WorldWideScience

Sample records for adeno-associated virus vector

  1. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  2. Rapid, simple and versatile manufacturing of recombinant adeno-associated virus vectors at scale

    OpenAIRE

    Lock, Martin; Alvira, Mauricio; Vandenberghe, Luk H.; Samanta, Arabinda; Toelen, Jaan; Debyser, Zeger; Wilson, James M

    2010-01-01

    Adeno-associated virus vector manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. While scalable systems based upon AAV-adenovirus, -herpesvirus and -baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate scale pre-clinical studies in large animals where several combinations of serotype and genome may need to be tested. Recently we observed that d...

  3. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    Institute of Scientific and Technical Information of China (English)

    Fan Dongsheng (樊东升); Shen Yang(沈扬)

    2000-01-01

    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  4. A novel and highly efficient production system for recombinant adeno-associated virus vector

    Institute of Scientific and Technical Information of China (English)

    WU; Zhijian(伍志坚); WU; Xiaobing(吴小兵); CAO; Hui(曹晖); DONG; Xiaoyan(董小岩); WANG; Hong(王宏); HOU; Yunde(侯云德)

    2002-01-01

    Recombinant adeno-associated virus(rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1(rHSV-1) designated HSV1-rc/△UL2, which expressed adeno-associated virus type2(AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein(GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/△UL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit(TU) or 4.28×104 particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  5. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    2001-01-01

    Full Text Available The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE from the erythropoietin gene (Epo, which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1. Under anoxic conditions, nine copies of HIRE (9XHRE yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy.

  6. Therapeutic Liabilities of in Vivo Viral Vector Tropism: Adeno-Associated Virus Vectors, NMDAR1 Antisense, and Focal Seizure Sensitivity

    OpenAIRE

    Haberman, Rebecca P.; Criswell, Hugh E.; Snowdy, Stephen; Ming, Zhen; Breese, George R.; Samulski, R. Jude; McCown, Thomas J.

    2002-01-01

    The N-methyl-d-aspartic acid (NMDA) receptor provides a potential target for gene therapy of focal seizure disorders. To test this approach, we cloned a 729-bp NMDA receptor (NMDAR1) cDNA fragment in the antisense orientation into adeno-associated virus (AAV) vectors, where expression was driven by either a tetracycline-off regulatable promoter (AAV-tTAK-NR1A) or a cytomegalovirus (CMV) promoter (AAV-CMV-NR1A). After infection of primary cultured cortical neurons with recombinant AAV-tTAK-NR1...

  7. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model

    OpenAIRE

    Wang, Bing; Li, Juan; Xiao, Xiao

    2000-01-01

    Duchenne muscular dystrophy (DMD) is the most common and lethal genetic muscle disorder, caused by recessive mutations in the dystrophin gene. One of every 3,500 males suffers from DMD, yet no treatment is currently available. Genetic therapeutic approaches, using primarily myoblast transplantation and adenovirus-mediated gene transfer, have met with limited success. Adeno-associated virus (AAV) vectors, although proven superior for muscle gene transfer, are too sm...

  8. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector

    OpenAIRE

    Shyong, Mong-Ping; Lee, Fenq-Lih; Kuo, Ping-Chang; Wu, Ai-Ching; Cheng, Huey-Chung; Chen, Show-Li; Tung, Tao-Hsin; Tsao, Yeou-Ping

    2007-01-01

    Purpose To evaluate the efficacy of recombinant adeno-associated virus (rAAV) vector expressing mouse angiostatin (Kringle domains 1 to 4) in reducing retinal vascular leakage in an experimental diabetic rat model. Methods rAAV-angiostatin was delivered by intravitreal injection to the right eyes of Sprague-Dawley rats. As a control, the contralateral eye received an intravitreal injection of rAAV-lacZ. Gene delivery was confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR). D...

  9. Recombinant adeno-associated virus vector expressing angiostatin inhibits preretinal neovascularization in adult rats.

    Science.gov (United States)

    Lai, Chi-Chun; Wu, Wei-Chi; Chen, Show-Li; Sun, Ming-Hui; Xiao, Xiao; Ma, Lih; Lin, Keng-Kuo; Tsao, Yeou-Ping

    2005-01-01

    Clinically, preretinal neovascularization (PNV) induced by vessel occlusion is one of the leading causes to induce blindness. The present study was designed to determine if a recombinant adeno-associated viral vector expressing mouse angiostatin (rAAV-angiostatin) can inhibit experimental PNV in an adult Sprague-Dawley rat model. rAAV-angiostatin and rAAV-lacZ were delivered by intravitreal injections to the right and left eyes of rats. Transgenetic expression of angiostatin in the retina was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). PNV was established by rose-bengal-assisted laser-induced retinal vein occlusion 21 days after the viral injections. The total number and sizes of the neovascular tufts were analyzed 14 days after venous occlusion using retinal flat mount by fluorescein-isothiocyanate-dextran angiography. Electroretinograms (ERGs) were recorded to study any possibility of retinal toxicity of rAAV-angiostatin 3 months after the injections. Angiostatin gene expression in the retina was detectable by RT-PCR, and ERG analysis showed no reduction of b-waves in the rAAV-angiostatin-injected eyes. The number and size of neovascular tufts were significantly lower in rAAV-angiostatin-injected eyes (p = 0.001) than controls. These findings indicated that rAAV-angiostatin successfully suppressed experimental PNV, and no retinal toxicity of the rAAV-angiostatin injection was observed according to ERG recordings. PMID:15637422

  10. Stable transduction of large DNA by high-capacity adeno-associated virus/adenovirus hybrid vectors

    International Nuclear Information System (INIS)

    Viral vectors with high cloning capacity and host chromosomal integration ability are in demand for the efficient and permanent genetic modification of target cells with large DNA molecules. We have generated a hybrid gene transfer vehicle consisting of recombinant adeno-associated virus (AAV) replicative intermediates packaged in adenovirus (Ad) capsids. This arrangement allows cell cycle-independent nuclear delivery of recombinant AAV genomes with lengths considerably above the maximum size (i.e., 4.7 kb) that can be accommodated within AAV capsids. Here we show that high-capacity AAV/Ad hybrid vector gene transfer mediates cellular genomic integration of large fragments of foreign DNA and accomplishes stable long-term transgene expression in rapidly proliferating cells. Southern blot and polymerase chain reaction analyses of chromosomal DNA extracted from clones of stably transduced cells revealed that most of them contained a single copy of the full-length hybrid vector genome with AAV inverted terminal repeat (ITR) sequences at both ends. The high-capacity AAV/Ad hybrid vector system can thus be used for the transfer and expression of transgenes that cannot be delivered by conventional integrating viral vectors

  11. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  12. Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in the mouse heart.

    Science.gov (United States)

    Merentie, M; Lottonen-Raikaslehto, L; Parviainen, V; Huusko, J; Pikkarainen, S; Mendel, M; Laham-Karam, N; Kärjä, V; Rissanen, R; Hedman, M; Ylä-Herttuala, S

    2016-03-01

    Gene therapy is a promising new treatment option for cardiac diseases. For finding the most suitable and safe vector for cardiac gene transfer, we delivered adenovirus (AdV), adeno-associated virus (AAV) and lentivirus (LeV) vectors into the mouse heart with sophisticated closed-chest echocardiography-guided intramyocardial injection method for comparing them with regards to transduction efficiency, myocardial damage, effects on the left ventricular function and electrocardiography (ECG). AdV had the highest transduction efficiency in cardiomyocytes followed by AAV2 and AAV9, and the lowest efficiency was seen with LeV. The local myocardial inflammation and fibrosis in the left ventricle (LV) was proportional to transduction efficiency. AdV caused LV dilatation and systolic dysfunction. Neither of the locally injected AAV serotypes impaired the LV systolic function, but AAV9 caused diastolic dysfunction to some extent. LeV did not affect the cardiac function. We also studied systemic delivery of AAV9, which led to transduction of cardiomyocytes throughout the myocardium. However, also diffuse fibrosis was present leading to significantly impaired LV systolic and diastolic function and pathological ECG changes. Compared with widely used AdV vector, AAV2, AAV9 and LeV were less effective in transducing cardiomyocytes but also less harmful. Local administration of AAV9 was safer and more efficient compared with systemic administration.

  13. Targeted Genome Editing by Recombinant Adeno-Associated Virus (rAAV) Vectors for Generating Genetically Modified Pigs

    Institute of Scientific and Technical Information of China (English)

    Yonglun Luo; Emil Kofod-Olsen; Rikke Christensen; Charlotte Brandt S(φ)rensen; Lars Bolund

    2012-01-01

    Recombinant adeno-associated virus (rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases.Several advantages,such as simple vector construction,high targeting frequency by homologous recombination,and applicability to many cell types,make rAAV an attractive approach for targeted genome editing.Combined with cloning by somatic cell nuclear transfer (SCNT),this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis,hereditary tyrosinemia type 1,and breast cancer.This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination.We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts,which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.

  14. Immunological inhibition of transplanted liver allografts by adeno-associated virus vector encoding CTLA4Ig in rats

    Institute of Scientific and Technical Information of China (English)

    Sen Lu; Yue Yu; Yun Gao; Guo-Qiang Li; Xue-Hao Wang

    2008-01-01

    BACKGROUND: Blockade interaction between CD28 and B7 with CTLA4Ig has been shown to induce experimental transplantation tolerance. In order to prolong the inhibitory effect of CTLA4Ig, a recombinant adeno-associated virus vector pSNAV expressing CTLA4Ig was constructed, and its effects on transplanted liver allografts were investigated. METHODS:The pSNAV-CTLA4Ig construct was infused into partial liver allografts of rats via the portal vein during transplantation. CTLA4Ig expression in the transplanted livers was detected with reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and immunohistochemistry. Furthermore, real-time quantita-tive PCR was used to measure the expression of IL-2, IFN-γ, IL-4 and IL-10 in the allografts. RESULTS:The expression of CTLA4Ig in the partial allograft was detected successfully and pSNAV-CTLA4Ig improved the survival rate of rats after liver transplantation. Agarose gel analysis of RT-PCR products indicated the presence of CTLA4Ig in the pSNAV-CTLA4Ig treatment group. Cytokines expressed in allografts on day 7 after orthotopic liver transplantation showed that IL-2, IFN-γ, IL-4 and IL-10 mRNA levels decreased in transplant recipients treated with pSNAV-CTLA4Ig compared with those treated with pSNAV-LacZ (1.62±0.09, 1.52±0.11, 1.50± 0.07 and 1.43±0.07 versus 1.29±0.09, 1.32±0.07, 1.34±0.06 and 1.35±0.04, respectively). CONCLUSIONS:pSNAV-CTLA4Ig effectively expressed CTLA4Ig in liver allografts. CTLA4Ig improved the pathological ifndings after liver transplantation. CTLA4Ig induced immune tolerance of liver transplantation, and the mechanism involved induced alteration of Th1 and Th2 cytokine transcripts. The adeno-associated virus vector encoding CTLA4Ig may be useful in the clinical study of transplantation tolerance.

  15. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  16. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors.

    Science.gov (United States)

    Guenzel, Adam J; Collard, Renata; Kraus, Jan P; Matern, Dietrich; Barry, Michael A

    2015-03-01

    Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined. PMID:25654275

  17. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  18. Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy

    OpenAIRE

    Jayandharan, Giridhara R.; Aslanidi, George; Martino, Ashley T.; Jahn, Stephan C.; Perrin, George Q.; Herzog, Roland W.; Srivastava, Arun

    2011-01-01

    Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold...

  19. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  20. Full Functional Rescue of a Complete Muscle (TA) in Dystrophic Hamsters by Adeno-Associated Virus Vector-Directed Gene Therapy

    OpenAIRE

    Xiao, Xiao; Li, Juan; Tsao, Yeou-Ping; Dressman, Devin; Hoffman, Eric P; Watchko, Jon F.

    2000-01-01

    Limb girdle muscular dystrophy (LGMD) 2F is caused by mutations in the δ-sarcoglycan (SG) gene. Previously, we have shown successful application of a recombinant adeno-associated virus (AAV) vector for genetic and biochemical rescue in the Bio14.6 hamster, a homologous animal model for LGMD 2F (J. Li et al., Gene Ther. 6:74–82, 1999). In this report, we show efficient and long-term δ-SG expression accompanied by nearly complete recovery of physiological function deficits after a single-dose A...

  1. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor.

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Mahendra, Gandham; Kumar, Sanjay; Shaw, Denise R; Stockard, Cecil R; Grizzle, William E; Meleth, Sreelatha

    2004-03-01

    Angiogenesis is characteristic of solid tumor growth and a surrogate marker for metastasis in many human cancers. Inhibition of tumor angiogenesis using antiangiogenic drugs and gene transfer approaches has suggested the potential of this form of therapy in controlling tumor growth. However, for long-term tumor-free survival by antiangiogenic therapy, the factors controlling tumor neovasculature need to be systemically maintained at stable therapeutic levels. Here we show sustained expression of the antiangiogenic factors angiostatin and endostatin as secretory proteins by recombinant adeno-associated virus 2 (rAAV)-mediated gene transfer. Both vectors provided significant protective efficacy in a mouse tumor xenograft model. Stable transgene persistence and systemic levels of both angiostatin and endostatin were confirmed by in situ hybridization of the vector-injected tissues and by serum ELISA measurements, respectively. Whereas treatment with rAAV containing either endostatin or angiostatin alone resulted in moderate to significant protection, the combination of endostatin and angiostatin gene transfer from a single vector resulted in a complete protection. These data suggest that AAV-mediated long-term expression of both endostatin and angiostatin may have clinical utility against recurrence of cancers after primary therapies and may represent rational adjuvant therapies in combination with radiation or chemotherapy. PMID:14996740

  2. Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons.

    Science.gov (United States)

    Fleming, J; Ginn, S L; Weinberger, R P; Trahair, T N; Smythe, J A; Alexander, I E

    2001-01-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of numerous inherited and acquired neurological conditions. Therefore, efficient and stable gene delivery to these postmitotic cells has significant therapeutic potential. Among contemporary vector systems capable of neuronal transduction, only those based on herpes simplex virus have been extensively evaluated in PNS neurons. We therefore investigated the transduction performance of recombinant adeno-associated virus type 2 (AAV) and VSV-G-pseudotyped lentivirus vectors derived from human immunodeficiency virus (HIV-1) in newborn mouse and fetal human dorsal root ganglia (DRG) sensory neurons. In dissociated mouse DRG cultures both vectors achieved efficient transduction of sensory neurons at low multiplicities of infection (MOIs) and sustained transgene expression within a 28-day culture period. Interestingly, the lentivirus vector selectively transduced neurons in murine cultures, in contrast to human cultures, in which Schwann and fibroblast-like cells were also transduced. Recombinant AAV transduced all three cell types in both mouse and human cultures. After direct microinjection of murine DRG explants, maximal transduction efficiencies of 20 and 200 transducing units per neuronal transductant were achieved with AAV and lentivirus vectors, respectively. Most importantly, both vectors achieved efficient and sustained transduction of human sensory neurons in dissociated cultures, thereby directly demonstrating the exciting potential of these vectors for gene therapy applications in the PNS.

  3. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  4. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  5. Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong JU; Si-quan LOU; Wei-guo WANG; Jian-qiang PENG; Hua TIAN

    2004-01-01

    AIM: To study the effect of hydroxyurea and etoposide on transduction of human marrow mesenchymal and progenitor stem cells by adeno-associated virus (AAV). METHODS: Isolated human bone marrow mesenchymal stem and progenitor cells (hMSCs) were cultured in DMEM containing 10 % FBS or 5 % FBS and dexamethasone 1 μmol/L respectively. After being treated with hydroxyurea and etoposide, hMSCs were transduced by AAV-LUC.After two days luciferase activity (relative light unites per second or RLU/s) were tested, which indirectly reflected the relative transduction efficiency of different groups, and virus DNA was isolated by Hirt extraction for Southern hybridization. RESULTS: Transduction luciferase activity and transduction efficiency in cultures treated with hydroxyurea and etoposide were significantly higher than that in control cultures. Dividing cells had about 20-fold higher transduction efficiency compared with control cells. Transduction efficiency in stationary cells was about 50 times higher than that in control cells. Southern analysis showed that hydroxyurea and etoposide enhanced second-strand DNA synthesis by rAAV. CONCLUSION: Hydroxyurea and etoposide could increase transduction efficiency of hMSCs by AAV vectors, and stationary cells were more sensitive to these drugs than dividing cells.

  6. Feasibility of Generating Adeno-Associated Virus Packaging Cell Lines Containing Inducible Adenovirus Helper Genes

    OpenAIRE

    Qiao, Chunping; Li, Juan; Skold, Anna; Zhang, Xudong; Xiao, Xiao

    2002-01-01

    The adeno-associated virus (AAV) vector system is based on nonpathogenic and helper-virus-dependent parvoviruses. The vector system offers safe, efficient, and long-term in vivo gene transfer in numerous tissues. Clinical trials using AAV vectors have demonstrated vector safety as well as efficiency. The increasing interest in the use of AAV for clinical studies demands large quantities of vectors and hence a need for improvement in vector production. The commonly used transient-transfection ...

  7. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  8. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  9. Expression of human nerve growth factor β gene in central nervous system mediated by recombinant adeno-associated viruses type-2 vector

    Institute of Scientific and Technical Information of China (English)

    高凯; 吴勇杰; 吴小兵; 饶春明; 王军志

    2004-01-01

    Background Neurone atrophy and loss are major causes of chronic neurodegenerative disorders such as Alzheimer's disease. Despite many pharmacotherapies for neurodegeneration, there are no accepted treatments. We investigated the feasibility of human nerve growth factor β (hNGFβ) gene expression mediated by recombinant adeno-associated viruses type-2 (rAAV-2) vector in the central nervous system (CNS) after blood brain barrier (BBB) disruption.Methods rAAV-2 containing hNGFβ gene was constructed. The ability of hNGFβ gene mediated by rAAV-2 vector (rAAV-2/hNGFβ) to transfect cells in vitro was confirmed by both ELISA and bioassay of hNGFβ in the culture supernatant of BHK-21 cells infected by rAAV-2/hNGFβ. rAAV-2/hNGFβ and rAAV-2/green fluorescence protein (GFP) were administrated separately to rat brains through internal carotid intubation after BBB disruption with hypertonic mannitol. Brain hNGFβ concentration was measured by ELISA and GFP in brain sections was examined by laser scan confocal microscope.Results After 48 hours, hNGFβ content in supernatant was up to (188.0±28.6) pg/ml when BHK-21 cells were infected by rAAV-2/hNGFβ at multiplicity of infection (MOI)1.0×106 vector genome. Neurone fibre outgrowths were obvious in dorsal root ganglion neurone assays by adding serum free culture medium harvested from BHK-21 cells exposed to rAAV-2/hNGFβ. Whole brain hNGFβ content in rAAV-2/hNGFβ transferred group was up to (636.2±140.6) pg/ml. hNGFβ content of BBB disruption in rAAV-2/hNGFβ infused group increased significantly compared to the control group (P<0.05). GFP expression was clearly observed in brain sections of rAAV-2/GFP transferred group.Conclusion rAAV-2/hNGFβ successfully expresses in the CNS after BBB disruption induced by hypertonic mannitol.

  10. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors

    OpenAIRE

    Lai, Yi; Yue, Yongping; LIU, MINGJU; Ghosh, Arkasubhra; Engelhardt, John F.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Although adeno-associated virus (AAV)-mediated gene therapy has been hindered by the small viral packaging capacity of the vector, trans-splicing AAV vectors are able to package twice the size of the vector genome. Unfortunately, the efficiency of current trans-splicing vectors is very low. Here we show that rational design of the gene splitting site has a profound influence on trans-splicing vector-mediated gene expression. Using mRNA accumulation as a guide, we generated a set of efficient ...

  11. Structure of neurotropic adeno-associated virus AAVrh.8.

    Science.gov (United States)

    Halder, Sujata; Van Vliet, Kim; Smith, J Kennon; Duong, Thao Thi Phuong; McKenna, Robert; Wilson, James M; Agbandje-McKenna, Mavis

    2015-10-01

    Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel β-barrel core conserved in parvoviruses, and large insertion loop regions between the β-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ∼ 84%, ∼ 91%, and ∼ 87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies and human donor serum directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment. PMID:26334681

  12. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors.

    Science.gov (United States)

    Fleming, Jane; Spinoulas, Afroditi; Zheng, Maolin; Cunningham, Sharon C; Ginn, Samantha L; McQuilty, Robert C; Rowe, Peter B; Alexander, Ian E

    2005-08-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of a number of debilitating inherited and acquired neurological conditions. The lack of effective treatments for many such conditions provides a strong rationale for exploring novel therapeutic approaches, including gene therapy. Friedreich ataxia (FRDA), a sensory neuropathy, is a progressive neurodegenerative disease associated with a loss of large sensory neurons from the dorsal root ganglia. Because a mouse model for this well-characterized disease has been generated, we elected to use FRDA as a model disease. In previous studies we achieved efficient and sustained delivery of a reporter gene to PNS sensory neurons, using recombinant adeno-associated viral (AAV) and lentiviral (LV) vectors. In the current study, AAV and LV vectors encoding the human frataxin cDNA were constructed and assessed for frataxin expression and function in primary FRDA patient fibroblast cell lines. FRDA fibroblasts have been shown to exhibit subtle biochemical changes, including increased mitochondrial iron and sensitivity to oxidant stress. Despite the inherent difficulty in working with primary cells, transduction of patient fibroblasts with either vector resulted in the expression of appropriately localized frataxin and partial reversal of phenotype.

  13. Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice

    OpenAIRE

    Bostick, Brian; Yue, Yongping; Lai, Yi; Long, Chun; Li, Dejia; Duan, Dongsheng

    2008-01-01

    Adeno-associated virus (AAV)-mediated microdystrophin gene therapy holds great promise for treating Duchenne muscular dystrophy (DMD). Previous studies have revealed excellent skeletal muscle protection. Cardiac muscle is also compromised in DMD patients. Here we show that a single intravenous injection of AAV serotype-9 (AAV-9) microdystrophin vector efficiently transduced the entire heart in neonatal mdx mice, a dystrophin-deficient mouse DMD model. Furthermore, microdystrophin therapy norm...

  14. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    OpenAIRE

    Yang Lin; Xiao Xiao

    2013-01-01

    Abstract Adeno-associated virus (AAV) is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolutio...

  15. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  16. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system

  17. Delivery of basic fibroblast growth factor gene to healing tendon by adeno-associated virus 2 vector and tissue reactions of adeno-associated virus vectors%腺相关病毒载体转导基因至愈合肌腱及载体组织反应的研究

    Institute of Scientific and Technical Information of China (English)

    朱蓓; 汤锦波; 曹怡; 陈传好

    2008-01-01

    目的 探讨腺相关病毒(AAV)载体转导碱性成纤维细胞牛长因子(bFGF)基因对肌腱愈合的影响,并观察腺病毒、AAV以及脂质体一质粒三种基因治疗载体应用于肌腱所产生的组织反应.方法 取13只成年白色来亨鸡的双侧巾趾趾深屈肌腱(26根),随机分为实验组和对照组,每组13根,实验组肌腱完全切断后注射AAV2-bFGF并以改良Kessler法修复,对照组不注射AAV2-bFGF,仪以改良Kessler法修复.第4周未行免疫组织化学染色,第8周术测定趾屈曲功.将6只成年新西兰白兔的趾深屈肌腱(36根)分成二组,每组12根,分别注射10μL的腺病毒、AAV2和脂质体.质粒载体,术后第3、7、14天分别取肌腱,进行石蜡切片、HE染色.结果 AAV2-bFGF可以在术后4周显著地提高肌腱bFGF的表达,而且不增加趾屈曲阻力(粘连形成).所测屈曲功第8周末实验组为(0.052±0.031)J,对照组为(0.049±0.035)J,两组问差异无统计学意义(t=0.31266,P=0.8984).脂质体-质粒载体组肌腱组织反廊重于腺病毒载体组,AAV2载体组肌腱组织反应最轻,在腱外膜处有组织反应,而腱内膜区域几乎无组织反应.结论 用AAV2载体转bFGF基因至肌腱能有效增加愈合肌腱的bFGF.在三种所研究的载体中,腺病毒和AAV2载体引起的组织反应比脂质体.质粒载体轻.AAV2引起的组织反应最轻.AAV2可能会成为肌腱的转基因良好载体.%Objective To explore the effect of basic fibroblast growth factor (bFGF) gene transferred by adeno-associated virus (AAV) 2 vectors on tendon healing and to observe tissue reactions of adenovirus, AAV and liposome-plasmid vectors in tendons, Methods Twenty-six flexor digitorum profundus (FDP) tendons from bilateral long toes of 13 chickens were randomly divided into equal 2 groups. Tendons in the experimental group were cut completely and treated with AAV2-bFGF before repair by the modified Kessler method. Tendons as controls were not treated with

  18. Novel qPCR strategy for quantification of recombinant adeno-associated virus serotype 2 vector genome-titer%测定重组腺相关病毒基因组滴度的qPCR新方法

    Institute of Scientific and Technical Information of China (English)

    蒙青林; 张彬彬; 张春

    2013-01-01

    Adeno-associated virus (AAV) has many advantages for gene therapy over other vector systems. However, after the production of recombinant AAV (Raav) vectors, the biological titration of rAAV stocks is still cumbersome. Different investigators used laboratory-specific methods or internal reference standards that may limit preclinical and clinical applications. The inverted terminal repeats (ITR) sequences are the only cw-regulated viral elements required for rAAV packaging and remain within viral vector genomes. ITR is the excellent target sequences for qPCR quantification of rAAV titer. In this study, we developed a novel qPCR strategy to quantify rAAVs' vector genome titer via targeting the ITR2 or ITR2-CMV element. In conclusion, the method is fast and accurate for the titration of rAAV2-derived vector genomes. It will promote the standardization of rAAV titration in the future.%腺相关病毒(Adeno-associated virus,AAV)在基因治疗应用中具有很多优势,但是其生物学滴度的测定仍很繁琐,不同实验室使用各自的方法和参照,这些都影响了重组腺相关病毒(rAAV)载体在临床前和临床上的应用.反向末端重复序列(Inverted terminal repeats,ITR)是重组腺相关病毒载体中不可或缺的顺式作用元件,针对ITR2以及ITR2-CMV设计的qPCR检测方法可以快速、准确地得到rAAV2的基因组滴度,由于该方法可以广泛适用,因此对推动AAV滴度检测的标准化有重要意义.

  19. Construction of recombinant adeno-associated viral vectors in human neurenergen-3 gene

    Institute of Scientific and Technical Information of China (English)

    Xiangli Wang; Haili Wang; Baojie Mi

    2007-01-01

    BACKGROUND: Research of transgene brings hope for gene therapy of various diseases; in addition, some projects have been tested in clinic. Recently, the focus has been to find an ideal vehicle and a suitable therapeutic gene.OBJECTIVE: To explore an effective way to construct recombinant adeno-associated viral vectors expression in human neurnnergen-3 gene. DESIGN: Gene directed cloning.SETTING: Central Laboratory of Northern China Coal Medical College.MATERIALS: DH5a competent bacillus coli strain was provided by Capital Medical University; pCDNA3-NT-3 by professor Chen from Bengbu Medical College; pAAV-Laze, pAAV-Helper, pAAV-RC and pAAV-MCS plasmids by Capital Medical University; HEK293 cells by Cell Center of Basic Medical College of Tongji Medical University.METHODS: NT-3 genes which were selected from pCDNA3-NT-3 plasmids were cloned in pAAV-MCS to form a recombinant adeno-associated viral plasmid (pAAV-NT-3). pAAV-NT-3, pAAV-RC, pAAV-LacZ and pHelper plasmids were extracted, purified and subjected to enzyme-shearing evaluation. In addition, pAAV-NT-3 and pAAV-LacZ were cotransfected with pHelper and pAAV-RC, respectively into AVV-293 cells with DNA mediated by calcium superphosphate transfection gene; and then, AVV-293 cells were packed into recombinant adeno-associated viral rAAV-NT-3 and rAAV-LacZ. After collection of viral particles, rAAV-LacZ viral stock solution was diluted based on ratio of 10:1 and the mixture was used to infect HT1080 cells. X-gal stain was used to measure virus liter.MAIN OUTCOME MEASURES: Size of targeted gene fragments, validity of vehicle construction and virus liter.RESULTS: Targeted gene NT-3 was successfully inserted into the relative vehicle pAAV and pAAV-NT-3 was correctly recongnized by enzyme-shearing evaluation. Enzyme-shearing electrophoresis demonstrated that pAAV-NT-3, pAAV-RC, pAAV-LacZ and pHelper plasmids were successfully extracted and purified.β-galactoside staining in situ indicated that LacZ genes were

  20. Manufacturing of recombinant adeno-associated viral vectors for clinical trials.

    Science.gov (United States)

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.

  1. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim;

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... for human gene therapy, primarily due to its lack of pathogenicity and low risk of insertional mutagenesis. However, the existing data pertaining to AAV transduction of MSCs is limited. The objective of this work was to examine the efficiency and kinetics of in vitro transduction using AAV serotype 2...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...

  2. Adeno-Associated Virus-Mediated Cancer Gene Therapy: Current Status

    OpenAIRE

    Luo, Jingfeng; Luo, Yuxuan; Sun, Jihong; Zhou, Yurong; Zhang, Yajing; Yang, Xiaoming

    2014-01-01

    Gene therapy is one of the frontiers of modern medicine. Adeno-associated virus (AAV)-mediated gene therapy is becoming a promising approach to treat a variety of diseases and cancers. AAV-mediated cancer gene therapies have rapidly advanced due to their superiority to other gene-carrying vectors, such as the lack of pathogenicity, the ability to transfect both dividing and non-dividing cells, low host immune response, and long-term expression. This article reviews and provides up to date kno...

  3. Copackaging of multiple adeno-associated viral vectors in a single production step.

    Science.gov (United States)

    Doerfler, Phillip A; Byrne, Barry J; Clément, Nathalie

    2014-10-01

    Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.

  4. Enhancement of Muscle Gene Delivery with Pseudotyped Adeno-Associated Virus Type 5 Correlates with Myoblast Differentiation

    OpenAIRE

    Duan, Dongsheng; Yan, Ziying; Yue, Yongping; Ding, Wei; Engelhardt, John F.

    2001-01-01

    Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improv...

  5. Capsid modification of adeno-associated virus and tumor targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU ZengHu; ZHOU XiuMei; SHI WenFang; QIAN QiJun

    2008-01-01

    Targeting is critical for successful tumor gene therapy. The adeno-associated virus (AAV) has aroused wide concern due to its excellent advantages over other viral vectors in gene therapy. AAV has a broad infection spectrum, which also results in poor specificity towards tissues or cells and low transduction efficiency. Therefore, it is imperative to improve target and transduction efficiency in AAV-mediated gene therapy. Up to now, researchers have developed many strategies to modify AAV capsids for improving targeting or retargeting only desired cells. These strategies include not only traditional chemical modification, phage display technology, modification of AAV capsid genome, chimeric vectors and so on, but also many novel strategies involved in marker rescue strategy, direct evolution of capsid proteins, direct display random peptides on AAV capsid, AAVP (AAV-Phage), and etc. This review will summarize the advances of researches on the capsid modification of AAV to target malignant cells.

  6. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs.

    Science.gov (United States)

    Nichols, Timothy C; Whitford, Margaret H; Arruda, Valder R; Stedman, Hansell H; Kay, Mark A; High, Katherine A

    2015-03-01

    Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches. PMID:25675273

  7. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

    Directory of Open Access Journals (Sweden)

    Fussenegger Martin

    2007-11-01

    Full Text Available Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7. Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as

  8. Systemic delivery of genes to striated muscles using adeno-associated viral vectors.

    Science.gov (United States)

    Gregorevic, Paul; Blankinship, Michael J; Allen, James M; Crawford, Robert W; Meuse, Leonard; Miller, Daniel G; Russell, David W; Chamberlain, Jeffrey S

    2004-08-01

    A major obstacle limiting gene therapy for diseases of the heart and skeletal muscles is an inability to deliver genes systemically to muscles of an adult organism. Systemic gene transfer to striated muscles is hampered by the vascular endothelium, which represents a barrier to distribution of vectors via the circulation. Here we show the first evidence of widespread transduction of both cardiac and skeletal muscles in an adult mammal, after a single intravenous administration of recombinant adeno-associated virus pseudotype 6 vectors. The inclusion of vascular endothelium growth factor/vascular permeability factor, to achieve acute permeabilization of the peripheral microvasculature, enhanced tissue transduction at lower vector doses. This technique enabled widespread muscle-specific expression of a functional micro-dystrophin in the skeletal muscles of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy. We propose that these methods may be applicable for systemic delivery of a wide variety of genes to the striated muscles of adult mammals. PMID:15273747

  9. Size does matter: overcoming the adeno-associated virus packaging limit

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2000-07-01

    Full Text Available Abstract Recombinant adeno-associated virus (rAAV vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm, which only permits the packaging of 4.7 kilobases (kb of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721 have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity.

  10. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Stoica, Lorelei; Sena-Esteves, Miguel

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of upper and lower motor neurons. Mutations in superoxide dismutase 1 (SOD1) are a leading cause of ALS, responsible for up to 20% of familial cases. Although the exact mechanism by which mutant SOD1 causes disease remains unknown, multiple studies have shown that reduction of the mutant species leads to delayed disease onset and extension of lifespan of animal models. This makes SOD1 an ideal target for gene therapy coupling adeno associated virus vector (AAV) gene delivery with RNAi molecules. In this review we summarize the studies done thus far attempting to decrease SOD1 gene expression, using AAV vectors as delivery tools, and RNAi as therapeutic molecules. Current hurdles to be overcome, such as the need for widespread gene delivery through the entire central nervous system (CNS), are discussed. Continued efforts to improve current AAV delivery methods and capsids will accelerate the application of these therapeutics to the clinic. PMID:27531973

  11. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.

    Science.gov (United States)

    Senís, Elena; Fatouros, Chronis; Große, Stefanie; Wiedtke, Ellen; Niopek, Dominik; Mueller, Ann-Kristin; Börner, Kathleen; Grimm, Dirk

    2014-11-01

    Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans. PMID:25186301

  12. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  13. ADENO-ASSOCIATED VIRUS INTRODUCED INTEGRATION AND EXPRESSION OF FOREIGN GENES IN PC12 CELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate integration and expression of adeno-associated virus (AAV) vectors in neuronal PC12 cells,the result of which can be applied in further gene therapy of diseases of the central nervous system. Methods Human neurotrophin-3(hNT3)genes were inserted into AAV vectors. Then the recombinat AAV plasmids were encapsidated as recombinant virions. PC12 cells were transfected with the virions and the positive cells were selected by G418. The transfection positive (hNT3 modified)PC12 cells were cultured for several generations and the cellular genomic DNA and total RNA were extracted. We investigated the integration locus of AAV vectors by Southern blot and transcript situation of foreign genes by dot blot. Results The hybridization tests showed that AAV introduced foreign genes were stably integrated, but at random locus, and robustly transcribed in hNT3 modified PC12cells. Conclusion AAV vectors can serve as high efficiency vectors of target genes in neuronal PC12 cells.

  14. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    OpenAIRE

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C. Justin

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey br...

  15. Construction of Adeno-associated Virus System for Human Bone Morphogenetic Protein 7 Gene

    Institute of Scientific and Technical Information of China (English)

    Ke SONG; Nianjing RAO; Meiling CHEN; Yingguang CAO

    2008-01-01

    To construct the recombinant adeno-associated virus (rAAV) vector with human bone morphogenetic protein 7 (BMP7) and observe the BMP7 mRNA expression in vitro, BMP7 CDS se- quence was cloned into expression plasmid pAAV-MCS of AAV Helper Free System. The recombi- nant plasmid was identified with enzyme digestion and sequencing. The recombinant plasmid, pAAV-RC, pHelper were co-transfected into AAV-293 cells according to the calcium phosphate-based protocol. The viral stock was collected by 4 rounds of freeze/thaw. After purified and concentrated,the recombinant virus titer was determined by dot-blot assay. HEK293 cells were transfected with the recombinant virus at different MOI, and the expression of BMP7 mRNA was detected by RT-PCR. The results showed rAAV-BMP7 was constructed and packaged successfully. The physical particle titer was 2.5×1011 vector genomes/mL. There was different expression level of BMP7 mRNA after transfecton. These data suggested that recombinant AAV mediated a stable expression of hBMP7 mRNA in 293 cells. The AAV production method may pave the way of an effective strategy for the jaw bone defection around dental implants.

  16. Novel Transcriptional Regulatory Signals in the Adeno-Associated Virus Terminal Repeat A/D Junction Element

    OpenAIRE

    Haberman, Rebecca P.; McCown, Thomas J.; Samulski, Richard Jude

    2000-01-01

    Adeno-associated virus (AAV) type 2 vectors transfer stable, long-term gene expression to diverse cell types in vivo. Many gene therapy applications require the control of long-term transgene expression, and AAV vectors, similar to other gene transfer systems, are being evaluated for delivery of regulated gene expression cassettes. Previously, we (R. P. Haberman, T. J. McCown, and R. J. Samulski, Gene Ther. 5:1604–1611, 1998) demonstrated the use of the tetracycline-responsive system for long...

  17. Adeno-Associated Virus Site-Specific Integration Is Mediated by Proteins of the Nonhomologous End-Joining Pathway▿

    OpenAIRE

    Daya, Shyam; Cortez, Nenita; Berns, Kenneth I.

    2009-01-01

    Adeno-associated virus type 2 (AAV 2) is the only eukaryotic virus capable of site-specific integration; the target site is at chromosome 19q13.4, a site termed AAVS1. The biology of AAV latency has been extensively studied in cell culture, yet the precise mechanism and the required cellular factors are not known. In this study, we assessed the relative frequencies of stable site-specific integration by characterization of cell clones containing integrated AAV vectors. By this assay, two prot...

  18. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    Science.gov (United States)

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  19. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery.

    Science.gov (United States)

    Bartel, M A; Weinstein, J R; Schaffer, D V

    2012-06-01

    Gene therapy vectors based on adeno-associated virus (AAV) are currently in clinical trials for numerous disease targets, such as muscular dystrophy, hemophilia, Parkinson's disease, Leber's congenital amaurosis and macular degeneration. Despite its considerable promise and emerging clinical success, several challenges impede the broader implementation of AAV gene therapy, including the prevalence of neutralizing antibodies in the human population, low transduction of a number of therapeutically relevant cell and tissue types, an inability to overcome physical and cellular barriers in vivo and a relatively limited carrying capacity. These challenges arise as the demands we place on AAV vectors are often different from or even at odds with the properties nature bestowed on their parent viruses. Viral-directed evolution-the iterative generation of large, diverse libraries of viral mutants and selection for variants with specific properties of interest-offers an approach to address these problems. Here we outline progress in creating novel classes of AAV variant libraries and highlight the successful isolation of variants with novel and advantageous in vitro and in vivo gene delivery properties. PMID:22402323

  20. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy. PMID:26414293

  1. Adeno-associated Virus 9 Mediated FKRP Gene Therapy Restores Functional Glycosylation of α-dystroglycan and Improves Muscle Functions

    OpenAIRE

    Xu, Lei; Lu, Pei Juan; Wang, Chi-Hsien; Keramaris, Elizabeth; Qiao, Chunping; Xiao, Bin; Blake, Derek J.; Xiao, Xiao; Lu, Qi Long

    2013-01-01

    Mutations in the FKRP gene are associated with a wide range of muscular dystrophies from mild limb-girdle muscular dystrophy (LGMD) 2I to severe Walker–Warburg syndrome and muscle-eye-brain disease. The characteristic biochemical feature of these diseases is the hypoglycosylation of α-dystroglycan (α-DG). Currently there is no effective treatment available. In this study, we examined the adeno-associated virus serotype 9 vector (AAV9)-mediated gene therapy in the FKRP mutant mouse model with ...

  2. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  3. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    Science.gov (United States)

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  4. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  5. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  6. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    Science.gov (United States)

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  7. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  8. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy.

    Science.gov (United States)

    Nguyen, J T; Wu, P; Clouse, M E; Hlatky, L; Terwilliger, E F

    1998-12-15

    Antiangiogenic tumor therapies have recently attracted intense interest for their broad-spectrum action, low toxicity, and, in the case of direct endothelial targeting, an absence of drug resistance. To promote tumor regression and to maintain dormancy, antiangiogenic agents need to be chronically administered. Gene therapy offers a potential way to achieve sustained therapeutic release of potent antiangiogenic substances. As a step toward this goal, we have generated recombinant adeno-associated virus (rAAV) vectors that carry genes coding for angiostatin, endostatin, and an antisense mRNA species against vascular endothelial growth factor (VEGF). These rAAVs efficiently transduced three human tumor cell lines tested. Transduction with an rAAV-encoding antisense VEGF mRNA inhibited the production of endogenous tumor cell VEGF. Conditioned media from cells transduced with this rAAV or with rAAV-expressing endostatin or angiostatin inhibited capillary endothelial cell proliferation in vitro. Antiangiogenic rAAVs may offer a novel gene therapy approach to undermining tumor neovascularization and cancer progression. PMID:9865720

  9. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery.

    Science.gov (United States)

    Zhang, Chuanling; Yao, Tianzhuo; Zheng, Yongxiang; Li, Zhongjun; Zhang, Qiang; Zhang, Lihe; Zhou, Demin

    2016-02-01

    Virus-based nanoparticles have shown promise as vehicles for delivering therapeutic genes. However, the rational design of viral vectors that enable selective tropism towards particular types of cells and tissues remains challenging. Here, we explored structural-functional relationships of the adeno-associated virus 2 (AAV2) vector by expanding its genetic code during production. As a proof-of-principle, an azide moiety was strategically displayed on the vector capsid as a bioorthogonal chemical reporter. Upon bioorthogonal conjugation of AAV2 with fluorophores and cyclic arginyl-glycyl-aspartic acid ligands at certain modifiable sites, we characterized in vitro and in vivo AAV2 movement and enhanced tropism selectivity towards integrin-expressing tumor cells. Targeting AAV2 vectors resulted in selective killing of U87 glioblastoma cells and derived xenografts via the herpes simplex virus suicide gene thymidine kinase, with the potency of ganciclovir being increased by 25-fold. Our results demonstrated successful rational modification of AAV2 as a targeting delivery vehicle, establishing a facile platform for precision engineering of virus-based nanoparticles in basic research and therapeutic applications.

  10. Establishment of a recombinant adeno-associated virus expressing hVEGF165

    Institute of Scientific and Technical Information of China (English)

    Xianghui Huang; Zhibin Shi; Xiaoqian Dang; Chen Zhang; Pengbo Yu; Kunzheng Wang

    2008-01-01

    BACKGROUND: Because certain gene vectors could have deleterious effects in the central nervous system, the choice of a safe and effective vector system has become more important for gene therapy of nerve regeneration. OBJECTIVE: To construct a non-pathogenic, recombinant adeno-associated virus (AAV) simultaneously expressing human vascular endothelial growth factor 165 (hVEGF165) and green fluorescent protein (GFP). DESIGN, TIME AND SETTING: A randomized controlled experiment was performed at the Virology Laboratory of Shaanxi Provincial Center for Disease Control and Prevention between March and September 2007. MATERIALS: AAV helper-free system, AAV-293 packaging cell line, and AAV HT-1080 cells were purchased from Stratagene, USA. E. Coli DH5α was a stocked strain from Centers for Disease Control and Prevention of Shaanxi, China. Plasmid pUC18-hHVEGF165 was a gift from Zhibin Shi. METHODS: The hVEGF165 gene was amplified by PCR from pUC18-hHVEGF165 and inserted into plasmid pAAV-IRES-hrGFP to construct recombinant plasmid pAAV-hVEGF165-IRES-hrGFP. Subsequently pAAV-hVEGF165-IRES-hrGFP, pAAV-RC (the rep/cap-gene containing plasmid), and pHelper were co-transfected into AAV-293 cells to complete rAAV-hVEGF165-IRES-hrGFP packaging through homologous recombination. The efficiency of AAV packaging was monitored under a fluorescent microscope, and the recombinant viral particles were harvested from infected AAV-293 cells, and further concentrated and purified. AAV HT-1080 cells were infected with the recombinant virus AAV-hVEGF165-IRES-hrGFP. MAIN OUTCOME MEASURES: Recombinant virus titer was measured by fluorescent cell counting, and infection efficiency was detected by Fluorescence Activated Cell Sorter (FACS) upon infecting AAV-HT1080 cells. The recombination with the exogenous gene was verified by PCR. RESULTS: The PCR amplified products were verified as hVEGF165 gene by DNA sequencing, and the recombinant pAAV-hVEGF165-IRES-GFP was confirmed by double digestion

  11. Trans-Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency

    OpenAIRE

    XU, ZHUPING; Yue, Yongping; Lai, Yi; Ye, Chaoyang; Qiu, Jianming; Pintel, David J.; Duan, Dongsheng

    2004-01-01

    Therapeutic application of recombinant adeno-associated virus (AAV) has been limited by its small carrying capacity. To overcome this limitation trans-splicing vectors were developed recently. However, the transduction efficiency of trans-splicing vectors is considerably lower than that of a single intact vector in skeletal muscle. To improve trans-splicing vectors for skeletal muscle gene therapy, we examined whether coinfection efficiency is a rate-limiting factor in the mdx mouse, a model ...

