WorldWideScience

Sample records for adeno-associated viral variant

  1. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  2. Optimization of design and production strategies for novel adeno-associated viral display peptide libraries.

    Science.gov (United States)

    Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M

    2017-08-01

    Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.

  3. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  4. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...

  5. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  6. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  7. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  8. Synthetic adeno-associated viral vector efficiently targets mouse and non-human primate retina in vivo.

    Science.gov (United States)

    Carvalho, Livia S; Xiao, Ru; Wassmer, Sarah; Langsdorf, Aliete; Zinn, Eric; Pacouret, Simon; Shah, Samiksha; Comander, Jason I; Kim, Leo; Lim, Laurence; Vandenberghe, Luk H

    2018-01-12

    Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. RPE and rods, and to a lesser extent, cone photoreceptors can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of RPE and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and INL neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.

  9. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  10. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  11. Intracellular localization of adeno-associated viral proteins expressed in insect cells.

    Science.gov (United States)

    Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A

    2011-01-01

    Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  12. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  13. Characterization of Adeno-Associated Viral Vector-Mediated Human Factor VIII Gene Therapy in Hemophilia A Mice.

    Science.gov (United States)

    Greig, Jenny A; Wang, Qiang; Reicherter, Amanda L; Chen, Shu-Jen; Hanlon, Alexandra L; Tipper, Christopher H; Clark, K Reed; Wadsworth, Samuel; Wang, Lili; Wilson, James M

    2017-05-01

    Adeno-associated viral (AAV) vectors are promising vehicles for hemophilia gene therapy, with favorable clinical trial data seen in the treatment of hemophilia B. In an effort to optimize the expression of human coagulation factor VIII (hFVIII) for the treatment of hemophilia A, an extensive study was performed with numerous combinations of liver-specific promoter and enhancer elements with a codon-optimized hFVIII transgene. After generating 42 variants of three reduced-size promoters and three small enhancers, transgene cassettes were packaged within a single AAV capsid, AAVrh10, to eliminate performance differences due to the capsid type. Each hFVIII vector was administered to FVIII knockout (KO) mice at a dose of 10 10 genome copies (GC) per mouse. Criteria for distinguishing the performance of the different enhancer/promoter combinations were established prior to the initiation of the studies. These criteria included prominently the level of hFVIII activity (0.12-2.12 IU/mL) and the pattern of development of anti-hFVIII antibodies. In order to evaluate the impact of capsid on hFVIII expression and antibody formation, one of the enhancer and promoter combinations that exhibited high hFVIII immunogenicity was evaluated using AAV8, AAV9, AAVrh10, AAVhu37, and AAVrh64R1 capsids. The capsids subdivided into two groups: those that generated anti-hFVIII antibodies in ≤20% of mice (AAV8 and AAV9), and those that generated anti-hFVIII antibodies in >20% of mice (AAVrh10, AAVhu37, and AAVrh64R1). The results of this study, which entailed extensive vector optimization and in vivo testing, demonstrate the significant impact that transcriptional control elements and capsid can have on vector performance.

  14. Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously Promoting Immune Resistance and Robust Gene Delivery.

    Science.gov (United States)

    Kim, Yoojin; Kim, Eunmi; Oh, Seokmin; Yoon, Ye-Eun; Jang, Jae-Hyung

    2018-01-01

    In addition to the ability to boost gene delivery efficiency in many therapeutically relevant cells, the capability of circumventing neutralizing antibody (NAb) inactivation is a key prerequisite that gene carriers must fulfill for their extensive applications as therapeutic agents in many gene therapy trials, especially for cancer treatments. This study revealed that a genetically engineered adeno-associated virus (AAV) variant, AAVr3.45, inherently possesses dual beneficial properties as a gene carrier: (i) efficiently delivering therapeutic genes to many clinically valuable cells (e.g., stem or cancer cells) and (ii) effectively bypassing immunoglobulin (IgG) neutralization. Detailed interpretation of the structural features of AAVr3.45, which was previously engineered from AAV2, demonstrated that the LATQVGQKTA peptide at the heparan sulfate proteoglycan binding domain, especially the presence of cationic lysine on the peptide, served as a key motif for dramatically enhancing its gene delivery capabilities, ultimately broadening its tropisms for many cancer cell lines. Furthermore, the substitution of valine on the AAV2 capsid at the amino acid 719 site to methionine functioned as a coordinator for promoting viral resistance against IgG inactivation. The NAb-resistant characteristics of AAVr3.45 were possibly associated with the LATQVGQKTA sequence itself, indicating that its synergistic cooperation with the point mutation (V719M) is required for maximizing its ability to evade NAb inactivation. The potential of AAVr3.45 as a cancer gene therapy agent was confirmed by provoking apoptosis in breast adenocarcinoma by efficiently delivering a pro-apoptotic gene, BIM (Bcl-2-like protein 11), under high titers of human IgG. Thus, the superior aspects of the NAb-resistant AAVr3.45 as a potential therapeutic agent for systemic injection approaches, especially for cancer gene therapy, were highlighted in this study.

  15. Biology of Adeno-Associated Viral Vectors in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Giridhar eMurlidharan

    2014-09-01

    Full Text Available Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS. In particular, Adeno-Associated Viruses (AAV have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.

  16. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus

    Science.gov (United States)

    Smith, Richard H.; Hallwirth, Claus V.; Westerman, Michael; Hetherington, Nicola A.; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B.; Koonin, Eugene V.; Agbandje-McKenna, Mavis; Kotin, Robert M.; Alexander, Ian E.

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV “fossils” provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  17. Full-length dystrophin reconstitution with adeno-associated viral vectors.

    Science.gov (United States)

    Lostal, William; Kodippili, Kasun; Yue, Yongping; Duan, Dongsheng

    2014-06-01

    Duchenne muscular dystrophy (DMD) is the most common lethal muscle disorder in children. It is caused by mutations of the dystrophin gene. Adeno-associated virus (AAV)-mediated gene replacement therapy has been actively pursued to treat DMD. However, this promising therapeutic modality has been challenged by the small packaging capacity of the AAV vector. The size of the full-length dystrophin cDNA is >11 kb, while an AAV virus can carry only a 5 kb genome. Innovative high-capacity AAV vectors may offer an opportunity to express the full-length dystrophin coding sequence. Here we describe several sets of tri-AAV vectors for full-length human dystrophin delivery. In each set, the full-length human dystrophin cDNA was split into three fragments and independently packaged into separate recombinant AAV vectors. Each vector was engineered with unique recombination signals for directional recombination. Tri-AAV vectors were coinjected into the tibialis anterior muscle of dystrophin-deficient mdx4cv mice. Thirty-five days after injection, dystrophin expression was examined by immunofluorescence staining. Despite low reconstitution efficiency, full-length human dystrophin was successfully expressed from the tri-AAV vectors. Our results suggest that AAV can be engineered to express an extra-large (up to 15 kb) gene that is approximately three times the size of the wild-type AAV genome. Further optimization of the trivector strategy may expand the utility of AAV for human gene therapy.

  18. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  19. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia. © 2015 International Society for

  20. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    Science.gov (United States)

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  1. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  2. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches.

    Directory of Open Access Journals (Sweden)

    Li Xia

    Full Text Available Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs and 17% of outer hair cells (OHCs were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively was slightly higher, but the difference was not significant.

  3. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S.; Odom, Guy L.; Hopkins, Stephanie; Case, Amanda; Wang, David B.; Chamberlain, Jeffrey S.; Garden, Gwenn A.

    2015-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre-recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. PMID:25708596

  4. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  5. Delivery and evaluation of recombinant adeno-associated viral vectors in the equine distal extremity for the treatment of laminitis.

    Science.gov (United States)

    Mason, J B; Gurda, B L; Van Wettere, A; Engiles, J B; Wilson, J M; Richardson, D W

    2017-01-01

    Our long-term aim is to develop a gene therapy approach for the prevention of laminitis in the contralateral foot of horses with major musculoskeletal injuries and non-weightbearing lameness. The goal of this study was to develop a practical method to efficiently deliver therapeutic proteins deep within the equine foot. Randomised in vivo experiment. We used recombinant adeno-associated viral vectors (rAAVs) to deliver marker genes using regional limb perfusion through the palmar digital artery of the horse. Vector serotypes rAAV2/1, 2/8 and 2/9 all successfully transduced equine foot tissues and displayed similar levels and patterns of transduction. The regional distribution of transduction within the foot decreased with decreasing vector dose. The highest transduction values were seen in the sole and coronary regions and the lowest transduction values were detected in the dorsal hoof-wall region. The use of a surfactant-enriched vector diluent increased regional distribution of the vector and improved the transduction in the hoof-wall region. The hoof-wall region of the foot, which exhibited the lowest levels of transduction using saline as the vector diluent, displayed a dramatic increase in transduction when surfactant was included in the vector diluent (9- to 81-fold increase). In transduced tissues, no significant difference was observed between promoters (chicken β-actin vs. cytomegalovirus) for gene expression. All horses tested for vector-neutralising antibodies were positive for serotype-specific neutralising antibodies to rAAV2/5. The current experiments demonstrate that transgenes can be successfully delivered to the equine distal extremity using rAAV vectors and that serotypes 2/8, 2/9 and 2/1 can successfully transduce tissues of the equine foot. When the vector was diluted with surfactant-containing saline, the level of transduction increased dramatically. The increased level of transduction due to the addition of surfactant also improved the

  6. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  7. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well...

  8. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  9. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.

  10. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    Science.gov (United States)

    Flotte, Terence R; Trapnell, Bruce C; Humphries, Margaret; Carey, Brenna; Calcedo, Roberto; Rouhani, Farshid; Campbell-Thompson, Martha; Yachnis, Anthony T; Sandhaus, Robert A; McElvaney, Noel G; Mueller, Christian; Messina, Louis M; Wilson, James M; Brantly, Mark; Knop, David R; Ye, Guo-jie; Chulay, Jeffrey D

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes/kg (n=3 subjects/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  11. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  12. The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication.

    Science.gov (United States)

    Cao, Maohua; You, Hong; Hermonat, Paul L

    2014-01-01

    Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  13. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  14. Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery

    Directory of Open Access Journals (Sweden)

    Harrison C Brown

    2014-01-01

    Full Text Available Clinical data support the feasibility and safety of adeno-associated viral (AAV vectors in gene therapy applications. Despite several clinical trials of AAV-based gene transfer for hemophilia B, a unique set of obstacles impede the development of a similar approach for hemophilia A. These include (i the size of the factor VIII (fVIII transgene, (ii humoral immune responses to fVIII, (iii inefficient biosynthesis of human fVIII, and (iv AAV vector immunity. Through bioengineering approaches, a novel fVIII molecule, designated ET3, was developed and shown to improve biosynthetic efficiency 10- to 100-fold. In this study, the utility of ET3 was assessed in the context of liver-directed, AAV-mediated gene transfer into hemophilia A mice. Due to the large size of the expression cassette, AAV-ET3 genomes packaged into viral particles as partial genome fragments. Despite this potential limitation, a single peripheral vein administration of AAV-ET3 into immune-competent hemophilia A mice resulted in correction of the fVIII deficiency at lower vector doses than previously reported for similarly oversized AAV-fVIII vectors. Therefore, ET3 appears to improve vector potency and mitigate at least one of the critical barriers to AAV-based clinical gene therapy for hemophilia A.

  15. Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism.

    Science.gov (United States)

    Woodard, Kenton T; Liang, Katharine J; Bennett, William C; Samulski, R Jude

    2016-11-01

    Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy

  16. Sequential Adeno-Associated Viral Vector Serotype 9-Green Fluorescent Protein Gene Transfer Causes Massive Inflammation and Intense Immune Response in Rat Striatum.

    Science.gov (United States)

    Yang, Chun; Hao, Fei; He, Jun; Lu, Tao; Klein, Ronald L; Zhao, Li-Ru; Duan, Wei-Ming

    2016-07-01

    Green fluorescent protein (GFP) is a broadly used live cell reporter for gene transduction although side effects associated with GFP in gene transfer are reported. The present study was designed to systematically examine host responses, including inflammatory and immune responses, induced by persistent overexpression of the GFP gene mediated by adeno-associated viral vector serotype 9 (AAV9), and their effects on GFP gene transduction in rat striatum. Our results show that host responses against AAV9-GFP transduction, and GFP transgene expression in the striatum exhibited a temporal and dose-dependent pattern. Both muscular and striatal delivery of AAV9-GFP increased levels of inflammation and immune reactions against sequential AAV9-GFP transduction in the striatum, leading to reduced levels of GFP expression. We also observed that rat sera from sequential administrations of AAV9-GFP group had significantly higher levels of neutralizing antibody against AAV9 vectors when compared with the age-matched rats. As excessive GFP can trigger vigorous inflammation and intense immune response after GFP gene transduction, the use of GFP as a live cell marker protein should be deliberated, especially in repeated administration studies.

  17. Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency.

    Science.gov (United States)

    Burnett, John R; Hooper, Amanda J

    2009-12-01

    Amsterdam Molecular Therapeutics BV is developing alipogene tiparvovec (Glybera, AMT-011, AAV1-LPLS447X), a Ser(447)X variant of the human lipoprotein lipase (LPL) gene (LPLSer(447)X) in an adeno-associated virus vector, as a potential intramuscular gene therapy for the treatment of LPL deficiency. Familial LPL deficiency is a rare, autosomal-recessive disorder of lipoprotein metabolism that is characterized by severe hypertriglyceridemia with episodes of abdominal pain, acute pancreatitis and eruptive cutaneous xanthomatosis. The lack of functional LPL in patients with LPL deficiency causes an accumulation of triglyceride (TG)-rich lipoproteins in the plasma. The LPLSer(447)X variant is associated with decreased levels of plasma TGs and increased HDL cholesterol concentrations compared with wild-type LPL. Preclinical studies evaluating alipogene tiparvovec in a mouse model of LPL deficiency demonstrated a long-term, dose-dependent correction of the lipid abnormalities. The first clinical trials in patients with LPL deficiency appear promising, with a significant decrease in the levels of plasma TGs observed in the first 3 months following the administration of alipogene tiparvovec, and an increase in local LPL activity and protein levels observed after 6 months. In addition, a decrease in pancreatitis frequency was observed during a 3-year follow-up period. At the time of publication, a phase II/III trial in patients with LPL deficiency, being conducted to further support the submission of an MAA to the EMEA for alipogene tiparvovec, was ongoing. The compound is also under investigation for the treatment of type V hyperlipoproteinemia, Syndrome X and non-alcoholic steatohepatitis.

  18. Adeno-associated viral vector 2.9 thymosin ß4 application attenuates rejection after heart transplantation: results of a preclinical study in the pig.

