was analysed according to the rice phenology; ...

  20. Recombinant influenza viruses as delivery vectors for hepatis B virus epitopes.

    Science.gov (United States)

    Song, Jae-Min; Lee, Kwang-Hee; Seong, Baik-Lin

    2012-07-01

    Neuraminidase (NA) of influenza virus contains stalk region that shows a great deal of variability in both amino acid sequence and length. In this paper, we investigated generation of recombinant influenza viruses that had hepatitis B virus (HBV) B cell epitopes in the NA stalk region as a dual vaccine candidate. We used the WSH-HK reassortant helper virus for rescue of recombinant influenza virus containing HBV epitopes and reverse genetic protocol based on the use of micrococcal nuclease-treated virus cores for reconstitution of ribonucleoproteins. We successfully generated a chimeric influenza viruses which contained 22 amino acid peptides in the stalk region derived from the surface and pre-surface protein HBV. The growth kinetics of the recombinant viruses was investigated after infection of Madin-Darby canine kidney (MDCK) and Madin-Darby bovine kidney (MDBK) cells and the rIV-BVPreS virus showed higher titer than other viruses in MDCK cells. We also confirmed the presence of HBV epitopes in the chimeric viruses by enzyme-linked immunosorbent assay (ELISA) using anti-HBV polyclonal antibody. When the ratio of recombinant virus verse wild type virus was calculated by ELISA, recombinant viruses exhibited 2 fold higher values than the wild type virus. These results suggest that chimeric influenza virus which contained foreign antigens can be used as dual vaccine against both HBV and influenza viruses.

  1. Vaccination with Vesicular Stomatitis Virus-Vectored Chimeric Hemagglutinins Protects Mice against Divergent Influenza Virus Challenge Strains.

    Science.gov (United States)

    Ryder, Alex B; Nachbagauer, Raffael; Buonocore, Linda; Palese, Peter; Krammer, Florian; Rose, John K

    2015-12-16

    Seasonal influenza virus infections continue to cause significant disease each year, and there is a constant threat of the emergence of reassortant influenza strains causing a new pandemic. Available influenza vaccines are variably effective each season, are of limited scope at protecting against viruses that have undergone significant antigenic drift, and offer low protection against newly emergent pandemic strains. "Universal" influenza vaccine strategies that focus on the development of humoral immunity directed against the stalk domains of the viral hemagglutinin (HA) show promise for protecting against diverse influenza viruses. Here, we describe such a strategy that utilizes vesicular stomatitis virus (VSV) as a vector for chimeric hemagglutinin (cHA) antigens. This vaccination strategy is effective at generating HA stalk-specific, broadly cross-reactive serum antibodies by both intramuscular and intranasal routes of vaccination. We show that prime-boost vaccination strategies provide protection against both lethal homologous and heterosubtypic influenza challenge and that protection is significantly improved with intranasal vaccine administration. Additionally, we show that vaccination with VSV-cHAs generates greater stalk-specific and cross-reactive serum antibodies than does vaccination with VSV-vectored full-length HAs, confirming that cHA-based vaccination strategies are superior at generating stalk-specific humoral immunity. VSV-vectored influenza vaccines that express chimeric hemagglutinin antigens offer a novel means for protecting against widely diverging influenza viruses. Universal influenza vaccination strategies should be capable of protecting against a wide array of influenza viruses, and we have developed such an approach utilizing a single viral vector system. The potent antibody responses that these vaccines generate are shown to protect mice against lethal influenza challenges with highly divergent viruses. Notably, intranasal vaccination

  2. Vector and Serologic Survey for Crimean-Congo Hemorrhagic Fever Virus in Poland.

    Science.gov (United States)

    Bażanów, Barbara A; Pacoń, Jarosław; Gadzała, Łukasz; Frącka, Agnieszka; Welz, Mirosław; Paweska, Janusz

    2017-07-01

    In contrast to animals, Crimean-Congo hemorrhagic fever (CCHF) causes a severe disease in humans with a high mortality rate. The etiological agent, CCHF virus (CCHFV), can be transmitted by argasid and ixodid ticks, but arachnids of the genus Hyalomma, followed by Rhipicephalus and Dermacentor serve as the major vectors of this virus. The goal of the study was to assess the epidemiological situation of CCHFV infection in cattle in south-east Poland, and survey for potential tick vector species. A total of 592 bovine blood samples from animals located in the southernmost region in Poland were tested by IgG sandwich enzyme-linked immunosorbent assay. Ticks (n = 993) from south-east Poland were collected from dogs, cats, cattle, and horses and tested by RT-PCR. All 592 serum samples were negative for IgG antibodies to CCHFV. Of the ticks collected, 125 were Dermacentor reticulatus and 868 represented Ixodes ricinus, both species are regarded as potential vectors of CCHFV. All tick samples were negative for the presence of CCHFV. Considering the zoonotic nature, public health importance, and the virus increasing spread, it was prudent to assess the seroprevalence of CCHFV in the south-east area of Poland, bordering with CCHFV endemic areas. It seems unlikely that CCHFV infection will suddenly spread in Poland, but considering the multiple possibilities of the virus introduction, serosurveys and vector biosurveillance should be conducted at regular intervals.

  3. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  4. Comparison of transmission efficiency of different isolates of Potato virus Y among three aphid vectors

    Science.gov (United States)

    Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...

  5. Transient expression of heterologous model gene in plants using Potato virusX-based vector

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Pečenková, Tamara; Moravec, Tomáš; Velemínský, Jiří

    2004-01-01

    Roč. 79, č. 2 (2004), s. 147-152 ISSN 0167-6857 R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : plant virus * based vector * transient expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.028, year: 2004

  6. Recombinant Fluorescent Rabies Virus Vectors for Tracing Neurons and Synaptic Connections.

    Science.gov (United States)

    Hagendorf, Nadin; Conzelmann, Karl-Klaus

    2015-12-02

    Recombinant rabies virus (RV) vectors expressing fluorescent proteins allow staining of neurons from many mammalian species and enable the study of neuron morphology. Because viral spread occurs only between neurons that have synaptic connections, these vectors also permit transsynaptic tracing. A recently established system for restriction of transsynaptic tracing to a single transsynaptic jump, dubbed monosynaptic tracing, uses glycoprotein gene-defective, pseudotyped RV. This allows infection of defined cells and transient complementation with the glycoprotein in situ to support a single step of transsynaptic crossing to presynaptic cells. Here, we introduce protocols describing the production of RV vectors, including the recovery of recombinant RV from complementary DNA (cDNA) and virus pseudotyping in vitro. This allows retrograde staining of neurons projecting to the inoculation site. © 2015 Cold Spring Harbor Laboratory Press.

  7. Vector-virus mutualism accelerates population increase of an invasive whitefly.

    Science.gov (United States)

    Jiu, Min; Zhou, Xue-Ping; Tong, Lin; Xu, Jing; Yang, Xiao; Wan, Fang-Hao; Liu, Shu-Sheng

    2007-01-31

    The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic, depending on the species involved. This variation in relationships may affect the process of biological invasion and the displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late 1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV) and Tomato yellow leaf curl China virus (TYLCCNV) are two whitefly-transmitted begomoviruses that have become widespread recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy, TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2 and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses associated with this vector.

  8. Vector-virus mutualism accelerates population increase of an invasive whitefly.

    Directory of Open Access Journals (Sweden)

    Min Jiu

    2007-01-01

    Full Text Available The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic, depending on the species involved. This variation in relationships may affect the process of biological invasion and the displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late 1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV and Tomato yellow leaf curl China virus (TYLCCNV are two whitefly-transmitted begomoviruses that have become widespread recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy, TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2 and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses associated with this vector.

  9. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  10. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...... on the most salient vectors, and this works well, but many images contain a plethora of vectors, which makes their structure quite different from the linguistic transitivity structures with which Kress and van Leeuwen have compared ‘narrative’ images. It can also be asked whether facial expression vectors...... should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined...

  11. Meta-Analyses of Japanese Encephalitis Virus Infection, Dissemination, and Transmission Rates in Vectors.

    Science.gov (United States)

    Oliveira, Ana R S; Cohnstaedt, Lee W; Strathe, Erin; Etcheverry, Luciana; McVey, D Scott; Piaggio, José; Cernicchiaro, Natalia

    2018-03-01

    The objective of this work was to summarize and quantify Japanese encephalitis virus (JEV) infection, dissemination, and transmission rates in mosquitoes, using a meta-analysis approach. Data were obtained from experimental studies, gathered by means of a systematic review of the literature. Random-effects subgroup meta-analysis models by mosquito species were fitted to estimate pooled estimates and to calculate the variance between studies for three outcomes of interest: JEV infection, dissemination, and transmission rates in mosquitoes. To identify sources of heterogeneity among studies and to assess the association between different predictors (mosquito species, virus administration route, incubation period, and diagnostic method) with the outcome JEV infection rate in vectors, we fitted univariable meta-regression models. Mosquito species and administration route represented the main sources of heterogeneity associated with JEV infection rate in vectors. This study provided summary effect size estimates to be used as reference for other investigators when assessing transmission efficiency of vectors and explored sources of variability for JEV infection rates in vectors. Because transmission efficiency, as part of vector competence assessment, is an important parameter when studying the relative contribution of vectors to JEV transmission, our findings contribute to further our knowledge, potentially moving us toward more informed and targeted actions to prevent and control JEV in both affected and susceptible regions worldwide.

  12. Safety of inoculation of bovine parainfluenza virus 3 as potential vaccine vector in pigs.

    Science.gov (United States)

    Wang, Feng-Xue; Liu, Ying; Zhu, Hong-Wei; Liu, Xing; Yang, Yong; Sun, Na; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-06-01

    Bovine parainfluenza virus 3 (BPIV3) is one of the most important respiratory pathogens in cattle. One BPIV3, named NM09, was isolated from cattle suffering from severe respiratory diseases in 2009. BPIV3 is a potential recombinant vaccine vector. To investigate whether NM09 can infect pigs and determine BPIV3 defense in these animals, BPIV3 antibody-free pigs were inoculated intramuscularly with the BPIV3 NM09 strain in a continuous passage. Clinical signs were observed each day after inoculation. Viral nucleic acid was detected in nasal and anal secretions. Results showed that virus-inoculated pigs displayed few observable clinical signs related to respiratory diseases. The antibody was identified, but the virus could not be detected in the second continuous passage in pigs. Thus, BPIV3 is a potential vaccine vector for genetic engineering.

  13. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci.

    Science.gov (United States)

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R; Navas-Castillo, Jesús; Moriones, Enrique

    2016-08-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci.

  14. Evidence for Culicoides obsoletus group as vector for Schmallenberg virus in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Kristensen, Birgit; Kirkeby, Carsten

    the Bunyaviridae family and is closely related to Shamonda and Akabane viruses. These viruses are transmitted by insect vectors (including biting midges (Culicoides sp.) and mosquitoes). To determine whether these insects may act as vectors for SBV, biting midges (Culicoides spp.) caught in October 2011......, in the south-west of Denmark (close to the German border), were sorted into pools and tested for the presence of Schmallenberg virus RNA by RT-qPCR. From 18 pools of 5 midges from the C. obsoletus group, 2 pools were both found positive in two separate assays, targeting the L- and S- segments of the SBV RNA....... However, 4 pools of C. punctatus s.str were negative. The sequence of 80bp (excluding the primer sequences) from the amplicons (ca. 145bp) was identical to that published for the expected region of the SBV L-segment. The levels of SBV RNA detected in the biting midges were much higher than could...

  15. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  16. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...... should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined...

  17. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  18. Use of a Virus Gene Silencing Vector for Maize Functional Genomics Research.

    Science.gov (United States)

    Zhou, Tao; Liu, Xuedong; Fan, Zaifeng

    2018-01-01

    Virus-induced gene silencing (VIGS) is a genetic technology that exploits the RNA-mediated defense against virus. The method has great potential for plant reverse genetics as it could knock down gene expression in a rapid way, which is triggered by a replicating viral genome engineered to carry a fragment of host gene to be silenced. A number of efficient VIGS vectors are available for dicots, such as for model plant Nicotiana benthamiana; however, only a few of VIGS vectors for monocotyledonous cereal crops. Here, we describe the method for the use of a newly developed VIGS vector based on a maize-infecting Cucumber mosaic virus (CMV) strain ZMBJ-CMV for maize. The RNA2 of ZMBJ-CMV was modified as a vector pCMV201-2b N81 having multiple cloning sites for the insert of 100-300 bp fragment of target gene. Using a method of vascular puncture inoculation of maize seeds with crude sap prepared from Agrobacterium-infiltrated N. benthamiana leaves, silencing of target genes could be obtained in 4 weeks.

  19. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  20. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya

    Directory of Open Access Journals (Sweden)

    Alfred O. Ochieng

    2016-11-01

    Full Text Available Background: Rift Valley fever (RVF is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV. Objectives: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. Methodology: The study used data on vector presence and ecological niche modelling (MaxEnt algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000 and future (2050 Bioclim climate databases to model the vector distribution. Results: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Conclusion: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

  1. A one-step cloning method for the construction of somatic cell gene targeting vectors: application to production of human knockout cell lines

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2012-10-01

    Full Text Available Abstract Background Gene targeting is a powerful method that can be used for examining the functions of genes. Traditionally, the construction of knockout (KO vectors requires an amplification step to obtain two homologous, large fragments of genomic DNA. Restriction enzymes that cut at unique recognitions sites and numerous cloning steps are then carried out; this is often a time-consuming and frustrating process. Results We have developed a one-step cloning method for the insertion of two arms into a KO vector using exonuclease III. We modified an adeno-associated virus KO shuttle vector (pTK-LoxP-NEO-AAV to yield pAAV-LIC, which contained two cassettes at the two multiple-cloning sites. The vector was digested with EcoRV to give two fragments. The two homologous arms, which had an overlap of 16 bases with the ends of the vector fragments, were amplified by polymerase chain reaction. After purification, the four fragments were mixed and treated with exonuclease III, then transformed into Escherichia coli to obtain the desired clones. Using this method, we constructed SirT1 and HDAC2 KO vectors, which were used to establish SirT1 KO cells from the colorectal cancer cell line (HCT116 and HDAC2 KO cells from the colorectal cancer cell line (DLD1. Conclusions Our method is a fast, simple, and efficient technique for cloning, and has great potential for high-throughput construction of KO vectors.

  2. Protective efficacy of a virus-vectored multi-component vaccine against porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and swine influenza virus.