  12. Supraspinal gene transfer by intrathecal adeno-associated virus serotype 5

    Directory of Open Access Journals (Sweden)

    Daniel J. Schuster

    2014-08-01

    Full Text Available We report the pattern of transgene expression across brain regions after intrathecal delivery of adeno-associated virus serotype 5 (AAV5. Labeling in hindbrain appeared to be primarily neuronal, and was detected in sensory nuclei of medulla, pontine nuclei, and all layers of cerebellar cortex. Expression in midbrain was minimal, and generally limited to isolated neurons and astrocytes in the cerebral peduncles. GFP immunoreactivity (-ir in thalamus was most prominent in medial geniculate nucleus, and otherwise limited to posterior nuclei of the dorsal and lateral margins. Labeling was also observed in neurons and astrocytes of the hippocampal formation and amygdaloid complex. In the hippocampal formation, GFP-ir was found in neuronal cell bodies of the rostral ventral portion, but was largely restricted to fiber-like staining in the molecular layer of dentate gyrus and stratum lacunosum-moleculare of the rostral dorsal region. GFP-ir was seen in neurons and astroglia throughout caudal cortex, whereas in rostral regions of neocortex it was limited to isolated astrocytes and neurons. Labeling was also present in olfactory bulb. These results demonstrate that intrathecal delivery of AAV5 vector leads to transgene expression in discrete CNS regions throughout the rostro-caudal extent of the neuraxis. A caudal-to-rostral gradient of decreasing GFP-ir was present in choroid plexus and Purkinje cells, suggesting that spread of virus through cerebrospinal fluid plays a role in the resulting transduction pattern. Other factors contributing to the observed expression pattern likely include variations in cell-surface receptors and inter-parenchymal space.

  13. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  14. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  15. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  16. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt;

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...... as striatal input and output areas, including large parts of the cortex. In both species, rAAV5 resulted in a more widespread transgene expression compared to rAAV1. In neonatal rats, rAAV5 also transduced several other areas such as the olfactory bulbs, hippocampus, and septum. Phenotypic analysis of the GFP...

  17. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal.

    Science.gov (United States)

    Wang, Lina; Yin, Zifei; Wang, Yuan; Lu, Yuan; Zhang, Daniel; Srivastava, Arun; Ling, Changquan; Aslanidi, George V; Ling, Chen

    2015-09-01

    We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3' end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA. PMID:26297494

  18. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors.

    Science.gov (United States)

    Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel

    2015-02-01

    Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.

  19. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  20. Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus.

    Science.gov (United States)

    Dane, A P; Cunningham, S C; Kok, C Y; Logan, G J; Alexander, I E

    2015-11-01

    Recombinant vectors based on adeno-associated virus (AAV) are proving to be powerful tools for genetic manipulation of the liver, for both discovery and therapeutic purposes. The system can be used to deliver transgene cassettes for expression or, alternatively, DNA templates for genome editing via homologous recombination. The replicative state of target cells is known to influence the efficiency of these processes and knowledge of the host-vector interactions involved is required for optimally effective vector deployment. Here we show, for the first time in vivo, that in addition to the known effects of hepatocellular replication on AAV-mediated gene transfer, the vector itself exerts a potent, albeit transient suppressive effect on cell cycle progression that is relieved on a time course that correlates with the known rate of clearance of input single-stranded vector DNA. This finding requires further mechanistic investigation, delineates an excellent model system for such studies and further deepens our insight into the complexity of interactions between AAV vectors and the cell cycle in a clinically promising target tissue.

  1. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    Science.gov (United States)

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2015-03-01

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene. PMID:25359548

  2. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges

    OpenAIRE

    Raj, Deepak; Davidoff, Andrew M.; Nathwani, Amit C.

    2011-01-01

    Therapies currently used for hemophilia involve injection of protein concentrates that are expensive, invasive and associated with side effects such as development of neutralizing antibodies (inhibitors) that diminish therapeutic efficacy. Gene transfer is an attractive alternative to circumvent these issues. However, until now, clinical trials using gene therapy to treat hemophilia have failed to demonstrate sustained efficacy, although a vector based on a self-complementary adeno-associated...

  3. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.

  4. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells.

    Science.gov (United States)

    Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus

    2016-02-01

    Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing. PMID:26284700

  5. Complete Correction of Hemophilia A with Adeno-Associated Viral Vectors Containing a Full-Size Expression Cassette

    OpenAIRE

    Lu, Hui; Chen, Lingxia; Wang, Jinhui; Huack, Bernd; Sarkar, Rita; Zhou, Shangzhen; Xu, Ray; Ding, Qiulan; Wang, Xuefeng; WANG, HONGLI; Xiao, Weidong

    2008-01-01

    Hemophilia A is caused by a deficiency in the factor VIII (FVIII) gene. Constrained by limited packaging capacity, even the 4.3-kb B domain-deleted FVIII remained a challenge for delivery by a single adeno-associated viral (AAV) vector. Studies have shown that up to a 6.6-kb vector sequence may be packaged into AAV virions, which suggested an alternative strategy for hemophilia A gene therapy. To explore the usefulness of AAV vectors carrying an oversized FVIII gene, we constructed the AAV-FV...

  6. ADENO-ASSOCIATED SATELLITE VIRUS INTERFERENCE WITH THE REPLICATION OF ITS HELPER ADENOVIRUS

    Science.gov (United States)

    Parks, Wade P.; Casazza, Anna M.; Alcott, Judith; Melnick, Joseph L.

    1968-01-01

    Adeno-associated satellite virus type 4 interferes with the replication of its helper adenovirus. No interferon-like soluble substance could be detected in satellite-infected cultures and other DNA- and RNA-containing viruses were not inhibited by coinfection with satellite virus under conditions which reduced adenovirus yields by more than 90% in monkey cells. Altering the concentration of adenovirus in the presence of constant amounts of satellite resulted in a constant degree of interference over a wide range of adenovirus inocula and suggested that adenovirus concentration was not a significant factor in the observed interference. The interference with adenovirus replication was abolished by pretreating satellite preparations with specific antiserum, ultraviolet light or heating at 80°C for 30 min. This suggested that infectious satellite virus mediated the interference. Satellite virus concentration was found to be a determinant of interference and studies indicated that the amount of interference with adenovirus was directly proportional to the concentration of satellite virus. 8 hr after adenovirus infection, the replication of adenovirus was no longer sensitive to satellite interference. This was true even though the satellite virus was enhanced as effectively as if the cells were infected simultaneously with both viruses. Interference with adenovirus infectivity was accompanied by reduced yields of complement-fixing antigen and of virus particles which suggested that satellite virus interfered with the formation and not the function of adenovirus products. When cells were infected either with adenovirus alone or with adenovirus plus satellite, the same proportion of cells plated as adenovirus infectious centers. However, the number of plaque-forming units of adenovirus formed per cell in the satellite-infected cultures was reduced by approximately 90%, the same magnitude of reduction noted in whole cultures coinfected with satellite and adenovirus. This

  7. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt;

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... to study effects of genetic manipulation in this non-primate large animal species. Finally, we generated an atlas of the Göttingen minipig brain for guiding future studies in this large animal species....

  8. Adeno-associated virus activates an innate immune response in normal human cells but not in osteosarcoma cells.

    Science.gov (United States)

    Laredj, Leila N; Beard, Peter

    2011-12-01

    Adeno-associated virus (AAV) is a small, DNA-containing dependovirus with promising potential as a gene delivery vehicle. Given the variety of applications of AAV-based vectors in the treatment of genetic disorders, numerous studies have focused on the immunogenicity of recombinant AAV. In general, AAV vectors appear not to induce strong inflammatory responses. We have found that AAV2, when it infects the osteosarcoma cells U2OS, can initiate part of its replicative cycle in the absence of helper virus. This does not occur in untransformed cells. We set out to test whether the cellular innate antiviral defenses control this susceptibility and found that, in nonimmune normal human fibroblasts, AAV2 induces type I interferon production and release and the accumulation of nuclear promyelocytic leukemia bodies. AAV fails to mobilize this defense pathway in the U2OS cells. This permissiveness is in large part due to impairment of the viral sensing machinery in these cells. Our investigations point to Toll-like receptor 9 as a potential intracellular sensor that detects AAV2 and triggers the antiviral state in AAV-infected untransformed cells. Efficient sensing of the AAV genome and the ensuing activation of an innate antiviral response are thus crucial cellular events dictating the parvovirus infectivity in host cells.

  9. Adeno-associated Virus Mediated LacZ Gene Transfect to Cultured Human Iris Pigment Epithelium Cells

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shibo Tang; Yan Luo; Xiaoling Liang; Jing Ma; Shaofen Lin

    2003-01-01

    Purpose: To study the feasibility of adeno-associated virus mediated gene transfection tocultured human iris pigment epithelium (IPE) cells in vitro.Methods: Recombinant replication deficient adeno-associated viruses (AAV) expressingLacZ gene were produced without helper virus. The LacZ gene was transduced into culturedhuman IPE cells.Results: Cultured human IPE cells stained positively anticytokeratin, The titer ofrAAV-LacZ was 2.1 × 108 virus particles/ml, 42% cultured human IPE cells expressedβ-galactosidase 7 days after transfection and 67% after 14 days.Conclusions: Recombined AAV produced without helper virus can transfer a foreign geneinto human IPE cells with high efficiency in vitro.

  10. Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

    Science.gov (United States)

    McConnell, Kellie I; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E

    2014-11-28

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

  11. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9.

    Science.gov (United States)

    Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M; Cheung, Roland Y; Troupes, Andrew N; Brown, Sarah M; Kafri, Tal; Asokan, Aravind

    2015-01-16

    Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system. PMID:25404742

  12. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  13. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  14. Recombinant adeno-associated viruses (rAAV2) facilitate the intraperitoneal gene delivery to cancer cells

    OpenAIRE

    Malecki, Maciej; PROCZKA, ROBERT; Chorostowska-Wynimko, Joanna; Swoboda, Paweł; DELBANI, ANNA; Pachecka, Jan

    2010-01-01

    Peritoneal dissemination of cancer cells is characteristic of advanced stages of ovarian, breast and lung cancers, and is associated with poor patient survival. The presence of cancer cells in effusions complicates treatment protocols, while cell eradication is seriously limited. One of the novel options available is cancer gene therapy with recombinant adeno-associated viruses. This combination represents the most promising gene delivery vehicles to neoplasmatic cells within serosal cavities...

  15. Persistence, Localization, and External Control of Transgene Expression After Single Injection of Adeno-Associated Virus into Injured Joints

    OpenAIRE

    Lee, Hannah H.; O'Malley, Michael J.; Friel, Nicole A.; Payne, Karin A.; Qiao, Chunping; Xiao, Xiao(Institute for Strings, Cosmology and Astroparticle Physics (ISCAP) and Physics Department, Columbia University, 538 West 120th Street, New York, NY, 10027 U.S.A.); Chu, Constance R.

    2013-01-01

    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra...

  16. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  17. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. PMID:26264580

  18. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking.

    Science.gov (United States)

    Nam, Hyun-Joo; Gurda, Brittney L; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2011-11-01

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  19. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  20. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  1. Construction of adeno-associated virus coexpression system for human angiopoietin-1 and VEGF gene

    Institute of Scientific and Technical Information of China (English)

    陈德杰; 谭最; 谢友利; 刘芳

    2004-01-01

    Background Ischemic disease is one of the leading causes of death in the world. In order to further study gene therapy for ischemic disease, we constructed a recombinant plasmid for co-expression of human angiopoietin-1 and vascular endothelial growth factor 165 (VEGF165) gene in adeno-associated virus (AAV) gene delivery system.Methods Human angiopoietin 1 and VEGF165 gene were obtained using PCR. The upstream of angiopoietin 1 contained restriction enzyme site Hind Ⅲ, and the downstream of angiopoietin 1contained restriction enzyme site BamH Ⅰ. The upstream of VEGF165 contained restriction enzyme site Bgl Ⅱ, and the downstream of VEGF165 contained restriction enzyme site BamH Ⅰ . Using the multiple cloning sites (MCS) in plasmid pZero ++ such as BamH Ⅰ , Bgl Ⅱ, Hind Ⅲ, Not Ⅰ , XhoⅠ,Xba Ⅰ , Sal Ⅰ , BspH Ⅰ , Ksp Ⅰ and the corresponding MCS in plasmid pAAV-MCS, angiopoietin 1 and VEGF165 gene were subcloned into pAAV-MCS.Results DNA sequencing revealed that the PCR- amplified angiopoietin 1 and VEGF165 were consistent with NCBI Gene Bank. The recombinant plasmid was identified using PCR and digestion,which proved to be consistent with our hypothesis. In recombinant plasmid, angiopoietin1 and VEGF possessed a CMV promoter and polyA terminator system respectively, thus assuring co-expression of the two genes.Conclusion Successful construction of AAV co-expression system for human angiopoietin 1 and VEGF165 gene will provide the foundation for gene therapy to cure severe ischemic disease.

  2. In vivo evaluation of adeno-associated virus gene transfer in airways of mice with acute or chronic respiratory infection.

    Science.gov (United States)

    Myint, Melissa; Limberis, Maria P; Bell, Peter; Somanathan, Suryanarayan; Haczku, Angela; Wilson, James M; Diamond, Scott L

    2014-11-01

    Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼10(5) CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼10(5) CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer. PMID:25144316

  3. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease. PMID:25046265

  4. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer L Daily

    Full Text Available Angelman syndrome (AS, a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286 and Thr(305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  5. The X gene of adeno-associated virus 2 (AAV2 is involved in viral DNA replication.

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    Full Text Available Adeno-associated virus (AAV (type 2 is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393, overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81. Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91, a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5 or Ad5 helper plasmid (pHelper. The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects. Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold. Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  6. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René;

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  7. Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-he; KE Xiao-mei; QIN Yong; GU Zhi-ping; XIAO Shui-fang

    2007-01-01

    Background Recent studies showed that aminoglycosides destroyed the cochlear cells and induced ototoxicity by producing reactive oxygen species, including free radicals in the mitochondria, damaging the membrane of mitochondria and resulting in apoptotic cell death. Bcl-xL is a well characterized anti-apoptotic member of the Bcl-2 family. The aim of this study was to determine the potential cochlear protective effect of Bcl-xL as a therapeutic agent in the murine model of aminoglycoside ototoxicity.Methods Serotype 2 of adeno-associated virus (AAV2) as a vector encoding the mouse Bcl-xL gene was injected into mice cochleae prior to injection of kanamycin. Bcl-xL expression in vitro and in vivo was examined with Western blotting and immunohistochemistry separately. Cochlear dissection and auditory steady state responses were checked to evaluate the cochlear structure and function.Results The animals in the AAV2-Bcl-xL/kanamycin group displayed better auditory steady state responses hearing thresholds and cochlear structure than those in the artificial perilymph/kanamycin or AAV2-enhanced humanized green fluorescent protein/kanamycin control group at all tested frequencies. The auditory steady state responses hearing thresholds and cochlear structure in the inoculated side were better than that in the contralateral side.Conclusions AAV2-Bcl-xL afforded significant preservation of the cochlear hair cells against ototoxic insults and protected the cochlear function. AAV2-mediated Bcl-xL might be an approach with respect to potential therapeutic application in the cochlear degeneration.

  8. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice.

    Science.gov (United States)

    Chan, Cheng-Chi; Lai, Chin-Wen; Wu, Chia-Jen; Chen, Li-Chen; Tao, Mi-Hua; Kuo, Ming-Ling

    2016-08-01

    Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma. PMID:27178525

  9. Construction of genetically engineered macrophages expressing Smad6 and Smad7 genes with adeno-associated virus

    Institute of Scientific and Technical Information of China (English)

    黄云剑; 赵景宏; 杨唐俊; 范晓棠; 张金海; 蔡文琴

    2004-01-01

    Objective: To construct the genetically engineered macrophages expressing Smad6 and Smad7 genes with adeno-associated virus (AAV). Methods: The plasmids containing pcDNA3-Smad6/Flag and pcDNA3-Smad7/Flag were digested with BamH Ⅰ and Xho Ⅰ , respectively. Then the Smad6/Flag and Smad7/Flag gene segments obtained were cloned into plasmid pAAV-MCS respectively to construct the recombinant pAAV-Smad6/Flag and pAAV-Smad7/Flag plasmids. The resulting recombinant plasmids (pAAV-Smad6/Flag or pAAV-Smad7/Flag) or pAAV-LacZ plasmid were co-transfected into the HEK 293cells with pHelper and pAAV-RC by calcium-phosphate precipitation method. Recombinant AAV-2 viral particles were prepared from infected HEK293 cells and then were used to infect mouse macrophages. The expressions of Smad6and Smad7 in macrophages were detected by immunocytochemical staining and expression of b-galactosidase was evaluated by X-gal staining. Results: The recombinant AAV vector containing Smad6 or Smad7 genes was successfully constructed. More than 95% macrophage cells expressed X-gal and Smad6 and Smad7 genes at 72 h after infection. Conclusion: These results indicate that the genetically engineered macropbages can express Smad6 and Smad7 proteins effectively, laying the foundation for the studies of TGF-β-induced diseases in vivo and highlighting the feasibility of macrophage-based gene therapy.

  10. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries.

    Science.gov (United States)

    Körbelin, Jakob; Sieber, Timo; Michelfelder, Stefan; Lunding, Lars; Spies, Elmar; Hunger, Agnes; Alawi, Malik; Rapti, Kleopatra; Indenbirken, Daniela; Müller, Oliver J; Pasqualini, Renata; Arap, Wadih; Kleinschmidt, Jürgen A; Trepel, Martin

    2016-06-01

    Vectors mediating strong, durable, and tissue-specific transgene expression are mandatory for safe and effective gene therapy. In settings requiring systemic vector administration, the availability of suited vectors is extremely limited. Here, we present a strategy to select vectors with true specificity for a target tissue from random peptide libraries displayed on adeno-associated virus (AAV) by screening the library under circulation conditions in a murine model. Guiding the in vivo screening by next-generation sequencing, we were able to monitor the selection kinetics and to determine the right time point to discontinue the screening process. The establishment of different rating scores enabled us to identify the most specifically enriched AAV capsid candidates. As proof of concept, a capsid variant was selected that specifically and very efficiently delivers genes to the endothelium of the pulmonary vasculature after intravenous administration. This technical approach of selecting target-specific vectors in vivo is applicable to any given tissue of interest and therefore has broad implications in translational research and medicine. PMID:27018516

  11. Adeno-Associated Virus-Mediated Microdystrophin Expression Protects Young mdx Muscle from Contraction-Induced Injury

    OpenAIRE

    LIU, MINGJU; Yue, Yongping; Harper, Scott Q.; Grange, Robert W.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited lethal muscle degenerative disease. Currently there is no cure. Highly abbreviated microdystrophin cDNAs were developed recently for adeno-associated virus (AAV)-mediated DMD gene therapy. Among these, a C-terminal-truncated ΔR4-R23/ΔC microgene (ΔR4/ΔC) has been considered as a very promising therapeutic candidate gene. In this study, we packaged a CMV.ΔR4/ΔC cassette in AAV-5 and evaluated the transduction and muscle contractile...

  12. Inhibition of infectious bursal disease virus replication in chicken embryos by miRNAs delivered by recombinant avian adeno-associated viral vector%重组禽腺联病毒介导的miRNA抑制传染性法氏囊病病毒在鸡胚内的复制

    Institute of Scientific and Technical Information of China (English)

    沈鹏鹏; 王永娟; 孙怀昌; 张鑫宇; 夏晓莉

    2011-01-01

    [Objective]We studied the inhibition of infectious bursal disease virus ( IBDV ) replication in chicken embryos by recombinant avian adeno-associated virus (AAAV)-delivered VP1- and VP2-specific microRNAs (miRNAs).[Methods and Results]We co-transfected AAV-293 cells with the VP1- or VP2 gene-specific miRNA expression vector pAITR-RFPmiVP1 or AITR-RFPmiVP2E, AAAV packaging vector pcDNA-ARC and adenovirus helper vector pHelper, resulting in recombinant virus rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E.We also generated the recombinant viruses rAAAV-RFP (without miRNA expression cassette) and rAAAV-RFPmiVP2con ( expressing control miRNA ) using the same method as the control purpose.Electron microscopy showed that the recombinant viruses had a typical morphology of AAV.We confirmed the presence of miRNA expression cassette in the recombinant viral genomes by using PCR.Our poly (A)-tailed RT-PCR showed correct expression of the miRNAs in the rAAAV-transduced DF-1 cells.We inoculated the recombinant viruses individually into 8-day-old SPF chicken embryos and then challenged them using Lukert strain IBDV on day 2 after inoculation.Our IBDV titration assay showed that the 50% tissue culture infectious dose ( TCID50) of rAAAV-RFP- or rAAAV-RFPmiVP2con-inoculated group was 8.0 log10, whereas the TCID50 of rAAAV-RFPmiVP1-inoculated group decreased to 1.0 and 0.8 log10 on day 3 and 6 after challenge, respectively.Similarly, the TCID50 of rAAAV-RFPmiVP2E-inoculated group decreased to 1.5 and 2.0 log10, respectively.[Conclusion]These data suggest that rAAAV can transduce efficiently chicken embryos and the expressed VP1- and VP2-specific miRNAs can inhibit the replication of IBDV efficiently.%[目的]在鸡胚水平上探索VP1和VP2基因特异miRNA抑制传染性法氏囊病病毒(infectious bursaldisease virus,IBDV)复制的可行性.[方法与结果]将表达VP1基因特异miRNA重组载体pAITR-RFPmiVP1或VP2基因特异miRNA重组载体pAITR-RFPmiVP2E

  13. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5

    International Nuclear Information System (INIS)

    The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombic space group P212121, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress

  14. Adeno-associated virus-mediated heme oxygenase-1 gene transfer suppresses the progression of micronodular cirrhosis in rats

    Institute of Scientific and Technical Information of China (English)

    Tung-Yu Tsui; Chi-Keung Lau; Jian Ma; Gabriel Glockzin; Aiman Obed; Hans J Schlitt; Sheung-Tat Fan

    2006-01-01

    AIM: To test the hypothesis that enhancement of the activity of heme oxygenase can interfere with processes of fibrogenesis associated with recurrent liver injury, we investigated the therapeutic potential of over-expression of heme oxygense-1 in a CCl4-induced micronodular cirrhosis model.METHODS: Recombinant adeno-associated viruses carrying rat HO-1 or GFP gene were generated. 1x1012 vg of adeno-associated viruses were administered through portal injection at the time of the induction of liver fibrosis.RESULTS: Conditioning the rat liver with over-expression of HO-1 by rAAV/HO-1 significantly increased the HO enzymatic activities in a stable manner. The development of micronodular cirrhosis was significantly inhibited in rAAV/HO-1-transduced animals as compared to controls. Portal hypertension was markedly diminished in rAAV/HO-1-transduced animals as compared to controis, whereas there are no significant changes in systolic blood pressure. This finding was accompanied with improved liver biochemistry, less infiltrating macrophages and less activated hepatic stellate cells (HSCs) in rAAV/HO-1-transduced livers.CONCLUSIONS: Enhancement of HO activity in the livers suppresses the development of cirrhosis.

  15. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5

    Energy Technology Data Exchange (ETDEWEB)

    DiMattia, Michael; Govindasamy, Lakshmanan; Levy, Hazel C.; Gurda-Whitaker, Brittney; Kalina, Amy [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States); Kohlbrenner, Erik [Division of Cell and Molecular Therapy, University of Florida, Gainesville, FL 32610 (United States); Chiorini, John A. [GTTB, NIDCR, National Institutes of Health, Bethesda, MD 20892 (United States); McKenna, Robert [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States); Muzyczka, Nicholas [Department of Molecular Genetics and Microbiology and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL 32610 (United States); Zolotukhin, Sergei [Division of Cell and Molecular Therapy, University of Florida, Gainesville, FL 32610 (United States); Agbandje-McKenna, Mavis, E-mail: mckenna@ufl.edu [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States)

    2005-10-01

    The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  16. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari;

    2010-01-01

    in dendrites. The in vivo roles of microRNAs in these processes are still uninvestigated, partly due to the lack of tools enabling stable in vivo delivery of microRNAs or microRNA inhibitors into neurons of the mammalian brain. Here we describe the construction and validation of a vector-based tool for stable...... delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  17. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries.

    Directory of Open Access Journals (Sweden)

    Stefan Michelfelder

    Full Text Available Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV, we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical.

  18. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer

    Directory of Open Access Journals (Sweden)

    Choi Jin-Ok

    2010-04-01

    Full Text Available Abstract Background Enzyme replacement therapy (ERT with α-galactosidase A (α-Gal A is currently the most effective therapeutic strategy for patients with Fabry disease, a lysosomal storage disease. However, ERT has limitations of a short half-life, requirement for frequent administration, and limited efficacy for patients with renal failure. Therefore, we investigated the efficacy of recombinant adeno-associated virus (rAAV vector-mediated gene therapy for a Fabry disease mouse model and compared it with that of ERT. Methods A pseudotyped rAAV2/8 vector encoding α-Gal A cDNA (rAAV2/8-hAGA was prepared and injected into 18-week-old male Fabry mice through the tail vein. The α-Gal A expression level and globotriaosylceramide (Gb3 levels in the Fabry mice were examined and compared with Fabry mice with ERT. Immunohistochemical and ultrastructural studies were conducted. Results Treatment of Fabry mice with rAAV2/8-hAGA resulted in the clearance of accumulated Gb3 in tissues such as liver, spleen, kidney, heart, and brain with concomitant elevation of α-Gal A enzyme activity. Enzyme activity was elevated for up to 60 weeks. In addition, expression of the α-Gal A protein was identified in the presence of rAAV2/8-hAGA at 6, 12, and 24 weeks after treatment. α-Gal A activity was significantly higher in the mice treated with rAAV2/8-hAGA than in Fabry mice that received ERT. Along with higher α-Gal A activity in the kidney of the Fabry mice treated with gene therapy, immunohistochemical studies showed more α-Gal A expression in the proximal tubules and glomerulus, and less Gb3 deposition in Fabry mice treated with this gene therapy than in mice given ERT. The α-gal A gene transfer significantly reduced the accumulation of Gb3 in the tubules and podocytes of the kidney. Electron microscopic analysis of the kidneys of Fabry mice also showed that gene therapy was more effective than ERT. Conclusions The rAAV2/8-hAGA mediated α-Gal A gene

  19. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial.

    Science.gov (United States)

    Allay, James A; Sleep, Susan; Long, Scott; Tillman, David M; Clark, Rob; Carney, Gael; Fagone, Paolo; McIntosh, Jenny H; Nienhuis, Arthur W; Davidoff, Andrew M; Nathwani, Amit C; Gray, John T

    2011-05-01

    To generate sufficient clinical-grade vector to support a phase I/II clinical trial of adeno-associated virus serotype 8 (AAV8)-mediated factor IX (FIX) gene transfer for hemophilia B, we have developed a large-scale, good manufacturing practice (GMP)-compatible method for vector production and purification. We used a 293T-based two-plasmid transient transfection system coupled with a three-column chromatography purification process to produce high-quality self-complementary AAV2/8 FIX clinical-grade vector. Two consecutive production campaigns using a total of 432 independent 10-stack culture chambers produced a total of ∼2 × 10(15) vector genomes (VG) by dot-blot hybridization. Benzonase-treated microfluidized lysates generated from pellets of transfected cells were purified by group separation on Sepharose beads followed by anion-exchange chromatography. The virus-containing fractions were further processed by gel filtration and ultrafiltration, using a 100-kDa membrane. The vector was formulated in phosphate-buffered saline plus 0.25% human serum albumin. Spectrophotometric analysis suggested ∼20% full particles, with only low quantities of nonviral proteins were visible on silver-stained sodium dodecyl sulfate-polyacrylamide gels. A sensitive assay for the detection of replication-competent AAV was developed, which did reveal trace quantities of such contaminants in the final product. Additional studies have confirmed the long-term stability of the vector at -80°C for at least 24 months and for at least 24 hr formulated in the clinical diluent and stored at room temperature within intravenous bags. This material has been approved for use in clinical trials in the United States and the United Kingdom.

  20. Recombinant adeno-associated virus-mediated delivery of antisense angiotensin Ⅱ receptor 1 gene attenuates hypertension development

    Institute of Scientific and Technical Information of China (English)

    Xu-guang LI; Jiang-tao YAN; Xi-zheng XU; Jia-ning WANG; Li-ming CHENG; Tao WANG; Ping ZUO; Dao-wen WANG

    2007-01-01

    Aim:The renin-angiotensin system plays a crucial role in the development and establishment of hypertension,and the pharmacological blockade of the system results in a reduction in blood pressure. In the present study,we investigated whether the effects of a novel,double-stranded,recombinant adeno-associated virus vector (rAAV)-mediated antisense angiotensin Ⅱ receptor l (AT1R) gene efficiently prevents the development of hypertension induced by a high-salt diet in adult,male Sprague-Dawley (SD) rats. Methods:A rAAV was prepared with a cassette containing a cytomegalovirus promoter and partial cDNA (660 base pairs) for the AT1R inserted in the antisense direction (rAAV-AT1AS). A single tail vein injection of the rAAV-AT1-AS or rAAV-GFP (green fluorescent protein,a reporter gene) was performed in adult,male SD rats. Two weeks after injection,the animals were fed a diet containing 8% NaCI,and the systolic blood pressure was measured weekly using the tail-cuff method for 12 weeks. Results:The high-salt diet induced a significant rise in systolic blood pressure in the rAAV-GFP-treated animals;however,the rAAV-AT:AS treatment attenuated the rise in blood pressure (142.7±4.5 mmHg vs 117±3.8 mmHg,P<0.01),and the hypotensive effect was maintained until the experiments ended at 12 weeks. In the rAAV-GFP-treated animals AT1 was overexpressed in various tissues,especially in the aorta and kidney at mRNA levels;in contrast,rAAV-AT:AS treatment markedly attenuated AT1 expression. Furthermore,rAAV-AT:AS treatment prevented target organ damages from hypertension,including cardiac dysfunction and renal injury compared to the rAAV-GFP group. Conclusion:These results suggest that rAAVmediated anti-AT1 delivery attenuates the development of hypertension and protects against renal injury and cardiac remodeling.

  1. Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector.

    Science.gov (United States)

    Vidović, Dragana; Gijsbers, Rik; Jimenez, Ana Quiles; Dooley, James; Van den Haute, Chris; Van der Perren, Anke; Liston, Adrian; Baekelandt, Veerle; Debyser, Zeger; Carlon, Marianne Sylvia

    2016-01-01

    Gene therapy holds promise to cure a wide range of genetic and acquired diseases. Recent successes in recombinant adeno-associated viral vector (rAAV)-based gene therapy in the clinic for hereditary disorders such as Leber's congenital amaurosis and hemophilia B encouraged us to reexplore an rAAV approach for pulmonary gene transfer. Only limited clinical successes have been achieved for airway gene transfer so far, underscoring the need for further preclinical development of rAAV-based gene therapy for pulmonary disorders. We sought to determine the preclinical potential of an airway-tropic serotype, rAAV2/5, encoding reporter genes when delivered to mouse airways. Although several groups have assessed the stability of gene transfer using a nonintegrating rAAV in mouse airways, long-term stability for more than a year has not been reported. Additionally, an extensive quantitative analysis of the specific cell types targeted by rAAV2/5 using cell-specific markers is lacking. We obtained sustained gene expression in upper and lower airways up to 15 months after vector administration, a substantial proportion of the lifespan of a laboratory mouse. In addition, we demonstrated that readministration of rAAV2/5 to the airways is feasible and increases gene expression 14 months after primary vector administration, despite the presence of circulating neutralizing antibodies. Finally, identification of transduced cell types revealed different subpopulations being targeted by rAAV2/5, with 64% of β-galactosidase-positive cells being ciliated cells, 34% club cells in the conducting airways, and 75% alveolar type II cells in the alveoli at 1 month postinjection. This underscores the therapeutic potential of a nonintegrating rAAV vector to develop a gene therapeutic drug for a variety of pulmonary disorders, such as cystic fibrosis, primary ciliary dyskinesia, and surfactant deficiencies. PMID:26567984

  2. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  3. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    Science.gov (United States)

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  4. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies. PMID:26159373

  5. Adeno-Associated Virus Type 5-Mediated Intraarticular Administration of Tumor Necrosis Factor Small Interfering RNA Improves Collagen-Induced Arthritis

    NARCIS (Netherlands)

    M. Khoury; G. Courties; S. Fabre; C. Bouffi; C.A. Seemayer; M.J. Vervoordeldonk; P.P. Tak; C. Jorgensen; F. Apparailly

    2010-01-01

    Objective. RNA interference (RNAi) is a powerful tool for sequence-specific gene silencing, and interest in its application in human diseases is growing. Given the success of recent strategies for administering gene therapy in rheumatoid arthritis using recombinant vectors such as adeno-associated v

  6. Adeno-associated virus-mediated bone morphogenetic protein-7 gene transfer induces C2C12 cell differentiation into osteoblast lineage cells

    Institute of Scientific and Technical Information of China (English)

    Min YANG; Qing-jun MA; Geng-ting DANG; Kang-tao MA; Ping CHEN; Chun-yan ZHOU

    2005-01-01

    Aim: To investigate the effects of bone morphogenetic protein-7 (BMP7)-expressing recombinant adeno-associated virus (AAV) vector on the differentiation of C2C12 cells. Methods: AAV-BMP7 was packaged by infecting the stable cell clone BHK-21 (integrated with recombinant AAV vector plasmid pSNAV-BMP7)with recombinant herpes simplex virus type 1, which expresses AAV-2 Rep and Cap and possesses AAV packaging functions. Following infection with AAVBMP7 at multiplicities of infection of 1× 105 vector genomes per cell and subsequent culture, C2C12 cells were assessed qualitatively for BMP7 production, alkaline phosphatase activity, osteocalcin production and Cbfal and MyoD expression.Results: C2C 12 cells transduced with AAV-BMP7 could produce BMP7 protein until d 28. Alkaline phosphatase in the cultured C2C12 cell lysate was elevated.Secreted osteocalcin in the culture medium was detectable at d 12 and Cbfal mRNA expression level was upregulated, coinciding with downregulation of MyoD in a temporal manner. Conclusion: The present in vitro study demonstrated that AAV-BMP7 could infect and efficiently convert C2C12 cells from myoblasts into osteoblast lineage cells.

  7. Preparation of a recombinant adeno-associated viral vector with a mutation of human factor IX in large scale and its expression in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of adeno-associated viral vectors conraining a mutation of human factor IX (hFIXR338A) with different regulation elements were constructed and used to transduce cell lines. The plasmids and the stable transduction cell clones with high expression level of hFIXR338Awere obtained by selecting and optimizing, and then, the recombinant adeno-associated viral vector with hFIXR338Awas prepared via novel rHSV/AAV hybrid virus packaging system on a large scale, which contained the capsid protein genes. A method for producing rAAV-hFIXR338A viral stocks on a large scale and higher fiter was established,which can be used for industrial purpose. The titer of rAAV-hFIXR338A was more than 1.25x1012 particle/mL, and then, a mammalian cell line, C2C12 and the factor IXknock-out mice were transfected with the rAAV-hFIXR338Ain vitro and in vivo. The results show that the high-level expression of rAAV-hFIXR338A was achieved in cell line and hemophilia B mice. It reached at (2551.32±92.14) ng@ (106cells)-1 @ (24 h)-1 in C2C12 cell in vitro and had a peak concentration of 463.28 ng/mL in mice treated with rAAV-hFIX R338A, which was as high as the expression of rAAV-hFIX -wt (2565.76±64.36) ng@ (106 cells)-1@ (24 h)-1 in C2C12 and 453.92 ng/mL in the mice treated with rAAV-hFIX-wt) in vitro and in vivo, there is no any difference between two groups, but the clotting activity of hFIXR338A is about 2.46times higher than that of hFIX-wt. It was first reported that a mutation of human factor IX was used into gene therapy research for hemophilia B, meanwhile, a novel packaging system, rAAV/HSV was used for preparation of rAAV-hFIX R338A on a large scale, which laid the foundation of industrial production for applying rAAV viral stocks to gene therapy clinical trial for hemophilia B mediated with rAAV-hFIX.``

  8. A phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C adeno-associated virus vaccine

    NARCIS (Netherlands)

    Mehendale, Sanjay; van Lunzen, Jan; Clumeck, Nathan; Rockstroh, Jurgen; Vets, Eva; Johnson, Philip R.; Anklesaria, Pervin; Barin, Burc; Boaz, Mark; Kochhar, Sonali; Lehrman, Jennifer; Schmidt, Claudia; Peeters, Mathieu; Schwarze-Zander, Carolynne; Kabamba, Kabeya; Glaunsinger, Tobias; Sahay, Seema; Thakar, Madhuri; Paranjape, Ramesh; Gilmour, Jill; Excler, Jean-Louis; Fast, Patricia; Heald, A1lison E.

    2008-01-01

    A novel prophylactic AIDS vaccine candidate, consisting of single-stranded DNA for HIV-1 subtype C gag, protease, and part of reverse transcriptase genes, enclosed within a recombinant adeno-associated virus serotype-2 protein capsid (tgAAC09) induced T cell responses and antibodies in nonhuman prim

  9. Systemic delivery of genes to striated muscles using adeno-associated viral vectors

    OpenAIRE

    Gregorevic, Paul; Blankinship, Michael J; Allen, James M.; Robert W Crawford; Meuse, Leonard; Miller, Daniel G.; Russell, David W.; Jeffrey S. Chamberlain

    2004-01-01

    A major obstacle limiting gene therapy for diseases of the heart and skeletal muscles is an inability to deliver genes systemically to muscles of an adult organism. Systemic gene transfer to striated muscles is hampered by the vascular endothelium, which represents a barrier to distribution of vectors via the circulation. Here we show the first evidence of widespread transduction of both cardiac and skeletal muscles in an adult mammal, after a single intravenous administration of recombinant ...

  10. Adeno-associated viral vector serotype 5 poorly transduces liver in rat models.

    Directory of Open Access Journals (Sweden)

    Paula S Montenegro-Miranda

    Full Text Available Preclinical studies in mice and non-human primates showed that AAV serotype 5 provides efficient liver transduction and as such seems a promising vector for liver directed gene therapy. An advantage of AAV5 compared to serotype 8 already shown to provide efficient correction in a phase 1 trial in patients suffering from hemophilia B, is its lower seroprevalence in the general population. Our goal is liver directed gene therapy for Crigler-Najjar syndrome type I, inherited severe unconjugated hyperbilirubinemia caused by UGT1A1 deficiency. In a relevant animal model, the Gunn rat, we compared the efficacy of AAV 5 and 8 to that of AAV1 previously shown to be effective. Ferrying a construct driving hepatocyte specific expression of UGT1A1, both AAV8 and AAV1 provided an efficient correction of hyperbilirubinemia. In contrast to these two and to other animal models AAV5 failed to provide any correction. To clarify whether this unexpected finding was due to the rat model used or due to a problem with AAV5, the efficacy of this serotype was compared in a mouse and two additional rat strains. Administration of an AAV5 vector expressing luciferase under the control of a liver specific promoter confirmed that this serotype poorly performed in rat liver, rendering it not suitable for proof of concept studies in this species.

  11. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  12. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  13. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants.

    Science.gov (United States)

    Raissadati, Alireza; Jokinen, Janne J; Syrjälä, Simo O; Keränen, Mikko A I; Krebs, Rainer; Tuuminen, Raimo; Arnaudova, Ralica; Rouvinen, Eeva; Anisimov, Andrey; Soronen, Jarkko; Pajusola, Katri; Alitalo, Kari; Nykänen, Antti I; Lemström, Karl

    2013-11-01

    Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.

  14. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    Science.gov (United States)

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.

  15. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice.

    Science.gov (United States)

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Chen, Chih-Yeh; Tao, Mi-Hua; Liu, Shih-Jen

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  16. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease.

    Science.gov (United States)

    Björklund, Tomas; Carlsson, Thomas; Cederfjäll, Erik Ahlm; Carta, Manolo; Kirik, Deniz

    2010-02-01

    Viral vector-mediated gene transfer utilizing adeno-associated viral vectors has recently entered clinical testing as a novel tool for delivery of therapeutic agents to the brain. Clinical trials in Parkinson's disease using adeno-associated viral vector-based gene therapy have shown the safety of the approach. Further efforts in this area will show if gene-based approaches can rival the therapeutic efficacy achieved with the best pharmacological therapy or other, already established, surgical interventions. One of the strategies under development for clinical application is continuous 3,4-dihydroxyphenylalanine delivery. This approach has been shown to be efficient in restoring motor function and reducing established dyskinesias in rats with a partial lesion of the nigrostriatal dopamine projection. Here we utilized high purity recombinant adeno-associated viral vectors serotype 5 coding for tyrosine hydroxylase and its co-factor synthesizing enzyme guanosine-5'-triphosphate cyclohydrolase-1, delivered at an optimal ratio of 5 : 1, to show that the enhanced 3,4-dihydroxyphenylalanine production obtained with this optimized delivery system results in robust recovery of function in spontaneous motor tests after complete dopamine denervation. We found that the therapeutic efficacy was substantial and could be maintained for at least 6 months. The tyrosine hydroxylase plus guanosine-5'-triphosphate cyclohydrolase-1 treated animals were resistant to developing dyskinesias upon peripheral l-3,4-dihydroxyphenylalanine drug challenge, which is consistent with the interpretation that continuous dopamine stimulation resulted in a normalization of the post-synaptic response. Interestingly, recovery of forelimb use in the stepping test observed here was maintained even after a second lesion depleting the serotonin input to the forebrain, suggesting that the therapeutic efficacy was not solely dependent on dopamine synthesis and release from striatal serotonergic terminals

  17. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing

    Science.gov (United States)

    Adachi, Kei; Enoki, Tatsuji; Kawano, Yasuhiro; Veraz, Michael; Nakai, Hiroyuki

    2014-01-01

    Adeno-associated virus (AAV) capsid engineering is an emerging approach to advance gene therapy. However, a systematic analysis on how each capsid amino acid contributes to multiple functions remains challenging. Here we show proof-of-principle and successful application of a novel approach, termed AAV Barcode-Seq, that allows us to characterize phenotypes of hundreds of different AAV strains in a high-throughput manner and therefore overcomes technical difficulties in the systematic analysis. In this approach, we generate DNA barcode-tagged AAV libraries and determine a spectrum of phenotypes of each AAV strain by Illumina barcode sequencing. By applying this method to AAV capsid mutant libraries tagged with DNA barcodes, we can draw a high-resolution map of AAV capsid amino acids important for the structural integrity and functions including receptor binding, tropism, neutralization and blood clearance. Thus, Barcode-Seq provides a new tool to generate a valuable resource for virus and gene therapy research. PMID:24435020

  18. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  19. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells

    International Nuclear Information System (INIS)

    Background and purpose: The success rate of any therapeutic approach depends on the therapeutic window, which can be increased by either raising the resistance of the normal tissue without protecting the tumor cells or by sensitizing the tumor cells but not the normal cells. Two promising candidate genes for normal tissue protection against radiation-induced damage may be the copper-zinc (CuZnSOD) and manganese superoxide-dismutase genes (MnSOD). The recombinant adeno-associated virus 2 (rAAV-2) offers attractive advantages over other vector systems: low immunogenicity, ability to infect dividing and non-dividing tissues and a low chance of insertional mutagenesis, due to extra-chromosomal localization. We report the production of novel rAAV-2-SOD vectors and the investigation of their modulating effects on HeLa-RC cells after irradiation. Material and methods: rAAV-2 vectors were cloned containing the human CuZnSOD or MnSOD as transgene and vector stocks were produced. In the initial experiments human cervix carcinoma (HeLa-RC) cells were chosen for their susceptibility to rAAV-2. On day 0, cells were seeded and transduced with the rAAV-2-SOD vectors. On day 3, cells were harvested, irradiated (0.5-8 Gy) and reseeded in different assays (FACS, SOD, MTT and colony assays). Results: Although >70% of all cells expressed SOD and significant amounts of functional SOD protein were detected, no radioprotective effect of SOD was observed after transduction of HeLa-RC cells. Conclusions: Novel rAAV-2-SOD vectors that could be produced at high titer, were able to efficiently infect cells and express the SOD genes. The absence of a radioprotective effect in HeLa-RC cancer cells indicates an additional safety feature and suggests that rAAV-mediated MnSOD overexpression might contribute to increasing the therapeutic index when applied for normal tissue protection

  20. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice

    Directory of Open Access Journals (Sweden)

    Chu Jin

    2012-01-01

    Full Text Available Abstract Background The 5-lipoxygenase (5LO enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD, and that its genetic absence results in a reduction of Amyloid beta (Aβ levels in the Tg2576 mice. Here by employing an adeno-associated viral (AAV vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. Results Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP, BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. Conclusions These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.