    Science.gov (United States)

    Postrach, Johannes; Schmidt, Maximilian; Thormann, Michael; Thein, Eckart; Burdorf, Lars; Reichart, Bruno; Sotlar, Karl; Walz, Christoph; Faber, Claudius; Bauer, Andreas; Schmoeckel, Michael; Kupatt, Christian; Hinkel, Rabea

    2014-10-27

    Graft survival is the most important factor for morbidity and mortality in cardiac transplantation. Improved immunosuppression significantly reduced early graft rejection. However, acute rejection may predispose to chronic rejection. Targeting both phases of the recipient's immune-reactivity by means of long-acting recombinant adeno-associated viral vectors (AAVs) encoding anti-inflammatory and cardioprotective factors appears to be a promising therapeutic approach. We investigate thymosin ß4 (Tß4) possessing anti-inflammatory and prosurvival abilities, as a means for pretransplant gene therapy. Heterotopic, abdominal transplantation of cardiac allografts into landrace or into Munich mini pigs (n=5 per group) was performed. Transplants were transduced with AAV2.9 before transplantation by means of in situ perfusion of the donor organ. Vascuar endothelial growth factor and AAV2.9.Tß4 or AAV2.9.LacZ were added to the autologous blood used for perfusing the grafts for a period of 45 min. Immunosuppression was applied for 10 days after the operation. Transgene expression, capillary density, graft function, survival, and rejection were assessed. The AAV2.9 transduction induced robust overexpression of the transgene. In addition, Tß4 ameliorated inflammation, necrosis, vascular reaction (acute rejection) and in parallel improved capillary density. In addition, graft survival was significantly prolonged (10±3 days AAV2.9.LacZ vs. 31±4 days AAV2.9.Tß4). In the mini pig model, regional myocardial function of the grafts was improved by Tß4 transduction compared to LacZ (9.1%±0.9% subendocardial segment shortening in AAV2.9.LacZ vs. 15.8%±2.3% in AAV2.9.Tß4). In situ AAV2.9-mediated gene transfer of thymosin β4 attenuated graft rejection in a heterotopic heart transplantation model. Perioperative cardioprotection by means of gene therapy might improve graft survival in cardiac allotransplantation.

  19. Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol

    Science.gov (United States)

    Prada, Carlos E; Lopez, Marcos; Castillo, Victor; Echeverria, Luis Eduardo; Serrano, Norma

    2016-01-01

    Background Recent progress in the pathophysiology of heart failure (HF) has led to the development of new therapeutic options such as gene therapy and the use of adeno-associated viral (AAV) vectors. Despite the promising results in early clinical trials of gene therapy for HF, various obstacles have been faced, such as the presence of neutralizing antibodies (NAbs) against the capsid vectors. NAb activity limits vector transduction levels and therefore diminishes the final therapeutic response. Recent studies evaluating the prevalence of NAbs in various populations found considerable geographic variability for each AAV serotype. However, the levels of NAbs in Latin American populations are unknown, becoming a limiting factor to conducting AAV vector therapeutic trials in this population. Objective The goal of this study is to determine for the first time, the prevalence of anti-AAV NAbs for the serotypes 1, 2, and 9 in HF patients from the city of Bucaramanga, Colombia, using the in vitro transduction inhibition assay. Methods We will conduct a cross-sectional study with patients who periodically attend the HF clinic of the Cardiovascular Foundation of Colombia and healthy volunteers matched for age and sex. For all participants, we will evaluate the NAb levels against serotypes AAV1, AAV2, and AAV9. We will determine NAb levels using the in vitro transduction inhibition assay. In addition, participants will answer a survey to evaluate their epidemiological and socioeconomic variables. Participation in the study will be voluntary and all participants will sign an informed consent document before any intervention. Results The project is in the first phase: elaboration of case report forms and the informed consent form, and design of the recruitment strategy. Patient recruitment is expected to begin in the spring of 2016. We expect to have preliminary results, including the titer of the viral vectors, multiplicity of infections that we will use for each serotype

  20. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord

    NARCIS (Netherlands)

    Eaton, M J; Blits, B; Ruitenberg, Marc J; Verhaagen, J; Oudega, M.

    2002-01-01

    Changing the levels of neurotrophins in the spinal cord micro-environment after nervous system injury has been proposed to recover normal function, such that behavioral response to peripheral stimuli does not lead to chronic pain. We have investigated the effects of recombinant adeno-associated

  1. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  2. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  3. miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity.

    Science.gov (United States)

    Reid, C A; Boye, S L; Hauswirth, W W; Lipinski, D M

    2017-08-01

    The production of high-titer recombinant adeno-associated virus (rAAV) vector is essential for treatment of genetic diseases affecting the retina and choroid, where anatomical constraints may limit injectable volumes. Problematically, cytotoxicity arising from overexpression of the transgene during vector production frequently leads to a reduction in vector yield. Herein, we evaluate the use of microRNA (miRNA)-mediated silencing to limit overexpression of cytotoxic transgenes during packaging as a method of increasing vector yield. We examined if post-transcriptional regulation of transgenes during packaging via miRNA technology would lead to increased rAAV yields. Our results demonstrate that silencing of cytotoxic transgenes during production resulted in up to a 22-fold increase in vector yield. The inclusion of organ-specific miRNA sequences improved biosafety by limiting off-target expression following systemic rAAV administration. The small size (22-23 bp) of the target site allows for the inclusion of multiple copies into the vector with minimal impact on coding capacity. Taken together, our results suggest that inclusion of miRNA target sites into the 3'-untranslated region of the AAV cassette allow for silencing of cytotoxic transgenes during vector production leading to improved vector yield, in addition to increasing targeting specificity without reliance on cell-specific promoters.

  4. Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland.

    Directory of Open Access Journals (Sweden)

    Dariya Momot

    Full Text Available In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (10(8, 10(9, 10(10, or 4.4 × 10(10 vector particles/gland or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe.

  5. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  6. Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo

    NARCIS (Netherlands)

    van Dijk, Remco; Montenegro-Miranda, Paula S.; Riviere, Christel; Schilderink, Ronald; ten Bloemendaal, Lysbeth; van Gorp, Jacqueline; Duijst, Suzanne; de Waart, Dirk R.; Beuers, Ulrich; Haisma, Hidde J.; Bosma, Piter J.

    2013-01-01

    Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase

  7. Pharmacology of Recombinant Adeno-associated Virus Production

    Directory of Open Access Journals (Sweden)

    Magalie Penaud-Budloo

    2018-03-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input used in each platform and which related impurities can be expected in final products (output. The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious, residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses, and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.

  8. How to Successfully Screen Random Adeno-Associated Virus Display Peptide Libraries In Vivo.

    Science.gov (United States)

    Körbelin, Jakob; Trepel, Martin

    2017-06-01

    Adeno-associated virus (AAV) has emerged as a very promising gene therapy vector. To enable tissue-directed gene expression, many artificially generated AAV variants have been established, often isolated from large pools of mutated capsids. Random peptide libraries displayed on AAV capsids have been used successfully to select vectors targeted to a given target cell or tissue in vitro and in vivo. However, the published methodology for screening of AAV libraries to isolate vectors with selective tissue tropism after intravenous administration in vivo has not been described in sufficient detail to address all critical steps. A step-by-step protocol is provided here.

  9. Delivery of recombinant adeno-associated virus by jet injection

    Czech Academy of Sciences Publication Activity Database

    Janousková, O.; Nellessen, T.; Štokrová, Jitka; Jinoch, P.; Šmahel, M.

    2003-01-01

    Roč. 12, č. 5 (2003), s. 687-691 ISSN 1107-3756 Institutional research plan: CEZ:AV0Z5052915 Keywords : jet injection * adeno-associated virus * gene therapy Subject RIV: EE - Microbiology, Virology Impact factor: 1.940, year: 2003

  10. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  11. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  12. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  13. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo.

    Science.gov (United States)

    Richter, M; Iwata, A; Nyhuis, J; Nitta, Y; Miller, A D; Halbert, C L; Allen, M D

    2000-04-27

    Adeno-associated virus (AAV) vectors might offer solutions for restenosis and angiogenesis by transducing nondividing cells and providing long-term gene expression. We investigated the feasibility of vascular cell transduction by AAV vectors in an in vivo rabbit carotid artery model. Time course of gene expression, inflammatory reaction to the vector, and effects of varying viral titer, exposure time, and intraluminal pressures on gene expression were examined. Recombinant AAV vectors with an Rous sarcoma virus promoter and alkaline phosphatase reporter gene were injected intraluminally into transiently isolated carotid segments. Following transduction, gene expression increased significantly over 14 days and then remained stable to 28 days, the last time point examined. Medial vascular smooth muscle cells were the main cell type transduced even with an intact endothelial layer. Increasing the viral titer and intraluminal pressure both enhanced transduction efficiency to achieve a mean of 34 +/- 7% of the subintimal layer of smooth muscle cells expressing gene product. A mild inflammatory reaction, composed of T cells with only rare macrophages, with minimal intimal thickening was demonstrated in 40% of transduced vessels; inflammatory cells were not detected in sham-operated control arteries. These findings demonstrate that AAV is a promising vector for intravascular applications in coronary and peripheral vascular diseases.

  14. Retargeting transposon insertions by the adeno-associated virus Rep protein

    Science.gov (United States)

    Ammar, Ismahen; Gogol-Döring, Andreas; Miskey, Csaba; Chen, Wei; Cathomen, Toni; Izsvák, Zsuzsanna; Ivics, Zoltán

    2012-01-01

    The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein–protein and protein–DNA interactions. PMID:22523082

  15. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  16. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  17. Factors influencing recombinant adeno-associated virus production.

    Science.gov (United States)

    Salvetti, A; Orève, S; Chadeuf, G; Favre, D; Cherel, Y; Champion-Arnaud, P; David-Ameline, J; Moullier, P

    1998-03-20

    Recombinant adeno-associated virus (rAAV) is produced by transfecting cells with two constructs: the rAAV vector plasmid and the rep-cap plasmid. After subsequent adenoviral infection, needed for rAAV replication and assembly, the virus is purified from total cell lysates through CsCl gradients. Because this is a long and complex procedure, the precise titration of rAAV stocks, as well as the measure of the level of contamination with adenovirus and rep-positive AAV, are essential to evaluate the transduction efficiency of these vectors in vitro and in vivo. Our vector core is in charge of producing rAAV for outside investigators as part of a national network promoted by the Association Française contre les Myopathies/Généthon. We report here the characterization of 18 large-scale rAAV stocks produced during the past year. Three major improvements were introduced and combined in the rAAV production procedure: (i) the titration and characterization of rAAV stocks using a stable rep-cap HeLa cell line in a modified Replication Center Assay (RCA); (ii) the use of different rep-cap constructs to provide AAV regulatory and structural proteins; (iii) the use of an adenoviral plasmid to provide helper functions needed for rAAV replication and assembly. Our results indicate that: (i) rAAV yields ranged between 10(11) to 5 x 10(12) total particles; (ii) the physical particle to infectious particle (measured by RCA) ratios were consistently below 50 when using a rep-cap plasmid harboring an ITR-deleted AAV genome; the physical particle to transducing particle ratios ranged between 400 and 600; (iii) the use of an adenoviral plasmid instead of an infectious virion did not affect the particles or the infectious particles yields nor the above ratio. Most of large-scale rAAV stocks (7/9) produced using this plasmid were free of detectable infectious adenovirus as determined by RCA; (iv) all the rAAV stocks were contaminated with rep-positive AAV as detected by RCA. In summary

  18. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

    Science.gov (United States)

    Haenraets, Karen; Foster, Edmund; Johannssen, Helge; Kandra, Vinnie; Frezel, Noémie; Steffen, Timothy; Jaramillo, Valeria; Paterna, Jean-Charles; Zeilhofer, Hanns Ulrich; Wildner, Hendrik

    2017-09-01

    Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

  20. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  1. Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo?

    Science.gov (United States)

    Borrow, P; Shaw, G M

    1998-08-01

    Although viral variants which are not recognized by epitope-specific cytotoxic T lymphocytes (CTL) have been shown to arise during a number of persistent virus infections, in many cases their significance remains controversial: it has been argued that the immune response is sufficiently plastic to contain their replication. In this review, we describe the mechanisms by which amino acid changes in viral proteins may affect epitope recognition by virus-specific CTL, and discuss the viral and immunological basis for the emergence of viral variants bearing such amino acid changes during infection. We then consider the impact that viral variation may have on the host CTL response and its ability to contain virus replication. We argue that the emergence of a viral variant demonstrates that it must have an in vivo replicative advantage, and that as such, the variant must tip the balance between virus replication and immune control somewhat in favor of the virus. Further, we suggest that although the immune response can evolve to recognize new viral epitopes, the CTL generated following such evolution frequently have a reduced ability to contain virus replication. We conclude that this escape mechanism likely does make a significant contribution to persistence/pathogenesis during a number of different virus infections.

  2. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  3. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    Science.gov (United States)

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction.

  5. Using FRAP or FRAPA to Visualize the Movement of Fluorescently Labeled Proteins or Cellular Organelles in Live Cultured Neurons Transformed with Adeno-Associated Viruses.

    Science.gov (United States)

    Tevet, Yaara; Gitler, Daniel

    2016-01-01

    Fluorescence recovery after photobleaching (FRAP) and fluorescence redistribution after photoactivation (FRAPA) are complementary methods used to gauge the movement of proteins or sub-resolution organelles within cells. Using these methods we can determine the nature of the movement of labeled particles, whether it is random, constrained, or active, the coefficient of diffusion if applicable, binding and unbinding constants, and the direction of active transport. These two techniques have been extensively utilized to probe the cell biology of neurons. A practical outline of FRAP and FRAPA in cultured neurons is presented, including the preparation of the neurons and their infection with adeno-associated viral vectors. Considerations in planning such experiments are provided.

  6. Viral population analysis and minority-variant detection using short read next-generation sequencing

    NARCIS (Netherlands)

    Watson, Simon J.; Welkers, Matthijs R. A.; Depledge, Daniel P.; Coulter, Eve; Breuer, Judith M.; de Jong, Menno D.; Kellam, Paul

    2013-01-01

    RNA viruses within infected individuals exist as a population of evolutionary-related variants. Owing to evolutionary change affecting the constitution of this population, the frequency and/or occurrence of individual viral variants can show marked or subtle fluctuations. Since the development of

  7. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies.

    Directory of Open Access Journals (Sweden)

    Brian J Willett

    Full Text Available Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV, a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1 or diverse (Group 2 challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.

  8. Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex

    International Nuclear Information System (INIS)

    O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.