    Science.gov (United States)

    Tian, Debin; Sooryanarain, Harini; Matzinger, Shannon R; Gauger, Phil C; Karuppannan, Anbu K; Elankumaran, Subbiah; Opriessnig, Tanja; Meng, Xiang-Jin

    2017-12-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and swine influenza virus (SIV) are three of the most economically important swine pathogens, causing immense economic losses to the global swine industry. Monovalent commercial vaccines against each of the three viruses are routinely used in pig farms worldwide. A trivalent vaccine against all three pathogens would greatly simplify the vaccination programme and reduce the financial burden to the swine industry. In this study, by using an attenuated strain of PRRSV (strain DS722) as a live virus vector, we generated a multi-component vaccine virus, DS722-SIV-PCV2, which expresses the protective antigens from SIV and PCV2. The DS722-SIV-PCV2 trivalent vaccine virus replicates well, and expresses PCV2 capsid and SIV HA proteins in vitro. A subsequent vaccination and challenge study in 48 pigs revealed that the DS722-SIV-PCV2-vaccinated pigs had significantly reduced lung lesions and viral RNA loads when challenged with PRRSV. Upon challenge with PCV2, the vaccinated pigs had partially reduced lymphoid lesions and viral DNA loads, and when challenged with SIV the vaccinated pigs had significantly reduced acute respiratory sign scores. The results from this study demonstrate the potential of DS722-SIV-PCV2 as a candidate trivalent vaccine, and also shed light on exploring PRRSV as a potential live virus vaccine vector.

  3. Vector Competence of American Mosquitoes for Three Strains of Zika Virus.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    2016-10-01

    Full Text Available In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.

  4. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  6. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    International Nuclear Information System (INIS)

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  7. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection.

    Science.gov (United States)

    Diaz, James H

    2016-12-01

    Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Wolbachia Occurrence in Planthopper (Hemiptera: Delphacidae) Vectors of Cereal Viruses in Argentina.

    Science.gov (United States)

    Mattio, M F; Argüello Caro, E B; Rodriguero, M S; Dumón, A D; Alemandri, V M; Truol, G

    2015-08-01

    Maize (Zea mays L.) and wheat (Triticum aestivum L.) are the most important cereal crops for the Argentinean economy and are affected by several diseases. Different planthopper species transmit causal agents of some of those diseases, including Mal de Río Cuarto virus, barley yellow striate mosaic virus, and the recently proposed maize yellow striate virus. Many planthopper species are sap feeders and therefore are expected to host bacteria providing essential nutrients lacking in the diet. Previous studies have evidenced that some of these bacterial symbionts are involved in the virus transmission. Wolbachia is a group of obligate intracellular bacteria infecting numerous arthropod species and causing reproductive alterations in their hosts. These bacteria have been detected in planthopper species, considered rice pests in various regions of the world. To date, Wolbachia infection status of planthopper species of Argentina is unknown. Amplification by PCR and sequencing of 16S rDNA, wsp- and ftsZ-specific genes demonstrated Wolbachia infection in Caenodelphax teapae (Fowler), Delphacodes kuscheli Fennah, Pyrophagus tigrinus Remes Lenicov & Varela, Tagosodes orizicolus (Muir), and Toya propinqua (Fieber). This is the first report of Wolbachia in delphacid vectors of viruses affecting maize and wheat. An understanding of the bacterial diversity harbored by these insect vectors could lead to new options for future management of diseases of economically important crops in a developing country. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Data fusion and machine learning to identify threat vectors for the Zika virus and classify vulnerability

    Science.gov (United States)

    Gentle, J. N., Jr.; Kahn, A.; Pierce, S. A.; Wang, S.; Wade, C.; Moran, S.

    2016-12-01

    With the continued spread of the zika virus in the United States in both Florida and Virginia, increased public awareness, prevention and targeted prediction is necessary to effectively mitigate further infection and propagation of the virus throughout the human population. The goal of this project is to utilize publicly accessible data and HPC resources coupled with machine learning algorithms to identify potential threat vectors for the spread of the zika virus in Texas, the United States and globally by correlating available zika case data collected from incident reports in medical databases (e.g., CDC, Florida Department of Health) with known bodies of water in various earth science databases (e.g., USGS NAQWA Data, NASA ASTER Data, TWDB Data) and by using known mosquito population centers as a proxy for trends in population distribution (e.g., WHO, European CDC, Texas Data) while correlating historical trends in the spread of other mosquito borne diseases (e.g., chikungunya, malaria, dengue, yellow fever, west nile, etc.). The resulting analysis should refine the identification of the specific threat vectors for the spread of the virus which will correspondingly increase the effectiveness of the limited resources allocated towards combating the disease through better strategic implementation of defense measures. The minimal outcome of this research is a better understanding of the factors involved in the spread of the zika virus, with the greater potential to save additional lives through more effective resource utilization and public outreach.

  10. Dengue and Zika viruses: lessons learned from the similarities between these Aedes mosquito-vectored arboviruses.

    Science.gov (United States)

    Suwanmanee, San; Luplertlop, Natthanej

    2017-02-01

    The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.

  11. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae to epizootic hemorrhagic disease virus serotype 7

    Directory of Open Access Journals (Sweden)

    Ruder Mark G

    2012-10-01

    Full Text Available Abstract Background Culicoides sonorensis (Diptera: Ceratopogonidae is a vector of epizootic hemorrhagic disease virus (EHDV serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. Methods To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4–16 days post feeding (dpf. Midges with a virus titer of ≥102.7 median tissue culture infective doses (TCID50/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14–16 dpf midges. Results From 4–16 dpf, 45% (156/350 of midges that fed on WTD with high titer viremia (>107 TCID50/ml were virus isolation-positive, and starting from 10–16 dpf, 32% (35/109 of these virus isolation-positive midges were potentially competent (≥102.7 TCID50/midge. Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14–16 dpf. The WTD developed viremia and severe clinical disease. Conclusion This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates

  12. Expression of IMP1 Enhances Production of Murine Leukemia Virus Vector by Facilitating Viral Genomic RNA Packaging

    OpenAIRE

    Mai, Yun; Gao, Guangxia

    2010-01-01

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulat...

  13. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    Directory of Open Access Journals (Sweden)

    Susan D'Costa

    2016-01-01

    Full Text Available Clinical trials using recombinant adeno-associated virus (rAAV vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR is now the most common method to titer vector genomes (vg; however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  14. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    Science.gov (United States)

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    Science.gov (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  16. Evolution of codon usage in Zika virus genomes is host and vector specific

    Science.gov (United States)

    Butt, Azeem Mehmood; Nasrullah, Izza; Qamar, Raheel; Tong, Yigang

    2016-01-01

    The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors. PMID:27729643

  17. Vectors, hosts, and control measures for Zika virus in the Americas

    Science.gov (United States)

    Thompson, Sarah J.; Pearce, John; Ramey, Andy M.

    2017-01-01

    We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.

  18. Engineered Viruses as Genome Editing Devices.

    Science.gov (United States)

    Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-03-01

    Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR-Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.

  19. Generation of a Replication-Competent, Propagation-Deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome

    OpenAIRE

    Ortego, Javier; Escors, David; Laude, Hubert; Enjuanes, Luis

    2002-01-01

    Replication-competent propagation-deficient virus vectors based on the transmissible gastroenteritis coronavirus (TGEV) genome that are deficient in the essential E gene have been developed by complementation within E+ packaging cell lines. Cell lines expressing the TGEV E protein were established using the noncytopathic Sindbis virus replicon pSINrep21. In addition, cell lines stably expressing the E gene under the CMV promoter have been developed. The Sindbis replicon vector and the ectopic...

  20. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections.

    Science.gov (United States)

    Tamura, Akihiro; Kato, Takahiro; Taki, Ayano; Sone, Mikako; Satoh, Nozomi; Yamagishi, Noriko; Takahashi, Tsubasa; Ryo, Bo-Song; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2013-11-01

    Apple latent spherical virus (ALSV)-based vectors experimentally infect a broad range of plant species without causing symptoms and can effectively induce stable virus-induced gene silencing in plants. Here, we show that pre-infection of ALSV vectors harboring part of a target viral genome (we called ALSV vector vaccines here) inhibits the multiplication and spread of the corresponding challenge viruses [Bean yellow mosaic virus, Zucchini yellow mosaic virus (ZYMV), and Cucumber mosaic virus (CMV)] by a homology-dependent resistance. Further, the plants pre-infected with an ALSV vector having genome sequences of both ZYMV and CMV were protected against double inoculation of ZYMV and CMV. More interestingly, a curative effect of an ALSV vector vaccine could also be expected in ZYMV-infected cucumber plants, because the symptoms subsided on subsequent inoculation with an ALSV vector vaccine. This may be due to the invasion of ALSV, but not ZYMV, in the shoot apical meristem of cucumber. © 2013 Elsevier Inc. All rights reserved.

  1. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Science.gov (United States)

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39°C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37°C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses. PMID:11090161

  2. Rana grylio virus as a vector for foreign gene expression in fish cells.

    Science.gov (United States)

    He, Li-Bo; Ke, Fei; Zhang, Qi-Ya

    2012-01-01

    In the present study, Rana grylio virus (RGV, an iridovirus) thymidine kinase (TK) gene and viral envelope protein 53R gene were chosen as targets for foreign gene insertion. ΔTK-RGV and Δ53R-RGV, two recombinant RGV, expressing enhanced green fluorescence protein (EGFP) were constructed and analyzed in Epithelioma papulosum cyprinid (EPC) cells. The EGFP gene which fused to the virus major capsid protein (MCP) promoter p50 was inserted into TK and 53R gene loci of RGV, respectively. Cells infected with these two recombinant viruses not only displayed plaques, but also emitted strong green fluorescence under fluorescence microscope, providing a simple method for selection and purification of recombinant viruses. ΔTK-RGV was purified by seven successive rounds of plaque isolation and could be stably propagated in EPC cells. All of the plaques produced by the purified recombinant virus emitted green fluorescence. However, Δ53R-RGV was hard to be purified even through twenty rounds of plaque isolation. The purified recombinant virus ΔTK-RGV was verified by PCR analysis and Western blotting. These results showed EGFP was expressed in ΔTK-RGV infected cells. Furthermore, one-step growth curves and electron microscopy revealed that infection with recombinant ΔTK-RGV and wild-type RGV are similar. Therefore, RGV was demonstrated could be as a viral vector for foreign gene expression in fish cells. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice.

    Science.gov (United States)

    Badamchi-Zadeh, Alexander; Tartaglia, Lawrence J; Abbink, Peter; Bricault, Christine A; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B; Nanayakkara, Ovini S; Vrbanac, Vladimir D; Tager, Andrew M; Larocca, Rafael A; Seaman, Michael S; Barouch, Dan H

    2018-04-01

    Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Copyright © 2018 Badamchi-Zadeh et al.

  4. Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures

    NARCIS (Netherlands)

    Vogels, C.B.F.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J.M.

    2017-01-01

    In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence

  5. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution.

    Science.gov (United States)

    Grimm, Dirk; Büning, Hildegard

    2017-11-01

    Recombinant gene delivery vectors derived from naturally occurring or genetically engineered adeno-associated viruses (AAV) have taken center stage in human gene therapy, fueled by rapidly accumulating and highly encouraging clinical data. Nonetheless, it has also become evident that the current generation of AAV vectors will require improvements in transduction potency, antibody evasion, and cell specificity in order to realize their full potential and to widen applicability in larger patient cohorts. Fortunately, in the recent past, the field has seen a flurry of exciting new developments that enhance our understanding of AAV vector biology, including virus-host interactions, and/or that expand our arsenal of technologies for AAV capsid design and evolution. This review highlights a collection of latest advances in these areas, which, in the authors' opinion, hold particular promise to propel the AAV vector field forward in the near future, especially when applied in combination. These include fundamental novel insights into the AAV life cycle, from an unexpected role of autophagy and interactions with other viruses to the (re-)discovery of a universal AAV receptor and the function of AAV-AAP for capsid assembly. Concurrently, recent successes in the rational design of next-generation synthetic AAV capsids are pointed out, exemplified by the structure-guided derivation of AAV mutants displaying robust in vivo immune evasion. Finally, a variety of new and innovative strategies for high-throughput generation and screening of AAV capsid libraries are briefly reviewed, including Cre recombinase-based selection, ancestral AAV capsid reconstruction, and DNA barcoding of AAV genomes. All of these examples showcase the present momentum in the AAV field and, together with work by many other academic or industrial entities, raise substantial optimism that the remaining hurdles for human gene therapy with AAV vectors will (soon) be overcome.

  6. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  7. Swinepox virus vector-based vaccines: attenuation and biosafety assessments following subcutaneous prick inoculation.

    Science.gov (United States)

    Yuan, Xiaomin; Lin, Huixing; Li, Bin; He, Kongwang; Fan, Hongjie

    2018-02-07

    Swinepox virus (SPV) has several advantages as a potential clinical vector for a live vector vaccine. In this study, to obtain a safer and more efficient SPV vector, three SPV mutants, Δ003, Δ010, and ΔTK were successfully constructed. A virus replication experiment showed that these SPV mutants had lower replication abilities compared to wtSPV in 10 different host-derived cell lines. Animal experiments with mouse and rabbit models demonstrate that these three mutants and wtSPV did not cause any clinical signs of dermatitis. No fatalities were observed during a peritoneal challenge assay with these mutants and wtSPV in a mouse model. Additionally, the three mutants and wtSPV were not infectious at 60 h after vaccination in rabbit models. Furthermore, we evaluated biosafety, immunogenicity and effectiveness of the three mutants in 65 1-month-old piglets. The results show that there were no clinical signs of dermatitis in the Δ003 and ΔTK vaccination groups. However, mild signs were observed in the Δ010 vaccination groups when virus titres were high, and apparent clinical signs were observed at the sites of inoculation. Samples from all experimental pig groups were assessed by qPCR, and no SPV genomic DNA was found in five organs, faeces or blood. This suggests that the infectious abilities of wtSPV and the SPV mutants were poor and limited. In summary, this study indicates that two mutants of SPV, Δ003 and ΔTK, may be promising candidates for an attenuated viral vector in veterinary medicine.

  8. Quantification of vector and host competence and abundance for Japanese Encephalitis Virus: a systematic review of the literature.

    Science.gov (United States)

    Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV) that affects humans in Eastern and Southeastern Asia. Although it could be prevented by a vaccine, JE has no treatment and the inadvertent introduction of the virus into JEV-free countries, such as t...

  9. Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy

    Science.gov (United States)

    2015-05-18

    THOMAS AND OTHERS ENHANCED SURVEILLANCE FOR DENGUE Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province...of Medical Sciences, Bangkok, Thailand. Abstract. Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV...with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled

  10. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors*

    Science.gov (United States)

    Pinheiro, Patricia V.; Ghanim, Murad; Rebelo, Ana Rita; Santos, Rogerio S.; Orsburn, Benjamin C.; Gray, Stewart

    2017-01-01

    The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. PMID:27932519

  11. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types

    International Nuclear Information System (INIS)

    Klimstra, William B.; Williams, Jacqueline C.; Ryman, Kate D.; Heidner, Hans W.