  1. Production, Purification, Crystallization and Preliminary X-ray Structural Studies of Adeno-Associated Virus Serotype 5

    Energy Technology Data Exchange (ETDEWEB)

    DiMattia,M.; Govindasamy, L.; Levy, H.; Whitaker-Gurda, B.; Kohlbrenner, E.; Chiorini, J.; McKenna, R.; Muzyczka, N.; Zolotukhin, S.; Agbandje-McKenna, M.

    2005-01-01

    Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Angstroms resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Angstroms. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  2. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin

    2015-01-01

    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  3. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  4. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  5. A single injection of recombinant adeno-associated virus into the lumbar cistern delivers transgene expression throughout the whole spinal cord

    OpenAIRE

    Guo, Yansu; Wang, Dan; Qiao, Tao; Yang, Chunxing; Su, Qin; Gao, Guangping; Xu, Zuoshang

    2015-01-01

    The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in sixty to ninety percent of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells and endothelial cells. Add...

  6. Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV-B19 hybrid virus.

    OpenAIRE

    Srivastava, C H; Samulski, R J; L. Lu; Larsen, S H; A Srivastava

    1989-01-01

    To facilitate genetic analysis of the human pathogenic parvovirus B19, we constructed a hybrid B19 viral genome in which the defective B19 inverted terminal repeats were replaced with the full-length inverted terminal repeats from a nonpathogenic human parvovirus, the adeno-associated virus 2 (AAV). The hybrid AAV-B19 genome was rescued from a recombinant plasmid and then the DNA was replicated upon transfection into adenovirus 2-infected human KB cells in the presence of AAV genes coding for...

  7. Interference Between Two Adeno-associated Satellite Viruses: a Three-Component System

    Science.gov (United States)

    Torikai, K.; Mayor, H. D.

    1969-01-01

    Adenovirus-associated satellite viruses interfere with the replication of their helper adenoviruses. According to a previous report, this interference is not mediated by interferon. A three-component system comprising simian adenovirus SV15 and satellites types 1 and 4 was studied to determine whether satellite viruses also interfere with one another. Satellite type 1 interfered with the replication of type 4 and vice versa. The degree of interference was directly proportional to the dose of interfering satellite. The events leading to mutual satellite interference were operative during the first 12 hr of replication, the period associated with active synthesis of viral deoxyribonucleic acid. PMID:5786177

  8. Development of Recombinant Adeno-Associated Virus Serotype 2/8 Carrying Kringle Domains of Human Plasminogen for Sustained Expression and Cancer Therapy.

    Science.gov (United States)

    Kuo, Cheng-Hsiang; Chang, Bi-Ing; Lee, Fang-Tzu; Chen, Po-Ku; Lee, Jeng-Shin; Shi, Guey-Yueh; Wu, Hua-Lin

    2015-09-01

    Angiostatin and other plasminogen derivatives exhibit antitumor activities directly or indirectly, have demonstrated promising anticancer effects in preclinical studies, but have mostly failed in clinical trials partly due to their short serum half-lives. Our previous studies demonstrated that recombinant human plasminogen kringle 1-5 (K1-5) has superior antitumor activity compared with angiostatin. In addition, optimization of recombinant K1-5 with three amino acid substitutions enhances its antitumor effect. The current study was thus undertaken to evaluate prolonged expression of optimized K1-5 as cancer gene therapy. The recombinant adeno-associated virus (AAV) vector was used to express a secreted form of the optimized K1-5 (AAV-sK15tm) to improve its pharmacokinetic profile, which was considered to be the hurdle in angiostatin treatment of cancer. We successfully generated high-titer recombinant AAV vectors and observed sustained transgene expression for 567 days after a single injection of virus. The treated animals did not display any visible signs of abnormalities and showed normal serum biochemistry. The therapeutic potential of this treatment modality was demonstrated by both a strong inhibition of lung metastasis in the mouse B16F10 melanoma model and significant growth retardation of Lewis lung carcinoma xenografts in C57BL/6N mice as well as human A2058 melanoma xenografts in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Taken together, our results suggested that AAV-sK15tm produced long-term suppressive effects on cancer growth in vivo and should warrant serious consideration for clinical development. PMID:25950911

  9. Restriction Factors Against Recombinant Adeno-associated Virus Vectormediated Gene Transfer in Dystrophin-deficient Muscles.

    Science.gov (United States)

    Dupont, Jean-Baptiste

    2016-01-01

    Despite the unprecedented beneficial effects of rAAV gene therapy in animal models of Duchenne muscular dystrophy (DMD), the need to inject large amounts of vector in vivo to improve phenotype raises obvious biosafety concerns. While rAAV vectors generally exhibit a good safety profile, specific pathological phenotypes such as those observed in dystrophin-deficient muscles may promote immunotoxic/genotoxic effects. Increasing the therapeutic index of rAAV in DMD muscles by reducing the effective dose could be a pivotal means of ensuring efficient clinical translation. This requires a comprehensive understanding of the rAAV transduction process, which is almost always studied in non-pathological tissues or in vitro. In this review, we focus on the molecular fate of rAAV after injection, and how the individual stages of transduction could be affected in the context of DMD. PMID:27121109

  10. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    Science.gov (United States)

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  11. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints.

    Science.gov (United States)

    Lee, Hannah H; O'Malley, Michael J; Friel, Nicole A; Payne, Karin A; Qiao, Chunping; Xiao, Xiao; Chu, Constance R

    2013-04-01

    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)-luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications. PMID:23496155

  12. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models.

    Science.gov (United States)

    Zhao, Lingzhi; Gottesdiener, Andrew J; Parmar, Mayur; Li, Mingjie; Kaminsky, Stephen M; Chiuchiolo, Maria J; Sondhi, Dolan; Sullivan, Patrick M; Holtzman, David M; Crystal, Ronald G; Paul, Steven M

    2016-08-01

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4. The efficacy of APOE2 to reduce brain Aβ burden in either model, however, was highly dependent on brain APOE2 levels and the amount of pre-existing Aβ and amyloid deposition. We further demonstrate that a widespread reduction of brain Aβ burden can be achieved through a single injection of vector via intrathalamic delivery of AAV expressing APOE2 gene. Our results demonstrate that AAV gene delivery of APOE2 using an AAV vector rescues the detrimental effects of APOE4 on brain amyloid pathology and may represent a viable therapeutic approach for treating or preventing Alzheimer's disease especially if sufficient brain APOE2 levels can be achieved early in the course of the disease. PMID:27318144

  13. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    Science.gov (United States)

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. PMID:18023072

  14. Gene therapy for hemophilia B mediated by recombinant adeno-associated viral vector with hFIXR338A, a high catalytic activity mutation of human coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    陆华中; 陈立; 王红卫; 伍志坚; 吴小兵; 王学峰; 王鸿利; 卢大儒; 邱信芳; 薛京伦

    2001-01-01

    A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ- ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27% ± 3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors development in the treated mice; and (iv) no local or systemic side-effects and toxicity associated with the gene transfer were found. It demonstrated the potential use of treating hemophilia B by recombinant adeno-associated viral vectors with mutant hFIXR338A gene, an alternative strategy for hemophilia B gene therapy to wild-type human factor IX.

  15. Gene therapy for hemophilia B mediated by recombinant adeno-associated viral vector with hFIXR338A, a high catalytic activity mutation of human coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    LU; Huazhong; (

    2001-01-01

    [1]Chang, J., Jin, J., Lollar, P. et al., Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity, J. Bio. Chem., 1998, 273 (20): 12089-12094.[2]Lai, L., Chen, L., Zhou, H. et al., Clinical phenotype and genetic stability of factor IX gene knock out mice, J. Fudan Uni., 1999, 38 (4): 435-438.[3]Wu, Z. J., Wu, X. B., Hou, Y. D., Generation of a recombinant herps simplex virus which can provide packaging function for recombinant adeno-associated virus, Chinese Sci. Bull., 1999, 44 (8): 715-719.[4]Snyder, R. O., Miao, C. H., Patijn, G. A. et al., Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors, Nat. Genet., 1997, 16 (3): 270-276.[5]Lai, L. H., Chen, L., Wang, J. M. et al., Skeletal muscle-specific expression of human blood coagulation factor IX rescues factor IX deficiency mouse by AAV-mediated gene transfer, Science in China, Ser. C, 1999, 42 (6): 628-634.[6]Snyder, R. O., Miao, C., Meuse, L. et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors, Nat. Med., 1999, 5 (1): 64-70.[7]Kung, S. H., Hagstrom, J. N., Cass, D. et al., Human factor IX corrects the bleeding diathesis of mice with hemophilia B, Blood, 1998, 91(3): 784-790.[8]Hirt, B., Selective extraction of polyoma DNA from infected mouse cell culture, J. Mol. Biol., 1967, 26: 365-369.[9]Sambrook, J., Fritsch, E., Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989, 6, 20-21.[10]Chao, H., Samulski, R. J., Bellinger, D. A. et al., Persistent expression of canine factor IX in hemophilia B canines, Gene Ther., 1999, 6: 1695-1704.[11]Kaufman, R. J., Advances toward gene therapy for hemophilia at the millennium, Hum. Gene Ther., 1999, 10 (13): 2091-2107.[12]Lu, D. R., Zhou, J. M., Zheng, B. et al., Stage I clinical trial of gene

  16. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  17. Longitudinal follow-up and characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with adeno-associated viral vectors.

    Science.gov (United States)

    Van der Perren, Anke; Toelen, Jaan; Casteels, Cindy; Macchi, Francesca; Van Rompuy, Anne-Sophie; Sarre, Sophie; Casadei, Nicolas; Nuber, Silke; Himmelreich, Uwe; Osorio Garcia, Maria Isabel; Michotte, Yvette; D'Hooge, Rudi; Bormans, Guy; Van Laere, Koen; Gijsbers, Rik; Van den Haute, Chris; Debyser, Zeger; Baekelandt, Veerle

    2015-03-01

    Testing of new therapeutic strategies for Parkinson's disease (PD) is currently hampered by the lack of relevant and reproducible animal models. Here, we developed a robust rat model for PD by injection of adeno-associated viral vectors (rAAV2/7) encoding α-synuclein into the substantia nigra, resulting in reproducible nigrostriatal pathology and behavioral deficits in a 4-week time period. Progressive dopaminergic dysfunction was corroborated by histopathologic and biochemical analysis, motor behavior testing and in vivo microdialysis. L-DOPA treatment was found to reverse the behavioral phenotype. Non-invasive positron emission tomography imaging and magnetic resonance spectroscopy allowed longitudinal monitoring of neurodegeneration. In addition, insoluble α-synuclein aggregates were formed in this model. This α-synuclein rat model shows improved face and predictive validity, and therefore offers the possibility to reliably test novel therapeutics. Furthermore, it will be of great value for further research into the molecular pathogenesis of PD and the importance of α-synuclein aggregation in the disease process. PMID:25599874

  18. Neuronal tolerance to hypoxia-ischemia through recombinant adeno-associated viral vectors expressing neuronal and inducible nitric oxide synthase An in vivo study

    Institute of Scientific and Technical Information of China (English)

    Chunmei Chen; Weizhong Yang; Chunhua Wang; Songsheng Shi; Jianping Chen; Yong Huang; Dongsheng Cai

    2008-01-01

    BACKGROUND:Studies have confirmed that neuronal nitric oxide synthase(nNOS)mediates neurotoxic effects during the early stages of hypoxia-ischemia,while inducible nitric oxide synthase(iNOS)mediates delayed neurotoxicity during advanced stages of hypoxia-ischemia.OBJECTIVE:This study was designed to observe neuronal apoptosis and the expressions of nNOS,iNOS, p38 mitogen-activated protein kinase(MAPK),and caspase-3 mRNA following transfection of recombinant adeno-associated viral vectors separately expressing nNOS and iNOS antisense(rAAV-AsnNOS and rAVV-AsiNOS,respectively)into rat brains subjected to cerebral ischemia; to analyze mechanisms underlying elevated neuronal tolerance to hypoxia-ischemia.DESIGN:A randomized controlled in vivo experiment.SETTING:Fujian Institute of Neurosurgery & Department of Neurosurgery,Union Hospital,Fujian Medical University. MATERIALS:Eighty healthy adult male Sprague Dawley rats of clean grade were provided by the Zhejiang Laboratory Animal Center,China.The protocol was performed in accordance with ethical guidelines for the use and care of animals.The following vectors,rAAV-AsnNOS,rAAV-AsiNOS,and rAAV expressing the β-galactosidase gene(rAAV-LacZ),were successfully constructed by Fujian Institute of Neurosurgery. Rabbit anti-mouse nitrotyrosine(NT)monoclonal antibody(Zhongshan Jinqiao Biotechnology Co.,Ltd.,Beijing,China)and reverse transcription-polymerase chain reaction(RT-PCR)kit (two-step method)(Promega Company,USA)were used in this study.METHODS:This study was performed at the Fujian Institute of Neurosurgery in December 2003.Sixty rats were randomly divided into 3 groups,with 20 rats in each group:rAAV-AsnNOS group,rAAV-AsiNOS group,and rAAV-LacZ group.The remaining 20 rats served as controls.Pre-treated viral vectors (rAAV-AsnNOS,rAAV-AsiNOS,and rAAV-LacZ,respectively; each 50 μ L,virus titer of 2x109 viral particles/mL)were transfected into the cerebral cortex of the targeted.Phosphate buffer saline(50 μ L

  19. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  20. Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol

    Science.gov (United States)

    Prada, Carlos E; Lopez, Marcos; Castillo, Victor; Echeverria, Luis Eduardo; Serrano, Norma

    2016-01-01

    Background Recent progress in the pathophysiology of heart failure (HF) has led to the development of new therapeutic options such as gene therapy and the use of adeno-associated viral (AAV) vectors. Despite the promising results in early clinical trials of gene therapy for HF, various obstacles have been faced, such as the presence of neutralizing antibodies (NAbs) against the capsid vectors. NAb activity limits vector transduction levels and therefore diminishes the final therapeutic response. Recent studies evaluating the prevalence of NAbs in various populations found considerable geographic variability for each AAV serotype. However, the levels of NAbs in Latin American populations are unknown, becoming a limiting factor to conducting AAV vector therapeutic trials in this population. Objective The goal of this study is to determine for the first time, the prevalence of anti-AAV NAbs for the serotypes 1, 2, and 9 in HF patients from the city of Bucaramanga, Colombia, using the in vitro transduction inhibition assay. Methods We will conduct a cross-sectional study with patients who periodically attend the HF clinic of the Cardiovascular Foundation of Colombia and healthy volunteers matched for age and sex. For all participants, we will evaluate the NAb levels against serotypes AAV1, AAV2, and AAV9. We will determine NAb levels using the in vitro transduction inhibition assay. In addition, participants will answer a survey to evaluate their epidemiological and socioeconomic variables. Participation in the study will be voluntary and all participants will sign an informed consent document before any intervention. Results The project is in the first phase: elaboration of case report forms and the informed consent form, and design of the recruitment strategy. Patient recruitment is expected to begin in the spring of 2016. We expect to have preliminary results, including the titer of the viral vectors, multiplicity of infections that we will use for each serotype

  1. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Hélène Hall

    Full Text Available Intraneuronal inclusions containing alpha-synuclein (a-syn constitute one of the pathological hallmarks of Parkinson's disease (PD and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  2. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice.

    Science.gov (United States)

    Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M; Clark, K Reed; Mendell, Jerry R; Rodino-Klapac, Louise R

    2015-10-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD. PMID:26076707

  3. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.

    Science.gov (United States)

    Jin, Lei; Lange, Wienke; Kempmann, Annika; Maybeck, Vanessa; Günther, Anne; Gruteser, Nadine; Baumann, Arnd; Offenhäusser, Andreas

    2016-09-10

    In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons. PMID:27416794

  4. Adeno-associated virus type 2 rep protein inhibits human papillomavirus type 16 E2 recruitment of the transcriptional coactivator p300.

    Science.gov (United States)

    Marcello, A; Massimi, P; Banks, L; Giacca, M

    2000-10-01

    Infection by human adeno-associated virus type 2 (AAV2) is a possible protective factor in the development of cervical carcinomas associated with human papillomaviruses (HPV). The replicative proteins of AAV2 (Rep) have been implicated in the inhibition of papillomavirus replication and transforming activities, although the molecular events underlying these effects are poorly understood. We observed that each of the four forms of AAV2 Rep inhibited the E1- and E2-driven replication of oncogenic HPV type 16 (HPV16). Rep40, corresponding to the C-terminal domain of all Rep proteins, inhibited both HPV DNA replication and HPV16 E2-mediated transactivation. Rep40 specifically bound the N-terminal transactivation domain of HPV16 E2 both in vitro and in vivo. This interaction was found to specifically disrupt the binding of E2 to the cellular transcriptional coactivator p300. Accordingly, the inhibitory effect of Rep on HPV16 E2 transactivation was rescued by the overexpression of p300. These data indicate a novel role of Rep in the down-regulation of papillomaviruses through inhibition of complex formation between the HPV16 E2 transcriptional activator and its cellular coactivator, p300. PMID:10982355

  5. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    Science.gov (United States)

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway. PMID:25763813

  6. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  7. Comparison of Efficacy of the Disease-Specific LOX1- and Constitutive Cytomegalovirus-Promoters in Expressing Interleukin 10 through Adeno-Associated Virus 2/8 Delivery in Atherosclerotic Mice

    Science.gov (United States)

    Zhu, Hongqing; Cao, Maohua; Mirandola, Leonardo; Figueroa, Jose A.; Cobos, Everardo; Chiriva-Internati, Maurizio; Hermonat, Paul L.

    2014-01-01

    The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of “disease-specific promoters” has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2) using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery. PMID:24736312

  8. Adeno-associated virus Rep78 restricts adenovirus E1B55K-mediated p53 nuclear exportation

    Institute of Scientific and Technical Information of China (English)

    Jingjing Wang; Wenjuan Li; Ran Wang; Jinglun Xue; Jinzhong Chen

    2013-01-01

    Inactivation of p53 is needed during adenovirus type 5 DNA replication.E1B55K,an adenovirus early protein,has been reported to interact with p53 and inhibit p53 transactivation.Previous studies have shown that adenoassociated virus (AAV) type 2 could reduce the transforming potential of adenovirus by rescuing p53 from adenovirus-mediated degradation,but the details are not clear yet.We detected the Rep78-p53 interaction by co-immunoprecipitation assay.The co-localization assay revealed that Rep78 inhibits E1B55K-mediated p53 nuclear exportation.However,Rep78 did not detectably influence p53 stability and could not relieve the transcriptional inactivation of p53,as E1B55K could not be replaced from the p53-E1B55K complex by Rep78.Our results reveal a new possible mechanism that AAV-2 Rep78 inhibits adenovirus 5 by relocalizing p53 in the nucleus,which may shed some light on the regulatory mechanism of AAV-2 on its helper virus,adenovirus.

  9. A Rapid, Cost-Effective Method to Prepare Recombinant Adeno-Associated Virus for Efficient Gene Transfer to the Developing Mouse Inner Ear.

    Science.gov (United States)

    Gomes, Michelle M; Wang, Lingyan; Jiang, Han; Kahl, Christoph A; Brigande, John V

    2016-01-01

    There is keen interest to define gene therapies aimed at restoration of auditory and vestibular function in the diseased or damaged mammalian inner ear. A persistent limitation of regenerative medical strategies that seek to correct or modify gene expression in the sensory epithelia of the inner ear involves efficacious delivery of a therapeutic genetic construct. Our approach is to define methodologies that enable fetal gene transfer to the developing mammalian inner ear in an effort to correct defective gene expression during formation of the sensory epithelia or during early postnatal life. Conceptually, the goal is to atraumatically introduce the genetic construct into the otocyst-staged mouse inner ear and transfect otic progenitors that give rise to sensory hair cells and supporting cells. Our long-term goal is to define therapeutic interventions for congenital deafness and balance disorders with the expectation that the approach may also be exploited for therapeutic intervention postnatally.In the inaugural volume of this series, we introduced electroporation-mediated gene transfer to the developing mouse inner ear that encompassed our mouse survival surgery and transuterine microinjection protocols (Brigande et al., Methods Mol Biol 493:125-139, 2009). In this chapter, we first briefly update our use of sodium pentobarbital anesthesia, our preferred anesthetic for mouse ventral laparotomy, in light of its rapidly escalating cost. Next, we define a rapid, cost-effective method to produce recombinant adeno-associated virus (rAAV) for efficient gene transfer to the developing mouse inner ear. Our immediate goal is to provide a genetic toolkit that will permit the definition and validation of gene therapies in mouse models of human deafness and balance disorders. PMID:27259920

  10. Recombinant adeno-associated virus serotype 9 with p65 ribozyme protects H9c2 cells from oxidative stress through inhibiting NF-κB signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Zhan SUN; Yi-Tong MA; Bang-Dang CHEN; Fen LIU

    2014-01-01

    Background Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. It can trigger inflammatory cascades which are primarily mediated via nuclear factor-κB (NF-κB). The NF-κB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. It has been proved that persistent myocyte NF-κB p65 activation in heart failure exacerbates cardiac remodeling. Mechods A recombinant adeno-associated virus serotype 9 carrying enhanced green fluorescent protein and anti-NF-κB p65 ribozyme (AAV9-R65-CMV-eGFP) was constructed. The cells were assessed by MTT assay, Annexin V–propidium iodide dual staining to study apoptosis. The expression of P65 and P50 were assessed by Western blot to investigate the under-lying molecular mechanisms. Results After stimulation with H2O2 for 6 h, H9c2 cells viability decreased significantly, a large fraction of cells underwent apoptosis. We observed a rescue of H9c2 cells from H2O2-induced apoptosis in pretreatment with AAV9-R65-CMV-eGFP. Moreover, AAV9-R65-CMV-eGFP decreased H2O2-induced P65 expression. Conclusions AAV9-R65-CMV-eGFP protects H9c2 cells from oxidative stress induced apoptosis through down-regulation of P65 expression. These observations indicate that AAV9-R65-CMV-eGFP has the potential to exert cardioprotective effects against oxidative stress, which might be of great importance to clinical efficacy for cardiovascular disease.

  11. [Establishment of hepatitis B virus (HBV) chronic infection mouse model by in vivo transduction with a recombinant adeno-associated virus 8 carrying 1. 3 copies of HBV genome (rAAN8-1. 3HBV)].

    Science.gov (United States)

    Dong, Xiao-Yan; Yu, Chi-Jie; Wang, Gang; Tian, Wen-Hong; Lu, Yue; Zhang, Feng-Wei; Wang, Wen; Wang, Yue; Tan, Wen-Jie; Wu, Xiao-Bing

    2010-11-01

    In this report, we developed a HBV infection model in C57BL/6 mouse line by in vivo injection of a recombinant adeno-associated virus 8 vector carrying 1. 3 copies of HBV genome (ayw subtype) (rAAV8-1. 3HBV). We firstly prepared and purified the rAAV8-1. 3HBV and then injected it into three C57BL/6 mice with the dose of 2 x 10e11vg, respectively. HBsAg and HBeAg were assayed in sera collected at different time points post injection. Ten weeks post injection, the three mice were sacrificed and blood and liver tissue were taken for assay. Copies of HBV DNA were detected by real time PCR and the way of HBV DNA replication was identified by PCR. Subsequently, detection of HBV antigen by immunohistochemistry and pathology analysis of liver tissue of mice were performed. The results suggested that expression of HBsAg and HBeAg lasted for at least 10 weeks in mice sera. Among mice injected with rAAV8-1. 3HBV, HBsAg levels were showed an 'increasing-decreasing-increasing' pattern (the lowest level at the 4th week post injection), while HBeAg levels were kept high and relatively stable. HBV DNA copies were 4.2 x 10(3), 3.6 x 10(3), 2.5 x 10(3) copies/mL in sera and 8.0 x 10(6), 5.7 x 10(6), 2.6 x 10(6) copies/g in hepatic tissues of three mice, respectively. We found that the linear 1. 3HBV DNA in the rAAV8-1. 3HBV could self form into circular HBV genome and replicate in livers of HBV transfected mice. HBsAg and HBcAg were both positive in liver tissue of mice injected with rAAV8-1. 3HBV and no obvious pathological characters were found in liver of mice injected with rAAV8-1. 3HBV. In conclusion, we successfully developed a HBV chronic infection model in C57BL/6 mouse line by in vivo transduction with the recombinant virus rAAV8-1. 3HBV, in which HBV genes could be continuously expressed and replicated over 10 weeks, and paved a way for further characterization of the human chronic hepatitis B virus infection and evaluation of vaccine and anti-HBV agents. PMID:21344744

  12. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model

    Institute of Scientific and Technical Information of China (English)

    Sung Yi Hong; Myun Hee Lee; Kyung Sup Kim; Hyun Cheol Jung; Jae Kyung Roh; Woo Jin Hyung; Sung Hoon Noh; Seung Ho Choi

    2004-01-01

    AIM: rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer. However,a sustained and high protein delivery is required to achieve the desired therapeutic effects. We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model.METHODS: rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines. To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin, Western blotting and ELISA were performed. The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays.The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor, etoposide, were evaluated in a mouse liver tumor model.RESULTS: Topoisomerase inhibitors, including camptothecin and etoposide, were found to increase the endostatin expression level in vitro. The over-expressed endostatin,as a result of pretreatment with a topoisomerase inhibitor,was also biologically active. In animal experiments, the combined therapy of topoisomerase inhibitor, etoposide with the rAAV-endostatin vector had the best tumorsuppressive effect and tumor foci were barely observed in livers of the treated mice. Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice. Finally, the mice treated with rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models.CONCLUSION: rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.

  13. Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Tandon Apurva

    2011-08-01

    Full Text Available Abstract Background In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2 induces apoptosis in Human Papillomavirus (HPV positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive, as well as MDA-MB-231 (highly invasive human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs isolated from tissue biopsies of patients undergoing breast reduction surgery. Results AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. Conclusion AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated

  14. 重组8型腺相关病毒介导HBV急性感染树鼩模型建立%Establishment of a tree shrew model of acute hepatitis B virus infection by transduction with a recombinant adeno-associated virus 8 carrying 1.3 copies of HBV genome

    Institute of Scientific and Technical Information of China (English)

    曾扬; 吴小红; 胡靓雅; 刘晨风; 于虹; 郭彦; 周勇; 孙世惠; 周育森

    2013-01-01

    目的 利用重组8型腺相关病毒介导1.3拷贝HBV基因组(1.3HBV,ayw亚型)在树鼩肝脏表达,建立HBV急性感染树鼩模型.方法 通过大腿内侧静脉注射将携带有1.3 HBV的重组8型腺相关病毒(recombinant adeno-associated virus 8,rAAV8-1.3HBV)导入树鼩肝脏,通过ELISA检测树鼩血清中HBsAg、HBeAg、HBsAb、HBeAb、HBcAb,荧光定量PCR检测树鼩肝脏和血清中HBV DNA,全自动生化分析仪检测血清中ALT水平,并观察感染后肝脏的病变情况.结果 HBV感染主要血清标志物1~2周内均检测阳性;30 d后肝组织仍可检测到病毒抗原阳性细胞;55 d时肝组织HBV DNA拷贝数仍可达到104~105;树鼩血清中HBV DNA拷贝数持续一个月高于正常组;肝组织炎细胞略增多,血清ALT水平持续升高.结论 rAAV8所携带的HBV基因组高效专一导入树鼩肝细胞并复制表达,成功建立HBV急性感染树鼩模型,为进一步探索rAAV8树鼩慢性感染模型打下一定的基础.%Objective To establish a tree shrew model of acute hepatitis B virus infection by injection of a recombinant adeno-associated virus 8 vector carrying 1.3 copies of HBV genome (ayw subtype) (rAAV8-1.3 HBV)into the liver of tree shrews.Methods Serum and liver tissues were collected at indicated times after i.v.injection of rAAV8-1.3 HBV into the tree shrews.The HBsAg,BeAg,HBsAb,HBeAb,HBcAb,ALT and HBV virus load were examined by ELISA and real-time PCR,respectively.The expression of HBcAg and pathological changes in the liver were also observed after the rAAV8-1.3 HBV infection.Results Markers of serum HBV were all positive 2 weeks after and HBcAg-positive hepatocytes were even detected in the liver 55 days after rAAV8-1.3 HBV injection.The copies of HBV DNA in liver reached 104-105 at 55 days after rAAV8-1.3HBV injection.Serum HBV DNA could be detected for over one month.Mild pathological changes with elevated ALT were observed after rAAV8-1.3 HBV injection.Conclusions A tree shrew

  15. Cloning of avian adeno-associated virus genome and rescue of the infectious virus%禽腺联病毒全基因组的克隆及感染性病毒的拯救

    Institute of Scientific and Technical Information of China (English)

    王建业; 孙怀昌; 朱国强

    2007-01-01

    为了克隆禽腺联病毒(Avian adeno-associated virus,AAAV)全基因组用于构建基因转移载体研究,以鸡胚致死孤儿病毒(CELO)作为辅助病毒与AAAV共接种SPF鸡胚进行AAAV的增殖,将AAAV约4.7 kb双链基因组DNA与pCR2.1载体连接,构建了含AAAV全基因组的重组质粒pAAAV并进行了测序.序列分析表明,AAAV YZ-1株的基因组为4 684 bp,两端具有141 bp的末端倒置重复序列和Rep蛋白结合位点特征序列,与GenBank中收录的AAAV DA-1株和VR-865株的核苷酸序列同源性分别为95.0%和92.2%.将pAAAV质粒转染CELO病毒感染的鸡胚肝细胞系,获得了感染性AAAV病毒粒子,结果证明克隆的AAAV基因组中存在与病毒复制和包装相关的正确关键序列,可用于重组AAAV载体的构建.

  16. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure

    Institute of Scientific and Technical Information of China (English)

    Jiang-tao YAN; Tao WANG; Juan LI; Xiao XIAO; Dao-wen WANG

    2008-01-01

    Aim: To investigate the effects of the expression of human kallikrein (HK) on basal level blood pressure and high-salt diet-induced hypertension. Methods: We delivered the recombinant adeno-associated viral (rAAV)-mediated HK (rAAV-HK) gene and rAAV-LacZ (as the control) to normal, adult Sprague-Dawley rats. The animals were administered a normal diet in the first 4 weeks, followed by a high-salt diet. The expression of HK in the rats was assessed by ELISA and RT-PCR. Blood pressure and Na~ and K~ urinary excretion were monitored. Results: Under the normal diet, no obvious changes in blood pressure and Na+ and K+ urinary excretion were observed. When the high-salt diet was administered, sys-tolic blood pressure in the control animals receiving rAAV-LacZ increased from 122.3±1. 13 mmHg to a stable 142.4±1.77 mmHg 8 weeks after the high-salt diet. In contrast, there was no significant increase in the blood pressure in the rAAV-HK-treated group, in which the blood pressure remained at 121.9±1.73 mmHg. In the rAAV-HK-treated group, Na+ and K+ urinary excretion were higher compared to those of the control group. The morphological analysis showed that HK delivery remarkably protected against renal damage induced by a high-salt intake. Conclusion: Our study indicates that rAAV-mediated human tissue kallikrein gene delivery is a potentially safe method for the long-term treatment of hypertension. More importantly, it could be applied in the salt-sensitive population to prevent the occurrence of hypertension.

  17. Evolutionary Relationships among Parvoviruses: Virus-Host Coevolution among Autonomous Primate Parvoviruses and Links between Adeno-Associated and Avian Parvoviruses

    OpenAIRE

    Lukashov, Vladimir V.; Goudsmit, Jaap

    2001-01-01

    The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41 viruses currently recognized as individual species within the family Parvoviridae. Our phylogenetic analysis of full-length genomes as well as open reading frames distinguished three evolutionary ...

  18. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    Science.gov (United States)

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  19. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    Science.gov (United States)

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  20. Construction of small interfering RNA vector targeting Atp6i and T cell immune response cDNA7 and preparation of its recombinant adeno-associated virus particle%靶向Atp6i和T细胞免疫应答cDNA7的小干扰RNA载体构建及其腺相关病毒重组颗粒的制备

    Institute of Scientific and Technical Information of China (English)

    张丽杰

    2012-01-01

    Objective To construct the recombinant RNA interference vector targeting Atp6i and T cell immune response cDNA7 (TIRC7),and to prepare its recombinant AAV particle in order to provide evidence for gene therapy for diseases using the recombinant RNA interference vector in vivo and in vitro.Methods Sequences of small interference iRNA targeting the common region of Atp6i and TIRC7 genes were designed and connected to the pAAV.H1 vector linearized by enzyme digestion of Xba Ⅰ and Bgl Ⅱ and then transformed into DH5α where plasmid was identified using enzyme digestion for sequencing analysis.The identified siRNA sequences,pAAV-RC and pHelper were used to transfect AAV-293 cells by calcium phosphate precipitation method for recombinant AAV.H1Atp6i particle,with phosphate buffer solution(PBS)used in blank control group and AAV.H1Luc in negative control group.The transfection efficiency was then observed by fluorescence microscopy.Western blotting was used to detect the effects of the recombinant AAV.H1Atp6i particle on TIRC7 protein.Results The recombinant siRNA targeting Atp6i and TIRC7 was successfully constructed.Furthermore,AAV-293 cells were successfully transfected by the recombinant particle,pAAV-RC and pHelper,with the transfection efficiency being almost 100%.And the recombinant AAV.H1Atp6i particle was successfully packed and obtained.Western blotting showed the expressions of TIRC7 protein in blank control,negative control and AAV.H1Atp6i treatment groups,with the molecular weight being 75 000.Nevertheless,the TIRC7 expression was decreased by 80% in AAV.H1Atp6i treatment group as compared with that in blank control and negative control groups (0.271±0.072 vs 0.988±0.042 and 0.992±0.053,all P<0.05).Conclusion The recombinant siRNA targeting Atp6i and TIRC7 and recombinant AAV.H1Atp6i particle are both successfully obtained,which may exhibit interference on TIRC7 expression.%目的 构建靶向Atp6i和T细胞免疫应答cDNA7(TIRC7)的RNA干扰

  1. Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells.

    OpenAIRE

    Wang, X S; Yoder, M C; Zhou, S. Z.; A Srivastava

    1995-01-01

    The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells. Although the target cell specificity for B19 infection has been suggested to be mediated by the erythrocyte P-antigen receptor (globoside), a number of nonerythroid cells that express this receptor are nonpermissive for B19 replication. To directly test the role of expression from the B19 promoter at map unit 6 (B19p6) in the erythroid cell specificity of B1...

  2. 重组腺相关病毒介导遗传性色盲基因治疗的研究进展%Advance in recombinant adeno-associated virus mediated gene therapy for color blindness

    Institute of Scientific and Technical Information of China (English)

    杨红霞; 邱一果

    2013-01-01

    色盲是缺乏或完全没有辨色能力的一类遗传性疾病,长期被认为是不可治愈性疾病.近年来以腺相关病毒(AAV)为载体介导的基因疗法主要用于对由视蛋白缺乏引起的红绿色盲及由视锥细胞环核苷酸门控离子通道A3(CNGA3)A或B(CNGB3)亚单位基因缺失引起的全色盲的治疗,已在动物实验中获得成功.人类色盲患者与一些实验动物存在着相同的基因缺陷,因此相关的动物实验研究结果用AAV介导的基因疗法为色盲患者进行治疗提供了有用的信息.%Color blindness represents a group of vision disorders characterized by lack of ability to distinguish different colors.The inherited color blindness has been regarded as incurable for a long period of time.Recently,adeno-associated virus(AAV) mediated gene therapy has successfully restored cone system vision in animal models with color blindness caused by different gene mutations.These mutations are presented in human color blindness patients.It is predicted that gene therapy will become a novel treatment for these color blindness victims.In addition,a single gene transfer may achieve long-term correction of color deficiency.

  3. 重组腺相关病毒2型/人凝血因子IX的质量研究%Quality control of recombinant adeno-associated virus type 2/human blood coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    高凯; 王军志; 饶春明; 吴小兵

    2003-01-01

    目的研究并建立重组腺相关病毒2型/人凝血因子IX(recombinant adeno-associated virus type 2/human blood coagulation factor IX,rAAV-2/hFIX)的质量标准.方法采用PCR法确认病毒所携带的重组核酸结构和测定辅助病毒(helper virus)和野生型腺相关病毒(wtAAV)的残留片段.SDS-PAGE电泳测定病毒外壳蛋白分子量及纯度,TSK gel SP-NPR阳离子交换柱系统测定病毒颗粒纯度.以斑点杂交法测定病毒颗粒数.一期法于IX因子基因剔除小鼠体内测定rAAV-2/hFIX生物学活性,并通过ELISA法测定感染BHK-21细胞后hFIX的表达量.结果 PCR法确证病毒的重组核酸结构与构建预期相同;在1×107 VG的rAAV-2/hFIX颗粒中,残留辅助病毒的基因片段数少于1个拷贝;在1×108 VG的rAAV-2/hFIX颗粒中,野生型AAV-2基因片段数少于1个拷贝.病毒颗粒及外壳蛋白纯度均大于98%,病毒颗粒数大于1.0×1015 VG*L-1(virus genome*L-1).IX因子剔除小鼠肌肉注射病毒后21 d,小鼠血液中人凝血因子IX活性达到大于正常人因子IX活性的15%,IX因子的体外表达水平大于20.0 μg*L-1.其他各项检测指标均符合规定.结论建立了rAAV-2/hFIX的质量标准,用于控制产品质量.

  4. Culture of 293 cells for the package of adeno-associated viruses%用于包装腺相关病毒293细胞的培养

    Institute of Scientific and Technical Information of China (English)

    魏佳军; 张苏明; 徐金枝

    2007-01-01

    BACKGROUND: As a main gene engineering vector, adeno-associated virus (AAV) is characterized by its extensive host cells, lasting and stable expression and less immune response to hosts, and is applied widely. But AAV is a kind of defective virus, and need incasing cells to supply E1 protein. As important and special AAV incasing cells, AAV-293 cells can produce E1 in trans. But AAV-293 cells are delicated and cultivated difficultly, and the biological character is easy to be changed. Therefore, it is necessary to establish a culture method of AAV-293 cells to meet the need of gene engineering.OBJECTIVE: To establish a culture method of AAV-293 cells in vitro.DESIGN: An opening study.SETTING: Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: AAV-293 cells line was provided by Stratagene Corporation; high-carbohydrate OMEM (H-DMEM) powder by Gibco Company; there plasmids in AAV Helper-Free by Stratagene Company.METHODS: This experiment was carried out in the neurology laboratory of Tongji Hospital in Wuhan during the period from October 2006 to April 2007. AAV-293 cells were resuscitated and cultivated with H-DMEM growth medium in vitro, and were passaged and stored in liquid nitrogen when the cells monolayer confluence reached 50%. At the same time, their growing state was observed by inverted microscope, and their growth curve was noted. According to whether AAV-293 cells could give out green fluorescence or not (observed by fluorescence inverted microscope) after they were cotransfected with the there AAV system plasmids and infected with AAV supernatant, their biological character of packing AAV was assessed.MAIN OUTCOME MEASURES: ① Morphological observation of AAV-293 cells; ② the growth curve; ③ the package of AAV.RESULTS: ① AAV-293 cells observed by fluorescence inverted microscope were growing adhesively well with irregular polygons, light endochylemas and ambiguous nuclei

  5. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  6. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  7. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes.

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Prasadan, Krishna; Shiota, Chiyo; Peirish, Lauren; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Wiersch, John; El-Gohary, Yousef; Husain, Sohail Z; Gittes, George K

    2014-12-01

    Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.

  8. Long-term Rescue of a Lethal Murine Model of Methylmalonic Acidemia Using Adeno associated Viral Gene Therapy

    OpenAIRE

    Chandler, Randy J.; Venditti, Charles P

    2009-01-01

    Methylmalonic acidemia (MMA) is an organic acidemia caused by deficient activity of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). This disorder is associated with lethal metabolic instability and carries a poor prognosis for long-term survival. A murine model of MMA that replicates a severe clinical phenotype was used to examine the efficacy of recombinant adeno-associated virus (rAAV) serotype 8 gene therapy as a treatment for MMA. Lifespan extension, body weight, circulating meta...

  9. Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy.

    Science.gov (United States)

    Yu, Miao; He, Yonglin; Wang, Kejian; Zhang, Peng; Zhang, Shengle; Hu, Huaiyu

    2013-03-01

    Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, and fukutin, creating the possibilities of a one-for-all gene therapy. To determine the feasibility of LARGE gene therapy, a serotype 9 adeno-associated viral vector for overexpressing LARGE (AAV9-LARGE) was injected intracardially into newborns of two mouse models of CMD: the natural LARGE mutant Large(myd) mice and protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice. AAV9-LARGE virus treatment yielded partial restoration of α-DG glycosylation and ligand-binding activity. The muscular dystrophy phenotype in skeletal muscles was ameliorated as revealed by significantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with improved motor function. These results indicate that LARGE overexpression in vivo by AAV9-mediated gene therapy is effective at restoring functional glycosylation of α-DG and rescuing the muscular dystrophy phenotype in deficiency of not only LARGE but also POMGnT1, providing evidence that in vivo LARGE gene therapy may be broadly useful in dystroglycanopathies. PMID:23379513

  10. 禽腺联病毒Rep78和VP3蛋白的原核表达及抗血清制备%Prokaryotic expression of the Rep78 and VP3 proteins of avian adeno-associated virus and preparation of specific antisera

    Institute of Scientific and Technical Information of China (English)

    王建业; 孙怀昌; 朱国强

    2008-01-01

    分别将禽腺联病毒(Avian adeno-associated virus,AAAV)的Rep78基因和VP3基因克隆入pET-47b原核表达载体并转化BL21(DE3)大肠杆菌,在1PTG的诱导下2种目的蛋白均成功得到了表达.SDS-PAGE显示,Rep78蛋白的相对分子质量约为85 000,而VP3蛋白相对分子质量约为60 000.Western-blot分析显示,表达产物均能与抗AAAV的阳性血清反应.将目的蛋白切胶免疫BALB/c小鼠分别制备了针对2种蛋白的多克隆血清.间接免疫荧光试验显示制备的抗血清能够与AAAV抗原特异反应.不与鸡胚致死孤儿病毒(CELO)抗原反应.结果表明,制备的抗Rep78和VP3蛋白的血清可以用于检测重组AAAV载体制备过程中Rep和Cap基因的表达水平.