    2009-01-01

    Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R 448/585 , R 451/588 and R 350/487 from another subunit cluster at the center of the heparin footprint. The footprint is much more extensive than apparent through mutagenesis, including R 347/484 , K 395/532 and K 390/527 that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites

  9. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  10. Adeno-associated virus type 2 as an oncogenic virus in human hepatocellular carcinoma

    OpenAIRE

    Nault, Jean-Charles; Datta, Shalini; Imbeaud, Sandrine; Franconi, Andrea; Zucman-Rossi, Jessica

    2016-01-01

    Adeno-associated virus type 2 (AAV2) is a defective DNA virus that was previously considered to be non-pathogenic. We identified somatic AAV2 integration in a subset of 11 hepatocellular carcinomas (HCC) that mainly developed in normal liver without known etiology through recurrent insertional mutagenesis in cancer driver genes such as telomerase reverse transcriptase (TERT), cyclin A2 (CCNA2), cyclin E1 (CCNE1), tumor necrosis factor (ligand) superfamily, member 10 (TNFSF10), and lysine (K)-...

  11. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    Directory of Open Access Journals (Sweden)

    Vladimir Novitsky

    2011-02-01

    Full Text Available To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80% cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64% cases, and transmission of multiple variants was evident in 8 of 25 (32% cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96% cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  12. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    Science.gov (United States)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  13. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2005-02-01

    Full Text Available Abstract Despite many decades of drug development, effective therapies for neuropathic pain remain elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial activation or its downstream consequences. While several glial-selective drugs have been successful in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of the present studies was to explore a novel approach for controlling neuropathic pain. Here, an adeno-associated viral (serotype II; AAV2 vector was created that encodes the anti-inflammatory cytokine, interleukin-10 (IL-10. This anti-inflammatory cytokine is known to suppress the production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10 vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially infects meningeal cells surrounding the CSF space. Taken together, these data provide initial support that intrathecal gene therapy to drive the production of IL-10 may prove to be an efficacious treatment for neuropathic pain.

  14. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    Science.gov (United States)

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-10-14

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland.

  15. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna

    2005-01-01

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  16. Adeno-associated viral vector serotype 5 poorly transduces liver in rat models.

    Directory of Open Access Journals (Sweden)

    Paula S Montenegro-Miranda

    Full Text Available Preclinical studies in mice and non-human primates showed that AAV serotype 5 provides efficient liver transduction and as such seems a promising vector for liver directed gene therapy. An advantage of AAV5 compared to serotype 8 already shown to provide efficient correction in a phase 1 trial in patients suffering from hemophilia B, is its lower seroprevalence in the general population. Our goal is liver directed gene therapy for Crigler-Najjar syndrome type I, inherited severe unconjugated hyperbilirubinemia caused by UGT1A1 deficiency. In a relevant animal model, the Gunn rat, we compared the efficacy of AAV 5 and 8 to that of AAV1 previously shown to be effective. Ferrying a construct driving hepatocyte specific expression of UGT1A1, both AAV8 and AAV1 provided an efficient correction of hyperbilirubinemia. In contrast to these two and to other animal models AAV5 failed to provide any correction. To clarify whether this unexpected finding was due to the rat model used or due to a problem with AAV5, the efficacy of this serotype was compared in a mouse and two additional rat strains. Administration of an AAV5 vector expressing luciferase under the control of a liver specific promoter confirmed that this serotype poorly performed in rat liver, rendering it not suitable for proof of concept studies in this species.

  17. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  18. Delivery of Adeno-Associated Virus Gene Therapy by Intravascular Limb Infusion Methods.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2015-09-01

    Recombinant adeno-associated virus (rAAV) can be delivered to the skeletal muscle of the limb (pelvic or thoracic) by means of regional intravascular delivery. This review summarizes the evolution of this technique to deliver rAAV either via the arterial blood supply or via the peripheral venous circulation. The focus of this review is on applications in large animal models, including preclinical studies. Based on this overview of past research, we aim to inform the design of preclinical and clinical studies.

  19. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  20. Adeno-associated virus type 2 as an oncogenic virus in human hepatocellular carcinoma.

    Science.gov (United States)

    Nault, Jean-Charles; Datta, Shalini; Imbeaud, Sandrine; Franconi, Andrea; Zucman-Rossi, Jessica

    2016-03-01

    Adeno-associated virus type 2 (AAV2) is a defective DNA virus that was previously considered to be non-pathogenic. We identified somatic AAV2 integration in a subset of 11 hepatocellular carcinomas (HCC) that mainly developed in normal liver without known etiology through recurrent insertional mutagenesis in cancer driver genes such as telomerase reverse transcriptase (TERT), cyclin A2 (CCNA2), cyclin E1 (CCNE1), tumor necrosis factor (ligand) superfamily, member 10 (TNFSF10), and lysine (K)-specific methyltransferase 2B (KMT2B).

  1. Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo.

    Science.gov (United States)

    Yu, Yongjiao; Fu, Lu; Jiang, Xiaoyu; Guan, Shanshan; Kuai, Ziyu; Kong, Wei; Shi, Yuhua; Shan, Yaming

    2016-12-01

    Despite unremitting efforts since the discovery of human immunodeficiency virus type 1 (HIV-1), an effective vaccine has not been generated. Viral vector-mediated transfer for expression of HIV-1 broadly neutralizing antibodies (BnAbs) is an attractive strategy. In this study, a recombinant adeno-associated virus 8 (rAAV8) vector was used to encode full-length antibodies against HIV-1 in 293T cells and Balb/c mice after gene transfer. The 10E8 or NIH45-46 BnAb was expressed from a single open reading frame by linking the heavy and light chains with a furin cleavage and a 2A self-processing peptide (F2A). The results showed that the BnAbs could be expressed in the 293T cell culture medium. A single intramuscular injection of rAAV8 led to long-term expression of BnAbs in Balb/c mice. The expressed antibodies in the supernatant of 293T cells and in Balb/c mice showed neutralization effects against HIV-1 pseudoviruses. Combined immunization of rAAV8 expressing 10E8 and rAAV8 expressing NIH45-46 in Balb/c mice could increase these neutralization effects on strains of HIV-1 sensitive to 10E8 or NIH45-46 antibody compared with a single injection of rAAV8 expressing either antibody alone. Therefore, the combined immunization may be a potential vaccine approach against HIV-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Adeno-Associated Virus Serotype 8 Gene Transfer Rescues a Neonatal Lethal Murine Model of Propionic Acidemia

    Science.gov (United States)

    Chandler, Randy J.; Chandrasekaran, Suma; Carrillo-Carrasco, Nuria; Senac, Julien S.; Hofherr, Sean E.; Barry, Michael A.

    2011-01-01

    Abstract Propionic acidemia (PA) is an autosomal recessive disorder of metabolism caused by a deficiency of propionyl-coenzyme A carboxylase (PCC). Despite optimal dietary and cofactor therapy, PA patients still suffer from lethal metabolic instability and experience multisystemic complications. A murine model of PA (Pcca–/–) of animals that uniformly die within the first 48 hr of life was used to determine the efficacy of adeno-associated viral (AAV) gene transfer as a potential therapy for PA. An AAV serotype 8 (AAV8) vector was engineered to express the human PCCA cDNA and delivered to newborn mice via an intrahepatic injection. Greater than 64% of the Pcca–/– mice were rescued after AAV8-mediated gene transfer and survived until day of life 16 or beyond. Western analysis of liver extracts showed that PCC was completely absent from Pcca–/– mice but was restored to greater than wild-type levels after AAV gene therapy. The treated Pcca–/– mice also exhibited markedly reduced plasma levels of 2-methylcitrate compared with the untreated Pcca–/– mice, which indicates significant PCC enzymatic activity was provided by gene transfer. At the time of this report, the oldest treated Pcca–/– mice are over 6 months of age. In summary, AAV gene delivery of PCCA effectively rescues Pcca–/– mice from neonatal lethality and substantially ameliorates metabolic markers of the disease. These experiments demonstrate a gene transfer approach using AAV8 that might be used as a treatment for PA, a devastating and often lethal disorder desperately in need of new therapeutic options. PMID:20950151

  3. [Construction and identification of recombinant adeno-associated virus vector harboring fusion gene NT4-Apoptin-HA2-TAT].

    Science.gov (United States)

    Wang, Jian-Sheng; Zhang, Ming-Xin; Liu, De-Chun; Duan, Xiao-Yi; Zhou, Su-Na; Zhang, Guang-Jian; Yang, Guang-Xiao; Wang, Quan-Ying

    2008-08-01

    To construct a recombinant adeno-associated virus vector harboring fusion gene NT4-Apoptin-HA2-TAT, laying a foundation for gene therapy research of malignant tumors. The Apoptin and HA2-TAT gene were inserted in pUC19/NT4 vector after digested with restriction enzyme. The fusion gene of NT4-Apoptin-HA2-TAT was sub-cloned into the shuttle plasmid of adeno-associated virus; the products were co-transferred into HEK-293 cell line with helper plasmid pAAV/Ad and adeno-plasmid pFG140.The recombinant adeno-associated virus was produced by homologous recombination of above 3 plasmids in HEK-293 cells and its titer was measured by quantitative dot blot hybridization. The effect of AAV-NT4-Apoptin -HA2-TAT on HepG2 cell line was measured by a colorimetric 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The NT4-Apoptin-HA2-TAT was confirmed by restriction enzyme digestion and DNA sequencing. High titer of recombinant adeno-associated virus was obtained by homologous recombination in HEK-293 cells (3.14 x 10(15) pfu/L). AAV-NT4-Apoptin-HA2-TAT had strong deduce apoptosis effect on HepG2 cells. Compared with Adeno-associated mock virus and in normal cell line NIH3T3, Aden-associated virus NT4-Apoptin-HA2-TAT significantly decreased the survival rate of HepG2 cells. The recombinant adeno-associated virus vector encoding gene NT4-Apoptin-HA2-TAT has been successfully constructed in this experiment by molecular cloning and in vitro recombination techniques, laying a foundation for further research of gene therapy of cancer.

  4. Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Science.gov (United States)

    CHEN, SIFENG; KAPTURCZAK, MATTHIAS; LOILER, SCOTT A.; ZOLOTUKHIN, SERGEI; GLUSHAKOVA, OLENA Y.; MADSEN, KIRSTEN M.; SAMULSKI, RICHARD J.; HAUSWIRTH, WILLIAM W.; CAMPBELL-THOMPSON, MARTHA; BERNS, KENNETH I.; FLOTTE, TERENCE R.; ATKINSON, MARK A.; TISHER, C. CRAIG

    2006-01-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies. OVERVIEW SUMMARY Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been

  5. Adeno-associated virus-based gene therapy for inherited disorders.

    Science.gov (United States)

    Flotte, Terence R

    2005-12-01

    Adeno-associated virus vectors are capable of long-term gene transfer without obvious adverse effects in a number of animal models. Over the last two decades, preclinical and early phase clinical trials in cystic fibrosis and alpha-1 antitrypsin deficiency were undertaken to test the feasibility of this approach. The results of those studies have been important since they have indicated that in vivo gene transfer is feasible and relatively safe. In addition, a number of key limitations to the current generation of AAV2 gene therapy vectors have been defined. The information about these limitations has been used to develop newer AAV vector approaches, based on new mutant and alternative serotype capsids and enhanced promoter systems. The evaluation of safety and efficacy of these newer agents is ongoing.

  6. Size does matter: overcoming the adeno-associated virus packaging limit

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2000-07-01

    Full Text Available Abstract Recombinant adeno-associated virus (rAAV vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm, which only permits the packaging of 4.7 kilobases (kb of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721 have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity.

  7. Size does matter: overcoming the adeno-associated virus packaging limit

    Science.gov (United States)

    Flotte, Terence R

    2000-01-01

    Recombinant adeno-associated virus (rAAV) vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm), which only permits the packaging of 4.7 kilobases (kb) of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721) have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity. PMID:11667959

  8. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    Science.gov (United States)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  9. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  10. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  11. A novel and highly efficient production system for recombinant adeno-associated virus vector.

    Science.gov (United States)

    Wu, Zhijian; Wu, Xiaobing; Cao, Hui; Dong, Xiaoyan; Wang, Hong; Hou, Yunde

    2002-02-01

    Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/DeltaUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/DeltaUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28x10(4) particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  12. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving...

  13. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  14. A natural genetic variant of granzyme B confers lethality to a common viral infection.

    Directory of Open Access Journals (Sweden)

    Christopher E Andoniou

    2014-12-01

    Full Text Available Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW common in wild mouse. While retaining 'Asp-ase' activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial apoptotic pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of GzmB have a profound impact on the immune response to a common and authentic viral pathogen.

  15. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants

    Directory of Open Access Journals (Sweden)

    Huygens Flavia

    2007-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs and genes that exhibit presence/absence variation have provided informative marker sets for bacterial and viral genotyping. Identification of marker sets optimised for these purposes has been based on maximal generalized discriminatory power as measured by Simpson's Index of Diversity, or on the ability to identify specific variants. Here we describe the Not-N algorithm, which is designed to identify small sets of genetic markers diagnostic for user-specified subsets of known genetic variants. The algorithm does not treat the user-specified subset and the remaining genetic variants equally. Rather Not-N analysis is designed to underpin assays that provide 0% false negatives, which is very important for e.g. diagnostic procedures for clinically significant subgroups within microbial species. Results The Not-N algorithm has been incorporated into the "Minimum SNPs" computer program and used to derive genetic markers diagnostic for multilocus sequence typing-defined clonal complexes, hepatitis C virus (HCV subtypes, and phylogenetic clades defined by comparative genome hybridization (CGH data for Campylobacter jejuni, Yersinia enterocolitica and Clostridium difficile. Conclusion Not-N analysis is effective for identifying small sets of genetic markers diagnostic for microbial sub-groups. The best results to date have been obtained with CGH data from several bacterial species, and HCV sequence data.

  16. Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression

    Science.gov (United States)

    Mueller, Christian; Chulay, Jeffrey D.; Trapnell, Bruce C.; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A.; McElvaney, Noel G.; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N.; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R.; Ye, Guo-jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P.; Vonderheide, Robert H.; Hulme, Maigan A.; Brusko, Todd M.; Wilson, James M.; Flotte, Terence R.

    2013-01-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1–AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy. PMID:24231351

  17. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression.

    Science.gov (United States)

    Mueller, Christian; Chulay, Jeffrey D; Trapnell, Bruce C; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A; McElvaney, Noel G; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R; Ye, Guo-Jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P; Vonderheide, Robert H; Hulme, Maigan A; Brusko, Todd M; Wilson, James M; Flotte, Terence R

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1-AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy.