    2005-01-01

    Some viruses display enhanced infection for Fc receptor (FcR)-positive cell types when complexed with virus-specific immunoglobulin (Ig). This process has been termed antibody-dependent enhancement of viral infection (ADE). We reasoned that the mechanism of ADE could be exploited and adapted to target alphavirus-based vectors to FcR-positive cell types. Towards this goal, recombinant Sindbis viruses were constructed that express 1 to 4 immunoglobulin-binding domains of protein L (PpL) as N-terminal extensions of the E2 glycoprotein. PpL is a bacterial protein that binds the variable region of antibody kappa light chains from a range of mammalian species. The recombinant viruses incorporated PpL/E2 fusion proteins into the virion structure and recapitulated the species-specific Ig-binding phenotypes of native PpL. Virions reacted with non-immune serum or purified IgG displayed enhanced binding and ADE for several species-matched FcR-positive murine and human cell lines. ADE required virus expression of a functional PpL Ig-binding domain, and appeared to be FcγR-mediated. Specifically, ADE did not occur with FcγR-negative cells, did not require active complement proteins, and did not occur on FcγR-positive murine cell lines when virions were bound by murine IgG-derived F(ab') 2 fragments

  12. Targeting of breast metastases using a viral gene vector with tumour-selective transcription.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    BACKGROUND: Adeno-associated virus (AAV) vectors have significant potential as gene delivery vectors for cancer gene therapy. However, broad AAV2 tissue tropism results in nonspecific gene expression. MATERIALS AND METHODS: We investigated use of the C-X-C chemokine receptor type 4 (CXCR4) promoter to restrict AAV expression to tumour cells, in subcutaneous MCF-7 xenograft mouse models of breast cancer and in patient samples, using bioluminescent imaging and flow cytometric analysis. RESULTS: Higher transgene expression levels were observed in subcutaneous MCF-7 tumours relative to normal tissue (muscle) using the CXCR4 promoter, unlike a ubiquitously expressing Cytomegalovirus promoter construct, with preferential AAVCXCR4 expression in epithelial tumour and CXCR4-positive cells. Transgene expression following intravenously administered AAVCXCR4 in a model of liver metastasis was detected specifically in livers of tumour bearing mice. Ex vivo analysis using patient samples also demonstrated higher AAVCXCR4 expression in tumour compared with normal liver tissue. CONCLUSION: This study demonstrates for the first time, the potential for systemic administration of AAV2 vector for tumour-selective gene therapy.

  13. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  14. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission.

    Science.gov (United States)

    Chen, Yuting; Cassone, Bryan J; Bai, Xiaodong; Redinbaugh, Margaret G; Michel, Andrew P

    2012-01-01

    Leafhoppers (HEmiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.

  15. Regional and seasonal response of a West Nile virus vector to climate change.

    Science.gov (United States)

    Morin, Cory W; Comrie, Andrew C

    2013-09-24

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.

  16. Targeting Visceral Fat by Intraperitoneal Delivery of Novel AAV Serotype Vector Restricting Off-Target Transduction in Liver

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-09-01

    Full Text Available It is challenging to genetically manipulate fat in adults. We demonstrate that intraperitoneal (i.p. injection of an engineered adeno-associated virus (AAV serotype Rec2 leads to high transduction of multiple visceral fat depots at a dose of 1 to 2 orders lower than commonly used doses for systemic gene delivery. To target adipose tissue, we develop a single AAV vector harboring two expression cassettes: one using the CBA promoter to drive transgene expression and one using the liver-specific albumin promoter to drive a microRNA-targeting WPRE sequence that only exists in this AAV vector. This dual-cassette vector achieves highly selective transduction of visceral fat while severely restricting off-target transduction of liver. As proof of efficacy, i.p. administration of an adipose-targeting Rec2 vector harboring the leptin gene corrects leptin deficiency, obesity, and metabolic syndromes of ob/ob mice. This study provides a powerful tool to genetically manipulate fat for basic research and gene therapies of genetic and acquired diseases.

  17. Spread of Zika virus: The key role of mosquito vector control

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-06-01

    Full Text Available Mosquitoes (Diptera: Culicidae represent a key threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemisphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above, it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nanoparticles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation (i.e. the “lure and kill” approach, pheromone traps, sound traps need further research attention. In particular, detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  18. Grasshoppers (Orthoptera: Acrididae) could serve as reservoirs and vectors of vesicular stomatitis virus.

    Science.gov (United States)

    Nunamaker, Richard A; Lockwood, Jeffrey A; Stith, Charles E; Campbell, Corey L; Schell, Scott P; Drolet, Barbara S; Wilson, William C; White, David M; Letchworth, Geoffrey J

    2003-11-01

    Vesicular stomatitis (VS) is an economically devastating disease of livestock in the Americas. Despite strong circumstantial evidence for the role of arthropods in epizootics, no hematophagous vector explains the field evidence. Based on the spatiotemporal association of grasshopper outbreaks and VS epizootics, we investigated the potential role of these insects as vectors and reservoirs of the disease. The critical steps in the grasshopper-bovine transmission cycle were demonstrated, including 1) 62% of grasshoppers [Melanoplus sanguinipes (F.)] fed vesicular stomatitis virus (VSV) from cell culture became infected, with titers reaching 40,000 times the inoculative dose; 2) 40% of grasshoppers that cannibalized VSV-infected grasshopper cadavers became infected, amplifying virus up to 1,000-fold; 3) one of three cattle consuming VSV-infected grasshopper cadavers contracted typical VS and shed virus in saliva; and 4) 15% of grasshoppers became infected when fed saliva from this infected cow. The ecological conditions and biological processes necessary for these transmissions to occur are present throughout much of the Americas. Field studies will be required to show these findings are relevant to the natural epidemiology of VSV.

  19. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    Science.gov (United States)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  20. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein.

    Science.gov (United States)

    Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long

    2017-01-01

    Infectious bursal disease virus (IBDV) has been established as a replication-competent viral vector capable of carrying an epitope at multiple loci in the genome. To enhance the safety and increase the insertion capacity of IBDV as a vector, a replication-incompetent IBDV vector was developed in the present study. The feasibility of replacing one of the viral gene loci, including pvp2, vp3, vp1, or the polyprotein vp243, with the sequence of green fluorescent protein (GFP) was explored. A method combining TCID 50 and immunoperoxidase monolayer assay (IPMA) determined the most feasible locus for gene replacement to be pvp2. The genomic segment containing gfp at the pvp2 locus was able to be encapsidated into IBDV particles. Furthermore, the expression of GFP in GFP-IBDV infected cells was confirmed by Western blotting and GFP-IBDV particles showed similar morphology and size to that of wildtype IBDV by electron microscopy. By providing the deleted protein in trans in a packaging cell line (pVP2-DF1), replication-incompetent GFP-IBDV particles were successfully plaque-quantified. The gfp sequence from the plaque-forming GFP-IBDV in pVP2-DF1 was confirmed by RT-PCR and sequencing. To our knowledge, GFP-IBDV developed in the present study is the first replication-incompetent IBDV vector which expresses a foreign protein in infected cells without the capability to produce viral progeny. Additionally, such replication-incompetent IBDV vectors could serve as bivalent vaccine vectors for conferring protection against infections with IBDV and other economically important, or zoonotic, avian pathogens.

  1. A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    Full Text Available The current method for creation of vaccinia virus (VACV vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (∼90% in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.

  2. Development of rAAV2-CFTR: History of the First rAAV Vector Product to be Used in Humans.

    Science.gov (United States)

    Loring, Heather S; ElMallah, Mai K; Flotte, Terence R

    2016-04-01

    The first human gene therapy trials using recombinant adeno-associated virus (rAAV) vectors were performed in cystic fibrosis (CF) patients. Over 100 CF patients were enrolled in 5 separate trials of rAAV2-CFTR administration via nasal, endobronchial, maxillary sinus, and aerosol delivery. Recombinant AAV vectors were designed to deliver the CF transmembrane regulator (CFTR) gene and correct the basic CFTR defect by restoring chloride transport and reverting the upregulation of proinflammatory cytokines. However, vector DNA expression was limited in duration because of the low incidence of integration and natural airway epithelium turnover. In addition, repeated administration of AAV-CFTR vector resulted in a humoral immune response that prevented effective gene transfer from subsequent doses of vector. AAV serotype 2 was used in human trials before the comparison with other serotypes and determination that serotypes 1 and 5 not only possess higher tropism for the airway epithelium, but also are capable of bypassing the binding and trafficking processes-both were important hindrances to the effectiveness of rAAV2. Although rAAV-CFTR gene therapy does not appear likely to supplant newer small-molecule CFTR modulators in the near future, early work with rAAV-CFTR provided an important foundation for later use of rAAV in humans.

  3. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    Science.gov (United States)

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exploring the Diversity of Plant DNA Viruses and Their Satellites Using Vector-Enabled Metagenomics on Whiteflies

    Science.gov (United States)

    Ng, Terry Fei Fan; Duffy, Siobain; Polston, Jane E.; Bixby, Elise; Vallad, Gary E.; Breitbart, Mya

    2011-01-01

    Current knowledge of plant virus diversity is biased towards agents of visible and economically important diseases. Less is known about viruses that have not caused major diseases in crops, or viruses from native vegetation, which are a reservoir of biodiversity that can contribute to viral emergence. Discovery of these plant viruses is hindered by the traditional approach of sampling individual symptomatic plants. Since many damaging plant viruses are transmitted by insect vectors, we have developed “vector-enabled metagenomics” (VEM) to investigate the diversity of plant viruses. VEM involves sampling of insect vectors (in this case, whiteflies) from plants, followed by purification of viral particles and metagenomic sequencing. The VEM approach exploits the natural ability of highly mobile adult whiteflies to integrate viruses from many plants over time and space, and leverages the capability of metagenomics for discovering novel viruses. This study utilized VEM to describe the DNA viral community from whiteflies (Bemisia tabaci) collected from two important agricultural regions in Florida, USA. VEM successfully characterized the active and abundant viruses that produce disease symptoms in crops, as well as the less abundant viruses infecting adjacent native vegetation. PCR assays designed from the metagenomic sequences enabled the complete sequencing of four novel begomovirus genome components, as well as the first discovery of plant virus satellites in North America. One of the novel begomoviruses was subsequently identified in symptomatic Chenopodium ambrosiodes from the same field site, validating VEM as an effective method for proactive monitoring of plant viruses without a priori knowledge of the pathogens. This study demonstrates the power of VEM for describing the circulating viral community in a given region, which will enhance our understanding of plant viral diversity, and facilitate emerging plant virus surveillance and management of viral

  6. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Houqiang; Ji, Xinqin; Zhao, Jiafu

    2015-01-01

    Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.

  7. Comparison of the efficacy of four viral vectors for transducing hypothalamic magnocellular neurosecretory neurons in the rat supraoptic nucleus.

    Science.gov (United States)

    Doherty, Faye C; Schaack, Jerome B; Sladek, Celia D

    2011-04-30

    Since transgenes were first cloned into recombinant adenoviruses almost 30 years ago, a variety of viral vectors have become important tools in genetic research. Viruses adeptly transport genetic material into eukaryotic cells, and replacing all or part of the viral genome with genes of interest or silencing sequences creates a method of gene expression modulation in which the timing and location of manipulations can be specific. The hypothalamo-neurohypophyseal system (HNS), consisting of the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, regulates fluid balance homeostasis and is highly plastic, yet tightly regulated by extracellular fluid (ECF) osmolality and volume. Its reversible plasticity and physiological relevance make it a good system for studying interactions between gene expression and physiology. Here, four viral vectors were compared for their ability to transduce magnocellular neurosecretory neurons (MNCs) of the SON in adult rats. The vectors included an adenovirus, a lentivirus (HIV) and two serotypes of adeno-associated viruses (AAV5 and AAV2). Though adenovirus and AAV2 vectors have previously been used to transduce SON neurons, HIV and AAV5 have not. All four vectors transduced MNCs, but the AAV vectors were the most effective, transducing large numbers of MNCs, with minimal or no glial transduction. The AAV vectors were injected using a convection enhanced delivery protocol to maximize dispersal through the tissue, resulting in the transduction of neurons throughout the anterior to posterior length of the SON (∼1.5mm). AAV5, but not AAV2, showed some selectivity for SON neurons relative to those in the surrounding hypothalamus. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. An efficient virus-induced gene silencing vector for maize functional genomics research.

    Science.gov (United States)

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-05-01

    Full Text Available From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR.CHIKV infection rate, dissemination and transmission efficiencies ranged from 7-90%, 18-78% and 5-53% respectively for Ae. aegypti and from 39-41%, 3-17% and 0-14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector.As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there is no Ae. aegypti.

  10. The Immatures of Culicoides trilineatus (Diptera: Ceratopogonidae) Potential Vector of the Bluetongue Virus.

    Science.gov (United States)

    Diaz, F; Mangudo, C; Spinelli, G R; Gleiser, R M; Ronderos, M M

    2018-03-05

    The fourth instar larva and pupa of Culicoides trilineatus Fox (Diptera, Ceratopogonidae), a species considered as potential vector of the bluetongue virus in Central and South America, are described, illustrated, and photomicrographed for the first time by using binocular, phase-contrast, and scanning electron microscopy. The immatures were collected by using a siphon bottle in tree holes in Salta Province, Argentina, transported to the laboratory, and there reared to the adult's emergence. They are compared with the immatures of Culicoides debilipalpis Lutz (Diptera, Ceratopogonidae), another Neotropical species that develops in tree holes. Details on larval biology and habitat are given.

  11. Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Michael R. Strand

    2012-01-01

    Full Text Available Symbiosis is a common phenomenon in which associated organisms can cooperate in ways that increase their ability to survive, reproduce, or utilize hostile environments. Here, we discuss polydnavirus symbionts of parasitic wasps. These viruses are novel in two ways: (1 they have become non-autonomous domesticated entities that cannot replicate outside of wasps; and (2 they function as a delivery vector of genes that ensure successful parasitism of host insects that wasps parasitize. In this review we discuss how these novelties may have arisen, which genes are potentially involved, and what the consequences have been for genome evolution.

  12. Candidate Vectors and Rodent Hosts of Venezuelan Equine Encephalitis Virus, Chiapas, 2006–2007

    Science.gov (United States)

    Deardorff, Eleanor R.; Estrada-Franco, Jose G.; Freier, Jerome E.; Navarro-Lopez, Roberto; Da Rosa, Amelia Travassos; Tesh, Robert B.; Weaver, Scott C.