  11. Potential for cellular stress response to hepatic factor VIII expression from AAV vector

    Science.gov (United States)

    Zolotukhin, Irene; Markusic, David M; Palaschak, Brett; Hoffman, Brad E; Srikanthan, Meera A; Herzog, Roland W

    2016-01-01

    Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity. PMID:27738644

  12. Enhanced transduction of mouse salivary glands with AAV5-based vectors

    NARCIS (Netherlands)

    H. Katano; M.R. Kok; A.P. Cotrim; S. Yamano; M. Schmidt; S. Afione; B.J. Baum; J.A. Chiorini

    2006-01-01

    We previously demonstrated that recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in salivary gland cells in vitro and in vivo. However, it is not known how other rAAV serotypes perform when infused into salivary glands. The capsids of serotypes 4

  13. Effects of adeno-associated virus-mediated klotho gene delivery on the expression of runx2 and MMP-13 gene in the bone of the ovariectomy rats%腺相关病毒介导的klotho基因表达对去势大鼠骨Runx2及MMP-13表达的影响

    Institute of Scientific and Technical Information of China (English)

    王艳娇; 马厚勋; 李宝善; 吴平

    2012-01-01

    目的 探讨腺相关病毒介导的klotho(KL)基因表达对去势骨质疏松大鼠的调控作用.方法 SD雌性大鼠随机分为假手术组(S组)和手术组,外科去势术后12周再随机分为模型组(O组)、17β-雌二醇组(E组)、KL基因组(KO组)和空质粒组(GO组),实验12周后处死.取股骨、胫骨测骨密度;冰冻切片及免疫组化法观察肾KL荧光及KL蛋白表达;RT-PCR和免疫组化法检测骨Runx2、MMP-13 mRNA及蛋白表达;HE染色观察骨组织形态学变化.结果 KO组和E组骨密度高于O组和GO组(P<0.05);KO组大鼠肾有小鼠KL基因特异性表达;与O组相比,KO组Runx2 mRNA表达明显上调,MMP-13 mRNA表达显著下调(P<0.05);免疫组化分析KO组Runx2吸光度值为411±96,显著高于O组的353±50(P<0.05);KO组MMP-13吸光度值为397±84,显著低于O组的656±89(P<0.05).KO组、E组和S组大鼠骨小梁排列紧密,连接成网,形态结构较完整,明显优于O组和GO组.结论 KL基因表达上调可减缓去势大鼠骨质疏松症的发展及骨组织微结构的破坏,提示KL基因可能在骨质疏松症的发展中扮演重要角色.%Objective To research the effect of the recombinant adeno-associated virus vector containing klotho gene delivery on the regulating of osteoporosis in ovariectomized rats. Methods Female SD rats were randomly divided into sham operation group (S group) and model group. Model was successfully constructed with ovariectomy after 12 weeks,they were randomly divided into model group (0 group), 17(β-estradiol (E group), klotho gene group (K0 group), empty vector group (GO group), all were sacrificed after 12 weeks. Bone mineral density (BMD) of the femurs and tibia were measured. The fluorescent expression of renal klotho was observed by Cryo-sectioning technique. The Runx2 and MMP-13 mRNA expression of bone tissue were detected by reverse transcription-polymerase chain reaction(RT-PCR). Expression of klotho protein in kidney and Runx

  14. 腺相关病毒介导重组血管抑素联合雷公藤红素对大鼠颅内C6胶质瘤的抗血管生成作用%Anti-angiogenesis effect of adeno-associated virus-mediated recombinant angiostatin combined with celastrol on intracranial C6 glioma in rats

    Institute of Scientific and Technical Information of China (English)

    王冠; 周洁; 冯珂珂; 田麒

    2011-01-01

    目的:腺相关病毒(adeno-associated virus,AAV)介导的重组血管抑素(angiostatin,AS)联合应用雷公藤红素( celastrol)治疗大鼠颅内C6胶质瘤,观察其对肿瘤体积、新生血管密度及肿瘤细胞凋亡的影响,探讨抗血管生成重组基因联合雷公藤红素对胶质瘤治疗的前景.方法:建立颅内原位荷C6脑胶质瘤大鼠模型,7d后随机分为4组,分别给予0.9%氯化钠溶液(作为对照)、AAV-AS、雷公藤红素及两者联合用药.每隔7d行头部强化MRI检查,计算肿瘤体积.于22 d后处死动物,检测AS蛋白表达、血管密度及肿瘤细胞凋亡情况.结果:联合治疗组及AAV-AS治疗组均检测到AS蛋白表达,证实基因转导成功.联合治疗组第22天时肿瘤体积、血管密度和凋亡指数均与对照组、雷公藤红素组及AAV-AS治疗组相比差异有统计学意义(P<0.05),联合治疗可以抑制肿瘤生长,降低新生血管密度,促进肿瘤细胞凋亡.结论:基因治疗联合雷公藤红素可通过抑制胶质瘤血管生成而抑制肿瘤生长;两者联合应用具有协同作用,可弥补两者单独应用的不足之处.%Objective: To examine the effects of therapeutic alliance of adeno-associated virus-mediated recombinant angiostatin (AAV-AS) combined with celastrol on tumor growth, microvessel density and apoptosis of intracranial glioma in rats, and to give a prospective of this therapeutic alliance. Methods: A rat intracranial C6 glioma model was established, and then the rats (n=40) were randomly assigned into four groups after 7 days, which were saline control group, AAV-AS group, celastrol group and therapeutic alliance group. The tumor growth was examined by magnetic resonance imaging (MRI) every 7 days, and the volume of tumor was calculated. The rats were killed after 22 days, and the expression of AS protein, the microvessel density and the apoptosis of tumor cells were detected. Results: The expression of AS protein was detectable in AAV

  15. Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression

    OpenAIRE

    Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Zhang, Feijie; Grompe, Markus; Kay, Mark A

    2012-01-01

    Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences cap...

  16. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector

    OpenAIRE

    Eric Zinn; Simon Pacouret; Vadim Khaychuk; Heikki T. Turunen; Livia S. Carvalho; Eva Andres-Mateos; Samiksha Shah; Rajani Shelke; Anna C. Maurer; Eva Plovie; Ru Xiao; Luk H. Vandenberghe

    2015-01-01

    Adeno-associated virus (AAV) vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagent...

  17. Repair effects of co-expression of the VEGF and BMP genes via an adeno-associated viral vector on early steroid-in-duced avascular necrosis of the femoral head in rabbits%重组腺相关病毒介导VEGF和BMP双基因共表达对兔早期激素性股骨头坏死的修复作用

    Institute of Scientific and Technical Information of China (English)

    张晨; 李兴华; 李苗; 唐一仑; 时志斌; 党晓谦; 王坤正

    2014-01-01

    (AAV-VEGF/BMP)groups. The four group virus vectors were injected into core decompression region at the dose of 25μl/site after core decompression operation directly. Repair effects of rAAV vector on early SANFH in rabbits were evaluated by Western blot assay, HE staining, immunohistochemical staining, MRI, radionuclide bone scan, blood vessel counting detected by ink perfusion and fro-zen section, Micro-CT and biomechanical strength detection on the 12th week post-injection. Results Model success ratio was 73.33%. rAAV-hVEGF165-IRES-hBMP-7 virus vector efficiently expressed hVEGF165 and hBMP-7 genes on the 12th week after rAAV injection. hVEGF165 protein secreted in vivo promoted metabolism in core decompression region by increasing the quantity of new vessels and improving the blood supply;hBMP-7 protein secreted in vivo promoted new bone formation in core decompres-sion region by increasing bone mineral density and improving bone biomechanical strength. The AAV-VEGF/BMP group can pro-mote repair effects more effectively than AAV-VEGF group or AAV-BMP group. Conclusion The adeno-associated viral vectors co-expressing hVEGF165 and hBMP-7 can promote repair effects on early SANFH in rabbits by increasing the blood supply and strengthening the bone quality of femoral head.

  18. Vector independent transmission of the vector-borne bluetongue virus

    NARCIS (Netherlands)

    Sluijs, van der M.T.W.; Smit, de A.J.; Moormann, R.J.M.

    2015-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from

  19. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    OpenAIRE

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    BACKGROUND: Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector ove...

  20. 重组8型腺相关病毒介导双荧光素酶基因在小鼠体内的表达%Recombinant adeno-associated virus type 8 mediated dual-luciferase gene expression in mouse

    Institute of Scientific and Technical Information of China (English)

    王刚; 尉迟捷; 董小岩; 田文洪; 吴小兵

    2012-01-01

    目的 利用共表达的分泌型荧光素酶Gluc(gaussia princeps luciferase)和非分泌型荧光素酶Fluc(firefly luciferase)研究重组8型腺相关病毒(recombinant adeno-associated virus type 8,rAAV8)介导的转基因在小鼠体内的表达特点.方法 制备携带双荧光素酶基因的重组8型腺相关病毒rAAV8-Gluc/Fluc,体外感染HEK293细胞并检测上清和胞内Gluc和Fluc活性;将不同剂量的rAAV8-Gluc/Fluc尾静脉注射或肌内注射至BALB/c小鼠,通过尾静脉采血检测Gluc活性,通过活体成像和裂解组织检测Fluc活性.结果 成功制备了rAAV8-Gluc/Fluc,可以有效感染HEK293细胞,同时分泌表达Gluc和胞内表达Fluc;尾静脉注射或肌内注射rAAV8-Gluc/Fluc至小鼠后,外周血Gluc活性均在注射后10 ~20 d达到高峰并稳定持续120 d以上,Gluc活性随注射剂量增加而增高;静脉注射rAAV8-Gluc/Fluc时Fluc主要在肝脏表达,在骨骼肌和心肌有少量表达,而肌内注射时Fluc既在肌内注射局部表达同时也在肝脏中表达.结论 本研究成功制备了携带双荧光素酶基因rAAV8-Gluc/Fluc,研究了其介导的转基因在小鼠体内的表达特点,为rAAV8的临床前应用打下基础.%Objective Recombinant adeno-associated virus type 8 (rAAV8) mediating transgene expression in mice was investigated using co-expressed report gene of secreted Gaussia princeps luciferase (Gluc) and non-secreted firefly luciferase(Fluc).Methods rAAV8-Gluc/Fluc was prepared and infected HEK293 cells to test its performance in vitro.BALB/c mice were received rAAV8-Gluc/Fluc at different doses by intravenous injection (iv) or intramuscular injection (im).Then Gluc activities in blood were measured,the whole-body images for Fluc activities were performed and Fluc activities of tissue lysate were also detected.Results rAAV8-Gluc/Fluc was successfully prepared and could infected HEK293 cells.The Gluc was mainly detected in the culture media while the Fluc was mainly

  1. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of AAV and lentiviral vectors

    OpenAIRE

    Nathanson, Jason L.; Yanagawa, Yuchio; OBATA, Kunihiko; Edward M Callaway

    2009-01-01

    Despite increasingly widespread use of recombinant adeno-associated virus (AAV) and lentiviral (LV) vectors for transduction of neurons in a wide range of brain structures and species, the diversity of cell types within a given brain structure is rarely considered. For example, the ability of a vector to transduce neurons within a brain structure is often assumed to indicate that all neuron types within the structure are transduced. We have characterized the transduction of mouse somatosensor...

  2. 两种不同病毒载体携带靶向大鼠金属蛋白酶组织抑制因子(TIMP)-1小干扰RNA抗肝纤维化作用的比较%Comparison between the antifibrotic effects of adeno-associated virus and lentivirus carrying small interfering RNA of TIMP-1 in rat liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    马雪梅; 张群; 庞国进; 丛敏

    2013-01-01

    Objective To construct recombinant adeno-associated virus and lentivirus carrying siRNA of TIMP-1 and to investigate their antifibrotic effects on CCl4-induced liver fibrosis in rats.Methods One pair of siRNA which could effectively inhibit expression of the TIMP-1 gene in HSC-T6 was screened and cloned into AAV vector and lentiviral vector to construct the recombinant AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1.AAV/EGFP and Lenti/EGFP as negative control were also obtained.Fifty-eight male Wistar rats were randomly divided into six groups:control group (n =8),CCl4 group,AAV/EGFP,Lenti/EGFP,AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups (all n =10).After the administration of CCl4 for four weeks,liver samples were collected for the immunohistochemical staining and detection of TIMP-1 expression.Results Livers from the control rats showed normal lobular structure around vessels (HE and Masson staining).In contrast,livers from the model,AAV/EGFP and Lenti/EGFP groups showed severe fibrosis,including septal fibrosis,extensive bridging,and fatty degeneration.The expressions of TIMP-1 mRNA and protein were also elevated in the livers from these groups.Compared with the fibrosis model group,the AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups showed good preservation of liver lobular architecture and only mild bridging fibrosis,accompanied by decreased expression of TIMP-1 mRNA and protein.Semi-quantitative analysis of the fibrosis stage indicated that most rats in the model,AAV/EGFP and Lenti/EGFP groups were of S3 and S4 (80%),while 20% of the rats were of S5.In contrast,most rats (90%) in the AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups were of stages S2 and S3,with only one rat of S4.There was no significant difference between these recombinant virus therapy groups.Conclusions Both AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 can suppress the expression of TIMP-1 in rat fibrotic liver,playing an effective antifibrotic role in the rat liver.%目的 观察以腺相关病

  3. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  4. 重组腺相关病毒转导人树突状细胞体外诱导抗肝癌免疫应答%Generation of antitumor response against hepatocellular carcinoma by in vitro transduction of dendritic cells with adeno-associated virus expressing α-fetoprotein

    Institute of Scientific and Technical Information of China (English)

    杜文贞; 于天霞

    2011-01-01

    Objective To investigate the generation of antitumor response against hepatocellular carcinoma by in vitro transduction of dendritic cells (DC)with recombinant adeno-associated virus expressing α-fetoprotein (rAAV-AFP). Methods Peripheral blood mononuclear cells were isolated from healthy volunteers. Adherent peripheral blood mononuclear cells were transduced with AAV-AFP and cultured in the presence of granulocyte macrophage colony stimulating factor and interleukin-4 to generate dendritic cells.MTS assay was used to measure the ability of DC transduced with AAV-AFP ( AAV-AFP + DC) to stimulate the proliferation of T cell. The phenotype and AFP protein expression of DC and the secretion of IFN (interferon)-γ and IL (interleukin)-4 by T cells were detected by flow cytometry. The killing efficacy of cytotoxic T lymphocytes (CTL) activated by AAV-AFP + DC against AFP positive hepatocellular carcinoma cell lines was detected by lactate dehydrogenase (LDH) release assay. Results AAV-AFP + DC expressed HLA Ⅰ (97. 12%), HLAⅡ (97.32%), CD80(38.94%), CD83(60.84%)and CD86(98. 14%). AFP was secreted by 81.2% of AAV-AFP + DC. And it could stimulate effectively the proliferation of T cell.19. 84% of CD4 + T cells and 18.65% of CD8 + T cells activated by AAV-AFP + DC produced IFN-γbut not IL-4 and showed distinct killing activities against AFP positive hepatocellular carcinoma cell lines HepG2 (56. 45% ) and BEL7402 (78. 84% ). Conclusion AAV-AFP + DC can elicit distinct antitumor responses against AFP positive hepatocellular carcinoma cell lines so as to provide a basis for further researches on the clinical application of AAV-AFP + DC in the treatment of hepatocellular carcinoma.%目的 探讨携带甲胎蛋白基因的重组腺相关病毒(rAAV-AFP)转导人树突状细胞(DC)体外诱导抗肝癌免疫应答.方法 分离健康志愿者外周血单核细胞,贴壁细胞转导rAAV-AFP后,在粒细胞巨噬细胞集落刺激因子(GMCSF)和白细胞介素4(IL-4)的联

  5. 重组腺相关病毒神经肽Y基因转染对癫(癎)大鼠海马病理变化的影响%Effect of recombinant adeno-associated virus-mediated human-derived neuropeptide Y gene transfection on pathological change of the hippocampus in epileptic rat

    Institute of Scientific and Technical Information of China (English)

    董长征; 董秀芳; 李文玲; 岳向勇; 郭韬; 梁传栋; 赵文清

    2012-01-01

    目的 观察重组腺相关病毒介导人源性神经肽Y(rAA V-hNPY-EGFP)基因转染对癫(癎)大鼠海马病理变化的影响.方法 28只Wistar大鼠随机分为点燃组(n=20)和正常对照组(n=8).正常对照组不进行特殊处理,点燃组以大鼠海马内多次注射红藻氨酸(KA)建立慢性癫(癎)模型,造模成功16只,其随机分为模型组和神经肽Y(NPY)治疗组,每组各8只大鼠.NPY治疗组大鼠转染rAA V2/I- hNPY-EGFP基因,模型组未转染.转染4周后,每组取6只大鼠海马行苏木精-伊红染色,2只行电镜观察.结果 苏木精-伊红染色显示:正常对照组大鼠海马CA3区神经元形态正常;模型组海马CA3区神经元丢失,胶质细胞增生;NPY治疗组基因转染后神经元丢失减少.模型组神经元数目为(10.67±7.87)个/视野,正常对照组为(81.42±5.63)个/视野,明显多于模型组(P<0.05);而NPY治疗组神经元数目为(65.73±2.81)个/视野,明显多于模型组(P<0.05).电镜显示:正常对照组神经元结构正常;模型组神经元固缩,线粒体肿胀;NPY治疗组神经元线粒体结构完整.结论 rAA V-hNPY-EGFP基因转染可减轻大鼠癫(癎)发作引起的病理改变,发挥抑制癫(癎)的作用.%Objective To investigate the effect of recombinant adeno-associated virus-mediated human-derived neuropeptide Y gene (rAAV-hNPY-EGFP gene) transfection on pathological change of hippocampus in epileptic rat. Methods A total of 28 Wistar rats were randomly divided into kindling group (n=20) and normal control group (n=8). No special treatment was performed on rats in normal control group. The chronic epileptic models were successfully established in 16 rats by repeated injection of kainic acid into the hippocampi of rats in kindling group which were equally subdivided into two groups: model group and neuropeptide Y (NPY) treatment group. The rats were transfected with rAAV2/1-hNPV-EGFP gene in NPY treatment group and no transfection was made in model

  6. Foamy Virus Vectors for HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Grant D. Trobridge

    2013-10-01

    Full Text Available Highly active antiretroviral therapy (HAART has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to hematopoietic stem cells (HSCs has so far limited the efficacy of this approach. Foamy virus (FV vectors are derived from non-pathogenic viruses that are not endemic to the human population. FV vectors have been used to deliver HIV-inhibiting transgenes to human HSCs, and they have several advantages relative to other retroviral vectors. These include an attractive safety profile, broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. In addition, the titers of FV vectors are not reduced by anti-HIV transgenes that affect the production of lentivirus (LV vectors. Thus FV vectors are very promising for anti-HIV gene therapy. This review covers the advantages of FV vectors and describes their preclinical development for anti-HIV gene therapy.

  7. Preparation of rAAV/hFⅨ by HSV/AAV hybrid helper virus and evaluation of its safety

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Haoming; ZOU Beiyan; WU Zhijian; WU Xiaobing; LU Daru; XUE Jinglun

    2003-01-01

    The recombinant adeno-associated viral vector with human coagulation Factor Ⅸ minigene which was regulated by CMV promoter was constructed. Large quantity of recombinant adeno-associated viral particles (rAAV/ hFⅨ) was prepared by the HSV/AAV hybrid helper virus method. Southern dot blot assay and QC-PCR indicated that the titer of the virus was 3.6×1012 v.g./mL. It demonstrated that this method can effectively overcome the hurdles of mass production of AAV vector. Followed by an intramuscular injection of viral vectors (7.5×1011 v.g./mouse) in the quadriceps femoris, an elevation of human Factor Ⅸ expression in the plasma of hemophilia B mice was detected (387 ng/mL) and persisted more than 12 weeks. The level of anti-virus antibody in plasma aligned with the Factor Ⅸ expression curve. The QC-PCR method is easier and more accurate than traditional dothybridization for determination of the titer of recombinant adeno-associated virus. Moreover, there are no HSV particles existing in produced AAV assayed by RT-PCR. AAV is the only virus that has been amplified from AAV-injected muscle by PCR.

  8. Plant Virus Expression Vector Development: New Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen Hefferon

    2014-01-01

    Full Text Available Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.

  9. CONSTRUCTION AND EXPRESSION OF ADENOASSOCIATED VIRUS- BASED PLASMID EXPRESSING VECTORS CONTAINING hIL- 2 GENE OR mIFN-γ GENE

    Institute of Scientific and Technical Information of China (English)

    张景迎; 梁宏立; 陈诗书

    2000-01-01

    Objective To improve the plasmid vectors in gene therapy, adeno - associated virus (AA V) based plasmid expressing vectors containing hIL-2 gene or mIFN-γ gene were constructed and its expression in transfected cells was studied. Methods By means of step to step cloning, promoter CMVp was placed at the downstream of 5' inverted terminal repeat from AA V (AA V- ITR) of pAP, hIL- 2 gene or mIFN- γ gene inserted into pAC between CMVp and poly A. Then intron A was inserted into pAC- hIL - 2 or pAC- mIFN- γ between CMVp and IL - 2 gene or IFNγ gene to construct pAI- hIL - 2 or pAI- mIFN - γ. Liposome -plasmid complexes were formed by mixing Dosper with these AAV-based plasmids containing hIL-2 gene or mIFN-γgene. Results High biological activities of IL - 2 or IFN- γ could be detected in the supernatants of NIH3T3 and MM45T. Li cells after transfection. Insertion of intron A into pAC-hIL-2 or pAC-mIFN-γ improved the expression of IL- 2 or IFN- γ. Conclusion These data demonstrated that the constructed AA V- based plasmid expressing vectors could efficiently express therapeutic genes in cultured cells and could be used as a nonviral gene transfer system in human gene therapy.

  10. Chikungunya virus and its mosquito vectors.

    Science.gov (United States)

    Higgs, Stephen; Vanlandingham, Dana

    2015-04-01

    Chikungunya virus (CHIKV), a mosquito-borne alphavirus of increasing public health significance, has caused large epidemics in Africa and the Indian Ocean basin; now it is spreading throughout the Americas. The primary vectors of CHIKV are Aedes (Ae.) aegypti and, after the introduction of a mutation in the E1 envelope protein gene, the highly anthropophilic and geographically widespread Ae. albopictus mosquito. We review here research efforts to characterize the viral genetic basis of mosquito-vector interactions, the use of RNA interference and other strategies for the control of CHIKV in mosquitoes, and the potentiation of CHIKV infection by mosquito saliva. Over the past decade, CHIKV has emerged on a truly global scale. Since 2013, CHIKV transmission has been reported throughout the Caribbean region, in North America, and in Central and South American countries, including Brazil, Columbia, Costa Rica, El Salvador, French Guiana, Guatemala, Guyana, Nicaragua, Panama, Suriname, and Venezuela. Closing the gaps in our knowledge of driving factors behind the rapid geographic expansion of CHIKV should be considered a research priority. The abundance of multiple primate species in many of these countries, together with species of mosquito that have never been exposed to CHIKV, may provide opportunities for this highly adaptable virus to establish sylvatic cycles that to date have not been seen outside of Africa. The short-term and long-term ecological consequences of such transmission cycles, including the impact on wildlife and people living in these areas, are completely unknown.

  11. Study of adeno-associated virus carrying the HGFK1 gene(AAV-HGFK1) in treating rat hepatocellular carcinoma%腺相关病毒介导的HGFK1对大鼠肝细胞癌的治疗作用研究

    Institute of Scientific and Technical Information of China (English)

    顾春荣; 郭跃武; 赵晖; 孙元珏; 姚阳; 沈赞; 林李家宓

    2009-01-01

    -angiogenesis molecule than angiostatin. In this study, we observed the effects and mechanisms of HGFK1 gene on the HCC. Methods: A recombinant adeno-associated vires carrying the HGFK1 gene (rAAV-HGFK1) was constructed.HCC of rat was induced by McA-RH7777. rAAV-HGFK1 was used to treat the rat, median survival time and metastasis rate were observed. Results: Ten days after tumor cell inoculation, surgery were performed to confirm the tumor formation, PBS, rAAV-EGFP or rAAV-HGFK1 was injected directly into the tumor nodule followed by portal vein injection. Results from our study demonstrated that rAAV-HGFK1 treatment significantly prolonged the median survival time of the HCC bearing rats from 30 days (PBS and rAAV-EGFP groups) to 49 days (rAAV-HGFK1 group). More importantly rAAV-HGFK1 inhibited tumor growth and completely prevented liver, lung and peritoneal metastasis. In the controlled PBS and AAV-EGFP group, liver and peritoneal metastasis rate were both 100%, and lung metastasis rate was 100% and 83%, respectively. While there was no metastasis found in treatment group, with only 33% of ascites happened. This was most possibly due to the primary tumor in liver but not due to the metastasis. Moreover, at a higher magnification (1000×), it was clear that the HGFK1 protein was expressed mainly in the cytoplasma of liver cells. In parallel, IHC staining of CD31 also demonstrated a significantly lower level of microvessel density (MVD) (6.21±1.6) in the liver tumor of the AAV-HGFK1 treatment group, as compared to the two control PBS and AAV-EGFP groups (25.1±2.1 and 26.8±2.5, respectively, P<0.01). HE staining showed that AAV-HGFK1 treatment induced large areas of necrosis in the tumor tissues, while minimal areas of necrosis were observed in the tumor tissue in the control groups. In addition, no toxicity appeared when high dosage (4.8× 1012 vg/rat) of rAAV-HGFK1 was administered in rats. Conclusion: Results from this study demonstrated that HGFK1 inhibited the growth and

  12. Potential role of ticks as vectors of bluetongue virus

    OpenAIRE

    Bouwknegt, C.; Rijn, van, Michela; Schipper, J.M.J.; Holzel, D.R.; Boonstra, J.; Nijhof, A.; de, Rooij, R.; Jongejan, F.

    2010-01-01

    When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four sp...

  13. Gene replacement therapies for Duchenne muscular dystrophy using adeno-associated viral vectors

    OpenAIRE

    Seto, Jane T.; Ramos, Julian N.; Muir, Lindsey; Jeffrey S. Chamberlain; Odom, Guy L.

    2012-01-01

    The muscular dystrophies collectively represent a major health challenge, as few significant treatment options currently exist for any of these disorders. Recent years have witnessed a proliferation of novel approaches to therapy, spanning increased testing of existing and new pharmaceuticals, DNA delivery (both anti-sense oligonucleotides and plasmid DNA), gene therapies and stem cell technologies. While none of these has reached the point of being used in clinical practice, all show promise...

  14. Insect vector-mediated transmission of plant viruses.

    Science.gov (United States)

    Whitfield, Anna E; Falk, Bryce W; Rotenberg, Dorith

    2015-05-01

    The majority of plant-infecting viruses are transmitted to their host plants by vectors. The interactions between viruses and vector vary in duration and specificity but some common themes in vector transmission have emerged: 1) plant viruses encode structural proteins on the surface of the virion that are essential for transmission, and in some cases additional non-structural helper proteins that act to bridge the virion to the vector binding site; 2) viruses bind to specific sites in or on vectors and are retained there until they are transmitted to their plant hosts; and 3) viral determinants of vector transmission are promising candidates for translational research aimed at disrupting transmission or decreasing vector populations. In this review, we focus on well-characterized insect vector-transmitted viruses in the following genera: Caulimovirus, Crinivirus, Luteovirus, Geminiviridae, Reovirus, Tospovirus, and Tenuivirus. New discoveries regarding these genera have increased our understanding of the basic mechanisms of virus transmission by arthropods, which in turn have enabled the development of innovative strategies for breaking the transmission cycle. PMID:25824478

  15. 腺相关病毒介导转化生长因子β1和血管内皮生长因子联合转染促进糖尿病溃疡愈合的生物学效应%Biological effects of co-transfection of transforming growth factor beta 1 and vascular endothelial growth factor mediated by adeno-associated virus on promoting the dermal ulcer healing in diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    赛佳明; 张慧琴

    2006-01-01

    使溃疡组织中毛细血管密度明显增多,愈合组织中Ⅰ型和Ⅲ型胶原构成比中Ⅰ型胶原的比例明显提高,并有效地促进溃疡愈合.%BACKGROUND: The ulcer wound is hard to heal in diabetic patients,and it is believed to be caused by the microcirculatory disorder of wound and decreased contents of endogenous growth factors in patients with diabetes mellitus.OBJECTIVE: To observe the biological effects of adeno-associated virus (AAV) mediated transforming growth factor beta1 (AAV-TGFβ1) and vascular endothelial growth factor (AAV-VEGF) in promoting the dermal ulcer healing of diabetic rabbits.DESIGN: A randomized controlled animal experiment.SETTINGS: Medical College, Qingdao University; Affiliated Hospital of Medical College, Qingdao University.MATERIALS: The experiments were carried out in the gynecological laboratory, Affiliated Hospital of Medical College, Qingdao University from July 2004 to January 2006. Twenty-four healthy adult New Zealand rabbits were randomly divided into co-transfection group (n=12) and control group (n=12).METHODS: ① The dermal ulcer models of diabetic rabbits was established by injecting alloxan (130 mg/kg) via ear vein, and the ulcer wound was made by operation. ② In the co-transfection group, the wound was locally infiltrated, and injected with AAV-TGFβ1 virus and AAV-VEGF virus (the concentration was 9×106 virus granules/mL respectively). The rabbits in the control group were treated with injection of saline.MAIN OUTCOME MEASURES: ① The levels of TGFβ1 and VEGF gene transcription in the healing tissue were detected with polymerase chain reaction (PCR) at 1 month postoperatively. ② The capillary density in the wound margin was counted with microcirculation microscope at 3 weeks postoperatively. ③ The collagen Ⅰ and Ⅲ were isolated and detected with Western blotting by protein gel electrophoresis and semi-dry electrophoretic transfer. ④ The content of collagen in the ulcer healing issue

  16. 9型重组腺相关病毒介导抗核转录因子-κB核酶基因体外转染大鼠心肌细胞及对核转录因子-κB活性的影响%Transfection of rats H9C2 cells with recombinant adeno-associated virus Serotype 9 mediated AntiNF-κB ribozyme in vitro and effects on nuclear factor-κB activity

    Institute of Scientific and Technical Information of China (English)

    高霞; 马依彤; 杨毅宁; 向阳; 陈邦党; 刘芬

    2010-01-01

    Objective To evaluate the transfection efficiency using recombinant adeno-associated virus serotype 9 (rAAV9) mediated anti-nuclear factor-κB (NF) -κB ribozyme and enhanced green fluorescent protein (rAAV9-EGFP-R65) to rats H9C2 cells and the effect on NF-κB activity. Methods rAAV9EGFP-R65 was transfected into H9C2 ceils at multiplicities of infection ( MOI = 1 x 106 v. g./cell). EGFP expression in the cells was observed under an inverted fluorescence microscope, and the percentage of EGFP positive cells was determined by flow cytometry. Alamar Blue assay was used to assess the proliferation of the transfected cells. H9C2 ceils were treated with tumor necrosis factor (TNF)-α, rAAV9-EGFP-R65 and PDTC. The DNA binding activity of NF-KF-κB was examined by electrophoretic mobility shift assay (EMSA). Results The cells began to exhibit EGFP expression one day after transfection. The fluorescence intensity was increased with the time of transfection. EGFP expression reached the maximum on the day 5, at the point of which the transduction efficiency was (32.27 + 3.19)%. Alamar Blue assay did not reveal significant difference in the absorbance between the transfected cells and the control cells. TNF-α could activate NF-κB, and rAAV9-EGFP-R65 and PDCT could efficiently decrease NF-κB activation in rats H9C2 cells. Conclusion rAAV9-EGFP-R65 can be stably and efficiently expressed in H9C2 cells without causing cell growth inhibition, rAAVg-EGFP-R65 can availably inhibit NF-κB activation in rats H9C2 cells in vitro.%目的 观察9型重组腺相关病毒(rAAV9)介导抗核转录因子-κB(NF-κB)核酶基因(rAAV9-ECFP-R65)对大鼠心肌H9C2细胞的转染及对NF-κB活性的影响.方法 rAAV9-EGFP-R65按转染复数(MOI)1×106v.g./cell转染H9C2细胞,在倒置荧光显微镜下观察增强型绿色荧光蛋白(EGFP)阳性表达,采用流式细胞仪检测转染效率.Alamar Blue法检测rAAV9-EGFP-R65对H9C2细胞增殖影响.肿瘤坏死因子-α(TNF-α)、rAAV9

  17. Transfer of the Full-Length Dystrophin-Coding Sequence into Muscle Cells by a Dual High-Capacity Hybrid Viral Vector with Site-Specific Integration Ability

    OpenAIRE

    Gonçalves, Manuel A. F. V.; van Nierop, Gijsbert P.; Tijssen, Marloes R.; Lefesvre, Pierre; Knaän-Shanzer, Shoshan; van der Velde, Ietje; van Bekkum, Dirk W; Valerio, Dinko; de Vries, Antoine A. F.

    2005-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, making it a potential target for gene therapy. There is, however, a scarcity of vectors that can accommodate the 14-kb DMD cDNA and permanently genetically correct muscle tissue in vivo or proliferating myogenic progenitors in vitro for use in autologous transplantation. Here, a dual high-capacity adenovirus-adeno-associated virus (hcAd/AAV) vector with two full-length human dystrophin-coding sequences flanked by AAV in...

  18. Herbivore arthropods benefit from vectoring plant viruses

    NARCIS (Netherlands)

    Belliure, B.; Janssen, A.; Maris, P.C.; Peters, D.; Sabelis, M.W.

    2005-01-01

    Plants infected with pathogens often attract the pathogens' vectors, but it is not clear if this is advantageous to the vectors. We therefore quantified the direct and indirect (through the host plant) effects of a pathogen on its vector. A positive direct effect of the plant-pathogenic Tomato spott

  19. Potential role of ticks as vectors of bluetongue virus

    NARCIS (Netherlands)

    Bouwknegt, C.; Rijn, van P.A.; Schipper, J.M.J.; Holzel, D.R.; Boonstra, J.; Nijhof, A.; Rooij, van E.M.A.; Jongejan, F.

    2010-01-01

    When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not

  20. Application of genomics for understanding plant virus-insect vector interactions and insect vector control

    Science.gov (United States)

    The ability to decipher DNA sequences provides new insights into the study of plant viruses and their interactions with host plants, including the intricate interactions that allow a virus to be transmitted by an insect vector. Next generation sequencing (NGS) provides a wealth of genetic informati...

  1. Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with mut Methylmalonic Acidemia.

    Science.gov (United States)

    Harrington, Elizabeth A; Sloan, Jennifer L; Manoli, Irini; Chandler, Randy J; Schneider, Mark; McGuire, Peter J; Calcedo, Roberto; Wilson, James M; Venditti, Charles P

    2016-05-01

    Isolated methylmalonic acidemia (MMA), a group of autosomal recessive inborn errors of metabolism, is most commonly caused by complete (mut(0)) or partial (mut(-)) deficiency of the enzyme methylmalonyl-CoA mutase (MUT). The severe metabolic instability and increased mortality experienced by many affected individuals, especially those with mut(0) MMA, has led centers to use elective liver transplantation as a treatment for these patients. We have previously demonstrated the efficacy of systemic adeno-associated viral (AAV) gene delivery as a treatment for MMA in a murine model and therefore sought to survey AAV antibody titers against serotypes 2, 8, and 9 in a group of well-characterized MMA patients, accrued via a dedicated natural history study ( clinicaltrials.gov ID: NCT00078078). Plasma samples provided by 42 patients (8 mut(-) and 34 mut(0); 10 had received organ transplantation), who ranged in age between 2 and 31 years, were analyzed to examine AAV2 (n = 35), AAV8 (n = 41), and AAV9 (n = 42) antibody titers. In total, the seroprevalence of antibodies against AAV2, AAV8, or AAV9 was 20%, 22%, and 24%, respectively. We observed a lower-than-expected seropositivity rate (titers ≥1:20) in the pediatric MMA patients (2-18 years) for both AAV2 (p gene delivery as a treatment for mut MMA. PMID:26790480

  2. Attenuated Measles Virus as a Vaccine Vector

    OpenAIRE

    Zuniga, Armando; Wang, Zili; Liniger, Matthias; Hangartner, Lars; Caballero, Michael; Pavlovic, Jovan; Wild, Peter; Viret, Jean Francois; Glueck, Reinhard; Billeter, Martin A.; Naim, Hussein Y.

    2007-01-01

    Live attenuated measles virus (MV) vaccines have an impressive record of safety, efficacy and ability to induce life-long immunity against measles infection. Using reverse genetics technology, such negative-strand RNA viruses can now be rescued from cloned DNA. This technology allows the insertion of exogenous genes encoding foreign antigens into the MV genome in such a way that they can be expressed by the MV vaccine strain, without affecting virus structure, propagation and cell targeting. ...

  3. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  4. Regression of Schwannomas Induced by Adeno-Associated Virus-Mediated Delivery of Caspase-1

    OpenAIRE

    Prabhakar, Shilpa; Taherian, Mehran; Gianni, Davide; Conlon, Thomas J.; Fulci, Giulia; Brockmann, Jillian; Stemmer-Rachamimov, Anat; Sena-Esteves, Miguel; Breakefield, Xandra O.; Brenner, Gary J.

    2012-01-01

    Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene...

  5. Generation of Insulin-Producing Human Mesenchymal Stem Cells Using Recombinant Adeno-Associated Virus

    OpenAIRE

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-01-01

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet β-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced wi...

  6. Potential North American vectors of West Nile virus.

    Science.gov (United States)

    Turell, M J; Sardelis, M R; Dohm, D J; O'Guinn, M L

    2001-12-01

    The outbreak of disease in the New York area in 1999 due to West Nile (WN) virus was the first evidence of the occurrence of this virus in the Americas. To determine potential vectors, more than 15 mosquito species (including Culex pipiens, Cx. nigripalpus, Cx. quinquefasciatus, Cx. salinarius, Aedes albopictus, Ae. vexans, Ochlerotatus japonicus, Oc. sollicitans, Oc. taeniorhynchus, and Oc. triseriatus) from the eastern United States were evaluated for their ability to serve as vectors for the virus isolated from birds collected during the 1999 outbreak in New York. Mosquitoes were allowed to feed on one- to four-day old chickens that had been inoculated with WN virus 1-3 days previously. The mosquitoes were incubated for 12-15 days at 26 degrees C and then allowed to refeed on susceptible chickens and assayed to determine transmission and infection rates. Several container-breeding species (e.g., Ae. albopictus, Oc. atropalpus, and Oc. japonicus) were highly efficient laboratory vectors of WN virus. The Culex species were intermediate in their susceptibility. However, if a disseminated infection developed, all species were able to transmit WN virus by bite. Factors such as population density, feeding preference, longevity, and season of activity also need to be considered in determining the role these species could play in the transmission of WN virus.

  7. A protein key to plant virus transmission at the tip of the insect vector stylet

    OpenAIRE

    Uzest, Marilyne; Gargani, Daniel; Drucker, Martin; Hébrard, Eugénie; Garzo, Elisa; Candresse, Thierry; Fereres, Alberto; Blanc, Stéphane

    2007-01-01

    Hundreds of species of plant viruses, many of them economically important, are transmitted by noncirculative vector transmission (acquisition by attachment of virions to vector mouthparts and inoculation by subsequent release), but virus receptors within the vector remain elusive. Here we report evidence for the existence, precise location, and chemical nature of the first receptor for a noncirculative virus, cauliflower mosaic virus, in its insect vector. Electron microscopy revealed virus-l...

  8. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector.

    Science.gov (United States)

    Zinn, Eric; Pacouret, Simon; Khaychuk, Vadim; Turunen, Heikki T; Carvalho, Livia S; Andres-Mateos, Eva; Shah, Samiksha; Shelke, Rajani; Maurer, Anna C; Plovie, Eva; Xiao, Ru; Vandenberghe, Luk H

    2015-08-11

    Adeno-associated virus (AAV) vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAVs, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In-silico-derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina. PMID:26235624

  9. Effect of nuclear factor κB inhibition on serotype 9 adeno-associated viral (AAV9) minidystrophin gene transfer to the mdx mouse.

    Science.gov (United States)

    Reay, Daniel P; Niizawa, Gabriela A; Watchko, Jon F; Daood, Molly; Reay, Ja'Nean C; Raggi, Eugene; Clemens, Paula R

    2012-01-01

    Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or vector. Therefore, we hypothesized that inhibition of pathological NF-κB activation in muscle would complement the therapeutic benefits of dystrophin gene transfer in the mdx mouse model of DMD. Systemic gene transfer using serotype 9 adeno-associated viral (AAV9) vectors is promising for treatment of preclinical models of DMD because of vector tropism to cardiac and skeletal muscle. In quadriceps of C57BL/10ScSn-Dmd(mdx)/J (mdx) mice, the addition of octalysine (8K)-NF-κB essential modulator (NEMO)-binding domain (8K-NBD) peptide treatment to AAV9 minidystrophin gene delivery resulted in increased levels of recombinant dystrophin expression suggesting that 8K-NBD treatment promoted an environment in muscle tissue conducive to higher levels of expression. Indices of necrosis and regeneration were diminished with AAV9 gene delivery alone and to a greater degree with the addition of 8K-NBD treatment. In diaphragm muscle, high-level transgene expression was achieved with AAV9 minidystoophin gene delivery alone; therefore, improvements in histological and physiological indices were comparable in the two treatment groups. The data support benefit from 8K-NBD treatment to complement gene transfer therapy for DMD in muscle tissue that receives incomplete levels of transduction by gene transfer, which may be highly significant for clinical applications of muscle gene delivery. PMID:22231732

  10. 'ANOTHER VECTOR BORNE CHALLENGE TO COMBAT- ZIKA VIRUS OUTBREAKS'.

    Science.gov (United States)

    Shoaib, Maria; Faraz, Ahmad; Ahmed, Syed Ahsanuddin

    2016-01-01

    Zika virus is a single-stranded RNA virus of the Flaviviridae family. It is known to transmit to humans primarily through the bite of an infected Aedes species mosquito which is also known to carry dengue, chikungunya & yellow fever virus. Transmission is anthroponotic (human-to-vector-to-human) during outbreaks, Perinatally in utero, sexually and via infected blood transfusion. It is mild and self-limiting infection lasting for several days to a week. However, it is suspected as a cause of Guillain Barre Syndrome. There is a teratogenic association of Zika virus causing congenital birth defects like microcephaly and neurologic abnormalities. Treatment is generally supportive and for symptomatic relief. No specific antiviral treatment or vaccine is yet available for Zika virus disease. It highlights importance of preventive public health measures at the community level and avoids travelling to the endemic areas. PMID:27323600

  11. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus.

    Science.gov (United States)

    Guo, Xiao-Xia; Li, Chun-Xiao; Deng, Yong-Qiang; Xing, Dan; Liu, Qin-Mei; Wu, Qun; Sun, Ai-Juan; Dong, Yan-de; Cao, Wu-Chun; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-07

    Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur.

  12. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus.