  18. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  19. Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid

    Science.gov (United States)

    Bell, Christie L.; Gurda, Brittney L.; Van Vliet, Kim; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering. PMID:22514350

  20. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease.

    Science.gov (United States)

    Gray-Edwards, Heather L; Randle, Ashley N; Maitland, Stacy A; Benatti, Hector R; Hubbard, Spencer M; Canning, Peter F; Vogel, Matthew B; Brunson, Brandon L; Hwang, Misako; Ellis, Lauren E; Bradbury, Allison M; Gentry, Atoska S; Taylor, Amanda R; Wooldridge, Anne A; Wilhite, Dewey R; Winter, Randolph L; Whitlock, Brian K; Johnson, Jacob A; Holland, Merilee; Salibi, Nouha; Beyers, Ronald J; Sartin, James L; Denney, Thomas S; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2017-09-18

    Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 10 13 vector genomes) or low (4.2 × 10 12 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.

  1. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  2. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2009-08-01

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  3. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  4. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  5. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  6. Early clinical response and presence of viral resistant minority variants: a proof of concept study.

    Science.gov (United States)

    Callegaro, Annapaola; Di Filippo, Elisa; Astuti, Noemi; Ortega, Paula Andrea Serna; Rizzi, Marco; Farina, Claudio; Valenti, Daniela; Maggiolo, Franco

    2014-01-01

    Traditional genotyping assays detect viral variants present in at least 15-25% of the entire virus population. We tested the Next generation GS Junior System (NGS) setted with a detection limit of 0.05% and evaluated the clinical relevance of low prevalent mutations. NGS was performed on the plasma of 26 infected individuals who started a TDF/FTC/RPV (15 subjects) or TDF/FTC/EFV (11 subjects) cART after a routine HIV-1 drug-resistance negative test by Viroseq HIV-1 Genotyping System. Amplicon Sequencing of HIV-1 RT and PR Plate (Roche) was performed following the manufacturer's instructions. HIV-1 variants were analyzed by a specific HIV-1 tool by AVA software v. 2.7. The updated IAS resistance mutations list (March 2013) was considered for the analysis of resistance positions. Patients were followed testing viral load and immunologic parameters. Twenty four males and two females with a mean age of 43 years were included. Twenty-one were nave for cART. At baseline, median HIV-RNA was 4.57 log copies/mL (range 2.15-6.57) and CD4 count 315 cells/mcL (range 16-648). In 18 patients, NGS did not detect any additional variant relevant for the selected cART compared to population genotyping. In the remaining eight patients resistance conferring mutations to part of the ongoing regimen were detected. Single mutations E138K (two cases) and M184V in three distinct patients and V90I+G190E; M184V+A98S; Y215F+V118I+T215I; L210S+T215I+F227L; and A62V+D67G+K70N+188H in the remaining five subjects. In all cases, the mutation prevalence was inferior to 5%. The mean daily reduction of VL was -3759 copies/mL in patients without NGS detected mutations and -1045 copies/mL in those with mutations. The median KM estimates for reaching an HIV-RNA blood level E138K+T215I (NGS) after four months of TDF/FTC/RPV therapy. NGS detected low-frequency HIV-1 variants harbouring RT drug resistance mutations that could have affected the therapy outcome. However, viral decay in an early cART phase

  7. Repeated Delivery of Adeno-Associated Virus Vectors to the Rabbit Airway

    Science.gov (United States)

    Beck, Suzanne E.; Jones, Lori A.; Chesnut, Kye; Walsh, Scott M.; Reynolds, Thomas C.; Carter, Barrie J.; Askin, Frederic B.; Flotte, Terence R.; Guggino, William B.

    1999-01-01

    Efficient local expression from recombinant adeno-associated virus (rAAV)-cystic fibrosis (CF) transmembrane conductance regulator (CFTR) vectors has been observed in the airways of rabbits and monkeys for up to 6 months following a single bronchoscopic delivery. However, it is likely that repeated administrations of rAAV vectors will be necessary for sustained correction of the CF defect in the airways. The current study was designed to test the feasibility of repeated airway delivery of rAAV vectors in the rabbit lung. After two doses of rAAV-CFTR to the airways, rabbits generated high titers of serum anti-AAV neutralizing antibodies. Rabbits then received a third dose of a rAAV vector containing the green fluorescent protein (GFP) reporter gene packaged in either AAV serotype 2 (AAV2) or serotype 3 (AAV3) capsids. Each dose consisted of 1 ml containing 5 × 109 DNase-resistant particles of rAAV vector, having no detectable replication-competent AAV or adenovirus. Three weeks later, GFP expression was observed in airway epithelial cells despite high anti-AAV neutralizing titers at the time of delivery. There was no significant difference in the efficiency of DNA transfer or expression between the rAAV3 and rAAV2 groups. No significant inflammatory responses to either repeated airway exposure to rAAV2-CFTR vectors or to GFP expression were observed. These experiments demonstrate that serum anti-AAV neutralizing antibody titers do not predict airway neutralization in vivo and that repeated airway delivery rAAV allows for safe and effective gene transfer. PMID:10516053

  8. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    International Nuclear Information System (INIS)

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.; Murrin, L. Charles; Lockridge, Oksana

    2006-01-01

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months in plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates

  9. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?

    Science.gov (United States)

    Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L

    2017-06-01

    The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the

  10. Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Anja K Gruenert

    Full Text Available Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2 vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss- DNA vector genome into double-stranded (ds- DNA. This step can be bypassed by using self-complementary (sc- AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV and 38.0±8.6% (ssAAV (p<0.001, respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.

  11. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    Science.gov (United States)

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  12. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Kaalberg, Emily E; Jiao, Chunhua; Riker, Megan J; Halder, Jennifer A; Luse, Meagan A; Han, Ian C; Russell, Stephen R; Sohn, Elliott H; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2018-02-23

    Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.

  13. Adeno-associated Virus Vectors Efficiently Transduce Mouse and Rabbit Sensory Neurons Coinfected with Herpes Simplex Virus 1 following Peripheral Inoculation.

    Science.gov (United States)

    Watson, Zachary L; Ertel, Monica K; Lewin, Alfred S; Tuli, Sonal S; Schultz, Gregory S; Neumann, Donna M; Bloom, David C

    2016-09-01

    Following infection of epithelial tissues, herpes simplex virus 1 (HSV-1) virions travel via axonal transport to sensory ganglia and establish a lifelong latent infection within neurons. Recent studies have revealed that, following intraganglionic or intrathecal injection, recombinant adeno-associated virus (rAAV) vectors can also infect sensory neurons and are capable of stable, long-term transgene expression. We sought to determine if application of rAAV to peripheral nerve termini at the epithelial surface would allow rAAV to traffic to sensory ganglia in a manner similar to that seen with HSV. We hypothesized that footpad or ocular inoculation with rAAV8 would result in transduction of dorsal root ganglia (DRG) or trigeminal ganglia (TG), respectively. To test this, we inoculated the footpads of mice with various amounts of rAAV as well as rAAV capsid mutants. We demonstrated that this method of inoculation can achieve a transduction rate of >90% of the sensory neurons in the DRG that innervate the footpad. Similarly, we showed that corneal inoculation with rAAV vectors in the rabbit efficiently transduced >70% of the TG neurons in the optic tract. Finally, we demonstrated that coinfection of mouse footpads or rabbit eyes with rAAV vectors and HSV-1 resulted in colocalization in nearly all of the HSV-1-positive neurons. These results suggest that rAAV is a useful tool for the study of HSV-1 infection and may provide a means to deliver therapeutic cargos for the treatment of HSV infections or of dysfunctions of sensory ganglia. Adeno-associated virus (AAV) has been shown to transduce dorsal root ganglion sensory neurons following direct intraganglionic sciatic nerve injection and intraperitoneal and intravenous injection as well as intrathecal injection. We sought to determine if rAAV vectors would be delivered to the same sensory neurons that herpes simplex virus (HSV-1) infects when applied peripherally at an epithelial surface that had been treated to expose

  14. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  15. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  16. Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons.

    Science.gov (United States)

    Foust, Kevin D; Poirier, Amy; Pacak, Christina A; Mandel, Ronald J; Flotte, Terence R

    2008-01-01

    Targeting lower motor neurons (LMNs) for gene delivery could be useful for disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. LMNs reside in the ventral gray matter of the spinal cord and send axonal projections to innervate skeletal muscle. Studies have used intramuscular injections of adeno-associated virus type 2 (AAV2) to deliver viral vectors to LMNs via retrograde transport. However, treating large areas of the spinal cord in a human would require numerous intramuscular injections, thereby increasing viral titer and risk of immune response. New AAV serotypes, such as AAV8, have a dispersed transduction pattern after intravenous or intraperitoneal injection in neonatal mice, and may transduce LMNs by retrograde transport or through entry into the nervous system. To test LMN transduction after systemic injection, we administered recombinant AAV8 (rAAV8) carrying the green fluorescent protein (GFP) gene by intravenous or intraperitoneal injection to neonatal mice on postnatal day 1. Tissues were harvested 5 and 14 days postinjection and analyzed by real-time polymerase chain reaction and GFP immunohistochemistry to assess the presence of AAV genomes and GFP expression, respectively. Spinal cords were positive for AAV genomes at both time points. GFP immunohistochemistry revealed infrequent labeling of LMNs across all time points and injection routes. Somewhat surprisingly, there was extensive labeling of fibers in the dorsal horns and columns, indicating dorsal root ganglion transduction across all time points and injection routes. Our data suggest that systemic injection of rAAV8 is not an effective delivery route to target lower motor neurons, but could be useful for targeting sensory pathways in chronic pain.

  17. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery.

    Directory of Open Access Journals (Sweden)

    Qinghao Xu

    Full Text Available We report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5 was constructed to express green fluorescent protein (GFP and a small interfering RNA (siRNA targeting mammalian target of rapamycin (mTOR. The AAV vectors were injected via an intrathecal catheter. We observed profound GFP expression in lumbar DRG neurons beginning at 2-week post-injection. Of those neurons, over 85% were large to medium-diameter and co-labeled with NF200, a marker for myelinated fibers. Western blotting of mTOR revealed an 80% reduction in the lumbar DRGs (L4-L6 of rats treated with the active siRNA vectors compared to the control siRNA vector. Gene knockdown became apparent as early as 7-day post-injection and lasted for at least 5 weeks. Importantly, mTOR knockdown occurred in large (NF200 and small-diameter neurons (nociceptors. The viral administration induced an increase of Iba1 immunoreactivity in the DRGs, which was likely attributed to the expression of GFP but not siRNA. Rats with mTOR knockdown in DRG neurons showed normal general behavior and unaltered responses to noxious stimuli. In conclusion, intrathecal AAV5 is a highly efficient vehicle to deliver siRNA and generate gene knockdown in DRG neurons. This will be valuable for both basic research and clinic intervention of diseases involving primary sensory neurons.

  18. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    Science.gov (United States)

    Smith, R H; Spano, A J; Kotin, R M

    1997-06-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences.

  19. Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences

    OpenAIRE

    Weltner, J.; Anisimov, A.; Alitalo, K.; Otonkoski, T.; Trokovic, R.

    2012-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) by ectopic expression of key transcription factors. Current methods for the generation of integration-free iPSC are limited by the low efficiency of iPSC generation and by challenges in reprogramming methodology. Recombinant adeno-associated virus (rAAV) is a potent gene delivery vehicle capable of efficient transduction of transgenic DNA into cells. rAAV stays mainly as an episome in nondividing cells, and the extent ...

  20. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuohao [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kawabe, Yoshinori; Ito, Akira [Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kamihira, Masamichi, E-mail: kamihira@chem-eng.kyushu-u.ac.jp [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  1. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  2. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    Science.gov (United States)

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. (c) 2007 John Wiley & Sons, Ltd.

  3. Recombinant adeno-associated virus-mediated gene delivery of long chain acyl coenzyme A dehydrogenase (LCAD) into LCAD-deficient mice.

    Science.gov (United States)

    Beattie, Stuart G; Goetzman, Eric; Tang, Qiuishi; Conlon, Thomas; Campbell-Thompson, Martha; Matern, Dietrich; Vockley, Jerry; Flotte, Terence R

    2008-10-01

    Very long chain acyl coenzyme A (CoA) dehydrogenase (VLCAD) deficiency is a relatively common mitochondrial beta-oxidation disorder. The most severe form of VLCAD deficiency presents with neonatal cardiomyopathy and hepatic failure and is generally fatal within the first year of life. Mice deficient for long chain acyl CoA dehydrogenase (LCAD) closely resemble the clinical syndrome observed in VLCAD-deficient humans. Recombinant adeno-associated viral (rAAV) vectors with pseudotype capsids were investigated for their potential towards correcting the phenotype observed in mice heterozygous (+/-) for LCAD (i.e. liver and muscle steatosis). rAAV containing the mouse LCAD cDNA (mLCAD) under the transcriptional control of the CMV/chicken beta-actin hybrid promoter were injected intramuscularly into the tibialis anterior (TA) muscle of LCAD(+/-) mice or injected into the portal vein to transduce hepatocytes. Ten weeks post-injection of rAAV1-mLCAD into the TA muscle, significantly increased levels of mLCAD within mitochondria were demonstrated by immunostaining of TA sections, immunoblotting of mitochondrial isolates and by the electron transfer flavoprotein (ETF) fluorescence reduction enzyme activity assay. Magnetic resonance spectroscopy of vector-injected TA muscle demonstrated a reduction in the lipid content compared to phosphate-buffered saline-injected mice, whereas a systemic effect was observed as a reduction in liver macrosteatosis. Eight weeks after portal vein injection of rAAV8-mLCAD into LCAD(+/-) mice, increased levels of mLCAD within hepatocyte mitochondria were demonstrated by immunostaining and also by the ETF assay. Scoring of the hepatosteatosis observed in partially deficient LCAD mice indicated a reduction in the lipid content within livers of vector-treated mice. These studies show that rAAV-mediated delivery of mLCAD was efficient and led to an amelioration of local and systemic pathologies observed in partially deficient LCAD mice. Copyright (c

  4. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.