    2011-01-01

    Enzootic Venezuelan equine encephalitis virus (VEEV) has been known to occur in Mexico since the 1960s. The first natural equine epizootic was recognized in Chiapas in 1993 and since then, numerous studies have characterized the etiologic strains, including reverse genetic studies that incriminated a specific mutation that enhanced infection of epizootic mosquito vectors. The aim of this study was to determine the mosquito and rodent species involved in enzootic maintenance of subtype IE VEEV in coastal Chiapas. A longitudinal study was conducted over a year to discern which species and habitats could be associated with VEEV circulation. Antibody was rarely detected in mammals and virus was not isolated from mosquitoes. Additionally, Culex (Melanoconion) taeniopus populations were found to be spatially related to high levels of human and bovine seroprevalence. These mosquito populations were concentrated in areas that appear to represent foci of stable, enzootic VEEV circulation. PMID:22144461

  13. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  14. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Science.gov (United States)

    Wang, Zihua; Wu, Li; Cheng, Xin; Liu, Shizhu; Li, Baosheng; Li, Haijun; Kang, Fubiao; Wang, Junping; Xia, Huan; Ping, Caiyan; Nassal, Michael; Sun, Dianxing

    2013-01-01

    Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV), a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg) RNA which is also required as bicistronic mRNA for the capsid (core) protein and the reverse transcriptase (Pol); their open reading frames (ORFs) overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES). We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR) and humanized Renilla green fluorescent protein (hrGFP) produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to better

  16. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    Full Text Available Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV, a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg RNA which is also required as bicistronic mRNA for the capsid (core protein and the reverse transcriptase (Pol; their open reading frames (ORFs overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES. We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR and humanized Renilla green fluorescent protein (hrGFP produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to

  17. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.

    Science.gov (United States)

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S

    2011-03-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.

  18. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses.

    Science.gov (United States)

    Mitchell, C J; Miller, B R; Gubler, D J

    1987-09-01

    A combination of virus infection and transmission experiments showed that a Houston, Texas strain of Aedes albopictus is a competent vector for dengue (DEN), yellow fever (YF) and Ross River (RR) viruses. However, at 14 days incubation, DEN virus infection rates in a Puerto Rican strain of Aedes aegypti were significantly higher for each of the four DEN serotypes, except DEN-1, than in Houston Ae. albopictus fed simultaneously on the same virus suspensions. The degree of correlation between disseminated DEN infection rates in Houston Ae. albopictus and transmission to an in vitro system ranged from 42 to 88% for the four DEN serotypes. No significant difference was noted in YF virus infection rates or transmission rates in the two mosquito species fed on the same virus suspensions and incubated for the same time period. Also, RR virus infection and transmission rates in Houston and Hawaiian strains of Ae. albopictus were generally comparable.

  19. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    Science.gov (United States)

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  20. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    Directory of Open Access Journals (Sweden)

    Javier López-Vidal

    Full Text Available Vaccines based on virus-like particles (VLPs have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60 were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  1. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-09-01

    Full Text Available In 2013-2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied.In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating.

  2. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    International Nuclear Information System (INIS)

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-01-01

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  3. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion.

    Science.gov (United States)

    Gale, P; Brouwer, A; Ramnial, V; Kelly, L; Kosmider, R; Fooks, A R; Snary, E L

    2010-02-01

    Expert opinion was elicited to undertake a qualitative risk assessment to estimate the current and future risks to the European Union (EU) from five vector-borne viruses listed by the World Organization for Animal Health. It was predicted that climate change will increase the risk of incursions of African horse sickness virus (AHSV), Crimean-Congo haemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) into the EU from other parts of the world, with African swine fever virus (ASFV) and West Nile virus (WNV) being less affected. Currently the predicted risks of incursion were lowest for RVFV and highest for ASFV. Risks of incursion were considered for six routes of entry (namely vectors, livestock, meat products, wildlife, pets and people). Climate change was predicted to increase the risk of incursion from entry of vectors for all five viruses to some degree, the strongest effects being predicted for AHSV, CCHFV and WNV. This work will facilitate identification of appropriate risk management options in relation to adaptations to climate change.

  4. Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment.

    Directory of Open Access Journals (Sweden)

    Lauren Gardner

    2017-03-01

    Full Text Available The 2015-16 Zika virus pandemic originating in Latin America led to predictions of a catastrophic global spread of the disease. Since the current outbreak began in Brazil in May 2015 local transmission of Zika has been reported in over 60 countries and territories, with over 750 thousand confirmed and suspected cases. As a result of its range expansion attention has focused on possible modes of transmission, of which the arthropod vector-based disease spread cycle involving Aedes species is believed to be the most important. Additional causes of concern are the emerging new links between Zika disease and Guillain-Barre Syndrome (GBS, and a once rare congenital disease, microcephaly.Like dengue and chikungunya, the geographic establishment of Zika is thought to be limited by the occurrence of its principal vector mosquito species, Ae. aegypti and, possibly, Ae. albopictus. While Ae. albopictus populations are more widely established than those of Ae. aegypti, the relative competence of these species as a Zika vector is unknown. The analysis reported here presents a global risk model that considers the role of each vector species independently, and quantifies the potential spreading risk of Zika into new regions. Six scenarios are evaluated which vary in the weight assigned to Ae. albopictus as a possible spreading vector. The scenarios are bounded by the extreme assumptions that spread is driven by air travel and Ae. aegypti presence alone and spread driven equally by both species. For each scenario destination cities at highest risk of Zika outbreaks are prioritized, as are source cities in affected regions. Finally, intercontinental air travel routes that pose the highest risk for Zika spread are also ranked. The results are compared between scenarios.Results from the analysis reveal that if Ae. aegypti is the only competent Zika vector, then risk is geographically limited; in North America mainly to Florida and Texas. However, if Ae

  5. Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment.

    Science.gov (United States)

    Gardner, Lauren; Chen, Nan; Sarkar, Sahotra

    2017-03-01

    The 2015-16 Zika virus pandemic originating in Latin America led to predictions of a catastrophic global spread of the disease. Since the current outbreak began in Brazil in May 2015 local transmission of Zika has been reported in over 60 countries and territories, with over 750 thousand confirmed and suspected cases. As a result of its range expansion attention has focused on possible modes of transmission, of which the arthropod vector-based disease spread cycle involving Aedes species is believed to be the most important. Additional causes of concern are the emerging new links between Zika disease and Guillain-Barre Syndrome (GBS), and a once rare congenital disease, microcephaly. Like dengue and chikungunya, the geographic establishment of Zika is thought to be limited by the occurrence of its principal vector mosquito species, Ae. aegypti and, possibly, Ae. albopictus. While Ae. albopictus populations are more widely established than those of Ae. aegypti, the relative competence of these species as a Zika vector is unknown. The analysis reported here presents a global risk model that considers the role of each vector species independently, and quantifies the potential spreading risk of Zika into new regions. Six scenarios are evaluated which vary in the weight assigned to Ae. albopictus as a possible spreading vector. The scenarios are bounded by the extreme assumptions that spread is driven by air travel and Ae. aegypti presence alone and spread driven equally by both species. For each scenario destination cities at highest risk of Zika outbreaks are prioritized, as are source cities in affected regions. Finally, intercontinental air travel routes that pose the highest risk for Zika spread are also ranked. The results are compared between scenarios. Results from the analysis reveal that if Ae. aegypti is the only competent Zika vector, then risk is geographically limited; in North America mainly to Florida and Texas. However, if Ae. albopictus proves to be a

  6. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors.

    Science.gov (United States)

    Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle

    2017-04-01

    The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach.

    Science.gov (United States)

    Gossner, Céline M; Marrama, Laurence; Carson, Marianne; Allerberger, Franz; Calistri, Paolo; Dilaveris, Dimitrios; Lecollinet, Sylvie; Morgan, Dilys; Nowotny, Norbert; Paty, Marie-Claire; Pervanidou, Danai; Rizzo, Caterina; Roberts, Helen; Schmoll, Friedrich; Van Bortel, Wim; Gervelmeyer, Andrea

    2017-05-04

    This article uses the experience of five European countries to review the integrated approaches (human, animal and vector) for surveillance and monitoring of West Nile virus (WNV) at national and European levels. The epidemiological situation of West Nile fever in Europe is heterogeneous. No model of surveillance and monitoring fits all, hence this article merely encourages countries to implement the integrated approach that meets their needs. Integration of surveillance and monitoring activities conducted by the public health authorities, the animal health authorities and the authorities in charge of vector surveillance and control should improve efficiency and save resources by implementing targeted measures. The creation of a formal interagency working group is identified as a crucial step towards integration. Blood safety is a key incentive for public health authorities to allocate sufficient resources for WNV surveillance, while the facts that an effective vaccine is available for horses and that most infected animals remain asymptomatic make the disease a lesser priority for animal health authorities. The examples described here can support other European countries wishing to strengthen their WNV surveillance or preparedness, and also serve as a model for surveillance and monitoring of other (vector-borne) zoonotic infections. This article is copyright of The Authors, 2017.

  8. West Nile virus vector competency of Culex quinquefasciatus mosquitoes in the Galapagos Islands.

    Science.gov (United States)

    Eastwood, Gillian; Kramer, Laura D; Goodman, Simon J; Cunningham, Andrew A

    2011-09-01

    The mosquito-transmitted pathogen West Nile virus (WNV) is not yet present in the Galápagos Archipelago of Ecuador. However, concern exists for fragile endemic island fauna after population decreases in several North American bird species and pathology in certain reptiles. We examined WNV vector competency of a Galápagos strain of mosquito (Culex quinquefasciatus Say). Field specimens were tested for their capacity to transmit the WN02-1956 strain of WNV after incubation at 27°C or 30°C. Rates of infection, dissemination, and transmission all increased with days post-exposure to WNV, and the highest rates were observed at 28 days. Infection rates peaked at 59% and transmission rates peaked at 44% (of mosquitoes tested). Vector efficiency increased after day 14. Rates of infection but not of transmission were significantly influence by temperature. No vertical transmission was detectable. We demonstrate that Galápagos Cx. quinquefasciatus are competent WNV vectors, and therefore should be considered an animal and public health risk for the islands and controlled wherever possible.

  9. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?

    Directory of Open Access Journals (Sweden)

    Malachy I. Okeke

    2017-10-01

    Full Text Available Modified vaccinia virus Ankara (MVA is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.

  10. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice

    DEFF Research Database (Denmark)

    Olesen, Mikkel V; Christiansen, Søren Hofman Oliveira; Gøtzsche, Casper René

    2012-01-01

    -like effect in rodents. The present study explored an alternative and more specific approach: overexpression of Y1 receptors. Using a recombinant adeno-associated viral vector (rAAV) encoding the Y1 gene (rAAV-Y1), we, for the first time, induced overexpression of functional transgene Y1 receptors...

  11. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    NARCIS (Netherlands)

    Ahmed, Bushra Y; Chakravarthy, Sridhara; Eggers, Ruben; Hermens, Wim T J M C; Zhang, Jing Ying; Niclou, Simone P; Levelt, Christiaan; Sablitzky, Fred; Anderson, Patrick N; Lieberman, A Robert; Verhaagen, J.

    2004-01-01

    BACKGROUND: Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One

  12. Promotion of Flowering by Apple Latent Spherical Virus Vector and Virus Elimination at High Temperature Allow Accelerated Breeding of Apple and Pear

    OpenAIRE

    Yamagishi, Norioko; Li, Chunjiang; Yoshikawa, Nobuyuki

    2016-01-01

    Plant viral vectors are superior tools for genetic manipulation, allowing rapid induction or suppression of expression of a target gene in plants. This is a particularly effective technology for use in breeding fruit trees, which are difficult to manipulate using recombinant DNA technologies. We reported previously that if apple seed embryos (cotyledons) are infected with an Apple latent spherical virus (ALSV) vector (ALSV-AtFT/MdTFL1) concurrently expressing the Arabidopsis thaliana florigen...

  13. Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors.

    Science.gov (United States)

    Martin, Kathleen M; Barandoc-Alviar, Karen; Schneweis, Derek J; Stewart, Catherine L; Rotenberg, Dorith; Whitfield, Anna E

    2017-09-01

    Maize mosaic virus (MMV) is a plant-pathogenic rhabdovirus that is transmitted by the corn planthopper, Peregrinus maidis, in a propagative manner. P. maidis supports long-term MMV infections with no negative effects on insect performance. To elucidate whole-body transcriptome responses to virus infection, RNA-Seq was used to examine differential gene expression of virus-infected adult insects, and libraries were prepared from replicated groups of virus-exposed insects and non-exposed insects. From the 68,003 de novo-assembled transcripts, 144 were differentially-expressed (DE) during viral infection with comparable numbers up- and down-regulated. DE transcripts with similarity to genes associated with transposable elements (i.e., RNA-directed DNA polymerases) were enriched and may represent a mechanisim for modulating virus infection. Comparison of the P. maidis DE transcripts to published propagative virus-responsive transcript databases for two other hopper vectors revealed that 16% of the DE transcripts were shared across the three systems and may represent conserved responses to propagative viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera

    Czech Academy of Sciences Publication Activity Database

    Carlisle, R. C.; Benjamin, R.; Briggs, S. S.; Sumner-Jones, S.; McIntosh, J.; Gill, D.; Hyde, S.; Nathwani, A.; Šubr, Vladimír; Ulbrich, Karel; Seymour, L. W.; Fisher, K. D.

    2008-01-01

    Roč. 10, č. 4 (2008), s. 400-411 ISSN 1099-498X R&D Projects: GA AV ČR KAN200200651 Grant - others:BBSRC SBRI(GB) 7633; FP6 European Commission Funded Research(EU) LSHB-CT-2004-512087 Institutional research plan: CEZ:AV0Z40500505 Source of funding: R - rámcový projekt EK Keywords : AAV * HPMA * polymer coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.141, year: 2008

  15. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  16. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression.

    Science.gov (United States)

    Zhao, Wei; Zhang, Zhenyu; Zsak, Laszlo; Yu, Qingzhong

    2015-01-01

    Newcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic regions of the enterotropic NDV VG/GA vaccine strain using reverse genetics technology. The rescued recombinant viruses retained lentogenic pathotype and displayed delayed growth dynamics, particularly when the GFP gene was inserted between the NP and P genes of the virus. The GFP mRNA level was most abundant when the gene was inserted closer to the 3' end and gradually decreased as the gene was inserted closer to the 5' end. Measurement of the GFP fluorescence intensity in recombinant virus-infected cells demonstrated that the non-coding region between the P and M genes is the optimal insertion site for foreign gene expression in the VG/GA vaccine vector.

  17. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa.

    Science.gov (United States)

    Legg, James P; Shirima, Rudolph; Tajebe, Lensa S; Guastella, Devid; Boniface, Simon; Jeremiah, Simon; Nsami, Elibariki; Chikoti, Patrick; Rapisarda, Carmelo

    2014-10-01

    Cassava mosaic disease and cassava brown streak disease are caused by viruses transmitted by Bemisia tabaci and affect approximately half of all cassava plants in Africa, resulting in annual production losses of more than $US 1 billion. A historical and current bias towards virus rather than vector control means that these diseases continue to spread, and high Bemisia populations threaten future virus spread even if the extant strains and species are controlled. Progress has been made in parts of Africa in replicating some of the successes of integrated Bemisia control programmes in the south-western United States. However, these management efforts, which utilise chemical insecticides that conserve the Bemisia natural enemy fauna, are only suitable for commercial agriculture, which presently excludes most cassava cultivation in Africa. Initiatives to strengthen the control of B. tabaci on cassava in Africa need to be aware of this limitation, and to focus primarily on control methods that are cheap, effective, sustainable and readily disseminated, such as host-plant resistance and biological control. A framework based on the application of force multipliers is proposed as a means of prioritising elements of future Bemisia control strategies for cassava in Africa. © 2014 Society of Chemical Industry.