    Science.gov (United States)

    Guo, Xiao-Xia; Li, Chun-Xiao; Deng, Yong-Qiang; Xing, Dan; Liu, Qin-Mei; Wu, Qun; Sun, Ai-Juan; Dong, Yan-de; Cao, Wu-Chun; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-01-01

    Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur. PMID:27599470

  13. The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems.

    Science.gov (United States)

    Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D

    2011-08-01

    Plant virus infection can alter the suitability of host plants for their aphid vectors. Most reports indicate that virus-infected plants are superior hosts for vectors compared to virus-free plants with respect to vector growth rates, fecundity and longevity. Some aphid vectors respond preferentially to virus-infected plants compared to virus-free ones, while others avoid infected plants that are inferior hosts. Thus, it appears vectors can exploit changes in host plant quality associated with viral infection. Enhanced vector performance and preference for virus-infected plants might also be advantageous for viruses by promoting their spread and possibly enhancing their fitness. Our research has focused on two of the most important luteoviruses that infect wheat (Barley yellow dwarf virus), or potato (Potato leafroll virus), and their respective aphid vectors, the bird-cherry oat aphid, Rhopalosiphum padi, and the green peach aphid, Myzus persicae. The work has demonstrated that virus infection of host plants enhances the life history of vectors. Additionally, it has shown that virus infection alters the concentration and relative composition of volatile organic compounds in host plants, that apterae of each vector species settle preferentially on virus-infected plants, and that such responses are mediated by volatile organic compounds. The findings also indicate that plants respond heterogeneously to viral infection and as a result different plant parts change in attractiveness to vectors during infection and vector responses to virus-infected plants are dynamic. Such dynamic responses could enhance or reduce the probability of virus acquisition by individual aphids searching among plants. Finally, our work indicates that compared to non-viruliferous aphids, viruliferous ones are less or not responsive to virus-induced host plant volatiles. Changes in vector responsiveness to plants after vectors acquire virus could impact virus epidemiology by influencing virus

  14. Preference by a virus vector for infected plants is reversed after virus acquisition.

    Science.gov (United States)

    Rajabaskar, Dheivasigamani; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D

    2014-06-24

    Pathogens and their vectors can interact either directly or indirectly via their shared hosts, with implications for the persistence and spread of the pathogen in host populations. For example, some plant viruses induce changes in host plants that cause the aphids that carry these viruses to settle preferentially on infected plants. Furthermore, relative preference by the vector for infected plants can change to a preference for noninfected plants after virus acquisition by the vector, as has recently been demonstrated in the wheat-Rhopalosiphum padi-Barley yellow dwarf virus pathosystem. Here we document a similar dynamic in the potato-Myzus persicae (Sulzer)-Potato leaf roll virus (PLRV) pathosystem. Specifically, in a dual choice bioassay, nonviruliferous apterous M. persicae settled preferentially on or near potato plants infected with PLRV relative to noninfected (sham-inoculated) control plants, whereas viruliferous M. persicae (carrying PLRV) preferentially settled on or near sham-inoculated potato plants relative to infected plants. The change in preference after virus acquisition also occurred in response to trapped headspace volatiles, and to synthetic mimics of headspace volatile blends from PLRV-infected and sham-inoculated potato plants. The change in preference we document should promote virus spread by increasing rates of virus acquisition and transmission by the vector. PMID:24269348

  15. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  16. Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1

    Directory of Open Access Journals (Sweden)

    Shuo Li

    2015-03-01

    Full Text Available The small brown planthopper (SBPH is the main vector for rice stripe virus (RSV, which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH.

  17. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    International Nuclear Information System (INIS)

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy

  18. Simian virus 40 vectors for pulmonary gene therapy

    Directory of Open Access Journals (Sweden)

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  19. Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors.

    Science.gov (United States)

    Trobridge, Grant; Russell, David W

    2004-03-01

    Retroviral vectors based on foamy viruses (FV) are efficient gene delivery vehicles for therapeutic and research applications. While previous studies have shown that FV vectors transduce quiescent cell cultures more efficiently than oncoviral vectors, their specific cell cycle requirements have not been determined. Here we compare the transduction frequencies of FV vectors with those of onco- and lentiviral vectors in nondividing and dividing normal human fibroblasts by several methods. FV vectors transduced serum-deprived fibroblast cultures more efficiently than oncoretroviral vectors and at rates comparable to those of lentiviral vectors. However, in these cultures FV vectors only transduced a subpopulation of proliferating cells, as determined by bromodeoxyuridine staining for DNA synthesis. In contrast to lentiviral vectors, FV vectors were unable to transduce human fibroblasts arrested by aphidicolin (G(1)/S phase) or gamma-irradiation (G(2) phase), and a partial cell cycle that included mitosis but not DNA synthesis was required. We could not determine if mitosis facilitated nuclear entry of FV vectors, since cell-free vector preparations contained long terminal repeat circles, precluding their use as nuclear markers. In contrast to oncoviral vectors, both FV and lentiviral vectors efficiently transduced G(0) fibroblasts that were later stimulated to divide. In the case of FV vectors, this was due to the persistence of a stable transduction intermediate in quiescent cells. Our findings support the use of FV vectors as a safe and effective alternative to lentiviral vectors for ex vivo transduction of stem cells that are quiescent during culture but divide following transplantation.

  20. Status and prospects of plant virus control through interference with vector transmission

    NARCIS (Netherlands)

    Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L.

    2013-01-01

    Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus–vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, pla

  1. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  2. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    Directory of Open Access Journals (Sweden)

    Sang-Ho Park

    2016-08-01

    Full Text Available Grapevine Algerian latent virus (GALV is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP, but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  3. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    Science.gov (United States)

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  4. Semliki Forest Virus: a viral vector with multiple applications.

    Directory of Open Access Journals (Sweden)

    Luis Felipe Henao

    2009-11-01

    Full Text Available Se han utilizado los alfavirus como vectores de expresión, entre estos se encuentra el Semliki Forest virus (SFV, que es un virus envuelto, el cual, además de replicarse en el citoplasma, tiene la propiedad de expresar por separado las proteínas estructurales de las no estructurales, permitiendo un mayor control de la expresión. Los vectores derivados del SFV pueden tener una gama amplia de aplicaciones. Se pueden obtener altos títulos virales para la expresión eficiente de proteínas en diferentes líneas celulares. Pueden infectar un espectro amplio de células de mamíferos, así como de tejidos. Son prometedores para ser usados en la terapia génica como vehículos para el envío de genes específicos in vivo o in vitro, tanto en la terapia contra el cáncer como en la neuronal, especialmente cuando sólo sea necesaria una expresión a corto plazo. Sus aplicaciones en la producción de vacunas profilácticas o terapéuticas, es otro aspecto estudiado; se ha demostrado la generación de respuestas inmunes importantes contra diferentes enfermedades virales y tumorales. El desarrollo de nuevos vectores no citopáticos, de otros regulados por temperatura, así como también de otros con replicación persistente; permitirán la prolongación de la expresión. Debido a estas nuevas ventajas y a las ya conocidas, gradualmente se podrían ampliar los usos para los vectores derivados del SFV a medida que se controlen sus efectos no deseados.

  5. Exploiting high-throughput screens to optimize Adeno-Associated Viral Vectors for gene transfer into primary human keratinocytes

    OpenAIRE

    Sallach, Jessica

    2014-01-01

    Chronic non-healing wounds such as diabetic ulcers or burns represent a devastating health problem with significant clinical, physical and social implications. The healing can be frustrating and painful for patients. The difficult healing process requires advanced therapeutic strategies such as the use of primary human keratinocytes (HK) as autologous transplants, which may be considered for clinical use. To improve engraftment or to introduce therapeutic genes into primary HK, efficient and ...

  6. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector.

    Science.gov (United States)

    Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C; Bernard, Kristen A; DeLuca, Neal A; Whelan, Sean P J; Knipe, David M

    2016-09-01

    West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus.

  7. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Kaoru Hida

    Full Text Available Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF must similarly penetrate purulent lung airway mucus (sputum to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (d∼80 nm and adeno-associated virus (AAV serotype 5; d∼20 nm, leading to average effective diffusivities that are ∼3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only ∼40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date.

  8. Modification of non-vector aphid feeding behavior on virus-infected host plant.

    Science.gov (United States)

    Hu, Zuqing; Zhao, Huiyan; Thieme, Thomas

    2013-01-01

    Virus-infected host plants can have positive, neutral or negative effects on vector aphids. Even though the proportion of non-vector aphids associated with a plant far exceeds that of vector species, little is known about the effect of virus-infected plants on non-vector aphids. In the present study, the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae), a non-vector of Wheat dwarf virus (WDV) and Cereal yellow dwarf virus-RPV (CYDV-RPV), was monitored on, virus-infected, virus-free and leafhopper/aphid-infested, and virus- and insect-free (control) barley, Hordeum vulgare L. (Poales: Poaceae), plants. Electrical penetration graph recordings were performed. Compared with the control plants, S. avenae on infected plants exhibited reduced non-probing and pathway phase, and increased phloem sap ingestion phase, and more aphids reached sustained phloem ingestion. However, the electrical penetration graph parameters described above showed no significant differences in aphid feeding behavior on virus-free and vector pre-infested plants and the control barley plants during S. avenae feeding. The results suggest that WDV/CYDV-RPV-infected host plants positively affected the feeding behavior of the non-vector aphid S. avenae. Based on these results, the reasons and trends among the virus-infected host plants' effects on the feeding behavior of non-vector aphids are discussed. PMID:23902296

  9. Vector-Mediated In Vivo Antibody Expression.

    Science.gov (United States)

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  10. Parasitic crustaceans as vectors of viruses, with an emphasis on three penaeid viruses.

    Science.gov (United States)

    Overstreet, Robin M; Jovonovich, Jean; Ma, Hongwei

    2009-08-01

    Parasitic crustaceans serve as both hosts and vectors of viruses as well as of parasites and other microbial pathogenic agents. Few of the presumably numerous associations are known, but many can be anticipated. Recently, branchiurans and gnathiid isopods have been documented to host helminths and blood parasites. Because the agents can be observed readily with a microscope, these are better recognized than are the smaller viral, bacterial, and fungal agents. Some agents are harmful to the host of the crustacean parasite and others are not. Viruses probably fit both these categories, since viruses that do not appear pathogenic are often seen in ultrastructural images from a range of invertebrate hosts, including crustaceans. Some viruses have been implicated in causing disease in the host, at least under appropriate conditions. For example, lymphocystis virus may possibly be transmitted to the dermis of its fish hosts by copepods and to the visceral organs by a cymothoid isopod. Similarly, argulid branchiurans seem to transmit the viral agent of spring viremia of carp as well as carp pox, and copepods have been implicated in transmitting infectious hematopoietic necrosis, infectious salmon anemia, and infectious pancreatic necrosis to salmon. Other viruses can be vectored to their hosts through an additional animal. We exposed three viruses, Taura syndrome virus (TSV), white spot syndrome virus (WSSV), and yellowhead virus (YHV), all of which cause mortalities in wild and cultured penaeid shrimps, to crustacean parasites on fish and crabs. Using real-time polymerase chain reaction analysis, we show that TSV in the cyclopoid copepod Ergasilus manicatus on the gill filaments of the Gulf killifish, Fundulus grandis, the acorn barnacle Chelonibia patula on the carapace of the blue crab, Callinectes sapidus, and gooseneck barnacle Octolasmis muelleri on the gills of C. sapidus, can replicate for at least 2 weeks and establish what should be an infective dose. This

  11. A theoretical assessment of the effects of vector-virus transmission mechanisms on plant virus disease epidemics

    NARCIS (Netherlands)

    Madden, L.V.; Jeger, M.J.; Bosch, van den F.

    2000-01-01

    A continuous-time and deterministic model was used to characterize plant virus disease epidemics in relation to virus transmission mechanism and population dynamics of the insect vectors. The model can be written as a set of linked differential equations for healthy (virus-free), latently infected,

  12. The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors

    Directory of Open Access Journals (Sweden)

    Murad Ghanim

    2013-06-01

    Full Text Available Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed.

  13. The role of bacterial chaperones in the circulative transmission of plant viruses by insect vectors.

    Science.gov (United States)

    Kliot, Adi; Ghanim, Murad

    2013-06-01

    Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV) by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV) by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed. PMID:23783810

  14. Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel

    2015-01-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  15. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    Science.gov (United States)

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  16. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus.

    OpenAIRE

    Sardelis, M. R.; Turell, M.J.; Dohm, D. J.; O'Guinn, M. L.

    2001-01-01

    To control West Nile virus (WNV), it is necessary to know which mosquitoes are able to transmit this virus. Therefore, we evaluated the WNV vector potential of several North American mosquito species. Culex restuans and Cx. salinarius, two species from which WNV was isolated in New York in 2000, were efficient laboratory vectors. Cx. quinquefasciatus and Cx. nigripalpus from Florida were competent but only moderately efficient vectors. Coquillettidia perturbans was an inefficient laboratory v...

  17. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand

    OpenAIRE

    Fansiri, Thanyalak; Pongsiri, Arissara; Klungthong, Chonticha; Ponlawat, Alongkot; Thaisomboonsuk, Butsaya; Lambrechts, Louis; Jarman, Richard G; Scott, Thomas W.

    2016-01-01

    International audience Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype 9 genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito p...

  18. West Nile virus vector Culex modestus established in southern England

    Directory of Open Access Journals (Sweden)

    Golding Nick

    2012-02-01

    Full Text Available Abstract Background The risk posed to the United Kingdom by West Nile virus (WNV has previously been considered low, due to the absence or scarcity of the main Culex sp. bridge vectors. The mosquito Culex modestus is widespread in southern Europe, where it acts as the principle bridge vector of WNV. This species was not previously thought to be present in the United Kingdom. Findings Mosquito larval surveys carried out in 2010 identified substantial populations of Cx. modestus at two sites in marshland in southeast England. Host-seeking-adult traps placed at a third site indicate that the relative seasonal abundance of Cx. modestus peaks in early August. DNA barcoding of these specimens from the United Kingdom and material from southern France confirmed the morphological identification. Conclusions Cx. modestus appears to be established in the North Kent Marshes, possibly as the result of a recent introduction. The addition of this species to the United Kingdom's mosquito fauna may increase the risk posed to the United Kingdom by WNV.

  19. Effect of Grapevine Fanleaf Virus on the Reproduction and Survival of its Nematode Vector, Xiphinema index Thorne &Allen.

    Science.gov (United States)

    Das, S; Raski, D J

    1969-04-01

    Studies on the virus-vector interaction between the grapevine fanleaf virus (GFV) and its nematode vector, Xiphinema index, indicate the virus had no measurable effect on the rate of reproduction of its vector, but significantly influenced survNal of the nematodes.

  20. Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses

    OpenAIRE

    Ledermann, Jeremy P.; Laurent Guillaumot; Lawrence Yug; Steven C Saweyog; Mary Tided; Paul Machieng; Moses Pretrick; Maria Marfel; Anne Griggs; Martin Bel; Duffy, Mark R.; W Thane Hancock; Tai Ho-Chen; Ann M Powers

    2014-01-01

    An epidemic of Zika virus (ZIKV) illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s) involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s). Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at...

  1. Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus

    Directory of Open Access Journals (Sweden)

    Zhong Zou

    2014-06-01

    Full Text Available Duck Tembusu virus (DTMUV is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined. In this study, duck enteritis virus (DEV was examined as a candidate vaccine vector to deliver the envelope (E of DTMUV. A modified mini-F vector was inserted into the SORF3 and US2 gene junctions of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC of C-KCE (vBAC-C-KCE. The envelope (E gene of DTMUV was inserted into the C-KCE genome through the mating-assisted genetically integrated cloning (MAGIC strategy, resulting in the recombinant vector, pBAC-C-KCE-E. A bivalent vaccine C-KCE-E was generated by eliminating the BAC backbone. Immunofluorescence and western blot analysis results indicated that the E proteins were vigorously expressed in C-KCE-E-infected chicken embryo fibroblasts (CEFs. Duck experiments demonstrated that the insertion of the E gene did not alter the protective efficacy of C-KCE. Moreover, C-KCE-E-immunized ducks induced neutralization antibodies against DTMUV. These results demonstrated, for the first time, that recombinant C-KCE-E can serve as a potential bivalent vaccine against DEV and DTMUV.

  2. Overview of vectors of cereal viruses in Finland

    OpenAIRE

    Huusela-Veistola, Erja

    2007-01-01

    Barley yellow dwarf virus (BYDV), Oat sterile dwarf virus (OSDV) and Wheat dwarf virus (WDV) are the most serious virus diseases of cereals in Finland. BYDV is transmitted by aphids, mainly by bird cherry oat aphid, Rhopalosiphum padi. OSDV and WDV are leafhopper transmitted viruses.

  3. Transfection of brain-derived neurotrophic factor gene by recombinant adeno-associated virus vector in retinal ganglion cells in vitro%腺伴随病毒介导的脑源性神经营养因子对体外培养的鼠视网膜神经节细胞转染及生长特性的影响

    Institute of Scientific and Technical Information of China (English)

    李海燕; 赵家良; 张华

    2008-01-01

    目的 探讨重组腺伴随病毒载体介导的脑源性神经营养因子(rAAV-BDNF)对体外培养的鼠视网膜神经节细胞(RGCs)转染及其生长活性的影响.方法 实验研究.(1)应用rAAV-BDNF对体外培养2 d的RGCs进行转染;(2)应用逆转录聚合酶链反应(RT-PCR)技术,检测外源性BDNF基因在RGCs细胞mRNA水平的表达情况;(3)应用酶联免疫吸附测定(ELISA)法,对细胞培养液中BDNF含量进行检测;(4)对rAAV-BDNF转染细胞、未转染细胞及加入BDNF的培养细胞进行MTT比色分析;(5)应用Annexin V-FITC凋亡检测试剂盒和流式细胞仪,检测rAAV-BDNF转染细胞、未转染细胞及加入BDNF培养细胞的凋亡比率.结果 (1)RT-PCR检测结果:转染细胞表达外源性BDNF基因,而未转染细胞不表达BDNF基因.(2)ELISA法检测结果:rAAV-BDNF转染细胞的培养液中BDNF含量:转染7 d后为(616.1±40.0)ng/L,转染14 d后为(1075.1±48.7)ng/L.(3)MTT比色结果:转染3和6 d后,rAAV-BDNF转染细胞与未转染细胞间的吸光度(A)值差异无统计学意义(t=1.084,1.582;P=0.284,0.120);转染9 d后,转染细胞的A值高于未转染细胞(t=4.854,P=0.000).(4)流式细胞仪检测结果:rAAV-BDNF转染细胞和加入BDNF培养细胞的凋亡率明显低于未转染细胞的凋亡率,差异有统计学意义(P=0.015,0.017).结论 rAAV-BDNF可有效转染体外培养的鼠RGCs,转染细胞可在转录水平和翻译水平表达外源性BDNF基因,且生长活性改善,凋亡细胞减少.这为青光眼视神经保护的基因治疗提供了理论和技术支持.%Objective To determine whether rat retinal ganglion cells(RGCs)could be infected by rAAV-BDNF in vitro and to evaluate the influence of rAAV-BDNF transfection on the survival and apoptosis of rat RGCs.Methods It Was a experimental study.(1)RGCs were isolated from neonatal Sprague-Dawley rats(postnatal within 24 h).(2)Two days after the cultivation,the RGCs were transfected with rAAV- BDNF at a dosage of MOI=103 and then incubated for 7 days.Total RNA were extracted from rAAV-BDNF transfected cells using Trizol reagent.The gene expression of BDNF gene in RGCs waft analyzed by reverse transcription polymerase-chain reaction(RT-PCR).(3)Supernatant of the rAAV-BDNF transfected cells was collected at 7 days and 14 days after transfection.The protein expression of BDNF in the cell supernatant Was examined with ELISA assay.(4)The survival and apoptosis of rAAV-BDNF transfected cells, untransfeeted cells and the cells with addition of BDNF in culture medium were evaluated bv MTT colorimetric assay and flow cytometry with Annexin V-FITC staining.respectively.Results (1)RT-PCR analysis showed that mRNA expression of BDNF gene could be detected in transfected ceHs but not in untransfected ceHs.(2)The concentrations of BDNF protein in the conditioned medium of the rAAV-BDNF transfected cells were(616.1±40.0)ng/L and(1075.1±48.7)ng/L 7 days and 14 days after the transfection.respectively.(3)MTF colorimetric assay showed that the OD values of rAAV.BDNF transfected cells and untransfected cells were similar at the time of 3 and 6 days after transfection(t=1.084 and 1.582. P=0.284 and 0.120).The OD value of transfected cells was higher than that of untransfected ceHs 9 days after the transfection(t=4.854,P=0.001).(4)The apoptosis rate in rAAV-BDNF transfected cells and the cells with BDNF exposure was lower than that of the untransfected cells(P=0.015,0.017).Conclusions Rat RGCs are abie to be transfected by rAAV-BDNF in vitro.The transfected ceHs Can express BDNF gene at the level of beth mRNA and protein.Apoptosis rate is lOW in the transfected cells.This study indicates that rAAV-BDNF transfection Can be used for the potential gene tllerapy in glaucoma neuroprotection.

  4. Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model

    Directory of Open Access Journals (Sweden)

    Martin Löchelt

    2013-07-01

    Full Text Available New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV, but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV. The potential of replication-competent (RC FFV vectors for vaccination and replication-deficient (RD FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV vectors, especially the understudied aspect of FV cell and organ tropism.

  5. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus.

    Science.gov (United States)

    Sardelis, M R; Turell, M J; Dohm, D J; O'Guinn, M L

    2001-01-01

    To control West Nile virus (WNV), it is necessary to know which mosquitoes are able to transmit this virus. Therefore, we evaluated the WNV vector potential of several North American mosquito species. Culex restuans and Cx. salinarius, two species from which WNV was isolated in New York in 2000, were efficient laboratory vectors. Cx. quinquefasciatus and Cx. nigripalpus from Florida were competent but only moderately efficient vectors. Coquillettidia perturbans was an inefficient laboratory vector. As WNV extends its range, exposure of additional mosquito species may alter its epidemiology.

  6. Recombinant adeno-associated virus-mediated inhibiting of interleukin-4 expression in rat model of asthma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Asthma is a chronic disease characterized by reversible airway obstruction, airway hyper- responsiveness, and inflammation of airways. Th2 cells, one sort of CD4+ T lymphocytes, are currently considered to play an important role in the chronic airway inflammation of asthma. Meanwhile, a number of laboratories have clearly established the importance of the Th2-derived cytokine interleukin-4 (IL-4) in mediating the airway inflammatory response. Anti-IL-4 therapy might be beneficial in treatment of chronic asthma.

  7. Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease.

    Science.gov (United States)

    Roy, Avijit; Hartung, John S; Schneider, William L; Shao, Jonathan; Leon, Guillermo; Melzer, Michael J; Beard, Jennifer J; Otero-Colina, Gabriel; Bauchan, Gary R; Ochoa, Ronald; Brlansky, Ronald H

    2015-07-01

    Citrus leprosis complex is an emerging disease in the Americas, associated with two unrelated taxa of viruses distributed in South, Central, and North America. The cytoplasmic viruses are Citrus leprosis virus C (CiLV-C), Citrus leprosis virus C2 (CiLV-C2), and Hibiscus green spot virus 2, and the nuclear viruses are Citrus leprosis virus N (CiLV-N) and Citrus necrotic spot virus. These viruses cause local lesion infections in all known hosts, with no natural systemic host identified to date. All leprosis viruses were believed to be transmitted by one species of mite, Brevipalpus phoenicis. However, mites collected from CiLV-C and CiLV-N infected citrus groves in Mexico were identified as B. yothersi and B. californicus sensu lato, respectively, and only B. yothersi was detected from CiLV-C2 and CiLV-N mixed infections in the Orinoco regions of Colombia. Phylogenetic analysis of the helicase, RNA-dependent RNA polymerase 2 domains and p24 gene amino acid sequences of cytoplasmic leprosis viruses showed a close relationship with recently deposited mosquito-borne negevirus sequences. Here, we present evidence that both cytoplasmic and nuclear viruses seem to replicate in viruliferous Brevipalpus species. The possible replication in the mite vector and the close relationship with mosquito borne negeviruses are consistent with the concept that members of the genus Cilevirus and Higrevirus originated in mites and citrus may play the role of mite virus vector.

  8. Vaccinia virus: a selectable eukaryotic cloning and expression vector.

    OpenAIRE

    Mackett, M; Smith, G L; B. Moss

    1982-01-01

    Foreign DNA was inserted into two nonessential regions of the vaccinia virus genome by homologous recombination in cells infected with virus and transfected with plasmids containing the foreign DNA elements flanked by vaccinia virus DNA. Thymidine kinase-negative (TK-) recombinants were selected after inserting foreign DNA into the coding region of the TK gene of wild-type vaccinia virus; TK+ recombinants were selected after inserting the herpesvirus TK gene into TK- mutants of vaccinia virus...

  9. Aedes hensilli as a potential vector of Chikungunya and Zika viruses.

    Directory of Open Access Journals (Sweden)

    Jeremy P Ledermann

    2014-10-01

    Full Text Available An epidemic of Zika virus (ZIKV illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s. Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at select sites around the capital city. The predominant species found on the island was Aedes (Stegomyia hensilli. No virus isolates were obtained from the adult field material collected, nor did any of the immature mosquitoes that were allowed to emerge to adulthood contain viable virus or nucleic acid. Therefore, laboratory studies of the probable vector, Ae. hensilli, were undertaken to determine the likelihood of this species serving as a vector for Zika virus and other arboviruses. Infection rates of up to 86%, 62%, and 20% and dissemination rates of 23%, 80%, and 17% for Zika, chikungunya, and dengue-2 viruses respectively, were found supporting the possibility that this species served as a vector during the Zika outbreak and that it could play a role in transmitting other medically important arboviruses.

  10. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  11. Patterns of scAAV vector insertion associated with oncogenic events in a mouse model for genotoxicity.

    Science.gov (United States)

    Rosas, Lucia E; Grieves, Jessica L; Zaraspe, Kimberly; La Perle, Krista Md; Fu, Haiyan; McCarty, Douglas M

    2012-11-01

    Recombinant adeno-associated virus (rAAV) vectors have gained an extensive record of safety and efficacy in animal models of human disease. Infrequent reports of genotoxicity have been limited to specific vectors associated with excess hepatocellular carcinomas (HCC) in mice. In order to understand potential mechanisms of genotoxicity, and identify patterns of insertion that could promote tumor formation, we compared a self-complementary AAV (scAAV) vector designed to promote insertional activation (scAAV-CBA-null) to a conventional scAAV-CMV-GFP vector. HCC-prone C3H/HeJ mice and severe combined immunodeficiency (SCID) mice were infected with vector plus secondary treatments including partial hepatectomy (HPX) and camptothecin (CPT) to determine the effects of cell cycling and DNA damage on tumor incidence. Infection with either vector led to a significant increase in HCC incidence in male C3H/HeJ mice. Partial HPX after infection reduced HCC incidence in the cytomegalovirus-green fluorescent protein (CMV-GFP)-infected mice, but not in the cognate chicken β-actin (CBA)-null infected group. Tumors from CBA-null infected, hepatectomized mice were more likely to contain significant levels of vector DNA than tumors from the corresponding CMV-GFP-infected group. Most CBA-null vector insertions recovered from tumors were associated with known proto-oncogenes or tumor suppressors. Specific patterns of insertion suggested read-through transcription, enhancer effects, and disruption of tumor suppressors as likely mechanisms for genotoxicity.

  12. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1.

    Science.gov (United States)

    Kim, V N; Mitrophanous, K; Kingsman, S M; Kingsman, A J

    1998-01-01

    The use of human immunodeficiency virus vectors for gene therapy is hampered by concern over their safety. This concern might be ameliorated, in part, if the viral accessory genes and proteins could be eliminated from the vector genomes and particles. Here we describe a minimal vector system that is capable of transducing nondividing cells and which does not contain tat, vif, vpr, vpu, and nef. PMID:9420292

  13. Minimal Requirement for a Lentivirus Vector Based on Human Immunodeficiency Virus Type 1

    OpenAIRE

    Kim, V. Narry; Mitrophanous, Kyriacos; Kingsman, Susan M.; Kingsman, Alan J.

    1998-01-01

    The use of human immunodeficiency virus vectors for gene therapy is hampered by concern over their safety. This concern might be ameliorated, in part, if the viral accessory genes and proteins could be eliminated from the vector genomes and particles. Here we describe a minimal vector system that is capable of transducing nondividing cells and which does not contain tat, vif, vpr, vpu, and nef.

  14. Feline Immunodeficiency Virus as a Gene Transfer Vector in the Rat Nucleus Tractus Solitarii

    OpenAIRE

    Lin, L. H.; Langasek, J. E.; Talman, L. S.; Taktakishvili, O. M.; Talman, W. T.

    2009-01-01

    Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effect...

  15. Gene Therapy for Bladder Overactivity and Nociception with Herpes Simplex Virus Vectors Expressing Preproenkephalin

    OpenAIRE

    Yokoyama, Hitoshi; Sasaki, Katsumi; Franks, Michael E.; Goins, William F.; Goss, James R; de Groat, William C.; Glorioso, Joseph C; Chancellor, Michael B.; Yoshimura, Naoki

    2009-01-01

    Interstitial cystitis/painful bladder syndrome (IC/PBS) is a major challenge to treat. We studied the effect of targeted and localized expression of enkephalin in afferent nerves that innervate the bladder by gene transfer using replication-defective herpes simplex virus (HSV) vectors in a rat model of bladder hyperactivity and pain. Replication-deficient HSV vectors encoding preproenkephalin, which is a precursor for Met- and Leu-enkephalin, or control vector encoding the lacZ reporter gene,...

  16. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) to epizootic hemorrhagic disease virus serotype 7

    Science.gov (United States)

    Background: Culicoides sonorensis (Diptera: Ceratopogonidae) is a vector of epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD) and other wild ruminants. Although historically rare, reports of clinica...

  17. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Caluwe, Hannie de; Hordijk, Cornelis A.;

    2012-01-01

    Plant pathogens and insect herbivores are prone to share hosts under natural conditions. Consequently, pathogen-induced changes in the host plant can affect herbivory, and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between...... viruses and non-vectoring herbivores. We investigated the effects of virus infection on subsequent infestation by a non-vectoring herbivore in a natural genotype of Trifolium repens (white clover). We tested whether infection with White clover mosaic virus (WClMV) alters (1) the effects of fungus gnat....... This suggests that virus infections may contribute to protecting their hosts by decreasing herbivore infestation rates. Consequently, it is conceivable that viruses play a more beneficial role in plant-herbivore interactions than generally thought....

  18. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector.

    Science.gov (United States)

    Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C; Bernard, Kristen A; DeLuca, Neal A; Whelan, Sean P J; Knipe, David M

    2016-09-01

    West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus. PMID:27336950

  19. General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination.

    Science.gov (United States)

    Baldo, Aline; van den Akker, Eric; Bergmans, Hans E; Lim, Filip; Pauwels, Katia

    2013-12-01

    This introductory paper gathers general considerations on the biosafety of virus-derived vectors that are used in human gene therapy and/or vaccination. The importance to assess the potential risks for human health and the environment related to the use of genetically modified organisms (GMO) in this case genetically modified viral vectors is highlighted by several examples. This environmental risk assessment is one of the requirements within the European regulatory framework covering the conduct of clinical trials using GMO. Risk assessment methodologies for the environmental risk assessment of genetically modified virus-derived vectors have been developed. PMID:24195604

  20. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery.

    Science.gov (United States)

    Cooney, Ashley L; Singh, Brajesh K; Sinn, Patrick L

    2015-04-01

    The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR. PMID:25557623

  1. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    Institute of Scientific and Technical Information of China (English)

    Michael A van Geer; Koert FD Kuhlmann; Conny T Bakker; Fibo JW ten Kate; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions.METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices.Tissue slices were cultured ex vivo for 1-6 d in an incubator using 95% O2. Slices were subsequently analyzed for viability and morphology. In addition the slices were incubated with different viral vectors expressing the repor ter genes GFP or DsRed.Expression of these reporter genes was measured at 72 h after infection.RESULTS: With the Krumdieck tissue slicer, uniform slices could be generated from pancreatic tissue but only upon embedding the tissue in 3% low melting agarose. Immunohistological examination showed the presence of all pancreatic cell types. Pancreatic normal and cancer tissue slices could be cultured for up to 6 d, while retaining viability and a moderate to good morphology. Reporter gene expression indicated that the slices could be infected and transduced efficiently by adenoviral vectors and by adeno associated viral vectors, whereas transduction with lentiviral vectors was limited. For the adenoviral vector, the transduction seemed limited to the peripheral layers of the explants.CONCLUSION: The presented sys tem al lows reproducible processing of minimal amounts of pancreatic tissue into slices uniform in size, suitable for pre-clinical evaluation of gene therapy vectors.

  2. Evidence for Culicoides obsoletus group as vector for Schmallenberg virus in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Kristensen, Birgit; Kirkeby, Carsten;

    to transient clinical symptoms including fever, diarrhea and loss of milk production. However, a more significant consequence of infection in pregnant animals is the production of severe congenital malformations in newborn animals, especially lambs. The virus is a member of the Orthobunyavirus genus within...... the Bunyaviridae family and is closely related to Shamonda and Akabane viruses. These viruses are transmitted by insect vectors (including biting midges (Culicoides sp.) and mosquitoes). To determine whether these insects may act as vectors for SBV, biting midges (Culicoides spp.) caught in October 2011...... be accounted for due to the residue of a blood meal and no ruminant actin mRNA could be detected either. These results strongly suggest that SBV has replicated within specimens of the C. obsoletus group and indicates that these biting midges can act as vectors for this virus. To date (end of March), no cases...

  3. A Vectored Measles Virus Induces Hepatitis B Surface Antigen Antibodies While Protecting Macaques against Measles Virus Challenge▿

    OpenAIRE

    del Valle, Jorge Reyes; Devaux, Patricia; Hodge, Gregory; Wegner, Nicholas J.; McChesney, Michael B.; Cattaneo, Roberto

    2007-01-01

    Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral partic...

  4. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy.

    Science.gov (United States)

    Cannon, P M; Kim, N; Kingsman, S M; Kingsman, A J

    1996-11-01

    We have constructed new murine leukemia virus (MLV)-based vectors (TIN vectors) which, following integration, contain human immunodeficiency virus (HIV) type 1 U3 and R sequences in place of the MLV U3 and R regions. This provides, for the first time, single transcriptional unit retroviral vectors under the control of Tat. TIN vectors have several advantages for anti-HIV gene therapy applications. PMID:8892960

  5. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy.

    OpenAIRE

    Cannon, P M; Kim, N.; Kingsman, S M; Kingsman, A J

    1996-01-01

    We have constructed new murine leukemia virus (MLV)-based vectors (TIN vectors) which, following integration, contain human immunodeficiency virus (HIV) type 1 U3 and R sequences in place of the MLV U3 and R regions. This provides, for the first time, single transcriptional unit retroviral vectors under the control of Tat. TIN vectors have several advantages for anti-HIV gene therapy applications.

  6. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.

    Science.gov (United States)

    Chaskopoulou, Alexandra; L'Ambert, Gregory; Petric, Dusan; Bellini, Romeo; Zgomba, Marija; Groen, Thomas A; Marrama, Laurence; Bicout, Dominique J

    2016-01-01

    West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection.

  7. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.

    Science.gov (United States)

    Chaskopoulou, Alexandra; L'Ambert, Gregory; Petric, Dusan; Bellini, Romeo; Zgomba, Marija; Groen, Thomas A; Marrama, Laurence; Bicout, Dominique J

    2016-01-01

    West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection. PMID:27590848

  8. The Use of Viral Vectors in Gene Transfer Therapy

    Directory of Open Access Journals (Sweden)

    A. Dziaková

    2016-05-01

    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  9. Combined immunity of DNA vector and recombinant vaccinia virus expressing Gag proteins of equine infectious anemia virus

    Institute of Scientific and Technical Information of China (English)

    DAI Chunming; ZHANG Xiaoyan; WANG Shuhui; LIU Ying; DUAN Danli; SHEN Rongxian; SHAO Yiming

    2004-01-01

    In order to develop a new vaccine candidate for equine infectious anemia virus (EIAV), gag gene of Chinese donkey leukocyte attenuated strain (EIAV DLV) and its parental virulent strain (EIAV LN) were inserted respectively into the TK region of the Tiantan strain (VV) of vaccinia virus by homologous recombination and the positive clone was confirmed by blue plaque assay. Protein expression was examined by Western blot. Prime and prime-boost procedures were used to immunize mice with two DNA vectors and two recombinant vaccinia viruses expressing EIAV Gag proteins. The results showed that the specific lysis of CTL responses in the DNA+rVV groups was stronger than those in the DNA groups, amounting to 31%. Although the levels of specific antibodies were not significantly different, we could conclude that the recombinant vaccinia virus could boost the cellular responses following DNA vector priming. There was no detectable difference between the immune responses induced by DLV and LN Gag proteins. This data demonstrates that the combined immunity of DNA vector and recombinant vaccinia virus expressing EIAV gag proteins, utilizing the prime-boost procedure, can drive immunized mice to produce powerful cellular responses. These results lay an important foundation for the development of a new EIAV genetic engineering vaccine.

  10. Glycoprotein Exchange Vectors Based on Vesicular Stomatitis Virus Allow Effective Boosting and Generation of Neutralizing Antibodies to a Primary Isolate of Human Immunodeficiency Virus Type 1

    OpenAIRE

    Rose, Nina F.; Roberts, Anjeanette; Buonocore, Linda; Rose, John K.

    2000-01-01

    Live recombinant vesicular stomatitis viruses (VSVs) expressing foreign antigens are highly effective vaccine vectors. However, these vectors induce high-titer neutralizing antibody directed at the single VSV glycoprotein (G), and this antibody alone can prevent reinfection and boosting with the same vector. To determine if efficient boosting could be achieved by changing the G protein of the vector, we have developed two new recombinant VSV vectors based on the VSV Indiana serotype but with ...

  11. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations

    NARCIS (Netherlands)

    Alves, João Nuno; Muir, Elizabeth M; Andrews, Melissa R; Ward, Anneliese; Michelmore, Nicholas; Dasgupta, Debayan; Verhaagen, J.; Moloney, Elizabeth B; Keynes, Roger J; Fawcett, James W; Rogers, John H

    2014-01-01

    As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression

  12. Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge

    OpenAIRE

    Lee, John S.; Hadjipanayis, Angela G.; Welkos, Susan L.

    2003-01-01

    Anthrax, a disease usually associated with herbivores, is caused by the bacterium Bacillus anthracis. The current vaccine licensed for human use requires a six-dose primary series and yearly boosters and causes reactogenicity in up to 30% of vaccine recipients. A minimally reactogenic vaccine requiring fewer inoculations is warranted. Venezuelan equine encephalitis (VEE) virus has been configured for use as a vaccine vector for a wide variety of immunogens. The VEE vaccine vector is composed ...

  13. General Considerations on the Biosafety of Virus-derived Vectors Used in Gene Therapy and Vaccination

    OpenAIRE

    Baldo, Aline; van den Akker, Eric; Bergmans, Hans E.; Lim, Filip; Pauwels, Katia

    2013-01-01

    This introductory paper gathers general considerations on the biosafety of virus-derived vectors that are used in human gene therapy and/or vaccination. The importance to assess the potential risks for human health and the environment related to the use of genetically modified organisms (GMO) in this case genetically modified viral vectors is highlighted by several examples. This environmental risk assessment is one of the requirements within the European regulatory framework covering the con...

  14. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors

    Directory of Open Access Journals (Sweden)

    Richardson Jason H

    2009-07-01

    Full Text Available Abstract Background Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1. Results Among indices of vector competence examined, the proportion of mosquitoes with a midgut infection, viral RNA concentration in the body, and quantity of virus disseminated to the head/legs (but not the proportion of infected mosquitoes with a disseminated infection strongly depended on the specific combinations of isofemale families and viral isolates, demonstrating significant G × G interactions. Conclusion Evidence for genetic specificity of interactions in our simple experimental design indicates that vector competence of Ae. aegypti for DENV is likely governed to a large extent by G × G interactions in genetically diverse, natural populations. This result challenges the general relevance of conclusions from laboratory systems that consist of a single combination of mosquito and DENV genotypes. Combined with earlier evidence for fine-scale genetic structure of natural Ae. aegypti populations, our finding indicates that the necessary conditions for local DENV adaptation to mosquito vectors are met.

  15. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

    Directory of Open Access Journals (Sweden)

    Indira S. Harahap-Carrillo

    2015-07-01

    Full Text Available Vaccines against dengue virus (DV are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII from DV 2 envelope protein (E, which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S in order to display DV 2 DIII on a virus-like particle (VLP, thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko, eliciting robust neutralizing responses (averages against MV (1:1280 NT90, hepatitis B virus (787 mIU/mL, and DV2 (1:160 NT50 in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV.

  16. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed

    OpenAIRE

    Boëte, Christophe; Reeves, Guy

    2016-01-01

    In their Comment in The Lancet Global Health (March, 2016),1 Laith Yakob and Thomas Walker present the current epidemiological situation of the Zika virus outbreak in the Americas. They argue that, in the absence of a vaccine, the ongoing use of insecticides or the destruction of mosquito breeding sites provides little hope for the containment of this disease. Consequently, they highlight two novel techniques that in their view could provide imminent relief from Zika virus and other vectored ...

  17. Aedes (Stegomyia albopictus (Skuse: a potential vector of Zika virus in Singapore.

    Directory of Open Access Journals (Sweden)

    Pei-Sze Jeslyn Wong

    Full Text Available Zika virus (ZIKV is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80-85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi. Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.

  18. Spread of Zika virus: The key role of mosquito vector control

    OpenAIRE

    Giovanni Benelli

    2016-01-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemisphere, over the last 20 years, namely dengue, West Nile virus, and chiku...

  19. Virus infection mediates the effects of elevated CO2 on plants and vectors.

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K; Bosque-Pérez, Nilsa A; Powell, Kevin S; Dader, Beatriz; Freeman, Angela J; Yen, Alan L; Fitzgerald, Glenn J; Luck, Jo E

    2016-01-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044

  20. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  1. A replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based lentiviral vectors.

    Science.gov (United States)

    Miskin, J; Chipchase, D; Rohll, J; Beard, G; Wardell, T; Angell, D; Roehl, H; Jolly, D; Kingsman, S; Mitrophanous, K

    2006-02-01

    Lentiviral vectors are being developed to satisfy a wide range of currently unmet medical needs. Vectors destined for clinical evaluation have been rendered multiply defective by deletion of all viral coding sequences and nonessential cis-acting sequences from the transfer genome. The viral envelope and accessory proteins are excluded from the production system. The vectors are produced from separate expression plasmids that are designed to minimize the potential for homologous recombination. These features ensure that the regeneration of the starting virus is impossible. It is a regulatory requirement to confirm the absence of any replication competent virus, so we describe here the development and validation of a replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based vectors. The assay is based on the guidelines developed for testing retroviral vectors, and uses the F-PERT (fluorescent-product enhanced reverse transcriptase) assay to test for the presence of a transmissible reverse transcriptase. We have empirically modelled the replication kinetics of an EIAV-like entity in human cells and devised an amplification protocol by comparison with a replication competent MLV. The RCL assay has been validated at the 20 litre manufacturing scale, during which no RCL was detected. The assay is theoretically applicable to any lentiviral vector and pseudotype combination. PMID:16208418

  2. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  3. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    International Nuclear Information System (INIS)

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS

  4. Pseudacteon decapitating flies: Potential vectors of a fire ant virus?

    International Nuclear Information System (INIS)

    Solenopsis invicta virus (SINV-1) is a positive-stranded RNA virus recently found to infect all stages of the red imported fire ant, Solenopsis invicta (Valles et al. 2004; Valles and Strong 2005). SINV-1 and a second genotype have been tentatively assigned to the Dicistroviridae (Mayo 2002). Infected individuals or colonies did not exhibit any immediate, discernible symptoms in the field. However, under stress from introduction into the laboratory, brood death was often observed among infected colonies, ultimately leading to the death of the entire colony (Valles et al. 2004). These characteristics are consistent with other insect-infecting positive-stranded RNA viruses. They often persist as inapparent, asymptomatic infections that, under certain conditions, induce replication within the host, resulting in observable symptoms and often death (Christian and Scotti 1998; Fernandez et al. 2002). The SINV infection rate among colonies was reported to be around 25% in Gainesville, Florida (Valles et al. 2004; Valles and Strong 2005). SINV vertical and horizontal transmission were inferred based on RT-PCR detection of virus genome in eggs and successful colony to colony transfer under lab conditions (Valles et al. 2004). However, the exact mechanisms by which the virus is spread from nest to nest in the field are unknown. Our results indicate that SINV does not replicate within Pseudacteon decapitating flies that parasitize S. invicta. Flies appeared to develop normally from SINV-infected S. invicta workers. Mechanical transmission of SINV to uninfected ants by oviposition appears unlikely

  5. A one-step cloning method for the construction of somatic cell gene targeting vectors: application to production of human knockout cell lines

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2012-10-01

    Full Text Available Abstract Background Gene targeting is a powerful method that can be used for examining the functions of genes. Traditionally, the construction of knockout (KO vectors requires an amplification step to obtain two homologous, large fragments of genomic DNA. Restriction enzymes that cut at unique recognitions sites and numerous cloning steps are then carried out; this is often a time-consuming and frustrating process. Results We have developed a one-step cloning method for the insertion of two arms into a KO vector using exonuclease III. We modified an adeno-associated virus KO shuttle vector (pTK-LoxP-NEO-AAV to yield pAAV-LIC, which contained two cassettes at the two multiple-cloning sites. The vector was digested with EcoRV to give two fragments. The two homologous arms, which had an overlap of 16 bases with the ends of the vector fragments, were amplified by polymerase chain reaction. After purification, the four fragments were mixed and treated with exonuclease III, then transformed into Escherichia coli to obtain the desired clones. Using this method, we constructed SirT1 and HDAC2 KO vectors, which were used to establish SirT1 KO cells from the colorectal cancer cell line (HCT116 and HDAC2 KO cells from the colorectal cancer cell line (DLD1. Conclusions Our method is a fast, simple, and efficient technique for cloning, and has great potential for high-throughput construction of KO vectors.