    Science.gov (United States)

    Jin, Lei; Lange, Wienke; Kempmann, Annika; Maybeck, Vanessa; Günther, Anne; Gruteser, Nadine; Baumann, Arnd; Offenhäusser, Andreas

    2016-09-10

    In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  6. Recombinant Adeno-associated virus (rAAV)-mediated transduction and optogenetic manipulation of cortical neurons in vitro

    Science.gov (United States)

    Lange, Wienke; Jin, Lei; Maybeck, Vanessa; Meisenberg, Annika; Baumann, Arnd; Offenhäusser, Andreas

    2014-03-01

    Genetically encoded light-sensitive proteins can be used to manipulate and observe cellular functions. According to different modes of action, these proteins are divided into actuators like the blue-light gated cation channel Channelrhodopsin-2 (ChR2) and detectors like the calcium sensor GCaMP. In order to optogenetically control and study the activity of rat primary cortical neurons, we established a transduction procedure using recombinant Adeno-associated viruses (rAAVs) as gene-ferries. Thereby, we achieved high transduction rates of these neurons with ChR2. In ChR2 expressing neurons, action potentials could be repeatedly and precisely elicited with laser pulses and measured via patch clamp recording.

  7. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  8. Accurate single nucleotide variant detection in viral populations by combining probabilistic clustering with a statistical test of strand bias

    Science.gov (United States)

    2013-01-01

    Background Deep sequencing is a powerful tool for assessing viral genetic diversity. Such experiments harness the high coverage afforded by next generation sequencing protocols by treating sequencing reads as a population sample. Distinguishing true single nucleotide variants (SNVs) from sequencing errors remains challenging, however. Current protocols are characterised by high false positive rates, with results requiring time consuming manual checking. Results By statistical modelling, we show that if multiple variant sites are considered at once, SNVs can be called reliably from high coverage viral deep sequencing data at frequencies lower than the error rate of the sequencing technology, and that SNV calling accuracy increases as true sequence diversity within a read length increases. We demonstrate these findings on two control data sets, showing that SNV detection is more reliable on a high diversity human immunodeficiency virus sample as compared to a moderate diversity sample of hepatitis C virus. Finally, we show that in situations where probabilistic clustering retains false positive SNVs (for instance due to insufficient sample diversity or systematic errors), applying a strand bias test based on a beta-binomial model of forward read distribution can improve precision, with negligible cost to true positive recall. Conclusions By combining probabilistic clustering (implemented in the program ShoRAH) with a statistical test of strand bias, SNVs may be called from deeply sequenced viral populations with high accuracy. PMID:23879730

  9. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia.

    Science.gov (United States)

    Somanathan, Suryanarayan; Jacobs, Frank; Wang, Qiang; Hanlon, Alexandra L; Wilson, James M; Rader, Daniel J

    2014-08-29

    Familial hypercholesterolemia is a genetic disorder that arises because of loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous familial hypercholesterolemia is a candidate for gene therapy using adeno-associated viral vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen adeno-associated viral vector encoded LDLR expression. We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 (hPCSK9) and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction. Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and human IDOL. A panel of mutant human LDLRs was initially screened in vitro for escape from PCSK9. The variant human LDLR-L318D was further evaluated using a mouse model of homozygous familial hypercholesterolemia lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme catalytic, APOBEC-1 (double knockout). Administration of wild-type human LDLR to double knockout mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9-mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\\C818A construct avoided human IDOL regulation and achieved stable reductions in serum cholesterol. An adeno-associated viral vector serotype 8.LDLR-L318D\\K809R\\C818A vector that carried all 3 amino acid substitutions conferred partial resistance to both hPCSK9- and human IDOL-mediated degradation. Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve on a potential gene therapeutic approach to treat homozygous familial hypercholesterolemia subjects. © 2014 American Heart Association, Inc.

  10. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    Science.gov (United States)

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; Ferkol, Thomas; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be β-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag

  11. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    Science.gov (United States)

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway.

  12. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  13. [Construction and identification of recombinant adeno-associated virus vector harboring fusion gene NT4-Ant-Shepherdin[79-87

    Science.gov (United States)

    Tang, Xiao-Jiang; Ping, Bao-Hua; Pan, Cheng-En; Yang, Guang-Xiao; Wang, Quan-Ying

    2008-12-01

    To construct a recombinant adeno-associated virus vector harboring fusion gene NT4-Ant-Shepherdin[79-87] and investigate Survivin as a anticancer therapeutic target by use of Shepherdin[79-87]. The gene of Ant-Shepherdin[79-87] was obtained by PCR and T-vector method. After inserted in PBV220-NT4 vector and digested with restricted enzyme, The fusion gene of NT4-Ant-Shepherdin[79-87] was sub-cloned into the shuttle plasmid of adeno-associated virus; the products were co-transferred into HEK-293 cell line with helper plasmid pAAV-Ad and adeno-plasmid pFG140. The recombinant adeno-associated virus was produced by homologous recombination of above 3 plasmids in HEK-293 cells and its titer was measured by Dot-blot hybridization. The effect of rAAV-NT4-Ant-Shepherdin[79-87] on A549 cell line was measured by a colorimetric 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. DNA sequencing results verified that the sequence of Ant-Shepherdin[79-87] was consistent with that we had designed. After transformed E.coli DH5alpha, a fragment of 321 bp was confirmed. High titer of recombinant adeno-associated virus was obtained by homologous recombination in HEK-293 cell lines (3.4x10(13)pfu/L). rAAV-NT4-Ant-Shepherdin[79-87] had strong induce apoptosis effect on A549 cells. The recombinant adeno-associated virus vector encoding fusion gene NT4-Ant-Shepherdin[79-87] is successfully constructed in this experiment by molecular cloning and in vitro recombination techniques, which provided the basis of further research of Survivin for cancer gene therapy.

  14. Peripheral immunophenotype and viral promoter variants during the asymptomatic phase of feline immunodeficiency virus infection.

    Science.gov (United States)

    Murphy, B; Hillman, C; McDonnel, S

    2014-01-22

    Feline immunodeficiency virus (FIV)-infected cats enter a clinically asymptomatic phase during chronic infection. Despite the lack of overt clinical disease, the asymptomatic phase is characterized by persistent immunologic impairment. In the peripheral blood obtained from cats experimentally infected with FIV-C for approximately 5 years, we identified a persistent inversion of the CD4/CD8 ratio. We cloned and sequenced the FIV-C long terminal repeat containing the viral promoter from cells infected with the inoculating virus and from in vivo-derived peripheral blood mononuclear cells and CD4 T cells isolated at multiple time points throughout the asymptomatic phase. Relative to the inoculating virus, viral sequences amplified from cells isolated from all of the infected animals demonstrated multiple single nucleotide mutations and a short deletion within the viral U3, R and U5 regions. A transcriptionally inactivating proviral mutation in the U3 promoter AP-1 site was identified at multiple time points from all of the infected animals but not within cell-associated viral RNA. In contrast, no mutations were identified within the sequence of the viral dUTPase gene amplified from PBMC isolated at approximately 5 years post-infection relative to the inoculating sequence. The possible implications of these mutations to viral pathogenesis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Specific gene expression in mouse cortical astrocytes is mediated by a 1740bp-GFAP promoter-driven combined adeno-associated virus 2/5/7/8/9.

    Science.gov (United States)

    Meng, Xiandong; Yang, Feng; Ouyang, Tangpeng; Liu, Bing; Wu, Chen; Jiang, Wen

    2015-04-23

    We sought to demonstrate the in vivo transduction efficiency and tropism range in astrocytes of a combined-serotype adeno associated virus (AAV2/5/7/8/9). To control expression of enhanced green fluorescent protein (EGFP), a 1740bp glial fibrillary acidic protein (GFAP) promoter was obtained and ligated into vectors of each AAV serotype (2/5/7/8/9). Purified AAVs were then injected into the somatosensory cortex of C57BL/6J mice. Cell-type specific antibodies and subsequent immunofluorescence were used to identify astrocytes (GFAP), neurons (neuronal nuclear antigen, NeuN), microglia (ionized calcium-binding adapter molecule 1, Iba1), and oligodendrocytes (myelin basic protein, MBP), whereby, EGFP expression was measured in each cell type at 1-4 weeks post-injection. Our results indicated that the majority of astrocytes expressed EGFP, while only a small number of neurons expressed EGFP. Both microglia and oligodendrocytes lacked EGFP expression after viral injection. Quantitative analyses revealed that the percentage of EGFP-positive astrocytes was about 98% after viral injection, while the EGFP-positive neuronal percentage was less than 2%. Thus, this study shows that using a combined-serotype AAV carrying a 1740bp GFAP promoter results in successful, cell-type specific infection of the central nervous system, with robust gene expression in murine astrocytes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  17. Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1.

    Science.gov (United States)

    Franzoso, Francesca D; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F; Sutter, Sereina O; Tobler, Kurt; Vogt, Bernd; Greber, Urs F; Büning, Hildegard; Ackermann, Mathias; Fraefel, Cornel

    2017-08-01

    Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G 2 -phase cells, while HSV-1 DNA replication is restricted to G 1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G 2 -phase cells, suggesting that the preference for S/G 2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G 2 -phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time

  18. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice

    Science.gov (United States)

    Goudy, Kevin; Song, Sihong; Wasserfall, Clive; Zhang, Y. Clare; Kapturczak, Matthias; Muir, Andrew; Powers, Matthew; Scott-Jorgensen, Marda; Campbell-Thompson, Martha; Crawford, James M.; Ellis, Tamir M.; Flotte, Terence R.; Atkinson, Mark A.

    2001-01-01

    The development of spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice provides for their use as a model of human type 1 diabetes. To test the feasibility of muscle-directed gene therapy to prevent type 1 diabetes, we developed recombinant adeno-associated virus (rAAV) vectors containing murine cDNAs for immunomodulatory cytokines IL-4 or IL-10. Skeletal muscle transduction of female NOD mice with IL-10, but not IL-4, completely abrogated diabetes. rAAV-IL-10 transduction attenuated the production of insulin autoantibodies, quantitatively reduced pancreatic insulitis, maintained islet insulin content, and altered splenocyte cytokine responses to mitogenic stimulation. The beneficial effects were host specific, as adoptive transfer of splenocytes from rAAV IL-10-treated animals rapidly imparted diabetes in naive hosts, and the cells contained no protective immunomodulatory capacity, as defined through adoptive cotransfer analyses. These results indicate the utility for rAAV, a vector with advantages for therapeutic gene delivery, to transfer immunoregulatory cytokines capable of preventing type 1 diabetes. In addition, these studies provide foundational support for the concept of using immunoregulatory agents delivered by rAAV to modulate a variety of disorders associated with deleterious immune responses, including allergic reactions, transplantation rejection, immunodeficiencies, and autoimmune disorders. PMID:11717448

  19. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle

    Science.gov (United States)

    Schnepp, Bruce C.; Chulay, Jeffrey D.; Ye, Guo-Jie; Flotte, Terence R.; Trapnell, Bruce C.; Johnson, Philip R.

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects. PMID:26650966

  20. Latent Adeno-Associated Virus Infection Elicits Humoral but Not Cell-Mediated Immune Responses in a Nonhuman Primate Model

    Science.gov (United States)

    Hernandez, Yosbani J.; Wang, Jianming; Kearns, William G.; Loiler, Scott; Poirier, Amy; Flotte, Terence R.

    1999-01-01

    Latent infection with wild-type (wt) adeno-associated virus (AAV) was studied in rhesus macaques, a species that is a natural host for AAV and that has some homology to humans with respect to the preferred locus for wt AAV integration. Each of eight animals was infected with an inoculum of 1010 IU of wt AAV, administered by either the intranasal, intramuscular, or intravenous route. Two additional animals were infected intranasally with wt AAV and a helper adenovirus (Ad), while one additional animal was inoculated with saline intranasally as a control. There were no detectable clinical or histopathologic responses to wt AAV administration. Molecular analyses, including Southern blot, PCR, and fluorescence in situ hybridization, were performed 21 days after infection. These studies indicated that AAV DNA sequences persisted at the sites of administration, albeit at low copy number, and in peripheral blood mononuclear cells. Site-specific integration into the AAVS1-like locus was observed in a subset of animals. All animals, except those infected by the intranasal route with wt AAV alone, developed a humoral immune response to wt AAV capsid proteins, as evidenced by a ≥fourfold rise in anti-AAV neutralizing titers. However, only animals infected with both wt AAV and Ad developed cell-mediated immune responses to AAV capsid proteins. These findings provide some insights into the nature of anti-AAV immune responses that may be useful in interpreting results of future AAV-based gene transfer studies. PMID:10482608

  1. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  2. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors.

    Science.gov (United States)

    Guenzel, Adam J; Collard, Renata; Kraus, Jan P; Matern, Dietrich; Barry, Michael A

    2015-03-01

    Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined.

  3. Sendai virosomal infusion of an adeno-associated virus-derived construct containing neuropeptide Y into primary rat brain cultures.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; Elmstrom, K; Gao, Y; Meyer, E M

    1995-05-05

    A novel neuronal gene-delivery system was investigated in primary neuron-enriched cultures with respect to driving the expression of neuropeptide Y (NPY). This delivery system consists of an adeno-associated virus-derived (AAV) plasmid, pJDT95npy, encapsulated in reconstituted Sendai virosomes. pJDT95npy contains full length rat NPY cDNA inserted downstream from the P40 promoter in a cap-gene deleted AAV-derived construct. The rep-sequences under control of the P5 and P19 promoters are intact. Virosomally encapsulated pJDT95npy drove the expression of NPY mRNAs, predominantly by P40. Total cellular NPY immunoreactivity and release in the presence of depolarization increased following pJDT95npy-transfection. Neither empty virosomes nor virosomes containing pJDT95 affected NPY mRNA expression or immunoreactivity. This study demonstrates that an AAV-derived plasmid can drive exogenous gene expression in intact neurons after infusion by Sendai virosomes.

  4. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction.

    Science.gov (United States)

    Tao, Yong; Huang, Mingqian; Shu, Yilai; Ruprecht, Adam; Wang, Hongyang; Tang, Yong; Vandenberghe, Luk H; Wang, Qiuju; Gao, Guangping; Kong, Wei-Jia; Chen, Zheng-Yi

    2018-01-22

    Hearing loss, including genetic hearing loss, is one of the most common forms of sensory deficits in humans with limited options of treatment. Adeno-associated virus (AAV)-mediated gene transfer has been shown to recover auditory functions effectively in mouse models of genetic deafness when delivered at neonatal stages. However, the mouse cochlea is still developing at those time points, whereas in humans, the newborn inner ears are already fully mature. For effective gene therapy to treat genetic deafness, it is necessary to determine whether AAV-mediated therapy can be equally effective in the fully mature mouse inner ear without causing damage to the inner ear. This study tested several AAV serotypes by canalostomy in adult mice. It is shown that most AAVs transduce the sensory inner hair cells efficiently, but are less efficient at transducing outer hair cells. A subset of AAVs also transduces non-sensory cochlear cell types. Neither the surgical procedure of canalostomy nor the AAV serotypes damage hair cells or impair normal hearing. The studies indicate that canalostomy can be a viable route for safe and efficient gene delivery, and they expand the repertoire of AAVs to target diverse cell types in the adult inner ear.