  18. The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley fever virus.

    Science.gov (United States)

    Gargan, T P; Bailey, C L; Higbee, G A; Gad, A; El Said, S

    1983-09-01

    Field and laboratory findings implicated Culex pipiens as a vector of Rift Valley fever (RVF) virus during the 1977-1978 epizootics/epidemics in Egypt. This study evaluated changes in infection and transmission rates, and viral titers in F1 through F16 generation Cx. pipiens mosquitoes orally infected with RVF virus. Infection and transmission rates of RVF virus by this species changed significantly during the colonization process. However, the ultimate viral titers of either the transmitting or the infected nontransmitting mosquitoes were not affected by the colonization process. Following ingestion of virus, Cx. pipiens could be separated into three distinct subpopulations, an uninfected group and two types of infected mosquitoes--transmitters and nontransmitters. Transmitters contained significantly more virus (approximately 100-fold) than nontransmitters. These results demonstrated that not every infected female mosquito should be considered a competent vector, even if the species (population) is known to be a primary vector. Transmission was also accomplished by probing mosquitoes which were unsuccessful in obtaining a blood meal. These data document the long-held suspicion that vector competence studies based upon laboratory-colonized specimens may not represent the field situation.

  19. The effects of monitoring the abundance and species composition of aphids as virus vectors on seed potato production in Serbia

    Directory of Open Access Journals (Sweden)

    Drago Milošević

    2014-03-01

    Full Text Available Aphids are the most important vectors of potato viruses during the crop’s growing season. The most widespread and damaging viruses, the potato virus Y and potato leaf roll virus, are transmitted by aphids in non-persistent and persistent manner, respectively. The two viruses cause the greatest concern of potato producers and a great constraint to seed potato production in Serbia, the region and across the world. Potato virus Y is particularly harmful, given its distribution and spreading rate. Seed potato production systems under well-managed conditions involve a series of virus control measures, including the monitoring of outbreaks of winged aphids, their abundance and species composition, in order to forecast virosis, i.e. potential plant and tuber infection periods. Monitoring the aphid vectors of potato viruses enables determination of optimum dates for haulm destruction when higher than normal numbers of winged aphids as vectors of economically harmful diseases have been observed. Haulm destruction in a potato crop reduces the risk of plant infection and virus translocation from the aboveground parts to tubers, thus keeping the proportion of infected tubers within tolerance limits allowed for certain categories of seed potatoes. This practice has positive effects if used in combination with other viral disease control measures; otherwise, it becomes ineffective. This paper provides an integral analysis of the effects and role of monitoring outbreaks of aphids, their abundance and species composition in timing haulm growth termination to prevent plant infection, virus translocation and tuber infestation in potato crops in Serbia and the wider region.

  20. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shinohara

    Full Text Available Adeno-associated virus (AAV vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb were obtained by progressively deleting the original 2.0-kb promoter from the 5' end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength and 0.2-kb (70% astrocyte specificity promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity.

  1. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy

    Directory of Open Access Journals (Sweden)

    Bisanzio Donal

    2011-12-01

    Full Text Available Abstract Background West Nile Virus (WNV transmission in Italy was first reported in 1998 as an equine outbreak near the swamps of Padule di Fucecchio, Tuscany. No other cases were identified during the following decade until 2008, when horse and human outbreaks were reported in Emilia Romagna, North Italy. Since then, WNV outbreaks have occurred annually, spreading from their initial northern foci throughout the country. Following the outbreak in 1998 the Italian public health authority defined a surveillance plan to detect WNV circulation in birds, horses and mosquitoes. By applying spatial statistical analysis (spatial point pattern analysis and models (Bayesian GLMM models to a longitudinal dataset on the abundance of the three putative WNV vectors [Ochlerotatus caspius (Pallas 1771, Culex pipiens (Linnaeus 1758 and Culex modestus (Ficalbi 1890] in eastern Piedmont, we quantified their abundance and distribution in space and time and generated prediction maps outlining the areas with the highest vector productivity and potential for WNV introduction and amplification. Results The highest abundance and significant spatial clusters of Oc. caspius and Cx. modestus were in proximity to rice fields, and for Cx. pipiens, in proximity to highly populated urban areas. The GLMM model showed the importance of weather conditions and environmental factors in predicting mosquito abundance. Distance from the preferential breeding sites and elevation were negatively associated with the number of collected mosquitoes. The Normalized Difference Vegetation Index (NDVI was positively correlated with mosquito abundance in rice fields (Oc. caspius and Cx. modestus. Based on the best models, we developed prediction maps for the year 2010 outlining the areas where high abundance of vectors could favour the introduction and amplification of WNV. Conclusions Our findings provide useful information for surveillance activities aiming to identify locations where the

  2. Dual reporter comparative indexing of rAAV pseudotyped vectors in chimpanzee airway.

    Science.gov (United States)

    Flotte, Terence R; Fischer, Anne C; Goetzmann, Jason; Mueller, Christian; Cebotaru, Liudmila; Yan, Ziying; Wang, Lilli; Wilson, James M; Guggino, William B; Engelhardt, John F

    2010-03-01

    Selecting the most efficient recombinant adeno-associated virus (rAAV) serotype for airway gene therapy has been difficult due to cross-specific differences in tropism and immune response between humans and animal models. Chimpanzees--the closest surviving genetic relative of humans--provide a valuable opportunity to select the most effective serotypes for clinical trials in humans. However, designing informative experiments using this protected species is challenging due to limited availability and experimental regulations. We have developed a method using Renilla luciferase (RL) and firefly luciferase (FL) reporters to directly index the relative transduction and immune response of two promising rAAV serotypes following lung coinfection. Analysis of differential luciferase activity in chimpanzee airway brushings demonstrated a 20-fold higher efficiency for rAAV1 over rAAV5 at 90 days, a finding that was similar in polarized human airway epithelia. T-cell responses to AAV5 capsid were stronger than AAV1 capsid. This dual vector indexing approach may be useful in selecting lead vector serotypes for clinical gene therapy and suggests rAAV1 is preferred for cystic fibrosis.

  3. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo.

    Science.gov (United States)

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-10-24

    Here we describe "Supernova" series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.

  4. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

    OpenAIRE

    Monaghan, Andrew J.; Morin, Cory W.; Steinhoff, Daniel F.; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A.; Reiskind, Michael; Lloyd, Alun L.; Smith, Kirk; Schmidt, Chris A.; Scalf, Paige E.; Ernst, Kacey

    2016-01-01

    Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were an...

  5. Vector Contact Rates on Eastern Bluebird Nestlings Do Not Indicate West Nile Virus Transmission in Henrico County, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Kevin A. Caillouët

    2013-11-01

    Full Text Available Sensitive indicators of spatial and temporal variation in vector-host contact rates are critical to understanding the transmission and eventual prevention of arboviruses such as West Nile virus (WNV. Monitoring vector contact rates on particularly susceptible and perhaps more exposed avian nestlings may provide an advanced indication of local WNV amplification. To test this hypothesis we monitored WNV infection and vector contact rates among nestlings occupying nest boxes (primarily Eastern bluebirds; Sialia sialis, Turdidae across Henrico County, Virginia, USA, from May to August 2012. Observed host-seeking rates were temporally variable and associated with absolute vector and host abundances. Despite substantial effort to monitor WNV among nestlings and mosquitoes, we did not detect the presence of WNV in these populations. Generally low vector-nestling host contact rates combined with the negative WNV infection data suggest that monitoring transmission parameters among nestling Eastern bluebirds in Henrico County, Virginia, USA may not be a sensitive indicator of WNV activity.

  6. The feasibility of rabies virus-vectored immunocontraception in a mouse model

    Directory of Open Access Journals (Sweden)

    Xianfu Wu

    2014-01-01

    Full Text Available Immunocontraceptive vaccines may be an alternative to surgical sterilization. Dual rabies vaccination and dog population management is a helpful tool for rabies prevention. A synthetic gonadotropin-releasing hormone (GnRH peptide coupled to a carrier protein or T cell epitope is efficacious in inducing immunocontraception in a variety of mammals. However, virus-vectored GnRH recombinant vaccines have advantages over the conjugation method. In a previous in vitro study, we were able to insert a GnRH-coding sequence into the rabies virus (RABV glycoprotein (G gene, and the recombinant viruses grew to high titers in cells. Here, we further focused on the RABV G in accepting various copy numbers of GnRH. We demonstrated although RABV G protein with up to 4 copies of GnRH was well expressed, the recombinant virus was recovered only when 2 copies of GnRH (20 amino acids were incorporated into the G, indicating a possible insertion limit in making a full infectious clone. The investigation provides insight into the utility of RABV G as a carrier for small peptides and its suitability for vaccine studies. Following our previous study, we selected ERAg3p/2GnRH and tested the construct in mice. The vaccine induced ⩾80% infertility after three doses without any adjuvant, in live (8 of 10 mice infertility or inactivated (13 of 14 mice infertility formulations; while the pregnancy rate was 100% (10 of 10 mice in the controls. This initial success of immunocontraception in mice is promising, and we are now optimizing the vaccine formulation by using adjuvants and exploring novel delivery methods to minimize the dosage.

  7. Attenuation of Recombinant Vesicular Stomatitis Virus-Human Immunodeficiency Virus Type 1 Vaccine Vectors by Gene Translocations and G Gene Truncation Reduces Neurovirulence and Enhances Immunogenicity in Mice▿

    Science.gov (United States)

    Cooper, David; Wright, Kevin J.; Calderon, Priscilla C.; Guo, Min; Nasar, Farooq; Johnson, J. Erik; Coleman, John W.; Lee, Margaret; Kotash, Cheryl; Yurgelonis, Irene; Natuk, Robert J.; Hendry, R. Michael; Udem, Stephen A.; Clarke, David K.

    2008-01-01

    Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made. PMID:17942549

  8. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission.

    Directory of Open Access Journals (Sweden)

    Yuting Chen

    Full Text Available BACKGROUND: Leafhoppers (HEmiptera: Cicadellidae are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons has been identified as the only known vector for the Maize fine streak virus (MFSV, an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RESULTS: RNA sequencing (RNA-Seq was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC in G. nigrifrons transmitters versus control leafhoppers. CONCLUSIONS: Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.

  9. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    Science.gov (United States)

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks

  10. Control of aphid-vectored and thrips-borne virus spread in lily, tulip, iris and dahlia by sprays of mineral oil, polydimethylsiloxane and pyrethroid insecticide in the field

    NARCIS (Netherlands)

    Asjes, J.; Blom-Barnhoorn, G.J.

    2001-01-01

    In this study control of spread by insect vectors of non-persistent Lily symptomless virus and Lily mottle virus in lily, Tulip breaking virus in tulip, Iris mild mosaic virus, Narcissus latent virus and Iris severe mosaic virus in bulbous iris, and semi-persistent Dahlia mosaic virus and persistent

  11. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Science.gov (United States)

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  12. Rise and Fall of Vector Infectivity During Sequential Strain Displacements by Mosquito-Borne Dengue Virus

    Science.gov (United States)

    Andrade, Christy C.; Young, Katherine I.; Johnson, William L.; Villa, Maria E.; Buraczyk, Cynthia A.; Messer, William B.; Hanley, Kathryn A.

    2016-01-01

    Each of the four serotypes of mosquito-borne dengue virus (DENV-1-4) comprises multiple, genetically-distinct strains. Competitive displacement between strains within a serotype is a common feature of DENV epidemiology and can trigger outbreaks of dengue disease. We investigated the mechanisms underlying two sequential displacements by DENV-3 strains in Sri Lanka that each coincided with abrupt increases in dengue hemorrhagic fever (DHF) incidence. First, the post-DHF strain, displaced the pre-DHF strain in the 1980s. We have previously shown that post-DHF is more infectious than pre-DHF for the major DENV vector, Aedes aegypti. Then, the ultra-DHF strain evolved in situ from post-DHF and displaced its ancestor in the 2000s. We predicted that ultra-DHF would be more infectious for Ae. aegypti than post-DHF but found that ultra-DHF infected a significantly lower percentage of mosquitoes than post-DHF. We therefore hypothesized that ultra-DHF had effected displacement by disseminating in Ae. aegypti more rapidly than post-DHF, but this was not borne out by a timecourse of mosquito infection. To elucidate the mechanisms that shape these virus-vector interactions, we tested the impact of RNA interference, the principal mosquito defense against DENV, on replication of each of the three DENV strains. Replication of all strains was similar in mosquito cells with dysfunctional RNAi, but in cells with functional RNAi, replication of pre-DHF was significantly suppressed relative to the other two strains. Thus differences in susceptibility to RNAi may account for the differences in mosquito infectivity between pre-DHF and post-DHF, but other mechanisms underlie the difference between post-DHF and ultra-DHF. PMID:27500505

  13. [Feeding pattern of Rift Valley Fever virus vectors in Senegal. Implications in the disease epidemiology].

    Science.gov (United States)

    Ba, Y; Diallo, D; Dia, I; Diallo, M

    2006-10-01

    During the rainy season 2003, an entomological survey was undertaken in the Sahelian bioclimatic zone of the Ferlo area in northern Senegal, in order to evaluate the degree of interaction between Rift valley fever (RVF) virus vectors and domestic animals and to determine the role of natural vertebrate hosts in the transmission and maintenance cycle. The study of vector-host contact was carried out under bed net traps using man, cow, sheep, chicken as bait whereas the RVFV vectors-vertebrate host interactions were studied through the analysis by an ELISA technique of the origin of the blood meals from naturally engorged females collected by aspiration. Blood meals sources were determined using a set of eight antibodies. Overall, the different known RVFV vectors (Culex poicilipes, Aedes vexans and Aedes ochraceus) were opportunistic although the bovine-baited net was, as far the more effective trap with 53.6% of collected mosquitoes. It was followed by the sheep-baited net (16.7%), man-baited net (12.6%) and chicken-baited net (11.6%). The more effectiveness of the bovine-baited net confirms the degree of implication of this host in RVF epidemiology. The study of vector-hosts interactions in nature showed that among the 1,112 mosquito blood meals tested, 701 were identified of which 693 were from Aedes vexans. The percentage of non-reacting blood meal was 36.7% whereas 16.9 % of the blood meals were taken at least on two vertebrate hosts. Overall, 53.2% of the blood meals from Ae. vexans were taken on equine, 18.6% on bovines, 7.1% on sheep and 0.6% on human. No blood meal was taken on rodent. The greatest diversity was observed in August. These host feedings patterns show that although equine is known to play a minor role in RVF epidemiology a thorough attention should be made to this host with regard to the percentage of blood meals taken in this host. The low percentage of blood meals taken on human could probably explain the low human infection rate observed up

  14. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes.