  6. New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia

    Science.gov (United States)

    Vythilingam, Indra; Sam, Jamal I-C.; Chan, Yoke F.; Khaw, Loke T.; Sulaiman, Wan Y. Wan

    2016-01-01

    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available. PMID:27679623

  7. Virus-Like Vesicle-Based Therapeutic Vaccine Vectors for Chronic Hepatitis B Virus Infection

    OpenAIRE

    Tracy D Reynolds; Buonocore, Linda; Rose, Nina F.; Rose, John K.; Robek, Michael D.

    2015-01-01

    More than 500,000 people die each year from the liver diseases that result from chronic hepatitis B virus (HBV) infection. Therapeutic vaccines, which aim to elicit an immune response capable of controlling the virus, offer a potential new treatment strategy for chronic hepatitis B. Recently, an evolved, high-titer vaccine platform consisting of Semliki Forest virus RNA replicons that express the vesicular stomatitis virus glycoprotein (VSV G) has been described. This platform generates virus...

  8. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector

    Directory of Open Access Journals (Sweden)

    Eric Zinn

    2015-08-01

    Full Text Available Adeno-associated virus (AAV vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAVs, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In-silico-derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.

  9. Engineering Cowpea Mosaic Virus RNA-2 into a vector to express heterologous proteins in plants

    NARCIS (Netherlands)

    Kodetham Gopinath,; Wellink, J.; Porta, C.; Taylor, K.M.; Lomonossoff, G.P.; Kammen, van A.

    2000-01-01

    series of new cowpea mosaic virus (CPMV) RNA-2-based expression vectors were designed. The jellyfish green fluorescent protein (GFP) was introduced between the movement protein (MP) and the large (L) coat protein or downstream of the small (S) coat protein. Release of the GFP inserted between the MP

  10. Expression of the movement protein of tomato spotted wilt virus in the insect vector Frankliniella occidentalis.

    NARCIS (Netherlands)

    Storms, M.; Nagata, T.; Kormelink, R.; Lent, van J.W.M.; Goldbach, R.W.

    2002-01-01

    Tomato spotted wilt virus (TSWV) is able to infect both its botanical hosts and its insect vector (thrips). In plant tissue the NSM protein of TSWV functions as viral movement protein (MP), aggregating into plasmodesma-penetrating tubules to establish cell-to-cell movement. As upon heterologous expr

  11. Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus) mosquitoes.

    Science.gov (United States)

    Fortuna, C; Remoli, M E; Severini, F; Di Luca, M; Toma, L; Fois, F; Bucci, P; Boccolini, D; Romi, R; Ciufolini, M G

    2015-12-01

    West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance.

  12. High-titer bicistronic retroviral vectors employing foot-and-mouth disease virus internal ribosome entry site.

    OpenAIRE

    Ramesh, N; Kim, S. T.; Wei, M. Q.; Khalighi, M; Osborne, W R

    1996-01-01

    Bicistronic retroviral vectors were constructed containing the foot-and-mouth disease virus (FMDV) internal ribosome entry site (IRES) followed by the coding region of beta-galactosidase (beta-gal) or therapeutic genes, with the selectable neomycin phosphotransferase gene under the control of the viral long terminal repeat (LTR) promoter. LNFX, a vector with a multiple cloning site 3' to foot-and-mouth disease virus IRES, was used to construct vectors encoding rat erythropoietin (EP), rat gra...

  13. Replication-incompetent herpesvirus vector delivery of an interferon alpha gene inhibits human immunodeficiency virus replication in human monocytes.

    OpenAIRE

    Weir, J P; Elkins, K L

    1993-01-01

    Human monocytes and macrophages are nondividing cells that serve as a major reservoir for human immunodeficiency virus (HIV) at all stages of infection. To investigate viral-mediated gene delivery as a means of inhibiting HIV replication in human monocytes, a replication-incompetent herpes simplex virus vector was developed that expressed human interferon alpha. Monocytes infected with this herpes simplex virus vector and then challenged with HIV showed dramatically reduced cytopathic effects...

  14. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus.

    Science.gov (United States)

    Turell, M J; O'Guinn, M L; Dohm, D J; Jones, J W

    2001-03-01

    We evaluated the potential for several North American mosquito species to transmit the newly introduced West Nile (WN) virus. Mosquitoes collected in the New York City metropolitan area during the recent WN virus outbreak, at the Assateague Island Wildlife Refuge, VA, or from established colonies were allowed to feed on chickens infected with WN virus isolated from a crow that died during the 1999 outbreak. These mosquitoes were tested approximately 2 wk later to determine infection, dissemination, and transmission rates. Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus (Theobald) were highly susceptible to infection, and nearly all individuals with a disseminated infection transmitted virus by bite. Culex pipiens L. and Aedes sollicitans (Walker) were moderately susceptible. In contrast, Aedes vexans (Meigen), Aedes aegypti (L.), and Aedes taeniorhynchus (Wiedemann) were relatively refractory to infection, but individual mosquitoes inoculated with WN virus did transmit virus by bite. Infected female Cx. pipiens transmitted WN virus to one of 1,618 F1 progeny, indicating the potential for vertical transmission of this virus. In addition to laboratory vector competence, host-feeding preferences, relative abundance, and season of activity also determine the role that these species could play in transmitting WN virus.

  15. Vector competence of Culex tarsalis from Orange County, California, for West Nile virus.

    Science.gov (United States)

    Turell, Michael J; O'Guinn, Monica L; Dohm, David J; Webb, James P; Sardelis, Michael R

    2002-01-01

    To evaluate the vector competence of Culex tarsalis Coquillett for West Nile virus (WN), females reared from larvae collected in Huntington Beach, Orange County, CA, were fed on 2-3-day-old chickens previously inoculated with a New York strain (Crow 397-99) of WN. The Cx. tarsalis mosquitoes were efficient laboratory vectors of WN, with estimated transmission rates of 81% and 91% for mosquitoes that ingested 10(6.5) or 10(7.3) plaque-forming units of WN/mL of blood, respectively. Based on efficiency of viral transmission and the role of this species in the transmission of the closely related St. Louis encephalitis virus, Cx. tarsalis should be considered a potentially important vector of WN in the western United States.

  16. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2014-08-01

    Full Text Available Plants represent a safe, efficacious and inexpensive production platform by which to provide vaccines and other therapeutic proteins to the world’s poor. Plant virus expression vector technology has rapidly become one of the most popular methods to express pharmaceutical proteins in plants. This review discusses several of the state-of-the-art plant expression systems based upon geminiviruses that have been engineered for vaccine production. An overview of the advantages of these small, single-stranded DNA viruses is provided and comparisons are made with other virus expression systems. Advances in the design of several different geminivirus vectors are presented in this review, and examples of vaccines and other biologics generated from each are described.

  17. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci.

    Science.gov (United States)

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  18. Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library.

    Science.gov (United States)

    Beck, Simon; Henß, Lisa; Weidner, Tatjana; Herrmann, Jennifer; Müller, Rolf; Chao, Yu-Kai; Grimm, Christian; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-08-01

    Myxobacteria produce secondary metabolites many of which were described to have various biological effects including anti-fungal, anti-bacterial and anti-viral activity. The majority of these metabolites are novel scaffolds with unique modes-of-action and hence might be potential leads for drug discovery. Here, we tested a myxobacterial natural product library for compounds with inhibitory activity against Ebola virus (EBOV). The assay was performed with a surrogate system using Ebola envelope glycoprotein (GP) pseudotyped lentiviral vectors. EBOV specificity was proven by counter-screening with vesicular stomatitis virus G protein pseudotyped vectors. Two compounds were identified that preferentially inhibited EBOV GP mediated cell entry: Chondramides that act on the actin skeleton but might be too toxic and noricumazole A, a potassium channel inhibitor, which might constitute a novel pathway to inhibit Ebola virus cell entry. PMID:27241689

  19. Exploring the limits of vector construction based on Citrus tristeza virus.

    Science.gov (United States)

    El-Mohtar, Choaa; Dawson, William O

    2014-01-01

    We examined the limits of manipulation of the Citrus tristeza virus (CTV) genome for expressing foreign genes in plants. We previously created a vector with a foreign gene cassette inserted between the major and minor coat protein genes, which is position 6 from the 3' terminus. Yet, this virus has 10 3'-genes with several other potential locations for expression of foreign genes. Since genes positioned closer to the 3' terminus tend to be expressed in greater amounts, there were opportunities for producing greater amounts of foreign protein. We found that the virus tolerated insertions of an extra gene in most positions within the 3' region of the genome with substantially increased levels of gene product produced throughout citrus trees. CTV was amazingly tolerant to manipulation resulting in a suite of stable transient expression vectors, each with advantages for specific uses and sizes of foreign genes in citrus trees.

  20. Culicoides spp. (Diptera: Ceratopogonidae) as vectors of bluetongue virus in South Africa - a review.

    Science.gov (United States)

    Venter, Gert Johannes

    2015-01-01

    The aim of this paper is to consolidate vector competence studies on Culicoides midges (Diptera: Ceratopogonidae) as vectors of bluetongue virus (BTV) done over a period 25 years at the ARC‑Onderstepoort Veterinary Institute in South Africa. In 1944, it was demonstrated for the first time in South Africa that Culicoides midges transmit BTV. In 1991, field‑collected Culicoides imicola were fed on blood containing BTV‑3 or ‑6 and the infection rates were established as being 31% and 24%, respectively. In 1998, Culicoides bolitinos was shown to have a higher infection prevalence and virus titre/midge than C. imicola. This species was then shown to have a higher transmission potential for BTV‑1 over a range of incubation temperatures wider than the one showed by C. imicola. Attenuation of BTV also does not reduce its ability to infect competent Culicoides species. Oral susceptibility studies, involving 29 BTV isolates of various serotypes, indicated differences between various geographic virus isolates and Culicoides populations evaluated. While low recovery rates of European BTV strains from South African Culicoides species suggest co‑adaptation between orbiviruses and vectors in a given locality, co‑adaption was shown not to be essential for virus transmission. Cumulative results since 1991 provide evidence that at least 13 livestock‑associated Culicoides species are susceptible to BTV. Susceptibility results are supported by field isolations from 5 of these species. This implies that multi‑vector potential for the transmission of BTV will complicate the epidemiology of BT. It must be emphasised that neither oral susceptibility nor virus isolation/detection from field‑collected specimens is proof that a species is a confirmed field vector. PMID:26741247

  1. Saliva proteins of vector Culicoides modify structure and infectivity of bluetongue virus particles.

    Directory of Open Access Journals (Sweden)

    Karin E Darpel

    Full Text Available Bluetongue virus (BTV and epizootic haemorrhagic disease virus (EHDV are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.. The larger of the BTV outer-capsid proteins, 'VP2', can be cleaved by proteases (including trypsin or chymotrypsin, forming infectious subviral particles (ISVP which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis. We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector, cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent/non-vector species. Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ∼10 fold, while infectivity for BHK cells was reduced by 2-6 fold. Treatment of an 'eastern' strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a 'western' strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species, can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to

  2. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    OpenAIRE

    Hruby, D. E.

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years...

  3. High expression of hepatitis B virus based vector with reporter gene in hepatitis B virus infection system

    Institute of Scientific and Technical Information of China (English)

    Shi-Hong Li; Wen-Ge Huang; Bing Huang; Xi-Gu Chen

    2007-01-01

    AIM: To construct a hepatitis B virus (HBV)-based vector with a reporter gene and to establish an HBV infection system to evaluate the availability of the vector.METHODS: The HBV-based vectors with green fluorescence protein (GFP) were packaged into the liver of immunodeficient mice through transfer and helper plasmid using hydrodynamic technology. Wild type HBV (wt HBV) was provided by plasmid MC2009. Primary human hepatocytes (PHH) were isolated and infected with recombinant HBV (rHBV) or wt HBV. GFP expression was monitored by confocal and flow cytometry. HBV DNA and HBV surface antigen (HBSAg) were analyzed by PCR and ELISA.RESULTS: 3 × 107 wt HBV copies/mL and 5 × 106 rHBV copies/mL were collected from mice serum. In the wt HBV infected group, HBV progeny was 2 × 107 copies/mL and HBSAg was 770 ng/mL. In the rHBV infected group, GFP fluorescence was detected on d 3 post-infection and over 85% of the parenchymal cells expressed green fluorescence on d 12 post-infection. Compared with wt HBV in the PHH infection system, no rHBV DNA or HBSAg were detected in PHH culture media.CONCLUSION: An effective HBV based vector was developed, which proved to be a useful HBV infection system. This vector and infection system can be applied to develop a therapeutic vector and study the HBV life cycle and viral pathogenesis.

  4. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    Directory of Open Access Journals (Sweden)

    Yun Mai

    Full Text Available Murine leukemia virus (MLV-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1 enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  5. Oncolytic herpes simplex virus vectors for the treatment of human breast cancer

    Institute of Scientific and Technical Information of China (English)

    LIU Ren-bin; Samuel D.Rabkin

    2005-01-01

    Background Oncolytic herpes simplex virus (HSV) vectors can be used for cancer therapy as direct cytotoxic agents, inducers of anti-tumor immune responses, and as expressers of anti-cancer genes. In this study, the efficacy of HSV vectors, G47Δ and NV1023 were examined for the treatment of the human breast cancer.Methods Human breast cancer MDA-MB-435 cells were cultured or implanted subcutaneously in BALB/c nude mice. The cells or tumors were inoculated with G47Δ or NV1023, and cell killing or inhibition of tumor growth determined. Both viruses contained the LacZ gene and expression in infected cells was detected with X-gal histochemistry. Results G47Δ and NV1023 were highly cytotoxic to MDA-MB-435 cells in vitro at very low multiplicities of infection. X-gal staining of infected tumor cells in vitro and in vivo illustrated the replication and spread of both viruses. G47Δ and NV1023 inoculation inhibited tumor growth and prolonged mouse survival. Both vectors behaved similarly.Conclusions Oncolytic HSV vectors, G47Δ and NV1023, were extremely effective at killing human breast cancer cells in vitro and in tumor xenografts in vivo. This novel form of cancer therapy warrants further investigation and consideration of clinical application.

  6. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  7. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera.

    Science.gov (United States)

    Di Prisco, Gennaro; Pennacchio, Francesco; Caprio, Emilio; Boncristiani, Humberto F; Evans, Jay D; Chen, Yanping

    2011-01-01

    The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.

  8. Localization of Transmissible and Nontransmissible Viruses in the Vector Nematode Xiphinema americanum.

    Science.gov (United States)

    Wang, Shouhua; Gergerich, Rose C; Wickizer, Sandra L; Kim, Kyung S

    2002-06-01

    ABSTRACT The inner lining of the food canal of nematodes that transmit plantinfecting viruses is regarded as the retention region of viruses. To characterize the location of transmissible and nontransmissible viruses in the vector nematode Xiphinema americanum, three nepoviruses, Tobacco ringspot virus (TRSV), Tomato ringspot virus(TomRSV), and Cherry leaf roll virus(CLRV), and one non-nematode-transmissible virus, Squash mosaic virus (SqMV), were evaluated for transmission efficiency and localization sites in the nematode. Transmission trials showed highest transmission efficiency for TomRSV (38% with 1 and 100% with 10 nematodes, respectively), intermediate efficiency for TRSV (27% with 1 and 65% with 10 nematodes, respectively), and no transmission for CLRV and SqMV. Electron microscopy and immunofluorescent labeling revealed that TRSV was primarily localized to the lining of the lumen of the stylet extension and the anterior esophagus, but only rarely in the triradiate lumen. Within a nematode population, particles of TRSV were no longer observed in these three regions 10 weeks after acquisition, and it is assumed that there was gradual and random loss of the virus from these areas. The percentage of nematodes that were labeled by virus-specific immunofluorescent labeling in a population of viruliferous nematodes decreased gradually after TRSV acquisition when the nematodes were placed on a nonhost of the virus, and the loss of immunofluorescent labeling paralleled the decrease in the ability of the nematode population to transmit the virus. TomRSV was localized only in the triradiate lumen based on thin-section electron microscopy. No virus-like particles were observed in any part of the food canal of nematodes that had fed on CLRV-infected plants. Virus-like particles that appeared to be partially degraded were observed only in the triradiate lumen of nematodes that had fed on SqMV-infected plants. These results clarified the status of localization of two

  9. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  10. Evidence of local adaptation in plant virus effects on host-vector interactions.

    Science.gov (United States)

    Mauck, K E; De Moraes, C M; Mescher, M C

    2014-07-01

    Recent research suggests that plant viruses, and other pathogens, frequently alter host-plant phenotypes in ways that facilitate transmission by arthropod vectors. However, many viruses infect multiple hosts, raising questions about whether these pathogens are capable of inducing transmission-facilitating phenotypes in phylogenetically divergent host plants and the extent to which evolutionary history with a given host or plant community influences such effects. To explore these issues, we worked with two newly acquired field isolates of cucumber mosaic virus (CMV)-a widespread multi-host plant pathogen transmitted in a non-persistent manner by aphids-and explored effects on the phenotypes of different host plants and on their subsequent interactions with aphid vectors. An isolate collected from cultivated squash fields (KVPG2-CMV) induced in the native squash host (Cucurbita pepo) a suite of effects on host-vector interactions suggested by previous work to be conducive to transmission (including reduced host-plant quality for aphids, rapid aphid dispersal from infected to healthy plants, and enhanced aphid attraction to the elevated emission of a volatile blend similar to that of healthy plants). A second isolate (P1-CMV) collected from cultivated pepper (Capsicum annuum) induced more neutral effects in its native host (largely exhibiting non-significant trends in the direction of effects seen for KVPG2-CMV in squash). When we attempted cross-host inoculations of these two CMV isolates (KVPG2-CMV in pepper and P1-CMV in squash), P1-CMV was only sporadically able to infect the novel host; KVPG2-CMV infected the novel pepper host with somewhat reduced success compared with its native host and reached virus titers significantly lower than those observed for either strain in its native host. Furthermore, KVPG2-CMV induced changes in the phenotype of the novel host, and consequently in host-vector interactions, dramatically different than those observed in the native

  11. Construction and Application of Newcastle Disease Virus-Based Vector Vaccines.

    Science.gov (United States)

    Wichgers Schreur, Paul J

    2016-01-01

    Paramyxoviruses are able to stably express a wide-variety of heterologous antigens at relatively high levels in various species and are consequently considered as potent gene delivery vehicles. A single vaccination is frequently sufficient for the induction of robust humoral and cellular immune responses. Here we provide detailed methods for the construction and application of Newcastle disease virus (NDV)-based vector vaccines. The in silico design and in vitro rescue as well as the in vivo evaluation of NDV based vectors are described in this chapter.

  12. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae to epizootic hemorrhagic disease virus serotype 7

    Directory of Open Access Journals (Sweden)

    Ruder Mark G

    2012-10-01

    Full Text Available Abstract Background Culicoides sonorensis (Diptera: Ceratopogonidae is a vector of epizootic hemorrhagic disease virus (EHDV serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. Methods To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4–16 days post feeding (dpf. Midges with a virus titer of ≥102.7 median tissue culture infective doses (TCID50/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14–16 dpf midges. Results From 4–16 dpf, 45% (156/350 of midges that fed on WTD with high titer viremia (>107 TCID50/ml were virus isolation-positive, and starting from 10–16 dpf, 32% (35/109 of these virus isolation-positive midges were potentially competent (≥102.7 TCID50/midge. Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14–16 dpf. The WTD developed viremia and severe clinical disease. Conclusion This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates

  13. Semliki forest virus as a vector: pros and cons for its use in biopharmaceuticals production

    Directory of Open Access Journals (Sweden)

    Eutimio Gustavo Fernández Núñez

    2013-10-01

    Full Text Available The number of biopharmaceuticals for medical and veterinarian use produced in mammalian cells is increasing year after year. All of them are obtained by stable recombinant cell lines. However, it is recognized that transient gene expression produces high level expression in a short time. In that sense, viral vectors have been extensively used for producing recombinant proteins on lab-scale. Among them, Semliki Forest virus is commonly employed for this purpose. This review discusses the main aspects related to the use of Semliki Forest virus technology as well as its advantages and drawbacks which limit currently its utilization in biopharmaceutical industry on large-scale.

  14. Targeting of breast metastases using a viral gene vector with tumour-selective transcription.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    BACKGROUND: Adeno-associated virus (AAV) vectors have significant potential as gene delivery vectors for cancer gene therapy. However, broad AAV2 tissue tropism results in nonspecific gene expression. MATERIALS AND METHODS: We investigated use of the C-X-C chemokine receptor type 4 (CXCR4) promoter to restrict AAV expression to tumour cells, in subcutaneous MCF-7 xenograft mouse models of breast cancer and in patient samples, using bioluminescent imaging and flow cytometric analysis. RESULTS: Higher transgene expression levels were observed in subcutaneous MCF-7 tumours relative to normal tissue (muscle) using the CXCR4 promoter, unlike a ubiquitously expressing Cytomegalovirus promoter construct, with preferential AAVCXCR4 expression in epithelial tumour and CXCR4-positive cells. Transgene expression following intravenously administered AAVCXCR4 in a model of liver metastasis was detected specifically in livers of tumour bearing mice. Ex vivo analysis using patient samples also demonstrated higher AAVCXCR4 expression in tumour compared with normal liver tissue. CONCLUSION: This study demonstrates for the first time, the potential for systemic administration of AAV2 vector for tumour-selective gene therapy.

  15. Protein trans-splicing based dual-vector delivery of the coagulation factor Ⅷ gene

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dual-vector system was explored for the delivery of the coagulation factor VIII gene,using intein-mediated protein trans-splicing as a means to produce intact functional factor VIII post-translationally.A pair of eukaryotic expression vectors,expressing Ssp DnaB intein-fused heavy and light chain genes of B-domain deleted factor VIII (BDD-FVIII),was constructed.With transient co-transfection of the two vectors into 293 and COS-7 cells,the culture supernatants contained (137±23) and (109±22) ng mL–1 spliced BDD-FVIII antigen with an activity of (1.05±0.16) and (0.79±0.23) IU mL–1 for 293 and COS-7 cells,respectively.The spliced BDD-FVIII was also detected in supernatants from a mixture of cells transfected with inteinfused heavy and light chain genes.The spliced BDD-FVIII protein bands from cell lysates were visualized by Western blotting.The data demonstrated that intein could be used to transfer the split factor VIII gene and provided valuable information on factor VIII gene delivery by dual-adeno-associated virus in hemophilia A gene therapy.

  16. Oncolytic Semliki forest virus vector as a novel candidate against unresectable osteosarcoma.

    Science.gov (United States)

    Ketola, Anna; Hinkkanen, Ari; Yongabi, Felicitas; Furu, Petra; Määttä, Ann-Marie; Liimatainen, Timo; Pirinen, Risto; Björn, Marko; Hakkarainen, Tanja; Mäkinen, Kimmo; Wahlfors, Jarmo; Pellinen, Riikka

    2008-10-15

    Oncolytic viruses are a promising tool for treatment of cancer. We studied an oncolytic Semliki Forest virus (SFV) vector, VA7, carrying the enhanced green fluorescent protein gene (EGFP), as a novel virotherapy candidate against unresectable osteosarcoma. The efficiency and characteristics of the VA7-EGFP treatment were compared with a widely studied oncolytic adenovirus, Ad5Delta24, both in vitro and in vivo. VA7-EGFP resulted in more rapid oncolysis and was more efficient at low multiplicities of infection (MOI) when compared with Ad5Delta24 in vitro. Yet, in MG-63 cells, a subpopulation resistant to the VA7-EGFP vector emerged. In subcutaneous human osteosarcoma xenografts in nude mice treatment with either vector reduced tumor size, whereas tumors in control mice expanded quickly. The VA7-EGFP-treated tumors were either completely abolished or regressed to pinpoint size. The efficacy of VA7-EGFP vector was studied also in an orthotopic osteosarcoma nude mouse model characterized by highly aggressive tumor growth. Treatment with oncolytic SFV extended survival of the animals significantly (P < 0.01), yet none of the animals were finally cured. Sera from SFV-treated mice contained neutralizing antibodies, and as nude mice are not able to establish IgG response, the result points out the role of IgM class antibodies in clearance of virus from peripheral tumors. Furthermore, biodistribution analysis at the survival end point verified the presence of virus in some of the brain samples, which is in line with previous studies demonstrating that IgG is required for clearance of SFV from central nervous system. PMID:18922906

  17. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    OpenAIRE

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; José M Escribano

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previousl...

  18. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    Science.gov (United States)

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  19. Haemaphysalis longicornis Ticks as Reservoir and Vector of Severe Fever with Thrombocytopenia Syndrome Virus in China

    OpenAIRE

    Luo, Li-Mei; Zhao, Li; Wen, Hong-Ling; Zhang, Zhen-Tang; Liu, Jian-Wei; Fang, Li-Zhu; Xue, Zai-Feng; Ma, Dong-Qiang; Zhang, Xiao-Shuang; Ding, Shu-Jun; Lei, Xiao-Ying; Yu, Xue-jie

    2015-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever in East Asia caused by SFTS virus (SFTSV), a newly discovered phlebovirus. The Haemaphysalis longicornis tick has been suspected to be the vector of SFTSV. To determine whether SFTSV can be transmitted among ticks, from ticks to animals, and from animals to ticks, we conducted transmission studies between developmental stages of H. longicornis ticks and between ticks and mice. Using reverse transcription PCR, ...

  20. Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector

    OpenAIRE

    Zuniga, Amando; Liniger, Mathias; Morin, Teldja Neige Azzouz; Marty, René R.; Wiegand, Marian; Ilter, Orhan; Weibel, Sara; Billeter, Martin A.; Knuchel, Marlyse C.; Naim, Hussein Y

    2013-01-01

    The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of ...

  1. Forest disturbance, mosquito vector ecology and La Crosse virus dynamics in southwestern Virginia

    OpenAIRE

    Harris, Maria-Richetta Camille

    2014-01-01

    The influence of forest canopy disturbance (FCD) on La Crosse virus (LACV), leading cause of US pediatric arboviral encephalitis, is critical to understand in landscapes where forests are periodically harvested. Southwestern Virginia is part of an emerging focus of this interior forest bunyavirus. I investigated how the temperate forest mosquito community, LACV vectors, and the LACV amplifying vertebrate host (chipmunks) were impacted by logging. This research was conducted across an exper...

  2. Development of rAAV2-CFTR: History of the First rAAV Vector Product to be Used in Humans.

    Science.gov (United States)

    Loring, Heather S; ElMallah, Mai K; Flotte, Terence R

    2016-04-01

    The first human gene therapy trials using recombinant adeno-associated virus (rAAV) vectors were performed in cystic fibrosis (CF) patients. Over 100 CF patients were enrolled in 5 separate trials of rAAV2-CFTR administration via nasal, endobronchial, maxillary sinus, and aerosol delivery. Recombinant AAV vectors were designed to deliver the CF transmembrane regulator (CFTR) gene and correct the basic CFTR defect by restoring chloride transport and reverting the upregulation of proinflammatory cytokines. However, vector DNA expression was limited in duration because of the low incidence of integration and natural airway epithelium turnover. In addition, repeated administration of AAV-CFTR vector resulted in a humoral immune response that prevented effective gene transfer from subsequent doses of vector. AAV serotype 2 was used in human trials before the comparison with other serotypes and determination that serotypes 1 and 5 not only possess higher tropism for the airway epithelium, but also are capable of bypassing the binding and trafficking processes-both were important hindrances to the effectiveness of rAAV2. Although rAAV-CFTR gene therapy does not appear likely to supplant newer small-molecule CFTR modulators in the near future, early work with rAAV-CFTR provided an important foundation for later use of rAAV in humans. PMID:26895204

  3. Paracoccus burnerae (HOMOPTERA; PLANOCOCCIDAE AS A VECTOR OF Banana streak virus

    Directory of Open Access Journals (Sweden)

    Muturi S M

    2013-11-01

    Full Text Available The Banana streak virus ( BSV is a causative agent of the banana streak disease (BSD which causes considerable damage to banana production in tropical countries. The virus is vectored by several mealy bug species. However, the competence of the oleander mealy bug ( Paracoccus burnerae , in the transmission of BSV is unknown. Rolling Circle Amplification (RCA technique was used to select both diseased and healthy plantlets fo r transmission experiments. RCA was conducted on viruliferous instars of P . burnerae and virus - inoculated plantlet DNA samples. The results revealed that P . burnerae is a vector of BSV . However, during hot conditions (24 - 30ºC, the insect was unable to acq uire and transmit BSV . Under cool conditions (9 - 20ºC, a minimum of 6 h of feeding time was necessary for P . burnerae instars to become viruliferous. These results indicate that P . burnerae is a vector of BSV and transmission efficiency depends on the ambi ent temperature and the feeding time.

  4. Tracking of specific integrant clones in dogs treated with foamy virus vectors.

    Science.gov (United States)

    Ohmine, Ken; Li, Yi; Bauer, Thomas R; Hickstein, Dennis D; Russell, David W

    2011-02-01

    Vector integration can lead to proto-oncogene activation and malignancies during hematopoietic stem cell gene therapy. We previously used foamy virus vectors to deliver the CD18 gene under the control of an internal murine stem cell virus promoter and successfully treated dogs with canine leukocyte adhesion deficiency. Here we have tracked the copy numbers of 11 specific proviruses found in these animals for 36-42 months after transplantation, including examples within or near proto-oncogenes, tumor suppressor genes, and genes unrelated to cancer. We found no evidence for clonal expansion of any of the clones, including those with proviruses in the MECOM gene (MDS1-EVI1 complex). These results suggest that although foamy virus vectors may integrate near proto-oncogenes, this does not necessarily lead to clonal expansion and malignancies. Additionally, we show that copy number estimates of these specific proviruses based on linker-mediated PCR results are different from those obtained by quantitative PCR, but can provide a qualitative assessment of provirus levels.

  5. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants

    OpenAIRE

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S.

    2011-01-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome...

  6. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors.

    Science.gov (United States)

    Falkner, F G; Moss, B

    1988-06-01

    Mycophenolic acid, an inhibitor of purine metabolism, was shown to block the replication of vaccinia virus in normal cell lines. This observation led to the development of a dominant one-step plaque selection system, based on expression of the Escherichia coli gpt gene, for the isolation of recombinant vaccinia viruses. Synthesis of xanthine-guanine phosphoribosyltransferase enabled only the recombinant viruses to form large plaques in a selective medium containing mycophenolic acid, xanthine, and hypoxanthine. To utilize the selection system efficiently, we constructed a series of plasmids that contain the E. coli gpt gene and allow insertion of foreign genes into multiple unique restriction endonuclease sites in all three reading frames between the translation initiation codon of a strong late promoter and synthetic translation termination sequences. The selection-expression cassette is flanked by vaccinia virus DNA that directs homologous recombination into the virus genome. The new vectors allow high-level expression of complete or partial open reading frames and rapid construction of recombinant viruses by facilitating the cloning steps and by simplifying their isolation. The system was tested by cloning the E. coli beta-galactosidase gene; in 24 h, this enzyme accounted for approximately 3.5% of the total infected-cell protein.

  7. In situ tumor vaccination with adenovirus vectors encoding measles virus fusogenic membrane proteins and cytokines

    Institute of Scientific and Technical Information of China (English)

    Dennis Hoffmann; Wibke Bayer; Oliver Wildner

    2007-01-01

    AIM: To evaluate whether intratumoral expression of measles virus fusogenic membrane glycoproteins H and "F (MV-FMG), encoded by an adenovirus vector Ad.MV-H/ F, alone or in combination with local coexpression of cytokines (IL-2, IL-12, IL-18, IL-21 or GM-CSF), can serve as a platform for inducing tumor-specific immune responses in colon cancer.METHODS: We used confocal laser scanning microscopy and flow cytometry to analyze cell-cell fusion after expression of MV-FMG by dye colocalization. In a syngeneic bilateral subcutaneous MC38 and Colon26 colon cancer model in C57BL/6 and BALB/c mice, we assessed the effect on both the directly vector-treated tumor as well as the contralateral, not directly vector-treated tumor. We assessed the induction of a tumor-specific cytotoxic T lymphocyte (CTL) response with a lactate dehydrogenase (LDH) release assay.RESULTS: We demonstrated in vitro that transduction of MC38 and Colon26 cells with Ad.MV-H/F resulted in dye colocalization, indicative of cell-cell fusion. In addition, in the syngeneic bilateral tumor model we demonstrated a significant regression of the directly vector-inoculated tumor upon intratumoral expression of MV-FMG alone or in combination with the tested cytokines. We observed the highest anti-neoplastic efficacy with MV-FMG and IL-21 coexpression. The degree of tumor regression of the not directly vector-treated tumor correlated with the anti-neoplastic response of the directly vector-treated tumor. This regression was mediated by a tumor-specific CTL response.CONCLUSION: Our data indicate that intratumoral expression of measles virus fusogenic membrane glycoproteins is a promising tool both for direct tumor treatment as well as for tumor vaccination approaches that can be further enhanced by cytokine coexpression.

  8. Impact of naled (Dibrom 14) on the mosquito vectors of eastern equine encephalitis virus.

    Science.gov (United States)

    Howard, J J; Oliver, J

    1997-12-01

    In central New York, aerial mosquito adulticide applications have been used in response to eastern equine encephalitis (EEE) outbreaks and have targeted the swamp habitats of the primary enzootic vector of EEE virus, Culiseta melanura (Coquillett). The organophosphate insecticide naled (1, 2, dibromo-2, 2-dichloroethyl dimethyl phosphate) has been the insecticide of choice in this region. This study reports on analyses of 11 years (1984-94) of mosquito collection data from Cicero and Toad Harbor swamps in relation to applications of naled. Naled applications were successful in achieving short-term reductions in mosquito abundance. However, despite repetitive applications, populations of the primary vector of EEE virus, Cs. melanura, have increased 15-fold at Cicero Swamp. Preventive applications had no noticeable impact on the enzootic amplification of EEE virus, and isolations of virus following preventive applications have resulted in additional spraying. The possibility that applications of naled contributed to increased populations of Cs. melanura discredits the rationale that preventive applications of naled reduce the risk of EEE. PMID:9474556

  9. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  10. Characterization of the immune responses elicited by baculovirus-based vector vaccines against influenza virus hemagglutinin

    Institute of Scientific and Technical Information of China (English)

    Zhi-peng HU; Juan YIN; Yuan-yuan ZHANG; Shu-ya JIA; Zuo-jia CHEN; Jiang ZHONG

    2012-01-01

    Aim:To compare the specific immune responses elicited by different baculovirus vectors in immunized mice.Methods:We constructed and characterized two recombinant baculoviruses carrying the expression cassette for the H5N1 influenza virus hemagglutinin (HA) gene driven by either an insect cell promoter (vAc-HA) or a dual-promoter active both in insect and mammalian cells (vAc-HA-DUAL).Virus without the HA gene (vAc-EGFP) was used as a control.These viruses were used to immunize mice subcutaneously and intraperitoneally.The production of total and specific antibodies was determined by ELISA and competitive ELISA.Cytokine production by the spleen cells of immunized mice was studied using the ELISPOT assay.Results:Both the vAc-HA and vAc-HA-DUAL vectors expressed HA proteins in insect Sf9 cells,and HA antigen was present in progeny virions.The vAc-HA-DUAL vector also mediated HA expression in virus-transduced mammalian cell lines (BHK and A547).Both vAo-HA and vAc-HA-DUAL exhibited higher transduction efficiencies than vAc-EGFP in mammalian cells,as shown by the expression of the reporter gene egfp.Additionally,both vAc-HA and vAc-HA-DUAL induced high levels of HA-specific antibody production in immunized mice; vAc-HA-DUAL was more efficient in inducing IFN-Y and IL-2 upon stimulation with specific antigen,whereas vAc-HA was more efficient in inducing IL-4 and IL-6.Conclusion:Baculovirus vectors elicited efficient,specific immune responses in immunized mice.The vector displaying the HA antigen on the virion surface (vAc-HA) elicited a Th2-biased immune response,whereas the vector displaying HA and mediating HA expression in the cell (vAc-HA-DUAL) elicited a Th1-biased immune response.

  11. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission

    Science.gov (United States)

    Background: Leafhoppers (Hemiptera:Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in...

  12. Culicoides sonorensis (Diptera: Ceratopogonidae) is not a competent vector of Cache Valley virus (family Bunyaviridae, genus Orthobunyavirus)

    Science.gov (United States)

    We investigated the susceptibility of Culicoides sonorensis to Cache Valley virus (CVV) (family Bunyaviridae, genus Orthobunyavirus) infection and the potential that it could be a vector or site of virus reassortment. CVV is native to the New World and causes disease in livestock. Infected blood mea...

  13. Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...

  14. Targeting the central nervous system with herpes simplex virus / Sleeping Beauty hybrid amplicon vectors.

    Science.gov (United States)

    de Silva, Suresh; Bowers, William J

    2011-10-01

    The pursuits of sustainable treatments for diseases and disorders that afflict the central nervous system (CNS) have proven challenging for the field of viral vector-based gene therapy. However, recent advances in viral vector technology coupled with efficient delivery methods have opened up new avenues that show promise at the preclinical testing stage. The development of the Herpes Simplex Virus/Sleeping Beauty (HSV/SB) hybrid vector represents such an advance for devising treatments targeting the CNS with its potential for stably integrating large transgenomic segments of DNA within the genomes of transduced cells. In utero administration of this hybrid vector into the embryonic mouse brain has revealed the capacity for widespread transgene dissemination due to the targeting of a neuronal precursor cell population. This unique feature has provided the means to stably express a transgene throughout the brain for prolonged periods, which is a prerequisite for the treatment of progressive CNS disorders. In this review we provide a comprehensive breakdown of the characteristics of the HSV/SB vector system and how it can be efficiently employed in the derivation of CNS-targeted gene therapeutic strategies.

  15. Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence.

    Directory of Open Access Journals (Sweden)

    Konstantin A Tsetsarkin

    2011-12-01

    Full Text Available The adaptation of Chikungunya virus (CHIKV to a new vector, the Aedes albopictus mosquito, is a major factor contributing to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004. Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe and expanded CHIK epidemics.

  16. Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence.

    Science.gov (United States)

    Tsetsarkin, Konstantin A; Weaver, Scott C

    2011-12-01

    The adaptation of Chikungunya virus (CHIKV) to a new vector, the Aedes albopictus mosquito, is a major factor contributing to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004. Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe and expanded CHIK epidemics. PMID:22174678

  17. A new approach for the identification of aphid vectors (Hemiptera: Aphididae) of potato virus Y.

    Science.gov (United States)

    Pelletier, Y; Nie, X; Giguère, M A; Nanayakkara, U; Maw, E; Foottit, R

    2012-12-01

    Potato virus Y (PVY) is one of the most economically important viruses affecting potato crops worldwide. PVY can be transmitted from potato to potato by several aphid species, most of which do not colonize the potato crop. New methods including preservation of viral RNA on stylets of aphids collected from yellow pan trap samples, polymerase chain reaction detection of PVY from the stylets of one aphid, and aphid identification using DNA barcoding were used to identify possible PVY vectors from field samples. In total, 65 aphid taxa were identified from the samples that tested positive for PVY. Among those, 45 taxa had never been evaluated for their ability to transmit PVY, and 7 were previously labeled as nonvectors. These results demonstrated that the list of PVY vectors is likely longer than previously reported and that most (if not all) species of aphids could be considered as potential vectors. This premise has important implications in the management of PVY in seed potato production. PMID:23356053

  18. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    Science.gov (United States)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  19. Spread of Zika virus: The key role of mosquito vector control

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-06-01

    Full Text Available Mosquitoes (Diptera: Culicidae represent a key threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemisphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above, it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nanoparticles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation (i.e. the “lure and kill” approach, pheromone traps, sound traps need further research attention. In particular, detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  20. Spread of Zika virus:The key role of mosquito vector control

    Institute of Scientific and Technical Information of China (English)

    Giovanni Benelli

    2016-01-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and ani-mals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemi-sphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above, it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nano-particles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation (i.e. the“lure and kill”approach), pheromone traps, sound traps need further research attention. In particular, detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  1. Correction of Murine Diabetic Hyperglycaemia With A Single Systemic Administration of An AAV2/8 Vector Containing A Novel Codon Optimized Human Insulin Gene.

    Science.gov (United States)

    Uin, Gan Shu; Maria, Notaridou; Ying, Fu Zhen; Kok Onn, Lee; Chuan, Sia Kian; Chunilal, Nathwani Amit; Marco, Della Peruta; Yorke, Calne Roy

    2016-01-01

    We report the correction of hyperglycemia of STZ induced diabetic mice using one intravenous systemic administration of a single stranded serotype 8 pseudotyped adeno-associated virus (ssAAV2/8) vector encoding the human proinsulin gene under a constitutive liver specific promoter. In vivo dose titration experiments were carried out and we identified an optimal range that achieved maintenance of euglycaemia or a mild diabetic condition for at least 9 months and ongoing to beyond 1 year for some animals, accompanied by human C-peptide secretion and weight gain. Further DNA codon optimization of the insulin gene construct resulted in approximately 3-10 times more human C-peptide secreted in the blood of codon optimized treated animals thereby reducing the number of vector particles required to achieve the same extent of reduction in blood glucose levels as the non-codon optimized vector. The constitutive secretion of insulin achieved with a single administration of the vector could be of therapeutic value for some diabetic patients. PMID:26795016

  2. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector.

    Science.gov (United States)

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  3. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo

    Science.gov (United States)

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-01-01

    Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain. PMID:27775045

  4. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    Directory of Open Access Journals (Sweden)

    Sebastian P Fuchs

    Full Text Available Adeno-associated virus (AAV has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV vector (one vector approach was compared to expression from two self-complementary AAV (scAAV vectors, one for heavy chain and one for light chain (two vector approach. Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG.

  5. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    Science.gov (United States)

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  6. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    Science.gov (United States)

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. PMID:26284695

  7. [Construction of recombinant yellow fever virus 17D containing 2A fragment as a vaccine vector].