  5. Inhalation of nebulized perfluorochemical enhances recombinant adenovirus and adeno-associated virus-mediated gene expression in lung epithelium.

    Science.gov (United States)

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J; Wang, Lili; Gao, Guang Ping; Kolls, Jay K; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J

    2012-04-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (pparallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression.

  6. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion.

    Science.gov (United States)

    Lerch, Thomas F; Xie, Qing; Chapman, Michael S

    2010-07-20

    Adeno-associated viruses (AAVs) are leading candidate vectors for human gene therapy. AAV serotypes have broad cellular tropism and use a variety of cellular receptors. AAV serotype 3 binds to heparan sulfate proteoglycan prior to cell entry and is serologically distinct from other serotypes. The capsid features that distinguish AAV-3B from other serotypes are poorly understood. The structure of AAV-3B has been determined to 2.6A resolution from twinned crystals of an infectious virus. The most distinctive structural features are located in regions implicated in receptor and antibody binding, providing insights into the cell entry mechanisms and antigenic nature of AAVs. We show that AAV-3B has a lower affinity for heparin than AAV-2, which can be rationalized by the distinct features of the AAV-3B capsid. The structure of AAV-3B provides an additional foundation for the future engineering of improved gene therapy vectors with modified receptor binding or antigenic characteristics. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  8. A Natural Genetic Variant of Granzyme B Confers Lethality to a Common Viral Infection

    OpenAIRE

    Andoniou, Christopher E.; Sutton, Vivien R.; Wikstrom, Matthew E.; Fleming, Peter; Thia, Kevin Y. T.; Matthews, Antony Y.; Kaiserman, Dion; Schuster, Iona S.; Coudert, Jerome D.; Eldi, Preethi; Chaudhri, Geeta; Karupiah, Gunasegaran; Bird, Phillip I.; Trapani, Joseph A.; Degli-Esposti, Mariapia A.

    2014-01-01

    Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we desc...

  9. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  10. Variants in host viral replication cycle genes are associated with heterosexual HIV-1 acquisition in Africans.

    Science.gov (United States)

    Bigham, Abigail W; Mackelprang, Romel D; Celum, Connie; De Bruyn, Guy; Beima-Sofie, Kristin; John-Stewart, Grace; Ronald, Allan; Mugo, Nelly R; Buckingham, Kati; Bamshad, Michael J; Mullins, James I; McElrath, M J; Lingappa, Jairam R

    2014-06-01

    We evaluated genetic variants in 51 candidate genes encoding proteins that interact with HIV-1 during the virus life cycle for association with HIV-1 outcomes in an African cohort. Using a nested case-control study within a cohort of heterosexual HIV-1-serodiscordant couples, we genotyped 475 haplotype-tagging single-nucleotide polymorphisms (tagSNPs) and 18 SNPs previously associated with HIV-1 transmission and/or progression (candidate SNPs) in 51 host genes. We used logistic and Cox proportional hazard regression with adjustment for sex, age, and population stratification to detect SNP associations with HIV-1 acquisition, plasma HIV-1 set point, and a composite measure of HIV-1 disease progression. Significant thresholds for tagSNP, but not candidate SNP, associations were subjected to Bonferroni correction for multiple testing. We evaluated 491 HIV-1-infected and 335 HIV-1-uninfected individuals for 493 SNPs, 459 of which passed quality control filters. Candidate SNP PPIA rs8177826 and tagSNP SMARCB1 rs6003904 were significantly associated with HIV-1 acquisition risk (odds ratio = 0.14, P = 0.03, and odds ratio = 2.11, Pcorr = 0.01, respectively). Furthermore, the TT genotype for CCR5 rs1799988 was associated with a mean 0.2 log10 copies per milliliter lower plasma HIV-1 RNA set point (P = 0.04). We also identified significant associations with HIV-1 disease progression for variants in FUT2 and MBL2. Using a targeted gene approach, we identified variants in host genes whose protein products interact with HIV-1 during the virus replication cycle and were associated with HIV-1 outcomes in this African cohort.

  11. Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials.

    Science.gov (United States)

    Gruntman, Alisha M; Su, Lin; Su, Qin; Gao, Guangping; Mueller, Christian; Flotte, Terence R

    2015-04-01

    Recombinant adeno-associated virus (rAAV) vectors are rapidly becoming the first choice for human gene therapy studies, as clinical efficacy has been demonstrated in several human trials and proof-of-concept data have been demonstrated for correction of many others. When moving into human use under the auspices of an FDA Investigational New Drug (IND) application, it is necessary to demonstrate the stability of vector material under various conditions of storage, dilution, and administration when used in humans. Limited data are currently available in the literature regarding vector compatibility and stability, leading most IND sponsors to repeat all necessary studies. The current study addresses this issue with an rAAV vector (rAAV1-CB-chAATmyc) containing AAV2-inverted terminal repeat sequences packaged into an AAV1 capsid. Aliquots of vector were exposed to a variety of temperatures, diluents, container constituents, and other environmental conditions, and its functional biological activity (after these various treatments) was assessed by measuring transgene expression after intramuscular injection in mice. rAAV was found to be remarkably stable at temperatures ranging from 4°C to 55°C (with only partial loss of potency after 20 min at 70°C), at pH ranging from 5.5 to 8.5, after contact with mouse or human serum (with or without complement depletion) or with gadolinium and after contact with glass, polystyrene, polyethylene, polypropylene, and stainless steel. The only exposure resulting in near-total loss of vector activity (10,000-fold loss) was UV exposure for 10 min. The stability of rAAV1 preparations bodes well for future dissemination of this therapeutic modality.

  12. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors

    Science.gov (United States)

    Song, Sihong; Morgan, Michael; Ellis, Tamir; Poirier, Amy; Chesnut, Kye; Wang, Jianming; Brantly, Mark; Muzyczka, Nicholas; Byrne, Barry J.; Atkinson, Mark; Flotte, Terence R.

    1998-01-01

    Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-α promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 × 1013 particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 μg/ml in SCID and over 400 μg/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions. PMID:9826709

  13. Generation of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation

    Directory of Open Access Journals (Sweden)

    Naghmeh Ahmadiankia

    2013-07-01

    Full Text Available   Objective(s: Adeno-associated virus type 2 (AAV2 vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encoding capsid proteins with single, double or triple Y→F mutations.   Materials and Methods: A one-step, high-fidelity polymerase chain reaction (PCR cloning procedure involving the use of two partially overlapping primers to amplify a circular DNA template was applied to produce AAV2 cap genes encoding VP1 mutants with Y→F substitutions in residues 444, 500 or 730. The resulting constructs were used to make the different double and triple mutant by another round of PCR (Y444500F mutant, subcloning (Y444730F and Y500730F mutants or a combination of both techniques (Y444500730F mutant. Results: Nucleotide sequence analysis revealed successful introduction of the desired mutations in the AAV2 cap gene and showed the absence of any unintended mutations in the DNA fragments used to assemble the final set of AAV2 vector helper plasmids. The correctness of these plasmids was further confirmed by restriction mapping. Conclusion: PCR-based, single-step site-directed mutagenesis of circular DNA templates is a highly efficient and cost-effective method to generate AAV2 vector helper plasmids encoding mutant Cap proteins for the production of vector particles with increased gene transfer efficiency.

  14. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  15. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  16. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease.

  17. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  18. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer L Daily

    Full Text Available Angelman syndrome (AS, a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286 and Thr(305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  19. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  20. Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia.

    Science.gov (United States)

    Weinstein, David A; Correia, Catherine E; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E; Jordan, Juan; Andrutis, Karl; Chou, Janice Y; Byrne, Barry J; Mah, Cathryn S

    2010-07-01

    Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-alpha. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver.

  1. Isolation of uv-sensitive variants of human FL cells by a viral suicide method

    International Nuclear Information System (INIS)

    Shiomi, T.; Sato, K.

    1979-01-01

    A new method (viral suicide method) for the isolation of uv-sensitive mutants is described. Colonies of mutagenized human FL cells were infected with uv-irradiated Herpes simplex viruses and surviving ones which seemed to be deficient in host cell reactivation (HCR) were examined for their uv sensitivity. Nineteen of 238 clones examined were sensitive to uv irradiation at the time of the isolation. After recloning, four of these clones have been studied and two (UVS-1 and UVS-2) of them are stable in their uv sensitivity for 4 months in culture. uv sensitivity of UVS-1, UVS-2, and the parental FL cells are as follows: the extrapolation numbers (n) are 2.2, 2.1, and 1.8 and mean lethal doses (DO) are 2.9, 3.7, and 7.8 J/m 2 for UVS-1, UVS-2, and the parental FL cells, respectively. They are no more sensitive than FL cells to x-irradiation. The ability of HCR in UVS-2 cells is apparently lower than that in FL cells, whereas UVS-1 cells are the same as FL cells in the ability

  2. Proof-of-concept: neonatal intravenous injection of adeno-associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine.

    Science.gov (United States)

    Buckinx, R; Van Remoortel, S; Gijsbers, R; Waddington, S N; Timmermans, J-P

    2016-02-01

    Despite the success of viral vector technology in the transduction of the central nervous system in both preclinical research and gene therapy, its potential in neurogastroenterological research remains largely unexploited. This study asked whether and to what extent myenteric and submucosal neurons in the ileum and distal colon of the mouse were transduced after neonatal systemic delivery of recombinant adeno-associated viral vectors (AAVs). Mice were intravenously injected at postnatal day one with AAV pseudotypes AAV8 or AAV9 carrying a cassette encoding enhanced green fluorescent protein (eGFP) as a reporter under the control of a cytomegalovirus promoter. At postnatal day 35, transduction of the myenteric and submucosal plexuses of the ileum and distal colon was evaluated in whole-mount preparations, using immunohistochemistry to neurochemically identify transduced enteric neurons. The pseudotypes AAV8 and AAV9 showed equal potential in transducing the enteric nervous system (ENS), with 25-30% of the neurons expressing eGFP. However, the percentage of eGFP-expressing colonic submucosal neurons was significantly lower. Neurochemical analysis showed that all enteric neuron subtypes, but not glia, expressed the reporter protein. Intrinsic sensory neurons were most efficiently transduced as nearly 80% of calcitonin gene-related peptide-positive neurons expressed the transgene. The pseudotypes AAV8 and AAV9 can be employed for gene delivery to both the myenteric and the submucosal plexus, although the transduction efficiency in the latter is region-dependent. These findings open perspectives for novel preclinical applications aimed at manipulating and imaging the ENS in the short term, and in gene therapy in the longer term. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  3. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice

    Science.gov (United States)

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-01-01

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients. PMID:26482836

  4. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    Directory of Open Access Journals (Sweden)

    Thuy Le

    Full Text Available BACKGROUND: It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL were obtained from a specimen bank (from 2004-2007. The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36% detected by deep sequencing; the majority of these (95% were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53. The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%. When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016. CONCLUSIONS/SIGNIFICANCE: Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional

  5. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice

    DEFF Research Database (Denmark)

    Olesen, Mikkel V; Christiansen, Søren Hofman Oliveira; Gøtzsche, Casper René

    2012-01-01

    -like effect in rodents. The present study explored an alternative and more specific approach: overexpression of Y1 receptors. Using a recombinant adeno-associated viral vector (rAAV) encoding the Y1 gene (rAAV-Y1), we, for the first time, induced overexpression of functional transgene Y1 receptors...

  6. Viral metagenomic analysis of bushpigs (Potamochoerus larvatus in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2

    Directory of Open Access Journals (Sweden)

    Blomström Anne-Lie

    2012-09-01

    Full Text Available Abstract Background As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus, a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. Results Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV, porcine parvovirus 4 (PPV4, porcine endogenous retrovirus (PERV, a GB Hepatitis C–like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. Conclusions Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.

  7. Preclinical evaluation of radiation and systemic, RGD-targeted, adeno-associated virus phage-TNF gene therapy in a mouse model of spontaneously metastatic melanoma.

    Science.gov (United States)

    Quinn, T J; Healy, N; Sara, A; Maggi, E; Claros, C S; Kabarriti, R; Scandiuzzi, L; Liu, L; Gorecka, J; Adem, A; Basu, I; Yuan, Z; Guha, C

    2017-01-01

    The incidence of melanoma in the United States continues to rise, with metastatic lesions notoriously recalcitrant to therapy. There are limited effective treatment options available and a great need for more effective therapies that can be rapidly integrated in the clinic. In this study, we demonstrate that the combination of RGD-targeted adeno-associated virus phage (RGD-AAVP-TNF) with hypofractionated radiation therapy results in synergistic inhibition of primary syngeneic B16 melanoma in a C57 mouse model. Furthermore, this combination appeared to modify the tumor microenvironment, resulting in decreased Tregs in the draining LN and increased tumor-associated macrophages within the primary tumor. Finally, there appeared to be a reduction in metastatic potential and a prolongation of overall survival in the combined treatment group. These results indicate the use of targeted TNF gene therapy vector with radiation treatment could be a valuable treatment option for patients with metastatic melanoma.

  8. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk

    OpenAIRE

    Stefan Wagner; Rosemary Thresher; Ross Bland; Götz Laible

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on ade...

  9. Systemic Errors in Quantitative Polymerase Chain Reaction Titration of Self-Complementary Adeno-Associated Viral Vectors and Improved Alternative Methods

    Science.gov (United States)

    Fagone, Paolo; Wright, J. Fraser; Nathwani, Amit C.; Nienhuis, Arthur W.; Davidoff, Andrew M.

    2012-01-01

    Abstract Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities. PMID:22428975

  10. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity.

    Science.gov (United States)

    Patterson, Edward I; Khanipov, Kamil; Rojas, Mark M; Kautz, Tiffany F; Rockx-Brouwer, Dedeke; Golovko, Georgiy; Albayrak, Levent; Fofanov, Yuriy; Forrester, Naomi L

    2018-01-01

    Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.

  11. Novel sequence variants of viral hexon and fibre genes in two dogs with canine adenovirus type 1-associated disease.

    Science.gov (United States)

    Balboni, A; Dondi, F; Agnoli, C; Verin, R; Gruarin, M; Morini, M; Battilani, M

    2017-05-01

    There is little information on sequence variation of canine adenovirus type 1 (CAdV-1), the aetiological agent of infectious canine hepatitis (ICH). This study reports hexon and fibre gene sequence variants of CAdV-1 in a dog with systemic ICH and a dog with the ocular form of the disease ('blue eye') in Northern Italy in 2013. One of the sequence variants matched a CAdV-1 fox sequence previously detected in Italy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    Science.gov (United States)

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  13. Apparently nonspecific enzyme elevations after portal vein delivery of recombinant adeno-associated virus serotype 2 vector in hepatitis C virus-infected chimpanzees.