    Science.gov (United States)

    Kenney, Joan L; Brault, Aaron C

    2014-01-01

    Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission. © 2014 Elsevier Inc. All rights reserved.

  15. Apple latent spherical virus vector-induced flowering for shortening the juvenile phase in Japanese gentian and lisianthus plants.

    Science.gov (United States)

    Fekih, Rym; Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2016-07-01

    Infection by apple latent spherical virus (ALSV) vectors that promote the expression of Arabidopsis thaliana FLOWERING LOCUS T ( AtFT ) or Gentiana triflora GtFT s accelerates flowering in gentian and lisianthus plants. Apple latent spherical virus (ALSV) has isometric virus particles (25 nm in diameter) that contain two ssRNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp20, and Vp24). ALSV vectors are used for foreign gene expression and virus-induced gene silencing in a broad range of plant species. Here, we report the infection by ALSV vectors that express FLOWERING LOCUS T (AtFT) from Arabidopsis thaliana or its homolog GtFT1 from Gentiana triflora in three gentian cultivars ('Iwate Yume Aoi' [early flowering], 'Iwate' [medium flowering], and 'Alta' [late flowering]), and two lisianthus cultivars ('Newlination Pink ver. 2' and 'Torukogikyou daburu mikkusu') promotes flowering within 90 days post-inoculation using particle bombardment. Additionally, seedlings from the progeny of the early-flowering plants were tested by tissue blot hybridization, and the results showed that ALSV was not transmitted to the next generation. The promotion of flowering in the family Gentianaceae by ALSV vectors shortened the juvenile phase from 1-3 years to 3-5 months, and thus, it could be considered as a new plant breeding technique in ornamental gentian and lisianthus plants.

  16. Hepatitis virus protein X-Phenylalanine Hydroxylase fusion proteins identified in PKU mice treated with AAV-WPRE vectors

    Science.gov (United States)

    Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...

  17. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae

    Directory of Open Access Journals (Sweden)

    Payton Mark

    2007-04-01

    Full Text Available Abstract Background Plasmodiophorids and chytrids are zoosporic parasites of algae and land plant and are distributed worldwide. There are 35 species belonging to the order Plasmodiophorales and three species, Polymyxa betae, P. graminis, and Spongospora subterranea, are plant viral vectors. Plasmodiophorid transmitted viruses are positive strand RNA viruses belonging to five genera. Beet necrotic yellow vein virus (BNYVV and its vector, P. betae, are the causal agents for rhizomania. Results Evidence of BNYVV replication and movement proteins associating with P. betae resting spores was initially obtained using immunofluorescence labeling and well characterized antisera to each of the BNYVV proteins. Root cross sections were further examined using immunogold labeling and electron microscopy. BNYVV proteins translated from each of the four genomic and subgenomic RNAs accumulate inside P. betae resting spores and zoospores. Statistical analysis was used to determine if immunolabelling detected viral proteins in specific subcellular domains and at a level greater than in control samples. Conclusion Virus-like particles were detected in zoosporangia. Association of BNYVV replication and movement proteins with sporangial and sporogenic stages of P. betae suggest that BNYVV resides inside its vector during more than one life cycle stage. These data suggest that P. betae might be a host as well as a vector for BNYVV

  18. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae.

    Science.gov (United States)

    Lubicz, Jeanmarie Verchot; Rush, Charles M; Payton, Mark; Colberg, Terry

    2007-04-05

    Plasmodiophorids and chytrids are zoosporic parasites of algae and land plant and are distributed worldwide. There are 35 species belonging to the order Plasmodiophorales and three species, Polymyxa betae, P. graminis, and Spongospora subterranea, are plant viral vectors. Plasmodiophorid transmitted viruses are positive strand RNA viruses belonging to five genera. Beet necrotic yellow vein virus (BNYVV) and its vector, P. betae, are the causal agents for rhizomania. Evidence of BNYVV replication and movement proteins associating with P. betae resting spores was initially obtained using immunofluorescence labeling and well characterized antisera to each of the BNYVV proteins. Root cross sections were further examined using immunogold labeling and electron microscopy. BNYVV proteins translated from each of the four genomic and subgenomic RNAs accumulate inside P. betae resting spores and zoospores. Statistical analysis was used to determine if immunolabelling detected viral proteins in specific subcellular domains and at a level greater than in control samples. Virus-like particles were detected in zoosporangia. Association of BNYVV replication and movement proteins with sporangial and sporogenic stages of P. betae suggest that BNYVV resides inside its vector during more than one life cycle stage. These data suggest that P. betae might be a host as well as a vector for BNYVV.

  19. Effects of insertion sites in a Newcastle disease virus vector on foreign gene expression through an internal ribosomal entry site

    Science.gov (United States)

    Newcastle disease virus (NDV), avian paramyxovirus type 1, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU), which potentially a...

  20. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site

    Science.gov (United States)

    Newcastle disease virus (NDV) has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU). Based on the well-accepted “stop-start” transcr...

  1. A nuclear localization signal in the matrix of spleen necrosis virus (SNV) does not allow efficient gene transfer into quiescent cells with SNV-derived vectors.

    Science.gov (United States)

    Caron, Marie-Christine; Caruso, Manuel

    2005-08-01

    A major limitation in gene therapy for vectors derived from Moloney murine leukemia virus (MLV) is that they only deliver genes into dividing cells. In this study, a careful comparison of spleen necrosis virus (SNV)-derived vectors with MLV and human immunodeficiency virus (HIV)-1 retroviral vectors indicated that SNV vectors can deliver genes 4-fold more efficiently than MLV vectors into aphidicolin-arrested cells, although at a 25-fold lower efficiency than HIV-1-derived vectors. Furthermore, the addition of a NLS in the SNV matrix (MA) that mimics the one located in HIV-1 MA did not increase the ability of SNV vectors to transfer genes into arrested cells. Also, we found that the RD114 envelope was able to pseudotype SNV viral particles in a very efficient manner.

  2. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    Science.gov (United States)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  3. La Crosse Virus Field Detection and Vector Competence of Culex Mosquitoes.

    Science.gov (United States)

    Harris, M Camille; Yang, Fan; Jackson, Dorian M; Dotseth, Eric J; Paulson, Sally L; Hawley, Dana M

    2015-09-01

    La Crosse virus (LACV), a leading cause of arboviral pediatric encephalitis in the United States, is emerging in Appalachia. Here, we report field and laboratory evidence that suggest LACV may be using Culex mosquitoes as additional vectors in this region. This bunyavirus was detected by reverse-transcriptase polymerase chain reaction in two pools of Culex mosquitoes in southwestern Virginia and in six pools in West Virginia. To assess vector competence, we offered LACV blood meals to field-collected Culex restuans Theobald, Cx. pipiens L., and Aedes triseriatus (Say). Both Culex species were susceptible to infection. LACV-positive salivary expectorate, indicative of the ability to transmit, was detected in a small proportion of Cx. restuans (9%) and Cx. pipiens (4%) compared with Ae. triseriatus (40%). In a companion study of Cx. restuans only, we found that adults derived from nutritionally stressed larvae were significantly more likely to disseminate and transmit LACV. Our results indicate a potential role of Culex spp. in LACV dynamics that should be explored further in endemic areas. © The American Society of Tropical Medicine and Hygiene.

  4. Major QTLs Control Resistance to Rice Hoja Blanca Virus and Its Vector Tagosodes orizicolus

    Science.gov (United States)

    Romero, Luz E.; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J.; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C.; Martinez, César P.; Calvert, Lee; Lorieux, Mathias

    2013-01-01

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781

  5. Host feeding pattern of Japanese encephalitis virus vector mosquitoes (Diptera: Culicidae) from Kuttanadu, Kerala, India.

    Science.gov (United States)

    Philip Samuel, P; Arunachalam, N; Hiriyan, J; Tyagi, B K

    2008-09-01

    Identification of blood meals of vector mosquitoes is an important tool in the epidemiological investigations of vector-borne diseases. The blood meals of three mosquito species involved in the transmission of Japanese encephalitis virus (JEV) from the Kuttanadu area, Kerala, were determined using the agarose gel diffusion technique. A total of 4959 blood smears belonging to Culex (Culex) tritaeniorhynchus Giles (3273), Cx. (Culex) gelidus Theobald (64), Mansonia (Mnd.) indiana Edwards (735) ,and Ma. (Mnd.) uniformis (Theobald) (887) were tested. Cx. tritaeniorhynchus had predominantly fed on bovids (46.4%), and a good proportion (29%) had fed on more than one host. Cx. tritaeniorhynchus was highly zoophagic, and human feeding accounted for only 1.5% of those individuals successfully tested. Cx. gelidus showed bovid feeding at 36% and pig feeding at 12.5%. The test results showed 42.3% Ma. indiana and 12.2% Ma. uniformis had fed on humans. Multiple feeding was observed in Ma. indiana and Ma. uniformis, and most of the double feedings were from bovids and ovids (7.9 and 20.1%, respectively). Pig feeding accounted for 4.8% of the feedings by Cx. tritaeniorhynchus, 5.3% of Ma. indiana, and 6.4% of Ma. uniformis. This study is significant because of the role played by these mosquitoes in the transmission of JEV in the Kuttanadu area of Kerala, India.

  6. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  7. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    Directory of Open Access Journals (Sweden)

    Chen Ling

    2016-01-01

    Full Text Available Although recombinant adeno-associated virus serotype 3 (AAV3 vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs from AAV3 (ITR3, as well as the trans-acting Rep proteins from AAV3 (Rep3 in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ∼10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492 were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of

  8. Study of entomophatogenic fungus to control vector insect of citrus tristeza virus on citrus

    Directory of Open Access Journals (Sweden)

    Dwiastuti M.E.

    2017-08-01

    Full Text Available Citrus Tristeza Virus (CTV disease is a silent killer, which threatens to decrease productivity, quality and even death of citrus plants and the erosion of genetic resources. Spreading in the field very quickly by the intermediate insect vector pest, aphid (Toxoptera citricida, T. Aurantii and A. Gosypii. The microbes studied for potential biopesticide candidates are: Beauveria bassiana and Hirsutella citriformis, and Metarhizium anisopliae (Metch Sorokin previously reported to control Diaphorina citri pests resulting effectiveness of > 25% and was able to suppress yield loss up to 10%. The objectives of the study examined the effectiveness of entomopathogen in controlling the pest of CTV vector, Toxoptera citricida, in the laboratory and screen house, to findout the physiological, biochemical and molecular physiology of entomopathogen. The results showed that the best entomopathogen suspension concentration was B.bassiana 106 followed by H. citriformis 106 and M. anisopliae 106. Entomopatogen B. bassiana and H. citriformis effectively controled the CTV vector pest in the laboratory. In the semi-field experiments at the screen house, the most effective result was H.citriformis 106 and the combination of H.citriformis 106 + B.bassiana 106, killing up to 50% and 100% on day 7th H.citriformis had the most physiological character, was able to develop optimally at a temperature of 20-400C and humidity between 60-80%. The biochemical character of the entomopathogenic fungus B.bassiana contained cellulase enzyme and phosphate solvent and IAA hormone, at most compared to the others. H.citriformis had not been found to contain enzymes and hormones. The molecular biochemical characterization of entomopathogenic fungi using FS1 and NS2 primers more clearly distinguished isolates and entomopathogenic species.

  9. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.; Trubey, Charles M.; Raja, Nicholas U.; Deitz, Stephen B.; Woraratanadharm, Jan; Luo Min; Yu Hong; Swain, Benjamin M.; Moore, Kevin M.; Dong, John Y.

    2006-01-01

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10 7 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  10. Mucosal immunization with integrase-defective lentiviral vectors protects against influenza virus challenge in mice.

    Directory of Open Access Journals (Sweden)

    Judith M Fontana

    Full Text Available Recent reports highlight the potential for integrase-defective lentiviral vectors (IDLV to be developed as vaccines due to their ability to elicit cell-mediated and humoral immune responses after intramuscular administration. Differently from their integrase-competent counterpart, whose utility for vaccine development is limited by the potential for insertional mutagenesis, IDLV possess a mutation in their integrase gene that prevents genomic integration. Instead, they are maintained as episomal DNA circles that retain the ability to stably express functional proteins. Despite their favorable profile, it is unknown whether IDLV elicit immune responses after intranasal administration, a route that could be advantageous in the case of infection with a respiratory agent. Using influenza as a model, we constructed IDLV expressing the influenza virus nucleoprotein (IDLV-NP, and tested their ability to generate NP-specific immune responses and protect from challenge in vivo. We found that administration of IDLV-NP elicited NP-specific T cell and antibody responses in BALB/c mice. Importantly, IDLV-NP was protective against homologous and heterosubtypic influenza virus challenge only when given by the intranasal route. This is the first report demonstrating that IDLV can induce protective immunity after intranasal administration, and suggests that IDLV may represent a promising vaccine platform against infectious agents.

  11. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  12. The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico.

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C; Uejio, Christopher K; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J; Steinhoff, Daniel F; Eisen, Lars

    2012-11-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer.

  13. Development of an equine-tropic replication-competent lentivirus assay for equine infectious anemia virus-based lentiviral vectors.

    Science.gov (United States)

    Farley, Daniel C; Bannister, Richard; Leroux-Carlucci, Marie A; Evans, Nerys E; Miskin, James E; Mitrophanous, Kyriacos A

    2012-10-01

    The release of lentiviral vectors for clinical use requires the testing of vector material, production cells, and, if applicable, ex vivo-transduced cells for the presence of replication-competent lentivirus (RCL). Vectors derived from the nonprimate lentivirus equine infectious anemia virus (EIAV) have been directly administered to patients in several clinical trials, with no toxicity observed to date. Because EIAV does not replicate in human cells, and because putative RCLs derived from vector components within human vector production cells would most likely be human cell-tropic, we previously developed an RCL assay using amphotropic murine leukemia virus (MLV) as a surrogate positive control and human cells as RCL amplification/indicator cells. Here we report an additional RCL assay that tests for the presence of theoretical "equine-tropic" RCLs. This approach provides further assurance of safety by detecting putative RCLs with an equine cell-specific tropism that might not be efficiently amplified by the human cell-based RCL assay. We tested the ability of accessory gene-deficient EIAV mutant viruses to replicate in a highly permissive equine cell line to direct our choice of a suitable EIAV-derived positive control. In addition, we report for the first time the mathematical rationale for use of the Poisson distribution to calculate minimal infectious dose of positive control virus and for use in monitoring assay positive/spike control failures in accumulating data sets. No RCLs have been detected in Good Manufacturing Practice (GMP)-compliant RCL assays to date, further demonstrating that RCL formation is highly unlikely in contemporary minimal lentiviral vector systems.

  14. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy.