    Science.gov (United States)

    Xiaowu, Pang; Fu, Wen-Chuan; Guo, Yin-Han; Zhang, Li-Shu; Xie, Tian-Pei; Xinbin, Gu

    2006-05-01

    The Yellow Fever (YF) vaccine, an attenuated yellow fever 17D (YF-17D) live vaccine, is one of the most effective and safest vaccines in the world and is regarded as one of the best candidates for viral expression vector. We here first reported in China the construction and characterization of the recombinant expression vector of yellow fever 17D which contained the proteinase 2A fragment of foot-and-mouth disease virus (FMDV). Three cDNA fragments representing the full-length YF-17D genome, named 5'-end cDNA (A), 3'-end cDNA (B) and middle cDNA (C), were obtained by reverse transcription polymerase chain reaction (RT-PCR), together with the introduction of SP6 enhancer, necessary restriction sites and overlaps for homologous recombination in yeast. Fragment A and B were then introduced into pRS424 in turn by DNA recombination, followed by transfection of fragment C and the recombinant pRS424 containing A and B (pRS-A-B) into yeast. A recombinant vector containing full length cDNA of YF-17D (pRS-YF) was obtained by screening on medium lack of tryptophan and uracil. A recombinant YF-17D expression vector containing FMDV-2A gene fragment (pRS-YF-2A1) was then constructed by methods of DNA recombination and homologous recombination in yeast described above. In vitro transcription of the recombinant vector pRS-YF-2A1 was then carried out and introduced into BHK-21 cells by electroporation. Results of indirect immunofluorescence assay (IFA) and titer determination showed a stable infectious recombinant virus was gotten, whose features such as growth curve were similar to those of the parental YF-17D. The results suggest that the recombinant vector pRS-YF-2A1, by introduction of heterogenous genes via 2A region, is potential to be an effective live vaccine expression vector. PMID:16755933

  8. VAPA, an innovative "virus-acquisition phenotyping assay" opens new horizons in research into the vector-transmission of plant viruses.

    Directory of Open Access Journals (Sweden)

    Alexandre Martinière

    Full Text Available Host-to-host transmission--a key step in plant virus infection cycles--is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin--a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple "virus-acquisition phenotyping assay" (VAPA provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.

  9. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis

    Directory of Open Access Journals (Sweden)

    Dodson Brittany L

    2012-09-01

    Full Text Available Abstract Background Temperature is known to induce changes in mosquito physiology, development, ecology, and in some species, vector competence for arboviruses. Since colonized mosquitoes are reared under laboratory conditions that can be significantly different from their field counterparts, laboratory vector competence experiments may not accurately reflect natural vector-virus interactions. Methods We evaluated the effects of larval rearing temperature on immature development parameters and vector competence of two Culex tarsalis strains for West Nile virus (WNV. Results Rearing temperature had a significant effect on mosquito developmental parameters, including shorter time to pupation and emergence and smaller female body size as temperature increased. However, infection, dissemination, and transmission rates for WNV at 5, 7, and 14 days post infectious feeding were not consistently affected. Conclusions These results suggest that varying constant larval rearing temperature does not significantly affect laboratory estimates of vector competence for WNV in Culex tarsalis mosquitoes.

  10. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    Science.gov (United States)

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  11. Vector competence of three North American strains of Aedes albopictus for West Nile virus.

    Science.gov (United States)

    Sardelis, Michael R; Turell, Michael J; O'Guinn, Monica L; Andre, Richard G; Roberts, Donald R

    2002-12-01

    To evaluate the potential for North American (NA) Aedes albopictus to transmit West Nile virus (WN), mosquito strains derived from 3 NA sources (Frederick County, Maryland, FRED strain; Cheverly, MD, CHEV strain; Chambers and Liberty counties, Texas, TAMU strain) were tested. These strains were tested along with a previously tested strain from a Hawaiian source (OAHU strain). Mosquitoes were fed on 2- to 3-day-old chickens previously inoculated with a New York strain (Crow 397-99) of WN. All of the NA strains were competent laboratory vectors of WN, with transmission rates of 36, 50, 83, and 92% for the FRED, CHEV, OAHU, and TAMU strains, respectively. The extrinsic incubation period for WN in Ae. albopictus held at 26 degrees C was estimated to be 10 days. Based on efficiency of viral transmission, evidence of natural infection, bionomics, and distribution, Ae. albopictus could be an important bridge vector of WN in the southeastern USA.

  12. Testing of UK Populations of Culex pipiens L. for Schmallenberg Virus Vector Competence and Their Colonization.

    Directory of Open Access Journals (Sweden)

    Robyn Manley

    Full Text Available Schmallenberg virus (SBV, an arboviral pathogen of ruminants, emerged in northern Europe during 2011 and has subsequently spread across a vast geographic area. While Culicoides biting midges (Diptera: Ceratopogonidae have been identified as a biological transmission agent of SBV, the role of mosquitoes (Diptera: Culicidae as potential vectors has not been defined beyond small-scale field collections in affected areas. Culex pipiens L. are one of the most widespread mosquitoes in northern Europe; they are present on farms across the region and have previously been implicated as vectors of several other arboviruses. We assessed the ability of three colony lines of Cx. pipiens, originating from geographically diverse field populations, to become fully infected by SBV using semi-quantitative real-time RT-PCR (sqPCR.Two colony lines of Cx. pipiens were created in the UK ('Brookwood' and 'Caldbeck' from field collections of larvae and pupae and characterised using genetic markers. A third strain of Cx. pipiens from CVI Wageningen, The Netherlands, was also screened during experiments. Intrathoracic inoculation of the Brookwood line resulted in infections after 14 days that were characterised by high levels of RNA throughout individuals, but which demonstrated indirect evidence of salivary gland barriers. Feeding of 322 individuals across the three colony lines on a membrane based infection system resulted in no evidence of full dissemination of SBV, although infections did occur in a small proportion of Cx. pipiens from each line.This study established two novel lines of Cx. pipiens mosquitoes of UK origin in the laboratory and subsequently tested their competence for SBV. Schmallenberg virus replication and dissemination was restricted, demonstrating that Cx. pipiens is unlikely to be an epidemiologically important vector of the virus in northern Europe.

  13. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence.

    Science.gov (United States)

    Bolling, Bethany G; Vasilakis, Nikos; Guzman, Hilda; Widen, Steven G; Wood, Thomas G; Popov, Vsevolod L; Thangamani, Saravanan; Tesh, Robert B

    2015-02-01

    Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.

  14. The endemic copepod Calanus pacificus californicus as a potential vector of white spot syndrome virus.

    Science.gov (United States)

    Mendoza-Cano, Fernando; Sánchez-Paz, Arturo; Terán-Díaz, Berenice; Galván-Alvarez, Diego; Encinas-García, Trinidad; Enríquez-Espinoza, Tania; Hernández-López, Jorge

    2014-06-01

    The susceptibility of the endemic copepod Calanus pacificus californicus to white spot syndrome virus (WSSV) was established by the temporal analysis of WSSV VP28 transcripts by quantitative real-time PCR (qRT-PCR). The copepods were collected from a shrimp pond located in Bahia de Kino Sonora, Mexico, and challenged per os with WSSV by a virus-phytoplankton adhesion route. Samples were collected at 0, 24, 48 and 84 h postinoculation (hpi). The VP28 transcripts were not detected at early stages (0 and 24 hpi); however, some transcript accumulation was observed at 48 hpi and gradually increased until 84 hpi. Thus, these results clearly show that the copepod C. pacificus californicus is susceptible to WSSV infection and that it may be a potential vector for the dispersal of WSSV. However, further studies are still needed to correlate the epidemiological outbreaks of WSSV with the presence of copepods in shrimp ponds. PMID:24895865

  15. Candidate Vectors and Rodent Hosts of Venezuelan Equine Encephalitis Virus, Chiapas, 2006–2007

    Science.gov (United States)

    Deardorff, Eleanor R.; Estrada-Franco, Jose G.; Freier, Jerome E.; Navarro-Lopez, Roberto; Da Rosa, Amelia Travassos; Tesh, Robert B.; Weaver, Scott C.

    2011-01-01

    Enzootic Venezuelan equine encephalitis virus (VEEV) has been known to occur in Mexico since the 1960s. The first natural equine epizootic was recognized in Chiapas in 1993 and since then, numerous studies have characterized the etiologic strains, including reverse genetic studies that incriminated a specific mutation that enhanced infection of epizootic mosquito vectors. The aim of this study was to determine the mosquito and rodent species involved in enzootic maintenance of subtype IE VEEV in coastal Chiapas. A longitudinal study was conducted over a year to discern which species and habitats could be associated with VEEV circulation. Antibody was rarely detected in mammals and virus was not isolated from mosquitoes. Additionally, Culex (Melanoconion) taeniopus populations were found to be spatially related to high levels of human and bovine seroprevalence. These mosquito populations were concentrated in areas that appear to represent foci of stable, enzootic VEEV circulation. PMID:22144461

  16. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-05-01

    Full Text Available From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR.CHIKV infection rate, dissemination and transmission efficiencies ranged from 7-90%, 18-78% and 5-53% respectively for Ae. aegypti and from 39-41%, 3-17% and 0-14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector.As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there is no Ae. aegypti.

  17. An efficient virus-induced gene silencing vector for maize functional genomics research.

    Science.gov (United States)

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. PMID:26921244

  18. Semliki Forest Virus: un vector viral con múltiples aplicaciones

    Directory of Open Access Journals (Sweden)

    Luis Felipe Henao

    2007-06-01

    Full Text Available Se han utilizado los alfavirus como vectores de expresión, entre estos se encuentra el Semliki Forest virus (SFV, que es un virus envuelto, el cual, además de replicarse en el citoplasma, tiene la propiedad de expresar por separado las proteínas estructurales de las no estructurales, permitiendo un mayor control de la expresión. Los vectores derivados del SFV pueden tener una gama amplia de aplicaciones. Se pueden obtener altos títulos virales para la expresión eficiente de proteínas en diferentes líneas celulares. Pueden infectar un espectro amplio de células de mamíferos, así como de tejidos. Son prometedores para ser usados en la terapia génica como vehículos para el envío de genes específicos in vivo o in vitro, tanto en la terapia contra el cáncer como en la neuronal, especialmente cuando sólo sea necesaria una expresión a corto plazo. Sus aplicaciones en la producción de vacunas profilácticas o terapéuticas, es otro aspecto estudiado; se ha demostrado la generación de respuestas inmunes importantes contra diferentes enfermedades virales y tumorales. El desarrollo de nuevos vectores no citopáticos, de otros regulados por temperatura, así como también de otros con replicación persistente; permitirán la prolongación de la expresión. Debido a estas nuevas ventajas y a las ya conocidas, gradualmente se podrían ampliar los usos para los vectores derivados del SFV a medida que se controlen sus efectos no deseados.

  19. Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Michael R. Strand

    2012-01-01

    Full Text Available Symbiosis is a common phenomenon in which associated organisms can cooperate in ways that increase their ability to survive, reproduce, or utilize hostile environments. Here, we discuss polydnavirus symbionts of parasitic wasps. These viruses are novel in two ways: (1 they have become non-autonomous domesticated entities that cannot replicate outside of wasps; and (2 they function as a delivery vector of genes that ensure successful parasitism of host insects that wasps parasitize. In this review we discuss how these novelties may have arisen, which genes are potentially involved, and what the consequences have been for genome evolution.

  20. Quantification of sugarcane yellow leaf virus in sugarcane following transmission through aphid vector, Melanaphis sacchari.

    Science.gov (United States)

    Chinnaraja, C; Viswanathan, R

    2015-12-01

    Yellow leaf caused by Sugarcane yellow leaf virus (SCYLV) is a serious constraint to sugarcane production in India and currently the disease epidemics occur on many of the susceptible varieties under field conditions. Studies were conducted on the virus transmission by sugarcane aphid Melanaphis sacchari in sugarcane by inoculating virus-free meristem derived from micro- propagated plants of sugarcane cv Co 86032 with viruliferous aphids. Virus transmission was confirmed through RT-PCR assays and subsequently SCYLV population was established through RT-qPCR. A maximum of 22.3 × 10(3), 3.16 × 10(6) and 4.78 × 10(6) copies of SCYLV-RNA targets were recorded in the plants after 7, 180 and 300 days, respectively. This study showed that the aphid species M. sacchari acts as an effective vector of SCYLV. The relative standard curve method in RT-qPCR efficiently detected the increment in SCYLV copy numbers in sugarcane following transmission through M. sacchari. PMID:26645033

  1. Quantification of sugarcane yellow leaf virus in sugarcane following transmission through aphid vector, Melanaphis sacchari.

    Science.gov (United States)

    Chinnaraja, C; Viswanathan, R

    2015-12-01

    Yellow leaf caused by Sugarcane yellow leaf virus (SCYLV) is a serious constraint to sugarcane production in India and currently the disease epidemics occur on many of the susceptible varieties under field conditions. Studies were conducted on the virus transmission by sugarcane aphid Melanaphis sacchari in sugarcane by inoculating virus-free meristem derived from micro- propagated plants of sugarcane cv Co 86032 with viruliferous aphids. Virus transmission was confirmed through RT-PCR assays and subsequently SCYLV population was established through RT-qPCR. A maximum of 22.3 × 10(3), 3.16 × 10(6) and 4.78 × 10(6) copies of SCYLV-RNA targets were recorded in the plants after 7, 180 and 300 days, respectively. This study showed that the aphid species M. sacchari acts as an effective vector of SCYLV. The relative standard curve method in RT-qPCR efficiently detected the increment in SCYLV copy numbers in sugarcane following transmission through M. sacchari.

  2. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    Full Text Available Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV, a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg RNA which is also required as bicistronic mRNA for the capsid (core protein and the reverse transcriptase (Pol; their open reading frames (ORFs overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES. We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR and humanized Renilla green fluorescent protein (hrGFP produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to

  3. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery.

    Science.gov (United States)

    Mazarakis, N D; Azzouz, M; Rohll, J B; Ellard, F M; Wilkes, F J; Olsen, A L; Carter, E E; Barber, R D; Baban, D F; Kingsman, S M; Kingsman, A J; O'Malley, K; Mitrophanous, K A

    2001-09-15

    In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease. PMID:11590128

  4. Molecular interactions and immune responses between maize fine streak virus and the leafhopper vector G. nigrifrons through differential expression and RNA interference

    Science.gov (United States)

    Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...

  5. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    Science.gov (United States)

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  6. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    Science.gov (United States)

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  7. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    Directory of Open Access Journals (Sweden)

    Chiara Falcicchia

    Full Text Available Brain-derived neurotrophic factor (BDNF has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1 derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  8. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    Science.gov (United States)

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  9. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    Directory of Open Access Journals (Sweden)

    Javier López-Vidal

    Full Text Available Vaccines based on virus-like particles (VLPs have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60 were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  10. Vector-mediated expression of interferon gamma inhibits replication of hepatitis B virus in vitro.

    Science.gov (United States)

    Kan, Q C; Li, D L; Yu, Z J

    2013-01-01

    Despite the existence of efficient vaccines against hepatitis B virus (HBV) infections, these still represent a serious threat to human health worldwide. Acute HBV infections often become chronic, marked by liver cirrhosis and hepatocellular carcinoma. Promising results with interferons alpha or gamma (IFN-α, γ) or nucleoside/nucleotide analogs in inhibiting HBV replication in vitro have led to therapeutic applications to chronic HBV patients, however, their results so far have not been satisfactory. The treatments were either not effective in all patients or had adverse effects. Certain progress was expected from expression of interferons targeted to liver by adenovirus vectors, however, this approach turned out to be limited by undesired expression of toxic viral genes and high production costs. Therefore, in this study, we attempted to inhibit HBV replication in HepG2.2.15 cells by human IFN-γ expressed through a non-viral vector, an eukaryotic plasmid. The results demonstrated that IFN-γ, targeted to HBV-replicating cells, significantly inhibited the virus growth without inducing apoptosis and indicated that local expression of this kind of cytokine may be a promising strategy of gene therapy. PMID:24294955

  11. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    Science.gov (United States)

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  12. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes.

    Science.gov (United States)

    Bodewes, Rogier; van der Giessen, Joke; Haagmans, Bart L; Osterhaus, Albert D M E; Smits, Saskia L

    2013-07-01

    Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified.

  13. Construction and expression of an optimized, novel human immunodeficiency virus type-1 lentiviral vector containing green fluorescent protein

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Xueling Ma; Lijing Zhao; Hang Gao; Hongjuan Wang; Li Du; Juan Wang; Nan Li; Kangding Liu

    2011-01-01

    The human immunodeficiency virus (HIV) lentiviral vector is an ideal vector for gene therapy. In the present study, the wild-type HIV-1 genome was segregated into four plasmids, and an optimized novel HIV-1 lentiviral vector containing green fluorescent protein and vesicular stomatitis virus G pseudo-capsule was constructed. The plasmids were pHR-CMV-EGFP, pCMVΔ8.9, pRSV-Rev, pCMV-VSV-G. The four plasmid system was co-transfected into 293T cells, and green fluorescent protein expression was observed. The present study obtained lentiviral particles by high-speed centrifugation, and the lentiviral particle titer was 4×10TU/mL after centrifugation. Thus, an optimized novel HIV-1 lentiviral vector was successfully constructed.

  14. Seasonal and habitat effects on dengue and West Nile virus vectors in San Juan, Puerto Rico.

    Science.gov (United States)

    Smith, Joshua; Amador, Manuel; Barrera, Roberto

    2009-03-01

    The presence of West Nile (WNV) and dengue viruses and the lack of recent mosquito surveys in Puerto Rico prompted an investigation on the distribution and abundance of potential arbovirus vectors in the San Juan Metropolitan Area, and their variation with seasons and habitats. We sampled mosquitoes in early and late 2005 in 58 sites from forests, nonforest vegetation, wetlands, and high- and low-density housing areas using ovijars, Centers for Disease Control and Prevention miniature light/CO2 traps, and gravid traps. A total of 28 mosquito species was found. San Juan had potential WNV enzooticvectors (Culex nigripalpus) within and around the city in wetlands and forests, but few were captured in residential areas. A potential WNV bridge vector (Cx. quinquefasciatus) was abundant in urbanized areas, and it was positively correlated with the main dengue vector, Aedes aegypti. High-density housing areas harbored more Ae. aegypti. Container mosquitoes, including Aedes mediovittatus, were more abundant during the climax of the rainy season when most dengue occurs in Puerto Rico. The greatest risk for contracting WNV would be visiting forests and swamps at night. Culex (Culex) and Culex (Melanoconion) mosquito species were more abundant during the transition dry-wet seasons (March-May). PMID:19432067

  15. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Minoru Kidokoro

    2014-10-01

    Full Text Available The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV, Modified Vaccinia Ankara (MVA, at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8+ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs. Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8+ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.

  16. A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia.

    Science.gov (United States)

    Yan, Ziying; Keiser, Nicholas W; Song, Yi; Deng, Xuefeng; Cheng, Fang; Qiu, Jianming; Engelhardt, John F

    2013-12-01

    Human bocavirus virus-1 (HBoV1), a newly discovered autonomous parvovirus with a 5,500 nt genome, efficiently infects human-polarized airway epithelia (HAE) from the apical membrane. We hypothesized that the larger genome and high airway tropism of HBoV1 would be ideal for creating a viral vector for lung gene therapy. To this end, we successfully generated recombinant HBoV1 (rHBoV1) from an open reading frames-disrupted rHBoV1 genome that efficiently transduces HAE from the apical surface. We next evaluated whether HBoV1 capsids could package oversized rAAV2 genomes. These studies created a rAAV2/HBoV1 chimeric virus (5.5 kb genome) capable of apically transducing HAE at 5.6- and 70-fold greater efficiency than rAAV1 or rAAV2 (4.7-kb genomes), respectively. Molecular studies demonstrated that viral uptake from the apical surface was significantly greater for rAAV2/HBoV1 than for rAAV2 or rAAV1, and that polarization of airway epithelial cells was required for HBoV1 capsid-mediated gene transfer. Furthermore, rAAV2/HBoV1-CFTR virus containing the full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene coding sequence and the strong CBA promoter efficiently corrected CFTR-dependent chloride transport in cystic fibrosis (CF) HAE. In summary, using the combined advantages of AAV and HBoV1, we have developed a novel and promising viral vector for CF lung gene therapy and also potentially HBoV1 vaccine development. PMID:23896725

  17. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    OpenAIRE

    Nozomi Satoh; Tatsuya Kon; Noriko Yamagishi; Tsubasa Takahashi; Tomohide Natsuaki; Nobuyuki Yoshikawa

    2014-01-01

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic sym...

  18. The effects of monitoring the abundance and species composition of aphids as virus vectors on seed potato production in Serbia

    Directory of Open Access Journals (Sweden)

    Drago Milošević

    2014-03-01

    Full Text Available Aphids are the most important vectors of potato viruses during the crop’s growing season. The most widespread and damaging viruses, the potato virus Y and potato leaf roll virus, are transmitted by aphids in non-persistent and persistent manner, respectively. The two viruses cause the greatest concern of potato producers and a great constraint to seed potato production in Serbia, the region and across the world. Potato virus Y is particularly harmful, given its distribution and spreading rate. Seed potato production systems under well-managed conditions involve a series of virus control measures, including the monitoring of outbreaks of winged aphids, their abundance and species composition, in order to forecast virosis, i.e. potential plant and tuber infection periods. Monitoring the aphid vectors of potato viruses enables determination of optimum dates for haulm destruction when higher than normal numbers of winged aphids as vectors of economically harmful diseases have been observed. Haulm destruction in a potato crop reduces the risk of plant infection and virus translocation from the aboveground parts to tubers, thus keeping the proportion of infected tubers within tolerance limits allowed for certain categories of seed potatoes. This practice has positive effects if used in combination with other viral disease control measures; otherwise, it becomes ineffective. This paper provides an integral analysis of the effects and role of monitoring outbreaks of aphids, their abundance and species composition in timing haulm growth termination to prevent plant infection, virus translocation and tuber infestation in potato crops in Serbia and the wider region.

  19. Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector

    OpenAIRE

    CHEN, Qian; Zhang, Linghua; Chen, Hongyan; Xie, Lianhui; Wei, Taiyun

    2015-01-01

    Background Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector...

  20. Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    LIANG GuiZhao; LIAO ChunYang; WU ShiRong; LI GenRong; HE Liu; GAO JianKun; Gan MengYu; LI DeJing; CHEN GuoPing; WANG GuiXue; LONG Sha; CHEN ZeCong; JING JuHua; ZHENG XiaoLin; ZENG Hui; ZHANG QiaoXia; ZHANG MengJun; YANG Qi; TIAN FeiFei; TONG JianBo; WANG JiaoNa; LIU YongHong; YANG ShanBin; LI Bo; QIU LiangJia; CAI ShaoXi; ZHAO Na; YANG Yan; SU XiaLi; SONG Jian; CHEN MeiXia; ZHANG XueJiao; SUN JiaYing; MEI Hu; LI JingWei; CHEN GuoHua; CHEN Gang; DENG Jie; PENG ChuanYou; ZHU WanPing; XU LuoNan; WU YuQuan; LIAO LiMin; LI Zhi; ZHOU Yuan; LI Jun; LU DaJun; SU QinLiang; HUANG ZhengHu; ZHOU Ping; LI ZhiLiang; YANG Li; ZHOU Peng; YANG ShengXi; SHU Mao

    2008-01-01

    Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples.Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA).The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%.Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively.External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model.The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.

  1. Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.

  2. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa.

    Science.gov (United States)

    Legg, James P; Shirima, Rudolph; Tajebe, Lensa S; Guastella, Devid; Boniface, Simon; Jeremiah, Simon; Nsami, Elibariki; Chikoti, Patrick; Rapisarda, Carmelo

    2014-10-01

    Cassava mosaic disease and cassava brown streak disease are caused by viruses transmitted by Bemisia tabaci and affect approximately half of all cassava plants in Africa, resulting in annual production losses of more than $US 1 billion. A historical and current bias towards virus rather than vector control means that these diseases continue to spread, and high Bemisia populations threaten future virus spread even if the extant strains and species are controlled. Progress has been made in parts of Africa in replicating some of the successes of integrated Bemisia control programmes in the south-western United States. However, these management efforts, which utilise chemical insecticides that conserve the Bemisia natural enemy fauna, are only suitable for commercial agriculture, which presently excludes most cassava cultivation in Africa. Initiatives to strengthen the control of B. tabaci on cassava in Africa need to be aware of this limitation, and to focus primarily on control methods that are cheap, effective, sustainable and readily disseminated, such as host-plant resistance and biological control. A framework based on the application of force multipliers is proposed as a means of prioritising elements of future Bemisia control strategies for cassava in Africa.

  3. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

    OpenAIRE

    Monaghan, Andrew J.; Morin, Cory W.; Steinhoff, Daniel F.; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A.; Reiskind, Michael; Alun L Lloyd; Smith, Kirk; Schmidt, Chris A.; Scalf, Paige E.; Ernst, Kacey

    2016-01-01

    Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were an...

  4. The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution

    OpenAIRE

    Alexander T. Ciota; Ehrbar, Dylan J.; MATACCHIERO, AMY C.; Van Slyke, Greta A; Kramer, Laura D.

    2013-01-01

    Background Virulence is often coupled with replicative fitness of viruses in vertebrate systems, yet the relationship between virulence and fitness of arthropod-borne viruses (arboviruses) in invertebrates has not been evaluated. Although the interactions between vector-borne pathogens and their invertebrate hosts have been characterized as being largely benign, some costs of arbovirus exposure have been identified for mosquitoes. The extent to which these costs may be strain-specific and the...

  5. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy

    Directory of Open Access Journals (Sweden)

    Bisanzio Donal

    2011-12-01

    Full Text Available Abstract Background West Nile Virus (WNV transmission in Italy was first reported in 1998 as an equine outbreak near the swamps of Padule di Fucecchio, Tuscany. No other cases were identified during the following decade until 2008, when horse and human outbreaks were reported in Emilia Romagna, North Italy. Since then, WNV outbreaks have occurred annually, spreading from their initial northern foci throughout the country. Following the outbreak in 1998 the Italian public health authority defined a surveillance plan to detect WNV circulation in birds, horses and mosquitoes. By applying spatial statistical analysis (spatial point pattern analysis and models (Bayesian GLMM models to a longitudinal dataset on the abundance of the three putative WNV vectors [Ochlerotatus caspius (Pallas 1771, Culex pipiens (Linnaeus 1758 and Culex modestus (Ficalbi 1890] in eastern Piedmont, we quantified their abundance and distribution in space and time and generated prediction maps outlining the areas with the highest vector productivity and potential for WNV introduction and amplification. Results The highest abundance and significant spatial clusters of Oc. caspius and Cx. modestus were in proximity to rice fields, and for Cx. pipiens, in proximity to highly populated urban areas. The GLMM model showed the importance of weather conditions and environmental factors in predicting mosquito abundance. Distance from the preferential breeding sites and elevation were negatively associated with the number of collected mosquitoes. The Normalized Difference Vegetation Index (NDVI was positively correlated with mosquito abundance in rice fields (Oc. caspius and Cx. modestus. Based on the best models, we developed prediction maps for the year 2010 outlining the areas where high abundance of vectors could favour the introduction and amplification of WNV. Conclusions Our findings provide useful information for surveillance activities aiming to identify locations where the

  6. Species composition of aphid vectors (Hemiptera: Aphididae) of barley yellow dwarf virus and cereal yellow dwarf virus in Alabama and western Florida.

    Science.gov (United States)

    Hadi, Buyung A R; Flanders, Kathy L; Bowen, Kira I; Murphy, John F; Halbert, Susan E

    2011-08-01

    Yellow dwarf is a major disease problem of wheat, Triticum aestivum L., in Alabama and is estimated to cause yield loss of 21-42 bu/acre. The disease is caused by a complex of viruses comprising several virus species, including Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. Several other strains have not yet been classified into a specific species. The viruses are transmitted exclusively by aphids (Hemiptera:Aphididae). Between the 2005 and 2008 winter wheat seasons, aphids were surveyed in the beginning of each planting season in several wheat plots in Alabama and western Florida Collected aphids were identified and bioassayed for their yellow dwarf virus infectivity. This survey program was designed to identify the aphid species that serve as fall vectors of yellow dwarf virus into winter wheat plantings. From 2005 to 2008, bird cherry-oat aphid, Rhopalosiphum padi (L.); rice root aphid, Rhopalosiphum rufiabdominale (Sasaki); and greenbug, Schizaphis graminum (Rondani), were found consistently between October and December. The species of aphids and their timing of appearance in wheat plots were consistent with flight data collected in North Alabama between 1996 and 1999. Both R. padi and R. rufiabdominale were found to carry and transmit Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. The number of collected aphids and proportion of viruliferous aphids were low. Although this study has shown that both aphids are involved with introduction of yellow dwarf virus to winter wheat in Alabama and western Florida, no conclusions can be made as to which species may be the most important vector of yellow dwarf virus in the region. PMID:21882679

  7. Control of aphid-vectored and thrips-borne virus spread in lily, tulip, iris and dahlia by sprays of mineral oil, polydimethylsiloxane and pyrethroid insecticide in the field

    NARCIS (Netherlands)

    Asjes, J.; Blom-Barnhoorn, G.J.

    2001-01-01

    In this study control of spread by insect vectors of non-persistent Lily symptomless virus and Lily mottle virus in lily, Tulip breaking virus in tulip, Iris mild mosaic virus, Narcissus latent virus and Iris severe mosaic virus in bulbous iris, and semi-persistent Dahlia mosaic virus and persistent

  8. The feasibility of rabies virus-vectored immunocontraception in a mouse model

    Directory of Open Access Journals (Sweden)

    Xianfu Wu

    2014-01-01

    Full Text Available Immunocontraceptive vaccines may be an alternative to surgical sterilization. Dual rabies vaccination and dog population management is a helpful tool for rabies prevention. A synthetic gonadotropin-releasing hormone (GnRH peptide coupled to a carrier protein or T cell epitope is efficacious in inducing immunocontraception in a variety of mammals. However, virus-vectored GnRH recombinant vaccines have advantages over the conjugation method. In a previous in vitro study, we were able to insert a GnRH-coding sequence into the rabies virus (RABV glycoprotein (G gene, and the recombinant viruses grew to high titers in cells. Here, we further focused on the RABV G in accepting various copy numbers of GnRH. We demonstrated although RABV G protein with up to 4 copies of GnRH was well expressed, the recombinant virus was recovered only when 2 copies of GnRH (20 amino acids were incorporated into the G, indicating a possible insertion limit in making a full infectious clone. The investigation provides insight into the utility of RABV G as a carrier for small peptides and its suitability for vaccine studies. Following our previous study, we selected ERAg3p/2GnRH and tested the construct in mice. The vaccine induced ⩾80% infertility after three doses without any adjuvant, in live (8 of 10 mice infertility or inactivated (13 of 14 mice infertility formulations; while the pregnancy rate was 100% (10 of 10 mice in the controls. This initial success of immunocontraception in mice is promising, and we are now optimizing the vaccine formulation by using adjuvants and exploring novel delivery methods to minimize the dosage.

  9. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors.

    Science.gov (United States)

    Ghanim, Murad; Brumin, Marina; Popovski, Smadar

    2009-08-01

    A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost. PMID:19406154

  10. Vector Contact Rates on Eastern Bluebird Nestlings Do Not Indicate West Nile Virus Transmission in Henrico County, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Kevin A. Caillouët

    2013-11-01

    Full Text Available Sensitive indicators of spatial and temporal variation in vector-host contact rates are critical to understanding the transmission and eventual prevention of arboviruses such as West Nile virus (WNV. Monitoring vector contact rates on particularly susceptible and perhaps more exposed avian nestlings may provide an advanced indication of local WNV amplification. To test this hypothesis we monitored WNV infection and vector contact rates among nestlings occupying nest boxes (primarily Eastern bluebirds; Sialia sialis, Turdidae across Henrico County, Virginia, USA, from May to August 2012. Observed host-seeking rates were temporally variable and associated with absolute vector and host abundances. Despite substantial effort to monitor WNV among nestlings and mosquitoes, we did not detect the presence of WNV in these populations. Generally low vector-nestling host contact rates combined with the negative WNV infection data suggest that monitoring transmission parameters among nestling Eastern bluebirds in Henrico County, Virginia, USA may not be a sensitive indicator of WNV activity.

  11. 口服重组腺相关病毒基因药物%Oral recombinant adeno-associated virus gene medicine

    Institute of Scientific and Technical Information of China (English)

    刁勇; 许瑞安

    2009-01-01

    重组腺相关病毒(rAAV)载体介导的口服基冈药物引起业界广泛的重视.尽管经口服给药后转基因的有效表达面临许多障碍,但该技术的有效性已得到大量实验证实.本文总结了口服rAAV基冈药物的临床前研究结果,重点阐述了该类型药物的传递、吸收、分布和基冈转导等药动学特点.已证实rAAV基因药物对人体的安全性高,但口服rAAV基因药物的临床应用仍需对其作用机制和生物约剂学特征进行深入和广泛的研究.

  12. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications

    OpenAIRE

    Friedland, Ari E.; Baral, Reshica; Singhal, Pankhuri; Loveluck, Katherine; Shen, Shen; Sanchez, Minerva; Marco, Eugenio; Gotta, Gregory M.; Maeder, Morgan L.; Kennedy, Edward M.; Kornepati, Anand V. R.; Sousa, Alexander; Collins, McKensie A.; Jayaram, Hari; Cullen, Bryan R.

    2015-01-01

    Background CRISPR-Cas systems have been broadly embraced as effective tools for genome engineering applications, with most studies to date utilizing the Streptococcus pyogenes Cas9. Here we characterize and manipulate the smaller, 1053 amino acid nuclease Staphylococcus aureus Cas9. Results We find that the S. aureus Cas9 recognizes an NNGRRT protospacer adjacent motif (PAM) and cleaves target DNA at high efficiency with a variety of guide RNA (gRNA) spacer lengths. When directed against geno...

  13. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1–3 of angiostatin reduce retinal neovascularization

    OpenAIRE

    Raisler, Brian J.; Berns, Kenneth I.; Grant, Maria B.; Beliaev, Denis; Hauswirth, William W.

    2002-01-01

    Neovascular diseases of the retina include age-related macular degeneration and diabetic retinopathy, and together they comprise the leading causes of adult-onset blindness in developed countries. Current surgical, pharmaceutical, and laser therapies for age-related macular degeneration (AMD) rarely result in improved vision, do not significantly prevent neovascularization (NV), and often result in at least some vision loss. To address this therapeutic gap, we determined the efficacy of recom...

  14. Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication.

    NARCIS (Netherlands)

    Zhao, H.; Peeters, B.P.H.

    2003-01-01

    Newcastle disease virus (NDV) was examined for its suitability as a vector for the expression and delivery of foreign genes for vaccination and gene therapy. A reporter gene encoding human secreted alkaline phosphatase (SEAP) was inserted as an additional transcription unit at four different positio

  15. Virus-derived DNA drives mosquito vector tolerance to arboviral infection

    Science.gov (United States)

    Goic, Bertsy; Stapleford, Kenneth A.; Frangeul, Lionel; Doucet, Aurélien J.; Gausson, Valérie; Blanc, Hervé; Schemmel-Jofre, Nidia; Cristofari, Gael; Lambrechts, Louis; Vignuzzi, Marco; Saleh, Maria-Carla

    2016-01-01

    Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes. PMID:27580708

  16. Virus-derived DNA drives mosquito vector tolerance to arboviral infection.

    Science.gov (United States)

    Goic, Bertsy; Stapleford, Kenneth A; Frangeul, Lionel; Doucet, Aurélien J; Gausson, Valérie; Blanc, Hervé; Schemmel-Jofre, Nidia; Cristofari, Gael; Lambrechts, Louis; Vignuzzi, Marco; Saleh, Maria-Carla

    2016-01-01

    Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes. PMID:27580708

  17. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiqing Chai; Weina Kong; Lingyun Liu; Wenguo Yu; Zhenqing Zhang; Yimin Sun

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we construct-ed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1αgene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1αrepresses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results conifrmed that rAAV-HIF-1αsigniifcant-ly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1αadministration also induced robust and prolonged HIF-1αproduction in rat hippocampus. Single rAAV-HIF-1αadministration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer’s disease rat model established by intrace-rebroventricular injection of aggregated amyloid-beta protein (25-35). Our in vitro and in vivo ifndings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurode-generative diseases using gene therapy.

  18. Hepatitis virus protein X-Phenylalanine Hydroxylase fusion proteins identified in PKU mice treated with AAV-WPRE vectors

    Science.gov (United States)

    Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...

  19. Mapping the basic reproduction number (Ro) for vector-borne diseases: A case study on bluetongue virus.

    NARCIS (Netherlands)

    Hartemink, N.; Purse, B.V.; Meiswinkel, R.; Brown, H.E.; Koeijer, de A.A.; Elbers, A.R.W.; Boender, G.J.; Rogers, D.J.; Heesterbeek, J.A.P.

    2009-01-01

    Geographical maps indicating the value of the basic reproduction number, R0, can be used to identify areas of higher risk for an outbreak after an introduction. We develop a methodology to create R0 maps for vector-borne diseases, using bluetongue virus as a case study. This method provides a tool f

  20. Winter Activity and Aboveground Hybridization Between the Two Biotypes of the West Nile Virus Vector Culex pipiens

    NARCIS (Netherlands)

    Vogels, C.B.F.; Peppel, van de L.J.J.; Vliet, van A.J.H.; Westenberg, M.; Ibanez-Justicia, A.; Stroo, A.; Buijs, J.A.; Visser, T.M.; Koenraadt, C.J.M.

    2015-01-01

    Culex (Cx.) pipiens mosquitoes are important vectors of West Nile virus (WNV). In Europe, the species Cx. pipiens consists of two biotypes, pipiens and molestus, which are morphologically identical, but differ in behavior. Typical behavior of the molestus biotype is the ability to remain active duri

  1. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.

    Science.gov (United States)

    Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S

    2006-11-01

    Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.

  2. Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently

    OpenAIRE

    Rengina Vorou

    2016-01-01

    Objectives: The widespread epidemic of Zika virus infection in South and Central America and the Caribbean in 2015, along with the increased incidence of microcephaly in fetuses born to mothers infected with Zika virus and the potential for worldwide spread, indicate the need to review the current literature regarding vectors, reservoirs, and amplification hosts. Vectors: The virus has been isolated in Africa in mosquitoes of the genera Aedes, Anopheles, and Mansonia, and in Southeast Asia...

  3. Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus.

    Science.gov (United States)

    Romero, Luz E; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C; Martinez, César P; Calvert, Lee; Lorieux, Mathias

    2014-01-01

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781

  4. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.

    Science.gov (United States)

    Sirisena, P D N N; Noordeen, F

    2014-02-01

    Despite the presence of dengue in Sri Lanka since the early 1960s, dengue has become a major public health issue, with a high morbidity and mortality. Aedes aegypti and Aedes albopictus are the vectors responsible for the transmission of dengue viruses (DENV). The four DENV serotypes (1, 2, 3, and 4) have been co-circulating in Sri Lanka for more than 30 years. The new genotype of DENV-1 has replaced an old genotype, and new clades of DENV-3 genotype III have replaced older clades. The emergence of new clades of DENV-3 in the recent past coincided with an abrupt increase in the number of dengue fever (DF)/dengue hemorrhagic fever (DHF) cases, implicating this serotype in severe epidemics. Climatic factors play a pivotal role in the epidemiological pattern of DF/DHF in terms of the number of cases, severity of illness, shifts in affected age groups, and the expansion of spread from urban to rural areas. There is a regular incidence of DF/DHF throughout the year, with the highest incidence during the rainy months. To reduce the morbidity and mortality associated with DF/DHF, it is important to implement effective vector control programs in the country. The economic impact of DF/DHF results from the expenditure on DF/DHF critical care units in several hospitals and the cost of case management. PMID:24334026

  5. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 107 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  6. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution.

    Science.gov (United States)

    Grimm, Dirk; Zolotukhin, Sergei

    2015-12-01

    Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies. PMID:26388463

  7. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: Formation of dense fluorescent aggregates for sensitive virus tracking

    Science.gov (United States)

    A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...

  8. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Science.gov (United States)

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  9. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    Science.gov (United States)

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  10. Field detection of Tembusu virus in western Thailand by rt-PCR and vector competence determination of select culex mosquitoes for transmission of the virus.

    Science.gov (United States)

    O'Guinn, Monica L; Turell, Michael J; Kengluecha, Ampornpan; Jaichapor, Boonsong; Kankaew, Prasan; Miller, R Scott; Endy, Timothy P; Jones, James W; Coleman, Russell E; Lee, John S

    2013-11-01

    Tembusu virus (TMUV; Ntaya serocomplex) was detected in two pools of mosquitoes captured near Sangkhlaburi, Thailand, as well as from sera from sentinel ducks from the same area. Although TMUV has been isolated from several mosquito species in Asia, no studies have ever shown competent vectors for this virus. Therefore, we allowed mosquitoes captured near Sangkhlaburi to feed on young chickens that had been infected with TMUV. These mosquitoes were tested approximately 2 weeks later to determine infection, dissemination, and transmission rates. Culex vishnui developed high viral titers after feeding on TMUV-infected chicks and readily transmitted virus to naïve chickens. In contrast, Cx. fuscocephala seemed less susceptible to infection, and more importantly, zero of five fuscocephala with a disseminated infection transmitted virus by bite, indicating a salivary gland barrier. These results provide evidence for the involvement of Culex mosquitoes in the transmission of TMUV in the environment.

  11. Construction of recombinant baculovirus vaccines for Newcastle disease virus and an assessment of their immunogenicity.

    Science.gov (United States)

    Ge, Jingping; Liu, Ying; Jin, Liying; Gao, Dongni; Bai, Chengle; Ping, Wenxiang

    2016-08-10

    Newcastle disease (ND) is a lethal avian infectious disease caused by Newcastle disease virus (NDV) which poses a substantial threat to China's poultry industry. Conventional live vaccines against NDV are available, but they can revert to virulent strains and do not protect against mutant strains of the virus. Therefore, there is a critical unmet need for a novel vaccine that is safe, efficacious, and cost effective. Here, we designed novel recombinant baculovirus vaccines expressing the NDV F or HN genes. To optimize antigen expression, we tested the incorporation of multiple regulatory elements including: (1) truncated vesicular stomatitis virus G protein (VSV-GED), (2) woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), (3) inverted terminal repeats (ITRs) of adeno-associated virus (AAV Serotype II), and (4) the cytomegalovirus (CMV) promoter. To test the in vivo efficacy of the viruses, we vaccinated chickens with each construct and characterized the cellular and humoral immune response to challenge with virulent NDV (F48E9). All of the vaccine constructs provided some level of protection (62.5-100% protection). The F-series of vaccines provided a greater degree of protection (87.5-100%) than the HN-series (62.5-87.5%). While all of the vaccines elicited a robust cellular and humoral response subtle differences in efficacy were observed. The combination of the WPRE and VSV-GED regulatory elements enhanced the immune response and increased antigen expression. The ITRs effectively increased the length of time IFN-γ, IL-2, and IL-4 were expressed in the plasma. The F-series elicited higher titers of neutralizing antibody and NDV-specific IgG. The baculovirus system is a promising platform for NDV vaccine development that combines the immunostimulatory benefits of a recombinant virus vector with the non-replicating benefits of a DNA vaccine. PMID:27015979

  12. Heartland Virus

    Science.gov (United States)

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  13. New Type of Sendai Virus Vector Provides Transgene-Free iPS Cells Derived from Chimpanzee Blood

    OpenAIRE

    Yasumitsu Fujie; Noemi Fusaki; Tomohiko Katayama; Makoto Hamasaki; Yumi Soejima; Minami Soga; Hiroshi Ban; Mamoru Hasegawa; Satoshi Yamashita; Shigemi Kimura; Saori Suzuki; Tetsuro Matsuzawa; Hirofumi Akari; Takumi Era

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are potentially valuable cell sources for disease models and future therapeutic applications; however, inefficient generation and the presence of integrated transgenes remain as problems limiting their current use. Here, we developed a new Sendai virus vector, TS12KOS, which has improved efficiency, does not integrate into the cellular DNA, and can be easily eliminated. TS12KOS carries KLF4, OCT3/4, and SOX2 in a single vector and can easily generate iPS...

  14. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  15. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Kaneda

    Full Text Available The superficial layer of the superior colliculus (sSC receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR, a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions.