    Science.gov (United States)

    Flotte, Terence R; Goetzmann, Jason; Caridi, James; Paolillo, Joseph; Conlon, Thomas J; Potter, Mark; Mueller, Christian; Byrne, Barry J

    2008-07-01

    Hepatic gene transfer is envisioned as a substitute for protein replacement therapies, many of which are derived from blood products. Thus, the target populations may have a high prevalence of blood-borne pathogens, such as hepatitis C virus (HCV). We sought to determine whether the safety of recombinant adeno-associated virus serotype 2 (rAAV2) would be altered by preexisting HCV infection. Doses of approximately 1 x 10(13) vector genomes of an rAAV2-chimpanzee alpha(1)-antitrypsin (rAAV2-cAAT) vector were injected into the portal vein of each of three HCV genome-positive (HCV+) chimpanzees and three HCV-negative (HCV-) controls. Acute safety studies were performed up to 90 days after vector administration, along with analyses of the peripheral blood and liver tissue for rAAV2-cAAT genomes. Vector genome copy numbers in blood and liver tissue were similar in both groups. All animals demonstrated increases in liver and muscle enzyme levels after the pretreatment liver biopsy (5 days before vector injection) and after the vector injection. However, HCV+ animals demonstrated a substantially greater rise in aspartate aminotransferase, alanine aminotransferase, and creatinine phosphokinase values than HCV- animals. Histopathology demonstrated abnormal lipid accumulation (steatosis) in the hepatocytes of HCV+ animals, both before and after vector injection. These data indicate an increased susceptibility to subclinical liver toxicity from portal vein injection of rAAV2 in the presence of HCV infection.

  14. Sample Stacking Provides Three Orders of Magnitude Sensitivity Enhancement in SDS Capillary Gel Electrophoresis of Adeno-Associated Virus Capsid Proteins.

    Science.gov (United States)

    Zhang, Chao-Xuan; Meagher, Michael M

    2017-03-21

    Size-based protein analysis utilizing only 25 ng of total proteins has been realized by sodium dodecyl sulfate capillary gel electrophoresis (SDS CGE) with head-column field-amplified sample stacking as an online sample preconcentration technique. This method has been used as a replacement of SDS-PAGE for purity analysis of adeno-associated virus (AAV) therapeutic products of different serotypes and transgenes. A limit of detection of 0.2 ng/mL (3.3 pM) capsid proteins was achieved with convenient UV absorbance detection at 214 nm, equivalent to 20 pg of protein (330 attomole) loaded in the autosampler vial. For purity analysis, only 25 ng of total AAV capsid proteins (4.3 femtomole virus particles) were loaded to the autosampler vial. The sensitivity is comparable to silver-stained SDS-PAGE. The RSD of purity measurement was 0.0-0.8%, comparable to conventional SDS CGE utilizing 0.1-0.5 mg proteins. The new method provided 3 orders of magnitude sensitivity enhancement as compared to conventional SDS CGE. It shares all the advantages of conventional SDS CGE (labor-saving, easy automation, and convenient quantitation) and also the high sensitivity of silver stained SDS-PAGE. The sample stacking SDS CGE technique can be adopted for size-based analysis of other types of proteins. It is especially useful when protein quantity or concentration is not sufficient for regular SDS CGE or SDS-PAGE assay.

  15. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin.

    Science.gov (United States)

    Murphy, J E; Zhou, S; Giese, K; Williams, L T; Escobedo, J A; Dwarki, V J

    1997-12-09

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes mellitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2-5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity.

  16. Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9

    Directory of Open Access Journals (Sweden)

    David H Stitelman

    2014-01-01

    Full Text Available Efficient gene transfer to muscle stem cells (satellite cells has not been achieved despite broad transduction of skeletal muscle by systemically administered adeno-associated virus serotype 2/9 (AAV-9 in mice. We hypothesized that cellular migration during fetal development would make satellite cells accessible for gene transfer following in utero intravascular injection. We injected AAV-9 encoding green fluorescent protein (GFP marker gene into the vascular space of mice ranging in ages from post-coital day 12 (E12 to postnatal day 1 (P1. Satellite cell transduction was examined using: immunohistochemistry and confocal microscopy, satellite cell migration assay, myofiber isolation and FACS analysis. GFP positive myofibers were detected in all mature skeletal muscle groups and up to 100% of the myofibers were transduced. We saw gestational variation in cardiac and skeletal muscle expression. E16 injection resulted in 27.7 ± 10.0% expression in satellite cells, which coincides with the timing of satellite cell migration, and poor satellite cell expression before and after satellite cell migration (E12 and P1. Our results demonstrate that efficient gene expression is achieved in differentiated myofibers and satellite cells after injection of AAV-9 in utero. These findings support the potential of prenatal gene transfer for muscle based treatment strategies.

  17. Introduction of tau mutation into cultured Rat1-R12 cells by gene targeting, using recombinant adeno-associated virus vector.

    Science.gov (United States)

    Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Kato, Nobumasa; Ebisawa, Takashi

    2009-07-01

    We aim to develop a cultured cell model, to serve as a system with which the altered circadian phenotypes produced by the clock gene variations could be studied in vitro. Tau mutation, which shortens the circadian period of hamsters and mice, was introduced into the CK1epsilon locus of cultured Rat1-R12 cells by gene targeting mediated by a recombinant adeno-associated virus (rAAV) vector. After transduction of Rat1-R12 cells with rAAV, about 0.14% of the drug-resistant cells underwent gene targeting at CK1epsilon locus. Of the three clones isolated, only one carried the targeted allele of tau mutation and two carried the targeted wild-type allele. The clone with the targeted tau mutant allele exhibited a significantly shorter circadian period compared to the clone with targeted wild-type allele. rAAV-mediated gene targeting in cultured somatic cells is a convenient and powerful tool for analyzing the phenotypic outcome of clock gene variations, and for elucidating the pathogenesis of the disorders associated with abnormal circadian rhythmicity.

  18. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  19. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform

    Directory of Open Access Journals (Sweden)

    Laura Adamson-Small

    2016-01-01

    Full Text Available Recombinant adeno-associated vectors based on serotype 9 (rAAV9 have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP and good manufacturing practice (GMP production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production.

  20. Inflammation and Immune Response of Intra-Articular Serotype 2 Adeno-Associated Virus or Adenovirus Vectors in a Large Animal Model

    Directory of Open Access Journals (Sweden)

    Akikazu Ishihara

    2012-01-01

    Full Text Available Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad, serotype 2 adeno-associated virus vectors (rAAV2, or self-complementary (sc AAV2 vectors carrying green fluorescent protein (GFP. Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.

  1. Recombinant adeno-associated virus expressing a p53-derived apoptotic peptide (37AA) inhibits HCC cells growth in vitro and in vivo.

    Science.gov (United States)

    Zhang, Hongyong; Wang, Yufeng; Bai, Yanxia; Shao, Yuan; Bai, Jigang; Ma, Zhenhua; Liu, Qingguang; Wu, Shengli

    2017-03-07

    Recent studies have confirmed that a p53-derived apoptotic peptide (37AA) could act as a tumor suppressor inducing apoptosis in multiple tumor cells through derepressing p73. However, the tumor suppressive effects of recombinant adeno-associated virus (rAAV) expressing 37AA on HCC cells are still unknown. In this study, we successfully constructed a recombinant rAAV expressing 37AA. In vitro and in vivo assays showed that transfection of NT4-37AA/rAAV in HCC cells strongly suppressed cell proliferation, induced apoptosis, and up-regulated the cellular expression of p73. NT4-37AA/rAAV transfection markedly slowed Huh-7 xenografted tumor growth in murine. Pretreatment of HCC cells with p73 siRNA abrogated these effects of NT4-37AA/rAAV. Furthermore, we found that expression of p73 was upregulated and the formation of P73/iASSP complex was prevented when 37AA was introduced into HCC cells. Taken together, these results indicate that introduction of 37AA into HCC cells with a rAAV vector may lead to the development of broadly applicable agents for the treatment of HCC, and the mechanism may, at least in part, be associated with the upregulation of p73 expression and reduced level of P73/iASSP complex.

  2. A CASE OF EPSTEIN-BARR VIRAL INFECTION PROCEEDED UNDER THE MASK OF THE SYSTEMIC VARIANT OF THE JUVENILE RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    T.M. Bzarova

    2007-01-01

    Full Text Available The article describes the treatment of Epstein–Barr viral infection under the mask of the systemic variant of the juvenile rheumatoid arthritis. The clinical presentations of the disease included fever, rash, lymphadenopathy, hepatomegaly, polyarticular syndrome and high lab activity indices. the serologic research uncovered the antibodies to the Epstein–Barr virus in diagnostic titers, which allowed the researchers to verify the diagnosis. A child underwent the treatment with the immunoglobulin of a man with the high concentration of antibodies to cytomegalovirus, which induced the remission of the systemic representations, articular syndrome accompanied B normalization of the lab activity indices and reduction of the antibody titers towards the Epstein–Barr virus.Key words: children, treatment, immune globulin intravenous, septic syndrome, epstein–barr virus.

  3. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation.

    Directory of Open Access Journals (Sweden)

    Francis Fieni

    Full Text Available HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA in the axillary lymph node (6.48 ± 0.50 were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05, epididymis (3.08 ± 1.19; p<0.0001, prostate (3.36 ± 1.30; p<0.01, and seminal vesicle (2.67 ± 1.50; p<0.0001. Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.

  4. The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA.

    Science.gov (United States)

    Bavagnoli, Laura; Cucuzza, Stefano; Campanini, Giulia; Rovida, Francesca; Paolucci, Stefania; Baldanti, Fausto; Maga, Giovanni

    2015-10-30

    The PA protein of Influenza A virus (IAV) encoded by segment 3 acts as a specialized RNA endonuclease in the transcription of the viral genome. The same genomic segment encodes for a second shorter protein, termed PA-X, with the first 191 N-terminal aminoacids (aa) identical to PA, but with a completely different C-ter domain of 61 aa, due to a ribosomal frameshifting. In addition, it has been shown that several IAV isolates encode for a naturally truncated PA-X variant, PAXΔC20, missing the last 20 aa. The biochemical properties of PA-X and PAXΔC20 have been poorly investigated so far. Here, we have carried out an enzymatic characterization of PA-X and its naturally deleted form, in comparison with PA from the human IAV strain A/WSN/33 (H1N1). Our results showed, to the best of our knowledge for the first time, that PA-X possesses an endonucleolytic activity. Both PA and PA-X preferentially cut single stranded RNA regions, but with some differences. In addition, we showed that PAXΔC20 has severely reduced nuclease activity. These results point to a previously undetected role of the last C-ter 20 aa for the catalytic activity of PA-X and support distinct roles for these proteins in the viral life cycle. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. POLYMORPHIC VARIANTS OF THE GENE OF INTERFERON LAMBDA 3 AND FEATURES OF IMMUNE RESPONSE IN CHILDREN WITH CHRONIC VIRAL HEPATITIS C

    Directory of Open Access Journals (Sweden)

    T. B. Sentsova

    2017-01-01

    Full Text Available To study the immune manifestations of the interferon-lambda 3 genepolymorphism in chronic viral hepatitis C, 110 Russian children (54 girls and 56 boys with chronic HCV infection aged from 3 to 17 years were examined. All children were on combined therapy (pegylated interferon + ribavirin. It was found that among the studied polymorphic variants of the IFN-λ 3 gene in children with chronic HCV infection, T allele of the marker rs12979860 is associated with infection and chronization of HCV. The T/T rs12979860 genotype of the IFN-λ3 gene is unfavorable for the course of chronic HCV infection due to low levels of activated T-lymphocytes, intactness of the proinflammatory cytokines TNF-α, IL-6, IL-1α, and interferon-γ inducible protein IP-10. The revealed relation of the polymorphic variants of C/C + C/T locus rs12979860 of INF-λ3 gene with the expression of activated T-lymphocytes discloses the protective nature of these genotypes to the development of chronic HCV infection in children. 

  6. Evaluation of United States-Licensed Human Immunodeficiency Virus Immunoassays for Detection of Group M Viral Variants

    OpenAIRE

    Koch, Walter H.; Sullivan, Patrick S.; Roberts, Charles; Francis, Kori; Downing, Robert; Mastro, Timothy D.; Nkengasong, John; Hu, Dale; Masciotra, Silvina; Schable, Charles; Lal, Renu B.

    2001-01-01

    Six Food and Drug Administration (FDA)-licensed human immunodeficiency virus type 1 (HIV-1) and HIV-1/2 immunoassays, including five enzyme immunoassays and one rapid test, were challenged with up to 250 serum samples collected from various global sites. The serum samples were from individuals known to be infected with variants of HIV-1 including group M subtypes A, B, B′, C, D, E, F, and G and group O. All immunoassays detected the vast majority of samples tested. Three samples produced low ...

  7. Selection on a variant associated with improved viral clearance drives local, adaptive pseudogenization of interferon lambda 4 (IFNL4).

    Science.gov (United States)

    Key, Felix M; Peter, Benjamin; Dennis, Megan Y; Huerta-Sánchez, Emilia; Tang, Wei; Prokunina-Olsson, Ludmila; Nielsen, Rasmus; Andrés, Aida M

    2014-10-01

    Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.

  8. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults.

    Science.gov (United States)

    Brantly, Mark L; Spencer, L Terry; Humphries, Margaret; Conlon, Thomas J; Spencer, Carolyn T; Poirier, Amy; Garlington, Wendy; Baker, Dawn; Song, Sihong; Berns, Kenneth I; Muzyczka, Nicholas; Snyder, Richard O; Byrne, Barry J; Flotte, Terence R

    2006-12-01

    A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) alpha1-antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male. All subjects were either homozygous for the most common AAT mutation (a missense mutation designated PI*Z) or compound heterozygous for PI*Z and another mutation known to cause disease. There were four dose cohorts, ranging from 2.1 x 10(12) vector genomes (VG) to 6.9 x 10(13) VG, with three subjects per cohort. Subjects were injected sequentially in a dose-escalating fashion with a minimum of 14 days between patients. Subjects who had been receiving AAT protein replacement discontinued that therapy 28 days before vector administration. There were no vector-related serious adverse events in any of the 12 participants. Vector DNA sequences were detected in the blood between 1 and 3 days after injection in nearly all patients receiving doses of 6.9 x 10(12) VG or higher. Anti-AAV2 capsid antibodies were present and rose after vector injection, but no other immune responses were detected. One subject who had not been receiving protein replacement exhibited low-level expression of wild-type M-AAT in the serum (82 nM), which was detectable 30 days after receiving an injection of 2.1 x 10(13) VG. Unfortunately, residual but declining M-AAT levels from the washout of the protein replacement elevated background levels sufficiently to obscure any possible vector expression in that range in most of the other individuals in the higher dose cohorts.