    Directory of Open Access Journals (Sweden)

    Travis B Lewis

    2010-09-01

    Full Text Available Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR. Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA neurons in vivo.Ad5 was delivered to the substantia nigra (SN in wild type (wt and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in

  15. Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma In vivo.

    Science.gov (United States)

    Mao, Yingying; Pei, Nana; Chen, Xinglu; Chen, Huiying; Yan, Renhe; Bai, Na; Li, Andrew; Li, Jinlong; Zhang, Yanling; Du, Hongyan; Chen, Baihong; Sumners, Colin; Wang, Xuejun; Wang, Shengqi; Li, Hongwei

    2018-01-01

    Background: Angiotensin-(1-7) [Ang-(1-7)] has been identified to inhibit the growth of many types of tumor cells both in vitro and in vivo . However, the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Adeno-associated virus (AAV) serotype-8 is a remarkable vector for long-term in vivo gene delivery. Method: This study was designed to investigate the effects of AAV-mediated Ang-(1-7) overexpression on hepatocellular carcinoma. We first generated three different tyrosine (Y) to phenylalanine (F) mutants of AAV8 (Y447F, Y703F, Y708F) and evaluated their in vivo transduction efficiencies. Results: The data indicated that the Y703F mutant elicited a significant enhancement of liver gene delivery when compared with wild-type AAV8 (wtAAV8). The anti-tumor effect of Ang-(1-7) mediated by this optimized vector was evaluated in H22 hepatoma-bearing mice. Our results demonstrated that AAV-Ang-(1-7) persistently inhibited the growth of hepatocellular carcinoma by significantly downregulating angiogenesis. This was confirmed by observed decreases in the levels of the proangiogenic factors VEGF and PIGF. Conclusion: Collectively, these data suggest that Ang-(1-7) overexpression mediated by the optimized vector may be an effective alternative for hepatocellular carcinoma therapy due to its long-term and significant anti-tumor activity.

  16. Developing the framework for a risk map for mite vectored viruses in wheat resulting from pre-harvest hail damage

    Science.gov (United States)

    Nguy-Robertson, A. L.; Stilwell, A.; Zygielbaum, A. I.; McMechan, J.; Hein, G.; Wegulo, S.; Smith, T.

    2014-12-01

    Climate change is expected to adversely influence the weather and may increase the severity of meteorological events, including thunderstorms capable of producing crop damaging hail. Hail events occurring on pre-harvest wheat fields are known to be a significant contributor to outbreaks of virus diseases such as Wheat streak mosaic virus, Triticum mosaic virus , and Wheat mosaic virus, in the subsequent year. These viruses are vectored by the wheat curl mite (WCM) and volunteer wheat from pre-harvest hail events provides WCMs with a green bridge between harvest in the summer and planting in the fall. Controlling volunteer wheat through herbicide application and tillage has been shown to reduce WSMV transmission as long as it is conducted before emergence of the winter wheat crop. The goal of this study was to develop a risk product for WCM-vectored viruses based on pre-harvest hail damage. Traditionally, vegetation indices (VI; i.e. normalized difference vegetation index) are used to remotely identify hail damage in satellite imagery. However, during the highest risk period for volunteer wheat resulting from pre-harvest hail damage, the wheat crop is senescing and dramatically reducing its 'greenness', decreasing its sensitivity to changes in many VIs. Ground-based hyperspectral remote sensing over mechanically hailed sites indicates that reflectance from hailed wheat increases in the visible/near infrared spectrum. This information can be incorporated into a model using satellite imagery (LandSat and MODIS) and a 1 x 1 km resolution map of estimated maximal hail size produced by NOAA. The risk maps produced from these inputs will enable farmers and stakeholders to more effectively manage WCM-vectored viruses of wheat.

  17. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities.

    Directory of Open Access Journals (Sweden)

    David W Crowder

    Full Text Available Arthropod-borne viruses (arboviruses threaten the health of humans, livestock, and wildlife. West Nile virus (WNV, the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural and two climatic variables (temperature, precipitation influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds and incidental hosts (horses, while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.

  18. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    Science.gov (United States)

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  19. The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City

    OpenAIRE

    Diaz-Badillo, Alvaro; Bolling, Bethany G; Perez-Ramirez, Gerardo; Moore, Chester G; Martinez-Munoz, Jorge P; Padilla-Viveros, America A; Camacho-Nuez, Minerva; Diaz-Perez, Alfonso; Beaty, Barry J; de Lourdes Munoz, Maria

    2011-01-01

    Abstract Background Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to ...

  20. Transcriptomics of differential vector competence: West Nile virus infection in two populations of Culex pipiens quinquefasciatus linked to ovary development.

    Science.gov (United States)

    Shin, Dongyoung; Civana, Ayse; Acevedo, Carolina; Smartt, Chelsea T

    2014-06-22

    Understanding mechanisms that contribute to viral dissemination in mosquito vectors will contribute to our ability to interfere with the transmission of viral pathogens that impact public health. The expression of genes in two Culex pipiens quinquefasciatus populations from Florida with known differences in vector competence to West Nile virus (WNV) were compared using high throughput sequencing. A total of 15,176 transcripts were combined for comparison of expression differences between the two populations and 118 transcripts were differentially expressed (p Culex populations in Florida. Both populations control energy allocations to reproduction as a response to WNV. This result provides novel insight into the defense mechanism used by Culex spp. mosquitoes against WNV.

  1. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells

    International Nuclear Information System (INIS)

    Roilides, E.; Munson, P.J.; Levine, A.S.; Dixon, K.

    1988-01-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells

  2. Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae.

    Directory of Open Access Journals (Sweden)

    Mary K Mills

    Full Text Available Culicoides sonorensis biting midges are confirmed vectors of epizootic hemorrhagic disease virus (EHDV, which causes mortality in white-tailed deer and ruminant populations. Currently, of the seven EHDV serotypes, only 1, 2, and 6 are detected in the USA, and very few studies have focused on the infection time course of these serotypes within the midge. The objective of this current research was to characterize EHDV-2 infection within the midge by measuring infection prevalence, virus dissemination, and viral load over the course of infection. Midges were fed a blood meal containing 106.9 PFU/ml EHDV-2, collected every 12 h from 0-2 days post feeding (dpf and daily from 3-10 dpf, and cohorts of 20 C. sonorensis were processed using techniques that assessed EHDV infection and dissemination. Cytopathic effect assays and quantitative (qPCR were used to determine infection prevalence, revealing a 50% infection rate by 10 dpf using both methods. Using immunohistochemistry, EHDV-2 infection was detectable at 5 dpf, and shown to disseminate from the midgut to other tissues, including fat body, eyes, and salivary glands by 5 dpf. Stain intensity increased from 5-8 dpf, indicating replication of EHDV-2 in secondary infection sites after dissemination. This finding is also supported by trends in viral load over time as determined by plaque assays and qPCR. An increase in titer between 4-5 dpf correlated with viral replication in the midgut as seen with staining at day 5, while the subsequent gradual increase in viral load from 8-10 dpf suggested viral replication in midges with disseminated infection. Overall, the data presented herein suggest that EHDV-2 disseminates via the hemolymph to secondary infection sites throughout the midge and demonstrate a high potential for transmission at five days at 25°C after an infective blood-meal.

  3. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States.

    Science.gov (United States)

    Monaghan, Andrew J; Morin, Cory W; Steinhoff, Daniel F; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A; Reiskind, Michael; Lloyd, Alun L; Smith, Kirk; Schmidt, Chris A; Scalf, Paige E; Ernst, Kacey

    2016-03-16

    An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact.     Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti.     Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses.

  4. Identification of Multiple Novel Viruses, Including a Parvovirus and a Hepevirus, in Feces of Red Foxes

    Science.gov (United States)

    van der Giessen, Joke; Haagmans, Bart L.; Osterhaus, Albert D. M. E.; Smits, Saskia L.

    2013-01-01

    Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified. PMID:23616657

  5. Evaluating the feeding preferences of West Nile virus mosquito vectors using bird-baited traps.

    Science.gov (United States)

    Victoriano Llopis, Isis; Tomassone, Laura; Grego, Elena; Serrano, Emmanuel; Mosca, Andrea; Vaschetti, Gabriella; Andrade, Daniela; Rossi, Luca

    2016-08-31

    The total contact rates (TCRs) between mosquito vectors and their potential hosts have a serious impact on disease transmission dynamics. Culex pipiens (sensu stricto) (s.s.) is considered the main vector of the West Nile Virus (WNV) in Europe and birds are the reservoir hosts. The results of our previous study showed that WNV seroreactors are significantly more prevalent among raptors compared to a range of other wild avian groups. The current study aims to assess the role of bird type (raptor vs others) and bird size on mosquito feeding preferences in a free-choice experiment using bird-baited traps. From July to September 2014, a battery of six bird-baited traps was operated in twelve mosquito capture sessions. Eight bird species, belonging to five different orders, including raptors, were used. After each session, the trapped mosquitoes were collected and identified using standard keys. Two sets of independent generalized linear mixed models (GLMM) were used to assess mosquito vector feeding preferences (MFp) among different bird species and types. A total of 304 mosquitoes belonging to seven taxa were collected, C. pipiens being by far the most abundant (84.2 % of the total mosquito catch). Most C. pipiens were engorged (83.59 %). The selected model showed that 25.6 % of the observed variability of MFp is explained by the interaction between bird size and bird type, with C. pipiens preferring to feed on large birds, especially raptors. The proportion of engorged mosquitoes was 1.9-fold higher in large (22.88 %; range 0-42 %) than in medium-sized raptors (11.71 %; range 0-33 %), and was nearly the same in medium-sized (9.08 %; range 0-26 %) and large (8.5 %; 6-24 %) non-raptor species. Culex pipiens showed an obvious preference for large raptors, which concurs with the higher seroprevalence to WNV in our previous study. The appreciable feeding by C. pipiens on large raptors makes them useful alternative sentinels to poultry for WNV surveillance. Thus

  6. A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector.

    Science.gov (United States)

    Lu, Shaohua; Li, Jingjing; Wang, Xueli; Song, Danyang; Bai, Rune; Shi, Yan; Gu, Qinsheng; Kuo, Yen-Wen; Falk, Bryce W; Yan, Fengming

    2017-01-13

    It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus , family Closteroviridae ) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci . The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females.

  7. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  8. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  9. Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector

    Directory of Open Access Journals (Sweden)

    Jason J. Siu

    2017-12-01

    Full Text Available Mutations in the melanocortin-4-receptor (MC4R comprise the most common monogenic form of severe early-onset obesity, and conventional treatments are either ineffective long-term or contraindicated. Immediately downstream of MC4R—in the pathway for regulating energy balance—is brain-derived neurotrophic factor (BDNF. Our previous studies show that adeno-associated virus (AAV-mediated hypothalamic BDNF gene transfer alleviates obesity and diabetes in both diet-induced and genetic models. To facilitate clinical translation, we developed a built-in autoregulatory system to control therapeutic gene expression mimicking the body’s natural feedback systems. This autoregulatory approach leads to a sustainable plateau of body weight after substantial weight loss is achieved. Here, we examined the efficacy and safety of autoregulatory BDNF gene therapy in Mc4r heterozygous mice, which best resemble MC4R obese patients. Mc4r heterozygous mice were treated with either autoregulatory BDNF vector or YFP control and monitored for 30 weeks. BDNF gene therapy prevented the development of obesity and metabolic syndromes characterized by decreasing body weight and adiposity, suppressing food intake, alleviating hyperleptinemia and hyperinsulinemia, improving glucose and insulin tolerance, and increasing energy expenditure, without adverse cardiovascular function or behavioral disturbances. These safety and efficacy data provide preclinical evidence that BDNF gene therapy is a compelling treatment option for MC4R-deficient obese patients.

  10. Mapping the AAV capsid host antibody response towards the development of second generation gene delivery vectors

    Directory of Open Access Journals (Sweden)

    Yu-Shan eTseng

    2014-01-01

    Full Text Available The recombinant Adeno-associated virus (rAAV gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2. Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from monoclonal antibodies, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  11. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated. IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  12. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania

    OpenAIRE

    Mweya, Clement N.; Kimera, Sharadhuli I.; Mellau, Lesakit S. B.; Mboera, Leonard E. G.

    2015-01-01

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective: To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods: A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mos...

  13. Culicoides (Diptera: Ceratopogonidae) midges, the vectors of African horse sickness virus--a host/vector contact study in the Niayes area of Senegal.

    Science.gov (United States)

    Fall, Moussa; Diarra, Maryam; Fall, Assane G; Balenghien, Thomas; Seck, Momar T; Bouyer, Jérémy; Garros, Claire; Gimonneau, Geoffrey; Allène, Xavier; Mall, Iba; Delécolle, Jean-Claude; Rakotoarivony, Ignace; Bakhoum, Mame T; Dusom, Ange M; Ndao, Massouka; Konaté, Lassana; Faye, Ousmane; Baldet, Thierry

    2015-01-21

    African horse sickness (AHS) is an equine disease endemic to Senegal. The African horse sickness virus (AHSV) is transmitted to the mammalian hosts by midges of the Culicoides Latreille genus. During the last epizootic outbreak of AHS in Senegal in 2007, 1,169 horses died from this disease entailing an estimated cost of 1.4 million euros. In spite of the serious animal health and economic implications of AHS, very little is known about determinants involved in transmission such as contact between horses and the Culicoides species suspected of being its vectors. The monthly variation in host/vector contact was determined in the Niayes area, Senegal, an area which was severely affected by the 2007 outbreak of AHS. A horse-baited trap and two suction light traps (OVI type) were set up at each of five sites for three consecutive nights every month for one year. Of 254,338 Culicoides midges collected 209,543 (82.4%) were female and 44,795 (17.6%) male. Nineteen of the 41 species collected were new distribution records for Senegal. This increased the number of described Culicoides species found in Senegal to 53. Only 19 species, of the 41 species found in light trap, were collected in the horse-baited trap (23,669 specimens) largely dominated by Culicoides oxystoma (22,300 specimens, i.e. 94.2%) followed by Culicoides imicola (482 specimens, i.e. 2.0%) and Culicoides kingi (446 specimens, i.e. 1.9%). Culicoides oxystoma should be considered as a potential vector of AHSV in the Niayes area of Senegal due to its abundance on horses and its role in the transmission of other Culicoides-borne viruses.

  14. Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior

    NARCIS (Netherlands)

    Tiesjema, Birgitte; Adan, Roger A. H.; Luijendijk, Mieneke C. M.; Kalsbeek, Andries; la Fleur, Susanne E.

    2007-01-01

    It is well known that neuropeptide Y (NPY) increases food intake. The hypothalamic paraventricular nucleus (PVN) and the lateral hypothalamus (LH) are both involved in the acute, hyperphagic effects of NPY. Although it is obvious that increased energy intake may lead to obesity, it is less

  15. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia.

    Directory of Open Access Journals (Sweden)

    Sonja Hall-Mendelin

    2016-09-01

    Full Text Available Within the last 10 years Zika virus (ZIKV has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission.Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50 of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred.We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.