  16. Evaluation of a combinatorial RNAi lentivirus vector targeting foot-and-mouth disease virus in vitro and in vivo

    OpenAIRE

    Zhang, Xiaoxi; Zheng, Haixue; Xu, Minjun; Zhou, Yu; Li, Xiangping; Yang, Fan; LIU, QINGYOU; Shi, Deshun

    2015-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals, which leads to serious economical losses. FMDV is not adequately controlled by vaccination or biosecurity measures. To generate genetically modified FMDV-resistant animals, a combinatorial expression cassette producing three short hairpin (sh) RNAs was constructed using the lentivirus (LV) vector, LV-3shRNA. The three shRNAs were expressed under the regulation of DNA polymerase III promoters from ...

  17. Methodology of rearing of viruliferous population of aphid Rhopalosiphum padi, as a vector of Barley yellow dwarf virus (BYDV)

    OpenAIRE

    Štolcová, Jindra; Červená, Zuzana; Bártová, Šárka; Chrpová, Jana; Kumar, Jiban

    2012-01-01

    The methodology describes innovative procedures of rearing virulent population of Rhopalosiphum padi aphids, as a vector of Barley yellow dwarf virus (BYDV), for artificial infections of cereals. The method is a modification of existing procedure used in our laboratory for this purpose. The advantage of present methodology includes more abundance of viruliferous aphids within shorter period and effective control against aphid predators than the earlier used methodology.

  18. Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato.

    Directory of Open Access Journals (Sweden)

    Punya Nachappa

    Full Text Available The interaction between plant viruses and non-vector arthropod herbivores is poorly understood. However, there is accumulating evidence that plant viruses can impact fitness of non-vector herbivores. In this study, we used oligonucleotide microarrays, phytohormone, and total free amino acid analyses to characterize the molecular mechanisms underlying the interaction between Tomato spotted wilt virus (TSWV and a non-vector arthropod, twospotted spider mite (Tetranychusurticae, on tomato plants, Solanumlycopersicum. Twospotted spider mites showed increased preference for and fecundity on TSWV-infected plants compared to mock-inoculated plants. Transcriptome profiles of TSWV-infected plants indicated significant up-regulation of salicylic acid (SA-related genes, but no apparent down-regulation of jasmonic acid (JA-related genes which could potentially confer induced resistance against TSM. This suggests that there was no antagonistic crosstalk between the signaling pathways to influence the interaction between TSWV and spider mites. In fact, SA- and JA-related genes were up-regulated when plants were challenged with both TSWV and the herbivore. TSWV infection resulted in down-regulation of cell wall-related genes and photosynthesis-associated genes, which may contribute to host plant susceptibility. There was a three-fold increase in total free amino acid content in virus-infected plants compared to mock-inoculated plants. Total free amino acid content is critical for arthropod nutrition and may, in part, explain the apparent positive indirect effect of TSWV on spider mites. Taken together, these data suggest that the mechanism(s of increased host suitability of TSWV-infected plants to non-vector herbivores is complex and likely involves several plant biochemical processes.

  19. Construction and identification of recombinant vectors carrying herpes simplex virus thymidine kinase and cytokine genes expressed in gastric carcinoma cell line SGC7901

    OpenAIRE

    Zhang, Jian-Hua; Wan, Ming-Xi; Yuan, Jia-Ying; Pan, Bo-Rong

    2004-01-01

    AIM: To construct and identify the recombinant vectors carrying herpes simplex virus thymidine kinase (HSV-TK) and tumor necrosis factor alpha (TNF-α) or interleukin-2 (IL-2) genes expressed in gastric carcinoma cell line SGC7901.

  20. An ensemble distance measure of k-mer and Natural Vector for the phylogenetic analysis of multiple-segmented viruses.

    Science.gov (United States)

    Huang, Hsin-Hsiung

    2016-06-01

    The Natural Vector combined with Hausdorff distance has been successfully applied for classifying and clustering multiple-segmented viruses. Additionally, k-mer methods also yield promising results for global genome comparison. It is not known whether combining these two approaches can lead to more accurate results. The author proposes a method of combining the Hausdorff distances of the 5-mer counting vectors and natural vectors which achieves the best classification without cutting off any sample. Using the proposed method to predict the taxonomic labels for the 2363 NCBI reference viral genomes dataset, the accuracy rates are 96.95%, 94.37%, 99.41% and 93.82% for the Baltimore, family, subfamily, and genus labels, respectively. We further applied the proposed method to 48 isolates of the influenza A H7N9 viruses which have eight complete segments of nucleotide sequences. The single-linkage clustering trees and the statistical hypothesis testing results all indicate that the proposed ensemble distance measure can cluster viruses well using all of their segments of genome sequences.

  1. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia

    Science.gov (United States)

    Hall-Mendelin, Sonja; Pyke, Alyssa T.; Moore, Peter R.; Mackay, Ian M.; McMahon, Jamie L.; Ritchie, Scott A.; Taylor, Carmel T.; Moore, Frederick A.J.; van den Hurk, Andrew F.

    2016-01-01

    Background Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Methodology/Principal Findings Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. Conclusions/Significance We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia. PMID:27643685

  2. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia

    Directory of Open Access Journals (Sweden)

    Akira eOtuka

    2013-10-01

    Full Text Available This review examines recent studies of the migration of three rice planthoppers, Laodelphax striatellus, Sogatella furcifera, and Nilaparvata lugens, in East Asia. Laodelphax striatellus has recently broken out in Jiangsu province, eastern China. The population density in the province started to increase in the early 2000s and peaked in 2004. In 2005, Rice stripe virus (RSV viruliferous rate of L. striatellus peaked at 31.3%. Since then, rice stripe disease spread severely across the whole province. Due to the migration of the RSV vectors, the rice stripe disease spread to neighboring countries Japan and Korea. An overseas migration of L. striatellus that occurred in 2008 was analyzed, when a slow-moving cold vortex, a type of low pressure system, reached western Japan from Jiangsu, carrying the insects into Japan. Subsequently the rice stripe diseases struck these areas in Japan severely. In Korea, similar situations occurred in 2009, 2011, and 2012. Their migration sources were also estimated to be in Jiangsu by backward trajectory analysis. Rice black-streaked dwarf virus, whose vector is L. striatellus, has recently re-emerged in eastern China, and the evidence for overseas migrations of the virus, just like the RSV’s migrations, has been given. A method of predicting the overseas migration of L. striatellus has been developed by Japanese, Chinese, and Korean institutes. An evaluation of the prediction showed that this method properly predicted migration events that occurred in East Asia from 2008 to 2011. Southern rice black-streaked dwarf virus (SRBSDV was first found in Guangdong province. Its vector is S. furcifera. An outbreak of SRBSDV occurred in southern China in 2009 and spread to Vietnam the same year. This disease and virus were also found in Japan in 2010. The epidemic triggered many migration studies to investigate concrete spring-summer migration routes in China, and the addition of migration sources for early arrivals in

  3. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus.

    Science.gov (United States)

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector's death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  4. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. PMID:25865465

  5. Mosquito vectors of West Nile virus during an epizootic outbreak in Puerto Rico.

    Science.gov (United States)

    Barrera, R; MacKay, A; Amador, M; Vasquez, J; Smith, J; Díaz, A; Acevedo, V; Cabán, B; Hunsperger, E A; Muñoz-Jordán, J L

    2010-11-01

    The purpose of this investigation was to identify the mosquito (Diptera: Culicidae) vectors of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) during an epizootic WNV outbreak in eastern Puerto Rico in 2007. In June 2006, 12 sentinel chicken pens with five chickens per pen were deployed in six types of habitats: herbaceous wetlands, mangrove forests, deciduous forests, evergreen forests, rural areas, and urban areas. Once WNV seroconversion in chickens was detected in June 2007, we began trapping mosquitoes using Centers for Disease Control and Prevention (CDC) miniature (light/CO2-baited) traps, CMT-20 collapsible mosquito (CO2- and ISCA SkinLure-baited) traps, and CDC gravid (hay infusion-baited) traps. We placed the CDC miniature traps both 2-4 m and >30 m from the chicken pens, the collapsible traps 2-4 m from the pens, and the gravid traps in backyards of houses with sentinel chicken pens and in a wetland adjacent to an urban area. We found numerous blood-engorged mosquitoes in the traps nearest to the sentinel chickens and reasoned that any such mosquitoes with a disseminated WNV infection likely served as vectors for the transmission of WNV to the sentinels. We used reverse transcriptase-polymerase chain reaction and isolation (C636) on pools of heads, thoraxes/ abdomens, and legs of collected blood-engorged mosquitoes to determine whether the mosquitoes carried WNV. We detected WNV-disseminated infections in and obtained WNV isolates from Culex nigripalpus Theo (minimum infection rate [MIR] 1.1-9.7/1,000), Culex bahamensis Dyar and Knab (MIR 1.8-6.0/1,000), and Aedes taeniorhynchus (Wied.) (MIR 0.34-0.36/1,000). WNV was also identified in and isolated from the pool of thoraxes and abdomens of Culex quinquefasciatus Say (4.17/1,000) and identified in one pool of thoraxes and abdomens of Culex habilitator Dyar and Knab (13.39/1,000). Accumulated evidence since 2002 suggests that WNV has not become endemic in Puerto Rico. PMID:21175071

  6. Forced recombination of psi-modified murine leukaemia virus-based vectors with murine leukaemia-like and VL30 murine endogenous retroviruses

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M;

    1999-01-01

    -impaired Akv-MLV-derived vectors, we here examine putative genetic interactions between vector RNAs and copackaged endogenous retroviral RNAs of the murine leukaemia virus (MLV) and VL30 retroelement families. We show (i) that MLV recombination is not blocked by nonhomology within the 5' untranslated region...

  7. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available BACKGROUND: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS. METHODS AND FINDINGS: This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP. CONCLUSION: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  8. Response to an emerging vector-borne disease: surveillance and preparedness for Schmallenberg virus.

    Science.gov (United States)

    Roberts, H C; Elbers, A R W; Conraths, F J; Holsteg, M; Hoereth-Boentgen, D; Gethmann, J; van Schaik, G

    2014-10-15

    Surveillance for new emerging animal diseases from a European perspective is complicated by the non-harmonised approach across Member States for data capture, recording livestock populations and case definitions. In the summer of 2011, a new vector-borne Orthobunyavirus emerged in Northern Europe and for the first time, a coordinated approach to horizon scanning, risk communication, data and diagnostic test sharing allowed EU Member States to develop early predictions of the disease, its impact and risk management options. There are many different systems in place across the EU for syndromic and scanning surveillance and the differences in these systems have presented epidemiologists and risk assessors with concerns about their combined use in early identification of an emerging disease. The emergence of a new disease always will raise challenging issues around lack of capability and lack of knowledge; however, Schmallenberg virus (SBV) gave veterinary authorities an additional complex problem: the infection caused few clinical signs in adult animals, with no indication of the possible source and little evidence about its spread or means of transmission. This paper documents the different systems in place in some of the countries (Germany and the Netherlands) which detected disease initially and predicted its spread (to the UK) and how information sharing helped to inform early warning and risk assessment for Member States. Microarray technology was used to identify SBV as a new pathogen and data from the automated cattle milking systems coupled with farmer-derived data on reporting non-specific clinical signs gave the first indications of a widespread issue while the UK used meteorological modelling to map disease incursion. The coordinating role of both EFSA and the European Commission were vital as are the opportunities presented by web-based publishing for disseminating information to industry and the public. The future of detecting emerging disease looks more

  9. A Hierarchical Approach Embedding Hydrologic and Population Modeling for a West Nile Virus Vector Prediction

    Science.gov (United States)

    Jian, Y.; Silvestri, S.; Marani, M.; Saltarin, A.; Chillemi, G.

    2012-12-01

    We applied a hierarchical state space model to predict the abundance of Cx.pipiens (a West Nile Virus vector) in the Po River Delta Region, Northeastern Italy. The study area has large mosquito abundance, due to a favorable environment and climate as well as dense human population. Mosquito data were collected on a weekly basis at more than 20 sites from May to September in 2010 and 2011. Cx.pipiens was the dominant species in our samples, accounting for about 90% of the more than 300,000 total captures. The hydrological component of the model accounted for evapotranspiration, infiltration and deep percolation to infer, in a 0D context, the local dynamics of soil moisture as a direct exogenous forcing of mosquito dynamics. The population model had a Gompertz structure, which included exogenous meteorological forcings and delayed internal dynamics. The models were coupled within a hierarchical statistical structure to overcome the relatively short length of the samples by exploiting the large number of concurrent observations available. The results indicated that Cx.pipiens abundance had significant density dependence at 1 week lag, which approximately matched its development time from larvae to adult. Among the exogenous controls, temperature, daylight hours, and soil moisture explained most of the dynamics. Longer daylight hours and lower soil moisture values resulted in higher abundance. The negative correlation of soil moisture and mosquito population can be explained with the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx.pipien. Variations among sites were explained by land use factors as represented by distance to the nearest rice field and NDVI values: the carrying capacity decreased with increased distance to the nearest rice filed, while the maximum growth rate was positively related with NDVI. The model shows a satisfactory performance in predicting (potentially one week in advance) mosquito

  10. Protein Trans-Splicing as a Means for Viral Vector-Mediated In Vivo Gene Therapy

    OpenAIRE

    Li, Juan; Sun, Wenchang; Wang, Bing; Xiao, Xiao; Liu, Xiang-Qin

    2008-01-01

    Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Split-inteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly f...

  11. Effect of Nuclear Factor κB Inhibition on Serotype 9 Adeno-Associated Viral (AAV9) Minidystrophin Gene Transfer to the mdx Mouse

    OpenAIRE

    Reay, Daniel P.; Niizawa, Gabriela A; Watchko, Jon F; Daood, Molly; Reay, Ja’Nean C; Raggi, Eugene; Clemens, Paula R

    2012-01-01

    Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or ve...

  12. Recombinant Vaccinia Virus is an Effective and Non—perturbing Vector for Human Dendritic Cells Transfected with Epstein—Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚Kun; 等

    2002-01-01

    Objective To study the effects of dendritic cells(DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus(EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic uaccines against EBV-associated malignancies.Methods Mature DC were transfected with EVB-LMP2A recombinant vaccinia virus(rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter(FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions(MLR).Results LMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.Conclusion Recombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma(NPC).

  13. Recombinant Vaccinia Virus is an Effective and Non-perturbing Vector for Human Dendritic Cells Transfected with Epstein-Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚堃; 彭光勇; 谢芳艺; 丁传林; 朱建中; 秦健

    2002-01-01

    ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV-associated malignancies.MethodsMature DC were transfected with EBV-LMP2A recombinant vaccinia virus (rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR).ResultsLMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.ConclusionRecombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma (NPC).``

  14. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-chan; XU Hong-xing; ZHENG Xu-song; YANG Ya-jun; GAO Guang-chun; PAN Jian-hong; LU Zhong-xian

    2012-01-01

    We evaluated the effects of rice black streak dwarf virus (RBSDV)-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH) in laboratory for exploring the relationship between RBSDV and the non-vector planthopper.The results showed that nymph survival rate,female adult weight and fecundity,and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants,whereas the female adult longevity and egg duration significantly shortened on diseased plants.Furthermore,significantly higher activities of defensive enzymes (dismutase,catalase and peroxidase) and detoxification enzymes (acetylcholinesterase,carboxylesterase and glutathione S-transferase) were found in WBPH adults fed on infected plants.Results implied that infestation by RBSDV increased the ecological fitness of non-vector planlhopper population.

  15. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  16. Human Immunodeficiency Virus Type 1 Cloning Vectors for Antiretroviral Resistance Testing

    OpenAIRE

    Martinez-Picado, Javier; Sutton, Lorraine; De Pasquale, Maria Pia; Savara, Anu V.; D’Aquila, Richard T.

    1999-01-01

    Better detection of minority human immunodeficiency virus type 1 (HIV-1) populations containing gene mutations may improve the usefulness of antiretroviral resistance testing for clinical management. Molecular cloning of HIV-1 PCR products which might improve minority detection can be slow and difficult, and commercially available recombinant virus assays test drug susceptibility of virus pools. We describe novel plasmids and simple methods for rapid cloning of HIV-1 PCR products from patient...

  17. Stringent chemical and thermal regulation of recombinant gene expression by vaccinia virus vectors in mammalian cells.

    OpenAIRE

    Ward, G. A.; Stover, C. K.; B. Moss; Fuerst, T R

    1995-01-01

    We developed a stringently regulated expression system for mammalian cells that uses (i) the RNA polymerase, phi 10 promoter, and T phi transcriptional terminator of bacteriophage T7; (ii) the lac repressor, lac operator, rho-independent transcriptional terminators and the gpt gene of Escherichia coli; (iii) the RNA translational enhancer of encephalomyocarditis virus; and (iv) the genetic background of vaccinia virus. In cells infected with the recombinant vaccinia virus, reporter beta-galac...

  18. Development of nine polymorphic microsatellite markers for the phytoparasitic nematode Xiphinema index, the vector of the grapevine fanleaf virus.

    Science.gov (United States)

    Villate, L; Esmenjaud, D; Coedel, S; Plantard, O

    2009-01-01

    We report isolation, characterization and cross-species amplification of nine microsatellite loci from the phytoparasitic nematode Xiphinema index, the vector of grapevine fanleaf virus. Levels of polymorphism were evaluated in 62 individuals from two X. index populations. The number of alleles varies between two and 10 depending on locus and population. Observed heterozygosity on loci across both populations varied from 0.32 to 0.857 (mean 0.545). The primers were tested for cross-species amplification in three other species of phytoparasitic nematodes of the Xiphinema genus. These nine microsatellite loci constitute valuable markers for population genetics and phylogeographical studies of X. index.

  19. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?

    Science.gov (United States)

    Hodge, Simon; Powell, Glen

    2008-12-01

    Aphids can respond both positively and negatively to virus-induced modifications of the shared host plant. It can be speculated that viruses dependent on aphids for their transmission might evolve to induce changes in the host plant that attract aphids and improve their performance, subsequently enhancing the success of the pathogen itself. We studied how pea aphids [Acyrthosiphon pisum (Harris)] responded to infection of tic beans (Vicia faba L.) by three viruses with varying degrees of dependence on this aphid for their transmission: pea enation mosaic virus (PEMV), bean yellow mosaic virus (BYMV), and broad bean mottle virus (BBMV). BYMV has a nonpersistent mode of transmission by aphids, whereas PEMV is transmitted in a circulative-persistent manner. BBMV is not aphid transmitted. When reared on plants infected by PEMV, no changes in aphid survival, growth, or reproductive performance were observed, whereas infection of beans by the other aphid-dependent virus, BYMV, actually caused a reduction in aphid survival in some assays. None of the viruses induced A. pisum to increase production of winged progeny, and aphids settled preferentially on leaf tissue from plants infected by all three viruses, the likely mechanism being visual responses to yellowing of foliage. Thus, in this system, the attractiveness of an infected host plant and its quality in terms of aphid growth and reproduction were not related to the pathogen's dependence on the aphid for transmission to new hosts. PMID:19161702

  20. Promotion of Flowering by Apple Latent Spherical Virus Vector and Virus Elimination at High Temperature Allow Accelerated Breeding of Apple and Pear.

    Science.gov (United States)

    Yamagishi, Norioko; Li, Chunjiang; Yoshikawa, Nobuyuki

    2016-01-01

    Plant viral vectors are superior tools for genetic manipulation, allowing rapid induction or suppression of expression of a target gene in plants. This is a particularly effective technology for use in breeding fruit trees, which are difficult to manipulate using recombinant DNA technologies. We reported previously that if apple seed embryos (cotyledons) are infected with an Apple latent spherical virus (ALSV) vector (ALSV-AtFT/MdTFL1) concurrently expressing the Arabidopsis thaliana florigen (AtFT) gene and suppressing the expression of the apple MdTFL1-1 gene, the period prior to initial flowering (generally lasts 5-12 years) will be reduced to about 2 months. In this study, we examined whether or not ALSV vector technology can be used to promote flowering in pear, which undergoes a very long juvenile period (germination to flowering) similar to that of apple. The MdTFL1 sequence in ALSV-AtFT/MdTFL1 was replaced with a portion of the pear PcTFL1-1 gene. The resulting virus (ALSV-AtFT/PcTFL1) and ALSV-AtFT/MdTFL1 were used individually for inoculation to pear cotyledons immediately after germination in two inoculation groups. Those inoculated with ALSV-AtFT/MdTFL1 and ALSV-AtFT/PcTFL1 then initiated flower bud formation starting one to 3 months after inoculation, and subsequently exhibited continuous flowering and fruition by pollination. Conversely, Japanese pear exhibited extremely low systemic infection rates when inoculated with ALSV-AtFT/MdTFL1, and failed to exhibit any induction of flowering. We also developed a simple method for eliminating ALSV vectors from infected plants. An evaluation of the method for eliminating the ALSV vectors from infected apple and pear seedlings revealed that a 4-week high-temperature (37°C) incubation of ALSV-infected apples and pears disabled the movement of ALSV to new growing tissues. This demonstrates that only high-temperature treatment can easily eliminate ALSV from infected fruit trees. A method combining the promotion

  1. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear

    Directory of Open Access Journals (Sweden)

    Noriko eYamagishi

    2016-02-01

    Full Text Available Plant viral vectors are superior tools for genetic manipulation, allowing rapid induction or suppression of expression of a target gene in plants. This is a particularly effective technology for use in breeding fruit trees, which are difficult to manipulate using recombinant DNA technologies. We reported previously that if apple seed embryos (cotyledons are infected with an Apple latent spherical virus (ALSV vector (ALSV-AtFT/MdTFL1 concurrently expressing the Arabidopsis thaliana florigen (AtFT gene and suppressing the expression of the apple MdTFL1-1 gene, the period prior to initial flowering (generally lasts 5–12 years will be reduced to about two months. In this study, we examined whether or not ALSV vector technology can be used to promote flowering in pear, which undergoes a very long juvenile period (germination to flowering similar to that of apple. The MdTFL1 sequence in ALSV-AtFT/MdTFL1 was replaced with a portion of the pear PcTFL1-1 gene. The resulting virus (ALSV-AtFT/PcTFL1 and ALSV-AtFT/MdTFL1 were used individually for inoculation to pear cotyledons immediately after germination in two inoculation groups. Those inoculated with ALSV-AtFT/MdTFL1 and ALSV-AtFT/PcTFL1 then initiated flower bud formation starting one to three months after inoculation, and subsequently exhibited continuous flowering and fruition by pollination. Conversely, Japanese pear exhibited extremely low systemic infection rates when inoculated with ALSV-AtFT/MdTFL1, and failed to exhibit any induction of flowering. We also developed a simple method for eliminating ALSV vectors from infected plants. An evaluation of the method for eliminating the ALSV vectors from infected apple and pear seedlings revealed that a four-week high-temperature (37˚C incubation of ALSV-infected apples and pears disabled the movement of ALSV to new growing tissues. This demonstrates that only high-temperature treatment can easily eliminate ALSV from infected fruit trees. A method

  2. Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes;

    2012-01-01

    Bluetongue is a disease of ruminants which reached Denmark in 2007. We present a process-based stochastic simulation model of vector-borne diseases, where host animals are not confined to a central geographic farm coordinate, but can be distributed onto pasture areas. Furthermore vectors fly freely...

  3. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L;

    1999-01-01

    of spliced env mRNA for the SL3-3 derived vector relative to the Akv derived vectors, seemingly contributing to its low replication capacity. The EGFP expressing Akv-MLV was genetically stable for multiple rounds of infection; marker-cassette deletion revertants appeared after several replication rounds...

  4. Experimental and Natural Infections of Goats with Severe Fever with Thrombocytopenia Syndrome Virus: Evidence for Ticks as Viral Vector.

    Directory of Open Access Journals (Sweden)

    Yongjun Jiao

    Full Text Available Severe fever with thrombocytopenia syndrome virus (SFTSV, the causative agent for the fatal life-threatening infectious disease, severe fever with thrombocytopenia syndrome (SFTS, was first identified in the central and eastern regions of China. Although the viral RNA was detected in free-living and parasitic ticks, the vector for SFTSV remains unsettled.Firstly, an experimental infection study in goats was conducted in a bio-safety level-2 (BSL-2 facility to investigate virus transmission between animals. The results showed that infected animals did not shed virus to the outside through respiratory or digestive tract route, and the control animals did not get infected. Then, a natural infection study was carried out in the SFTSV endemic region. A cohort of naïve goats was used as sentinel animals in the study site. A variety of daily samples including goat sera, ticks and mosquitoes were collected for viral RNA and antibody (from serum only detection, and virus isolation. We detected viral RNA from free-living and parasitic ticks rather than mosquitoes, and from goats after ticks' infestation. We also observed sero-conversion in all members of the animal cohort subsequently. The S segment sequences of the two recovered viral isolates from one infected goat and its parasitic ticks showed a 100% homology at the nucleic acid level.In our natural infection study, close contact between goats does not appear to transmit SFTSV, however, the naïve animals were infected after ticks' infestation and two viral isolates derived from an infected goat and its parasitic ticks shared 100% of sequence identity. These data demonstrate that the etiologic agent for goat cohort's natural infection comes from environmental factors. Of these, ticks, especially the predominant species Haemaphysalis longicornis, probably act as vector for this pathogen. The findings in this study may help local health authorities formulate and focus preventive measures to contain

  5. WHAT CAN WE LEARN FROM VIRUS IN DESIGNING NONVIRAL GENE VECTORS

    Institute of Scientific and Technical Information of China (English)

    Chun-hong Xu; Mei-hua Sui; Jian-bin Tang; You-qing Shen

    2011-01-01

    Gene therapy has emerged as a potential new approach to treat genetic disorders by delivering therapeutic genes to target diseased tissues. However, its clinical use has been impeded by gene delivery systems. The viral vectors are very efficient in delivering and expressing their carried genes, but they have safety issues in clinical use. While nonviral vectors are much safer with very low risks after careful material design, but their gene transcription efficiency is too low to be clinically used. Thus, rational design of nonviral vectors mimicking the viral vectors would be a way to break this bottleneck. This review compares side-by-side how viral/nonviral gene vectors transcend these biological barriers in terms of blood circulation, cellular uptake, endosome escape, nucleus import and gene transcription.

  6. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    Science.gov (United States)

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  7. PCR identification of culicoid biting midges (Diptera, Ceratopogonidae of the Obsoletus complex including putative vectors of bluetongue and Schmallenberg viruses

    Directory of Open Access Journals (Sweden)

    Lehmann Kathrin

    2012-09-01

    Full Text Available Abstract Background Biting midges of the Obsoletus species complex of the ceratopogonid genus Culicoides were assumed to be the major vectors of bluetongue virus (BTV in northern and central Europe during the 2006 outbreak of bluetongue disease (BT. Most recently, field specimens of the same group of species have also been shown to be infected with the newly emerged Schmallenberg virus (SBV in Europe. A reliable identification of the cryptic species of this group is fundamental for both understanding the epidemiology of the diseases and for targeted vector control. In the absence of classical morphological characters unambiguously identifying the species, DNA sequence-based tests have been established for the distinction of selected species in some parts of Europe. Since specificity and sensitivity of these tests have been shown to be in need of improvement, an alternative PCR assay targeting the mitochondrial cytochrome oxidase subunit I (COI gene was developed for the identification of the three Obsoletus complex species endemic to Germany (C. obsoletus, C. scoticus, C. chiopterus plus the isomorphic species C. dewulfi. Methods Biting midges of the genus Culicoides caught by UV light traps all over Germany were morphologically pre-identified to species or complex level. The COI region was amplified from their extracted DNA and sequenced. Final species assignment was done by sequence comparison to GenBank entries and to morphologically identified males. Species-specific consensus sequences were aligned and polymorphisms were utilized to design species-specific primers to PCR-identify specimens when combined with a universal primer. Results The newly developed multiplex PCR assay was successfully tested on genetically defined Obsoletus complex material as well as on morphologically pre-identified field material. The intended major advantage of the assay as compared to other PCR approaches, namely the production of only one single characteristic

  8. Vector competence of the stable fly (Diptera: Muscidae)for West Nile virus.

    Science.gov (United States)

    Stable flies, which are notorious pests of cattle and other livestock, were suspected of transmitting West Nile virus (WNV) among American white pelicans at the Medicine Lake Wildlife Refuge in northeastern Montana in 2006-2007. However the ability of stable flies to transmit the virus was unknown. ...

  9. Low titer lentiviral transgenesis in rodents with simian immundeficiency virus vector.

    Science.gov (United States)

    Bender, Balázs; Hoffmann, Orsolya Ivett; Negre, Didier; Kvell, Krisztián; Bősze, Zsuzsanna; Hiripi, László

    2013-09-01

    Efficient production of transgenic animals using low-titer lentiviral constructs remains challenging. Here we demonstrate that microinjection of simian immundeficiency virus-derived lentiviral constructs can produce transgenic mice and rats with high efficiency even when using low-titer virus preparations.

  10. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector

    Science.gov (United States)

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this article, we propose a honeybee-mite-virus model that incorporates (1) par...

  11. Identification and genetic characterization of chikungunya virus from Aedes mosquito vector collected in the Lucknow district, North India.

    Science.gov (United States)

    Nyari, N; Maan, H S; Sharma, S; Pandey, S N; Dhole, T N

    2016-06-01

    Chikungunya fever is an emerging mosquito-borne disease caused by the infection with chikungunya virus (CHIKV). The CHIKV has been rarely detected in mosquito vectors from Northern India, since vector surveillance is an effective strategy in controlling and preventing CHIKV transmission. Thus, virological investigation for CHIKV among mosquitoes of Aedes (A.) species was carried out in the Lucknow district during March 2010 to October 2011. We collected adult mosquitoes from areas with CHIKV positive patients. The adult Aedes mosquito samples were pooled, homogenized, clarified and tested for CHIKV by nonstructural protein 1 (nsP1) gene based polymerase chain reaction (PCR). A total 91 mosquito pools comprising of adult A. aegypti and A. albopictus were tested for CHIKV. The partial envelope protein (E1) gene sequences of mosquito-borne CHIKV strains were analyzed for genotyping. Of 91 pools, 6 pools of A. aegypti; and 2 pools of A. albopictus mosquitoes were identified positive for CHIKV by PCR. The phylogenetic analysis revealed clustering of CHIKV strains in two sub-lineages within the monophyletic East-Central South African (ECSA) genotype. Novel amino acid changes at the positions 294 (P294L) and 295 (S295F) were observed during analysis of amino acid sequence of the partial E1 gene. This study demonstrates the genetic diversity of circulating CHIKV strains and reports the first detection of CHIKV strains in Aedes vector species from the state of Uttar Pradesh. These findings have implication for vector control strategies to mitigate vector population to prevent the likelihood of CHIKV epidemic in the near future. PMID:26943997

  12. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  13. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants.

    Science.gov (United States)

    Zhao, Fumei; Lim, Seungmo; Igori, Davaajargal; Yoo, Ran Hee; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-05-01

    We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR. PMID:26950504

  14. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans.

    Science.gov (United States)

    Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun

    2016-02-01

    A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C

  15. Construction of the recombinant vector carrying herpes simplex virus thymidine kinase and cytokine genes expressed in cell line Tca8113

    Institute of Scientific and Technical Information of China (English)

    JI Guang-hui; ZOU Jing-zhi; QU Le; YUE Ying; KUAI Jian-ke

    2004-01-01

    Objective: To construct expression vector containing fusion genes of herpes simplex virus thymidine kinase(Hsv-tk), Interleukin-2(IL-2) with internal ribosome entry sites(IRES), and to assess their expression in cell lineTca8113. Methods: IL-2 cDNA was obtained by reverse transcription. Hsv-tk, IL-2 and IRES genes were amplified by PCR. The purified amplification products were inserted into pGEM-T-Easy, and transformed into E. coli JM109. The purified recombinant plasmids were identified by restriction endonucleases. The recombinant plasmids were digested and pEGFPN3 were linearized, DNA fragments of Hsv-tk, IRES and IL-2 were ligated into linearized pEGFP-N3, and then transferred into E. coli JM109. The recombinant tk-IL-2 genes were cloned separately and introduced into the expression vector pEGFPN3 containing GFP. The recombinant vectors were identified by their restriction sites through PCR. The plasmids pEGFP-TI was also transfected into Tca8113 cells by calcium phosphate method for the expression of fusion proteins. Fusion genes expressing vector PL(TI)SN was generated by the fusion of HSV-tk, IRES and IL-2 with the use of DNA recombination technology. The recombinant retroviruses were transferred into Tca8113 cells by lipofectamine. The positive clones were obtained after G418 selection and named Tca/TI respectively. Results: The pEGFP-TI pasmid was identified respectively by restriction endonucleases, and their fragment sizes were 1 120 bp and 450 bp. The pEGFP-TI pasmid as templates were amplified respectively by PCR, and their PCR products were 1 120 bp and 450 bp. The pEGFP-TI vectors were used to transfect Tca8113 cell, and the cells with fluorescence accounted for 60 % of the total amount. Conclusion: pFGFP- tk- IRES- IL-2 expressing vector is easy to assess the expression of tk-IRES-IL-2-GFP fusion protein localization in transfected cells. The successful construction of expressing vector containing fusion genes of Hsv-tk, IRES and IL-2 may be

  16. Host-seeking activity of bluetongue virus vectors: endo/exophagy and circadian rhythm of Culicoides in Western Europe.

    Directory of Open Access Journals (Sweden)

    Elvina Viennet

    Full Text Available Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.

  17. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  18. Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain

    Directory of Open Access Journals (Sweden)

    Hiralall Johan K

    2009-10-01

    Full Text Available Abstract Background Lentiviral vectors are well suited for gene therapy because they can mediate long-term expression in both dividing and nondividing cells. However, lentiviral vectors seem less suitable for liver gene therapy because systemically administered lentiviral vectors are preferentially sequestered by liver macrophages. This results in a reduction of available virus and might also increase the immune response to the vector and vector products. Reduction of macrophage sequestration is therefore essential for efficient lentiviral liver gene therapy. Results Fusions were made of Autographa californica GP64 and the hepatocyte specific Sendai Virus envelope proteins. Lentiviral vectors were produced with either wild type GP64, Sendai-GP64, or both wild type GP64 and Sendai-GP64 and tested in vitro and in vivo for hepatocyte and macrophage gene transfer. Sendai-GP64 pseudotyped vectors showed specific gene transfer to HepG2 hepatoma cells, with no detectable transduction of HeLa cervical carcinoma cells, and a decreased affinity for RAW mouse macrophages. Co-expression of wild type GP64 and Sendai-GP64 resulted in improved viral titers while retaining increased affinity for HepG2 cells. In vivo, the Sendai-GP64 vectors also showed decreased transduction of murine liver macrophages. Conclusion We demonstrate reduced macrophage transduction in vitro and in vivo with GP64/Sendai chimeric envelope proteins.

  19. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi.

    Science.gov (United States)

    Wang, Hui; Wu, Keke; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2015-01-01

    Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors. PMID:26161807

  20. New type of Sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood.

    Directory of Open Access Journals (Sweden)

    Yasumitsu Fujie

    Full Text Available Induced pluripotent stem cells (iPSCs are potentially valuable cell sources for disease models and future therapeutic applications; however, inefficient generation and the presence of integrated transgenes remain as problems limiting their current use. Here, we developed a new Sendai virus vector, TS12KOS, which has improved efficiency, does not integrate into the cellular DNA, and can be easily eliminated. TS12KOS carries KLF4, OCT3/4, and SOX2 in a single vector and can easily generate iPSCs from human blood cells. Using TS12KOS, we established iPSC lines from chimpanzee blood, and used DNA array analysis to show that the global gene-expression pattern of chimpanzee iPSCs is similar to those of human embryonic stem cell and iPSC lines. These results demonstrated that our new vector is useful for generating iPSCs from the blood cells of both human and chimpanzee. In addition, the chimpanzee iPSCs are expected to facilitate unique studies into human physiology and disease.

  1. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs.

    Directory of Open Access Journals (Sweden)

    Nancy J Sullivan

    2006-06-01

    Full Text Available BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd encoding the Ebola glycoprotein (GP and nucleoprotein (NP has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. METHODS AND FINDINGS: To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10 particles, two logs lower than that used previously. CONCLUSIONS: Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.

  2. A candidate therapeutic vaccine against hepatitis C virus infection: Use of a recombinant alphavirus vector

    OpenAIRE

    Ip, Peng

    2014-01-01

    Peng Peng Ip beschrijft in dit proefschrift haar onderzoek naar de ontwikkeling van een immuuntherapie gericht tegen hepatitis C virus infecties. Wereldwijd zijn ongeveer 150 miljoen mensen chronisch besmet met hepatitis C virus (HCV) en jaarlijks sterven 350.000 mensen aan een HCV-gerelateerde leverziekte zoals cirrose of leverkanker. In Nederland zijn ongeveer 60.000 mensen besmet met HCV, vaak nog zonder het te weten. Het doel van het promotie onderzoek was om een vaccin tegen HCV infectie...

  3. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe.

    Science.gov (United States)

    Bellini, Romeo; Zeller, Herve; Van Bortel, Wim

    2014-01-01

    West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe.Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004

  4. Foot-and-mouth disease virus 2A protease mediates cleavage in attenuated Sabin 3 poliovirus vectors engineered for delivery of foreign antigens.

    OpenAIRE

    Mattion, N M; Harnish, E C; Crowley, J C; Reilly, P A

    1996-01-01

    Poliovirus vectors are being studied as potential vaccine delivery systems, with foreign genetic sequences incorporated as part of the viral genome. The foreign sequences are expressed as part of the viral polyprotein. Addition of proteolytic cleavage sites at the junction of the foreign polypeptide and the viral proteins results in cleavage during polyprotein processing. The ability of foot-and-mouth disease virus (FMDV) 2A to mediate proteolytic cleavage in the context of poliovirus vectors...

  5. Roles of the Laodelphax striatellus Down syndrome cell adhesion molecule in Rice stripe virus infection of its insect vector.

    Science.gov (United States)

    Zhang, F; Li, Q; Chen, X; Huo, Y; Guo, H; Song, Z; Cui, F; Zhang, L; Fang, R

    2016-08-01

    The arthropod Down syndrome cell adhesion molecule (Dscam) mediates pathogen-specific recognition via an extensive protein isoform repertoire produced by alternative splicing. To date, most studies have focused on the subsequent pathogen-specific immune response, and few have investigated the entry into cells of viruses or endosymbionts. In the present study, we cloned and characterized the cDNA of Laodelphax striatellus Dscam (LsDscam) and investigated the function of LsDscam in rice stripe virus (RSV) infection and the influence on the endosymbiont Wolbachia. LsDscam displayed a typical Dscam domain architecture, including 10 immunoglobulin (Ig) domains, six fibronectin type III domains, one transmembrane domain and a cytoplasmic tail. Alternative splicing occurred at the N-termini of the Ig2 and Ig3 domains, the complete Ig7 domain, the transmembrane domain and the C-terminus, comprising 10, 51, 35, two and two variable exons, respectively. Potentially LsDscam could encode at least 71 400 unique isoforms and 17 850 types of extracellular regions. LsDscam was expressed in various L. striatellus tissues. Knockdown of LsDscam mRNA via RNA interference decreased the titres of both RSV and Wolbachia, but did not change the numbers of the extracellular symbiotic bacterium Acinetobacter rhizosphaerae. Specific Dscam isoforms may play roles in enhancing the infection of vector-borne viruses or endosymbionts. PMID:26991800

  6. A Vesicular Stomatitis Virus-Based Hepatitis B Virus Vaccine Vector Provides Protection against Challenge in a Single Dose ▿

    OpenAIRE

    Cobleigh, Melissa A.; Buonocore, Linda; Uprichard, Susan L; Rose, John K.; Robek, Michael D.

    2010-01-01

    As one of the world's most common infectious diseases, hepatitis B virus (HBV) is a serious worldwide public health problem, with HBV-associated liver disease accounting for more than half a million deaths each year. Although there is an effective prophylactic vaccine currently available to prevent infection, it has a number of characteristics that are suboptimal: multiple doses are needed to induce long-lasting immunity, immunity declines over time, it does not elicit protection in some indi...

  7. Vector competence of Mexican and Honduran mosquitoes (Diptera: Culicidae) for enzootic (IE) and epizootic (IC) strains of Venezuelan equine encephalomyelitis virus.

    Science.gov (United States)

    Turell, Michael J; O'Guinn, Monica L; Navarro, Roberto; Romero, Guadeloupe; Estrada-Franco, José G

    2003-05-01

    Experimental studies evaluated the vector competence of Ochlerotatus taeniorhynchus (Wiedemann), Culex cancer Theobald, Culex pseudes (Dyar and Knab), Culex taeniopus Dyar and Knab, and a Culex (Culex) species, probably Culex quinquefasciatus Say, and Culex nigripalpus Theobald from Chiapas, Mexico, and Tocoa, Honduras, for epizootic (IC) and enzootic (IE) strains of Venezuelan equine encephalomyelitis (VEE) virus. Culex pseudes was highly susceptible to infection with both the IC and IE strains of VEE (infection rates >78%). Patterns of susceptibility to VEE were similar for Oc. taeniorhynchus collected in Mexico and Honduras. Although Oc. taeniorhynchus was highly susceptible to the epizootic IC strains (infection rates > or = 95%, n = 190), this species was less susceptible to the enzootic IE strain (infection rates < or = 35%, n = 233). The Culex (Culex) species were refractory to both subtypes of VEE, and none of 166 contained evidence of a disseminated infection. Virus-exposed Cx. pseudes that refed on susceptible hamsters readily transmitted virus, confirming that this species was an efficient vector of VEE. Although Oc. taeniorhynchus that fed on hamsters infected with the epizootic IC strain transmitted VEE efficiently, only one of six of those with a disseminated infection with the enzootic IE virus that fed on hamsters transmitted virus by bite. These data indicate that Cx. pseudes is an efficient laboratory vector of both epizootic and enzootic strains of VEE and that Oc. taeniorhynchus could be an important vector of epizootic subtypes of VEE.

  8. Infection of Nonhost Species Dendritic Cells In Vitro with an Attenuated Myxoma Virus Induces Gene Expression That Predicts Its Efficacy as a Vaccine Vector ▿ †

    OpenAIRE

    TOP, S.; E. Foulon; Pignolet, B.; Deplanche, M; Caubet, C.; Tasca, C; Bertagnoli, S; Meyer, G.; Foucras, G.

    2011-01-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle...

  9. Long-term inducible expression in striatal neurons from helper virus-free HSV-1 vectors that contain the tetracycline-inducible promoter system

    OpenAIRE

    Gao, Qingshen; Sun, Mei; Wang, Xiaodan; Zhang, Guo-rong; Geller, Alfred I.

    2006-01-01

    Direct gene transfer into neurons in the brain via a virus vector system has potential for both examining neuronal physiology and for developing gene therapy treatments for neurological diseases. Many of these applications require precise control of the levels of recombinant gene expression. The preferred method for controlling the levels of expression is by use of an inducible promoter system, and the tetracycline (tet)-inducible promoter system is the preferred system. Helper virus-free Her...

  10. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bricault, Christine A. [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States); Perry, Keith L., E-mail: KLP3@cornell.edu [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States)

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.

  11. 百合病毒病媒介昆虫的研究%Studies on Insect Vectors on Lily Virus Disease

    Institute of Scientific and Technical Information of China (English)

    朱亚灵

    2013-01-01

    通过对百合病毒病媒介昆虫种类的调查与鉴定,研究其种群与百合病毒病病情间的关系。结果表明,桃蚜(Myzus persicae)是传播百合病毒病的主要种类;百合病毒病田间发病率与百株蚜量呈正相关(P<0.01, r=0.8729),说明百合种植地蚜虫数量较多,则病毒病严重;而蚜虫数量少,则病毒病发生较轻。因此控制迁入百合地的蚜虫数量是防治百合病毒病发生的关键措施。%Based on the investigation and identification of the species of insect vectors, the relationship of vectors and lily virus diseases was studied. The results showed that Myzus persicae is the most important vector. There was positive relationship between the incidence in the field and the amounts of vectors on one hundred plants. The correlation coefficient was 0.8729. This suggested that more amounts of vectors were, more severe the virus was. So reducing amounts of vectors is the essential measure for controlling lily virus disease.

  12. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.

    Science.gov (United States)

    Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria

    2016-05-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its