  16. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia

    Directory of Open Access Journals (Sweden)

    Akira eOtuka

    2013-10-01

    Full Text Available This review examines recent studies of the migration of three rice planthoppers, Laodelphax striatellus, Sogatella furcifera, and Nilaparvata lugens, in East Asia. Laodelphax striatellus has recently broken out in Jiangsu province, eastern China. The population density in the province started to increase in the early 2000s and peaked in 2004. In 2005, Rice stripe virus (RSV viruliferous rate of L. striatellus peaked at 31.3%. Since then, rice stripe disease spread severely across the whole province. Due to the migration of the RSV vectors, the rice stripe disease spread to neighboring countries Japan and Korea. An overseas migration of L. striatellus that occurred in 2008 was analyzed, when a slow-moving cold vortex, a type of low pressure system, reached western Japan from Jiangsu, carrying the insects into Japan. Subsequently the rice stripe diseases struck these areas in Japan severely. In Korea, similar situations occurred in 2009, 2011, and 2012. Their migration sources were also estimated to be in Jiangsu by backward trajectory analysis. Rice black-streaked dwarf virus, whose vector is L. striatellus, has recently re-emerged in eastern China, and the evidence for overseas migrations of the virus, just like the RSV’s migrations, has been given. A method of predicting the overseas migration of L. striatellus has been developed by Japanese, Chinese, and Korean institutes. An evaluation of the prediction showed that this method properly predicted migration events that occurred in East Asia from 2008 to 2011. Southern rice black-streaked dwarf virus (SRBSDV was first found in Guangdong province. Its vector is S. furcifera. An outbreak of SRBSDV occurred in southern China in 2009 and spread to Vietnam the same year. This disease and virus were also found in Japan in 2010. The epidemic triggered many migration studies to investigate concrete spring-summer migration routes in China, and the addition of migration sources for early arrivals in

  17. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  18. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Science.gov (United States)

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  19. Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus.

    Science.gov (United States)

    Fall, Gamou; Diallo, Mawlouth; Loucoubar, Cheikh; Faye, Ousmane; Sall, Amadou Alpha

    2014-04-01

    West Nile virus (WN virus) is one of the most widespread arbovirus and exhibits a great genetic diversity with 8 lineages, at least 4 (1, 2, Koutango, and putative new) are present in Africa. In West Africa, Culex neavei and Culex quinquefasciatus are considered as potential vectors for WN virus transmission in sylvatic or urban context. We analyzed the vector competence of these Culex species from Senegal for African lineages and envelope proteins sequences of viral strains used. We showed that lineage 1 is transmitted by both Culex mosquitoes, whereas the putative new lineage 8 is transmitted only by Cx. neavei. Our findings suggest that genetic variability can affect vector competence and depend on mosquito. However, when considering the infective life rate, the mosquito population seems to be inefficient for WN virus transmission in the field and could explain the low impact of WN virus in Africa.

  20. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution.

    Science.gov (United States)

    Grimm, Dirk; Zolotukhin, Sergei

    2015-12-01

    Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies.

  1. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes

    2012-01-01

    and display search behavior to locate areas with hosts. We also include wind spread of vectors, host movements, and vector seasonality. Results show that temperature and seasonality of vectors determines the period in which an incursion of Bluetongue may lead to epidemic spread in Denmark. Within this period...

  3. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates

    NARCIS (Netherlands)

    Geisbert, Thomas W.; Bailey, Michael; Geisbert, Joan B.; Asiedu, Clement; Roederer, Mario; Grazia-Pau, Maria; Custers, Jerome; Jahrling, Peter; Goudsmit, Jaap; Koup, Richard; Sullivan, Nancy J.

    2010-01-01

    The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown

  4. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Science.gov (United States)

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-03-09

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  5. Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size

    Science.gov (United States)

    Hagg, Adam; Colgan, Timothy D.; Thomson, Rachel E.; Qian, Hongwei; Lynch, Gordon S.; Gregorevic, Paul

    2016-01-01

    Anabolic β2-adrenoceptor (β2-AR) agonists have been proposed as therapeutics for treating muscle wasting but concerns regarding possible off-target effects have hampered their use. We investigated whether β2-AR-mediated signalling could be modulated in skeletal muscle via gene delivery to the target tissue, thereby avoiding the risks of β2-AR agonists. In mice, intramuscular administration of a recombinant adeno-associated virus-based vector (rAAV vector) expressing the β2-AR increased muscle mass by >20% within 4 weeks. This hypertrophic response was comparable to that of 4 weeks’ treatment with the β2-AR agonist formoterol, and was not ablated by mTOR inhibition. Increasing expression of inhibitory (Gαi2) and stimulatory (GαsL) G-protein subunits produced minor atrophic and hypertrophic changes in muscle mass, respectively. Furthermore, Gαi2 over-expression prevented AAV:β2-AR mediated hypertrophy. Introduction of the non-muscle Gαs isoform, GαsXL elicited hypertrophy comparable to that achieved by AAV:β2-AR. Moreover, GαsXL gene delivery was found to be capable of inducing hypertrophy in the muscles of mice lacking functional β1- and β2-ARs. These findings demonstrate that gene therapy-based interventions targeting the β2-AR pathway can promote skeletal muscle hypertrophy independent of ligand administration, and highlight novel methods for potentially modulating muscle mass in settings of disease. PMID:26972746

  6. Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size.

    Science.gov (United States)

    Hagg, Adam; Colgan, Timothy D; Thomson, Rachel E; Qian, Hongwei; Lynch, Gordon S; Gregorevic, Paul

    2016-03-14

    Anabolic β2-adrenoceptor (β2-AR) agonists have been proposed as therapeutics for treating muscle wasting but concerns regarding possible off-target effects have hampered their use. We investigated whether β2-AR-mediated signalling could be modulated in skeletal muscle via gene delivery to the target tissue, thereby avoiding the risks of β2-AR agonists. In mice, intramuscular administration of a recombinant adeno-associated virus-based vector (rAAV vector) expressing the β2-AR increased muscle mass by >20% within 4 weeks. This hypertrophic response was comparable to that of 4 weeks' treatment with the β2-AR agonist formoterol, and was not ablated by mTOR inhibition. Increasing expression of inhibitory (Gαi2) and stimulatory (GαsL) G-protein subunits produced minor atrophic and hypertrophic changes in muscle mass, respectively. Furthermore, Gαi2 over-expression prevented AAV:β2-AR mediated hypertrophy. Introduction of the non-muscle Gαs isoform, GαsXL elicited hypertrophy comparable to that achieved by AAV:β2-AR. Moreover, GαsXL gene delivery was found to be capable of inducing hypertrophy in the muscles of mice lacking functional β1- and β2-ARs. These findings demonstrate that gene therapy-based interventions targeting the β2-AR pathway can promote skeletal muscle hypertrophy independent of ligand administration, and highlight novel methods for potentially modulating muscle mass in settings of disease.

  7. Vector competence of the stable fly (Diptera: Muscidae) for West Nile virus.

    Science.gov (United States)

    Doyle, Michael S; Swope, Bethany N; Hogsette, Jerome A; Burkhalter, Kristen L; Savage, Harry M; Nasci, Roger S

    2011-05-01

    In 2006-2007, stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), were suspected of being enzootic vectors of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) during a die-off of American white pelicans (Pelecanus erythrorhynchos Gmelin) (Pelecanidae) in Montana, USA. WNV-positive stable flies were observed feeding en masse on incapacitated, WNV-positive pelicans, arousing suspicions that the flies could have been involved in WNV transmission among pelicans, and perhaps to livestock and humans. We assessed biological transmission by infecting stable flies intrathoracically with WNV and testing them at 2-d intervals over 20 d. Infectious WNV was detected in fly bodies in decreasing amounts over time for only the first 6 d postinfection, an indication that WNV did not replicate within fly tissues and that stable flies cannot biologically transmit WNV. We assessed mechanical transmission using a novel technique. Specifically, we fed WNV-infected blood to individual flies by using a cotton swab (i.e., artificial donor), and at intervals of 1 min-24 h, we allowed flies to refeed on a different swab saturated with WNV-negative blood (i.e., artificial recipient). Flies mechanically transmitted viable WNV from donor to recipient swabs for up to 6 h postinfection, with the majority of the transmission events occurring within the first hour. Flies mechanically transmitted WNV RNA to recipient swabs for up to 24 h, mostly within the first 6 h. Given its predilection to feed multiple times when disturbed, these findings support the possibility that the stable fly could mechanically transmit WNV.

  8. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases.

    Science.gov (United States)

    Jerusalinsky, Diana; Baez, María Verónica; Epstein, Alberto Luis

    2012-01-01

    Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures

  9. Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses.

    Science.gov (United States)

    Cassone, Bryan J; Wijeratne, Saranga; Michel, Andrew P; Stewart, Lucy R; Chen, Yuting; Yan, Pearlly; Redinbaugh, Margaret G

    2014-02-14

    innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.

  10. Implicated vectors and spread of grapevine red blotch-associated virus in Oregon vineyards

    Science.gov (United States)

    Grapevine viruses have detrimental consequences for wine grape production, as is known for Grapevine leafroll -associated viruses (GLRaVs) and Grapevine red blotch -associated virus (GRBaV). From 2013-2016, vineyards in three wine grape production regions of Oregon were surveyed for the presence of ...

  11. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector.

    Science.gov (United States)

    Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith

    2017-01-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Current status of the Citrus leprosis virus (CiLV -C and its vector Brevipalpus phoenicis (Geijskes

    Directory of Open Access Journals (Sweden)

    Guillermo León M

    2012-08-01

    Full Text Available The Citrus leprosis virus CiLV-C is a quarantine disease of economic importance. Over the past 15 years, this disease has spread to several countries of Central and South America. Colombia has about 45,000 hectares of citrus planted with an annual production of 750,000 tonnes. The CiLV-C has only been detected in the departments of Meta, Casanare and recently Tolima. Meta has 4,300 hectares representing 10% of the national cultivated area, and Casanare, where CiLV-C appeared in 2004, has no more than 500 ha planted with citrus. The presence of the Citrus leprosis virus in Colombia could affect the international market for citrus, other crops and ornamental plants with the United States and other countries without the disease. The false spider mite Brevipalpus phoenicis (Geijskes (Acari: Tenuipalpidae is the main vector of the CiLV-C. Disease management is based on control programs of the vector and diminishing host plants. Chemical mite control is expensive, wasteful and generates resistance to different acaricides. This paper provides basic information on CiLV-C and its vector, advances in diagnosis and methods to control the disease and prevention of its spread

  13. Neonatal gene therapy of glycogen storage disease type Ia using a feline immunodeficiency virus-based vector.

    Science.gov (United States)

    Grinshpun, Albert; Condiotti, Reba; Waddington, Simon N; Peer, Michael; Zeig, Eli; Peretz, Sima; Simerzin, Alina; Chou, Janice; Pann, Chi-Jiunn; Giladi, Hilla; Galun, Eithan

    2010-09-01

    Glycogen storage disease type Ia (GSD-Ia), also known as von Gierke disease, is caused by a deficiency of glucose-6-phosphatase-alpha (G6Pase), a key enzyme in glucose homeostasis. From birth, affected individuals cannot maintain normal blood glucose levels and suffer from a variety of metabolic disorders, leading to life-threatening complications. Gene therapy has been proposed as a possible option for treatment of this illness. Vectors have been constructed from feline immunodeficiency virus (FIV), a nonprimate lentivirus, because the wild-type virus does not cause disease in humans. Previously, we have shown that these vectors are capable of integrating stably into hepatocyte cell lines and adult murine livers and lead to long-term transgene expression. In the current work, we have assessed the ability to attenuate disease symptoms in a murine model of GSD-Ia. Single administration of FIV vectors containing the human G6Pase gene to G6Pase-alpha(-/-) mice did not change the biochemical and pathological phenotype. However, a double neonatal administration protocol led to normalized blood glucose levels, significantly extended survival, improved body weight, and decreased accumulation of liver glycogen associated with the disease. This approach shows a promising paradigm for treating GSD-Ia patients early in life thereby avoiding long-term consequences.

  14. Identification of potential vectors of and detection of antibodies against Rift Valley fever virus in livestock during interepizootic periods.

    Science.gov (United States)

    Rostal, Melinda K; Evans, Alina L; Sang, Rosemary; Gikundi, Solomon; Wakhule, Lilian; Munyua, Peninah; Macharia, Joseph; Feikin, Daniel R; Breiman, Robert F; Njenga, M Kariuki

    2010-05-01

    To evaluate the prevalence of Rift Valley fever virus (RVFV) antibodies in livestock and presence of competent mosquito vectors of RVFV during an interepizootic period (IEP) in Kenya. 208 sheep and 84 goats ranging in age from 4 months to 15 years, from 2 breeding herds. Blood specimens were collected from the sheep and goats during the 1999-2006 IEP in Rift Valley Province, and serum was harvested. Serum specimens were tested for IgG and IgM antibodies against RVFV by use of an ELISA. In addition, 7,134 mosquitoes were trapped in Naivasha, Nairobi, and Northeastern Province, and speciation was performed. No animals were seropositive for IgM against RVFV. Of the animals born after the 1997-1998 epizootic, 18% (34/188) of sheep were seropositive for IgG against RVFV, compared with 3% (2/75) of goats. Seventy percent (8,144/11,678) of the mosquitoes collected were of the Culex subgenera; 18% (2,102/11,678) were Aedes spp. Detection of IgG in the sera of sheep and goats born after the 1997-1998 epizootic and before the 2006 epizootic indicated that virus activity existed during the IEP. Detection of Aedes mosquitoes, which are competent vectors of RVFV, suggested that a cryptic vector-to-vertebrate cycle may exist during IEPs.

  15. Mutational library analysis of selected amino acids in the receptor binding domain of envelope of Akv murine leukemia virus by conditionally replication competent bicistronic vectors

    DEFF Research Database (Denmark)

    Bahrami, Shervin; Jespersen, Thomas; Pedersen, Finn Skou

    2003-01-01

    envelope expression. This vector functions as a replication competent mini-virus in a culture of NIH 3T3 derived semi-packaging cells that express the viral Gag and Pol proteins. Titers comparable to those of wild type virus were achieved by this system. To test this vector system, we created a random...... mutational library of Arg 85 and Asp 86 in the first variable region of Akv envelope protein. Homologous amino acids to Asp 86 in Moloney and Friend murine leukemia viruses are thought to be directly involved in receptor binding. Subsequent selection of mutants capable of infecting murine NIH 3T3 cells...

  16. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  17. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    Science.gov (United States)

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rift Valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus).

    Science.gov (United States)

    Brustolin, M; Talavera, S; Nuñez, A; Santamaría, C; Rivas, R; Pujol, N; Valle, M; Verdún, M; Brun, A; Pagès, N; Busquets, N

    2017-12-01

    Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disse