  9. In vivo post-transcriptional gene silencing of alpha-1 antitrypsin by adeno-associated virus vectors expressing siRNA.

    Science.gov (United States)

    Cruz, Pedro E; Mueller, Christian; Cossette, Travis L; Golant, Alexandra; Tang, Qiushi; Beattie, Stuart G; Brantly, Mark; Campbell-Thompson, Martha; Blomenkamp, Keith S; Teckman, Jeffrey H; Flotte, Terence R

    2007-09-01

    alpha-1 Antitrypsin (AAT) deficiency is one of the most common genetic diseases in North America, with a carrier frequency of approximately 4% in the US population. Homozygosity for the most common mutation (Glu342Lys, PI(*)Z) leads to the synthesis of a mutant protein, which accumulates and polymerizes within hepatocytes rather than being efficiently secreted. This lack of secretion causes severe serum deficiency predisposing to chronic lung disease. Twelve to fifteen percent of patients with PI(*)ZZ also develop liver disease, which can be severe, even in infancy. This is thought to be due to toxic effects of the accumulated mutant Z-AAT within the hepatocyte. Thus, an approach to reduce AAT-deficient liver disease will likely require some mechanism to decrease the amount of Z-AAT within hepatocytes. In this report, we describe studies of small-interfering RNAs (siRNAs) designed to downregulate endogenous AAT within hepatocytes. Three different siRNA sequences were identified and cloned into a recombinant adeno-associated virus (rAAV) backbone, either singly or as a trifunctional (3X) construct. Each had activity independently, but the levels of AAT expression in cell culture models showed the greatest decrease with the 3X construct, resulting in levels that were five-fold lower than controls. The rAAV-3X-siRNA was then packaged into AAV8 capsids and used in vivo to transduce the livers of human Z-AAT overexpressing transgenic mice. Those studies showed a decrease in total human AAT, a clearing of Z-AAT accumulation by immunohistochemistry, and a decrease in monomer Z-AAT within the liver within 3 weeks after vector injection. The rAAV8-3X-siRNA vector may hold promise as a potential therapy for patients with AAT liver disease.

  10. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made using a recombinant herpes simplex virus production method.

    Science.gov (United States)

    Chulay, Jeffrey D; Ye, Guo-Jie; Thomas, Darby L; Knop, David R; Benson, Janet M; Hutt, Julie A; Wang, Gensheng; Humphries, Margaret; Flotte, Terence R

    2011-02-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for gene therapy of alpha-1 antitrypsin (AAT) deficiency. A toxicology study in mice evaluated intramuscular injection of an rAAV vector expressing human AAT (rAAV-CB-hAAT) produced using a herpes simplex virus (HSV) complementation system or a plasmid transfection (TFX) method at doses of 3 × 10(11) vg (1.2 × 10(13) vg/kg) for both vectors and 2 × 10(12) vg (8 × 10(13) vg/kg) for the HSV-produced vector. The HSV-produced vector had favorable in vitro characteristics in terms of purity, efficiency of transduction, and hAAT expression. There were no significant differences in clinical findings or hematology and clinical chemistry values between test article and control groups and no gross pathology findings. Histopathological examination demonstrated minimal to mild changes in skeletal muscle at the injection site, consisting of focal chronic interstitial inflammation and muscle degeneration, regeneration, and vacuolization, in vector-injected animals. At the 3 × 10(11) vg dose, serum hAAT levels were higher with the HSV-produced vector than with the TFX-produced vector. With the higher dose of HSV-produced vector, the increase in serum hAAT levels was dose-proportional in females and greater than dose-proportional in males. Vector copy numbers in blood were highest 24 hr after dosing and declined thereafter, with no detectable copies present 90 days after dosing. Antibodies to hAAT were detected in almost all vector-treated animals, and antibodies to HSV were detected in most animals that received the highest vector dose. These results support continued development of rAAV-CB-hAAT for treatment of AAT deficiency.

  11. Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites.

    Science.gov (United States)

    Flotte, Terence R; Conlon, Thomas J; Poirier, Amy; Campbell-Thompson, Martha; Byrne, Barry J

    2007-03-01

    To translate the potential advantages of recombinant adeno-associated virus type 1 (rAAV1) vectors into a clinical application for muscle-directed gene therapy for alpha1 -antitrypsin (AAT) deficiency, we performed safety studies in 170 C57BL/6 mice and 26 New Zealand White rabbits. A mouse toxicology study included 8 cohorts of 10 mice each (5 per sex). Mice were killed either 21 or 90 days after intramuscular injection of doses ranging up to 1x10(13)vector genomes (VG), equivalent to 4 x 10(14)VG/kg. A mouse biodistribution study was performed in 5 cohorts of 10 mice, receiving intramuscular injections at the same doses; as well as in a lower dose cohort (3 x 10(8) VG; equivalent to 1.2 x 10(10)VG/kg); and in 4 other cohorts (excluding the vehicle control) injected with identical doses intravenously. Finally, biodistribution was examined in rabbits, with serial collection of blood and semen, as well as terminal tissue collection. Two significant findings were present, both of which were dose dependent. First, inflammatory cell infiltrates were detected at the site of injection 21, 60, or 90 days after intramuscular injection of 1 x 10(13)VG. This was not associated with loss of transgene expression. Second, vector DNA sequences were detected in most animals, levels being highest with the highest doses and earliest time points. Vector DNA was also present in liver, spleen, kidneys, and a number of other organs, including the gonads of animals receiving the highest dose. Likewise, vector DNA was present in the semen of male rabbits at higher doses. The copy number of vector DNA in the blood and semen declined over time throughout the study. These two dose-dependent findings have served to guide to the design of a phase 1 human trial of rAAV1-AAT.

  12. Adeno-associated virus-mediated neuroglobin overexpression ameliorates the N-methyl-N-nitrosourea-induced retinal impairments: a novel therapeutic strategy against photoreceptor degeneration

    Directory of Open Access Journals (Sweden)

    Tao Y

    2017-10-01

    Full Text Available Ye Tao,1,* Zhen Yang,2,* Wei Fang,2 Zhao Ma,3 Yi Fei Huang,1 Zhengwei Li4 1Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 2Department of Neurosurgery, Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, 3Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 4Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Retinal degeneration (RD is a heterogeneous group of inherited dystrophies leading to blindness. The N-methyl-N-nitrosourea (MNU-administered mouse is used as a pharmacologically induced RD animal model in various therapeutic investigations. The present study found the retinal neuroglobin (NGB expression in the MNU-administered mice was significantly lower than in normal controls, suggesting NGB was correlated with RD. Subsequently, an adeno-associated virus (AAV-2-mCMV-NGB vector was delivered into the subretinal space of the MNU-administered mice. The retinal NGB expression of the treated eye was upregulated significantly in both protein and mRNA levels. Further, we found NGB overexpression could alleviate visual impairments and morphological devastations in MNU-administered mice. NGB overexpression could rectify apoptotic abnormalities and ameliorate oxidative stress in MNU-administered mice, thereby promoting photoreceptor survival. The cone photoreceptors in MNU-administered mice were also sensitive to AAV-mediated NGB overexpression. Taken together, our findings suggest that manipulating NGB bioactivity via gene therapy may represent a novel therapeutic strategy against RD. Future elucidation of the exact role of NGB would advance our knowledge about the pathological mechanisms underlying RD. Keywords: neuroglobin, retinal degeneration

  13. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  14. Effective relief of neuropathic pain by adeno-associated virus-mediated expression of a small hairpin RNA against GTP cyclohydrolase 1

    Directory of Open Access Journals (Sweden)

    Chang Jin

    2009-11-01

    Full Text Available Abstract Background Recent studies show that transcriptional activation of GTP cyclohydrolase I (GCH1 in dorsal root ganglia (DRG is significantly involved in the development and persistency of pain symptoms. We thus hypothesize that neuropathic pain may be attenuated by down-regulation of GCH1 expression, and propose a gene silencing system for this purpose. Results To interrupt GCH1 synthesis, we designed a bidirectional recombinant adeno-associated virus encoding both a small hairpin RNA against GCH1 and a GFP reporter gene (rAAV-shGCH1. After rAAV-shGCH1 was introduced into the sciatic nerve prior to or following pain-inducing surgery, therapeutic efficacy and the underlying mechanisms were subsequently validated in animal models. The GFP expression data indicates that rAAV effectively delivered transgenes to DRG. Subsequently reduced GCH1 expression was evident from immunohistochemistry and western-blotting analysis. Along with the down-regulation of GCH1, the von Frey test correspondingly indicated a sharp decline in pain symptoms upon both pre- and post-treatment with rAAV-shGCH1. Interestingly, GCH1 down-regulation additionally led to decreased microglial activation in the dorsal horn, implying an association between pain attenuation and reduced inflammation. Conclusion Therefore, the data suggests that GCH1 levels can be reduced by introducing rAAV-shGCH1, leading to pain relief. Based on the results, we propose that GCH1 modulation may be developed as a clinically applicable gene therapy strategy to treat neuropathic pain.

  15. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  16. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  17. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  18. Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures.

    Science.gov (United States)

    Cecchini, Sylvain; Virag, Tamas; Kotin, Robert M

    2011-08-01

    The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 10(6) cells/ml, ≥ 10(16) purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.

  19. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  20. Cervical cancer isolate PT3, super-permissive for adeno-associated virus replication, over-expresses DNA polymerase delta, PCNA, RFC and RPA.

    Science.gov (United States)

    Kang, Bum Yong; You, Hong; Bandyopadhyay, Sarmistha; Agrawal, Nalini; Melchert, Russell B; Basnakian, Alexei G; Liu, Yong; Hermonat, Paul L

    2009-04-23

    Adeno-associated virus (AAV) type 2 is an important virus due to its use as a safe and effective human gene therapy vector and its negative association with certain malignancies. AAV, a dependo-parvovirus, autonomously replicates in stratified squamous epithelium. Such tissue occurs in the nasopharynx and anogenitals, from which AAV has been clinically isolated. Related autonomous parvoviruses also demonstrate cell tropism and preferentially replicate in oncogenically transformed cells. Combining these two attributes of parvovirus tropism, squamous and malignant, we assayed if AAV might replicate in squamous cervical carcinoma cell isolates. Three primary isolates (PT1-3) and two established cervical cancer cell lines were compared to normal keratinocytes (NK) for their ability to replicate AAV. One isolate, PT3, allowed for high levels of AAV DNA replication and virion production compared to others. In research by others, four cellular components are known required for in vitro AAV DNA replication: replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and DNA polymerase delta (POLD1). Thus, we examined PT3 cells for expression of these components by DNA microarray and real-time quantitative PCR. All four components were over-expressed in PT3 over two representative low-permissive cell isolates (NK and PT1). However, this super-permissiveness did not result in PT3 cell death by AAV infection. These data, for the first time, provide evidence that these four cellular components are likely important for AAV in vivo DNA replication as well as in vitro. These data also suggest that PT3 will be a useful reagent for investigating the AAV-permissive transcriptome and AAV anti-cancer effect.

  1. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  2. Selection on a variant associated with improved viral clearance drives local, adaptive pseudogenization of interferon lambda 4 (IFNL4.

    Directory of Open Access Journals (Sweden)

    Felix M Key

    2014-10-01

    Full Text Available Interferon lambda 4 gene (IFNL4 encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.

  3. The prevalence of the pre-existing hepatitis C viral variants and the evolution of drug resistance in patients treated with the NS3-4a serine protease inhibitor telaprevir

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2008-01-01

    Telaprevir (VX-950), a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV genotype 1. Some patients experience viral breakthrough, which has been shown to be associated with emergence of telaprevir-resistant HCV variants during treatment. The exact mechanisms underlying the rapid selection of drug resistant viral variants during dosing are not fully understood. In this paper, we develop a two-strain model to study the pre-treatment prevalence of the mutant virus and derive an analytical solution of the mutant frequency after administration of the protease inhibitor. Our analysis suggests that the rapid increase of the mutant frequency during therapy is not due to mutant growth but rather due to the rapid and profound loss of wild-type virus, which uncovers the pre-existing mutant variants. We examine the effects of backward mutation and hepatocyte proliferation on the pre-existence of the mutant virus and the competition between wild-type and drug resistant virus during therapy. We then extend the simple model to a general model with multiple viral strains. Mutations during therapy do not play a significant role in the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Hepatocyte proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. The study provides a theoretical framework for exploring the prevalence of pre-existing mutant variants and the evolution of drug resistance during treatment with other protease inhibitors or HCV polymerase inhibitors.

  4. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    Science.gov (United States)

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a

  5. Detection of Minority Resistance during Early HIV-1 Infection: Natural Variation and Spurious Detection rather than Transmission and Evolution of Multiple Viral Variants ▿ †

    Science.gov (United States)

    Gianella, Sara; Delport, Wayne; Pacold, Mary E.; Young, Jason A.; Choi, Jun Yong; Little, Susan J.; Richman, Douglas D.; Kosakovsky Pond, Sergei L.; Smith, Davey M.

    2011-01-01

    Reports of a high frequency of the transmission of minority viral populations with drug-resistant mutations (DRM) are inconsistent with evidence that HIV-1 infections usually arise from mono- or oligoclonal transmission. We performed ultradeep sequencing (UDS) of partial HIV-1 gag, pol, and env genes from 32 recently infected individuals. We then evaluated overall and per-site diversity levels, selective pressure, sequence reproducibility, and presence of DRM and accessory mutations (AM). To differentiate biologically meaningful mutations from those caused by methodological errors, we obtained multinomial confidence intervals (CI) for the proportion of DRM at each site and fitted a binomial mixture model to determine background error rates for each sample. We then examined the association between detected minority DRM and the virologic failure of first-line antiretroviral therapy (ART). Similar to other studies, we observed increased detection of DRM at low frequencies (average, 0.56%; 95% CI, 0.43 to 0.69; expected UDS error, 0.21 ± 0.08% mutations/site). For 8 duplicate runs, there was variability in the proportions of minority DRM. There was no indication of increased diversity or selection at DRM sites compared to other sites and no association between minority DRM and AM. There was no correlation between detected minority DRM and clinical failure of first-line ART. It is unlikely that minority viral variants harboring DRM are transmitted and maintained in the recipient host. The majority of low-frequency DRM detected using UDS are likely errors inherent to UDS methodology or a consequence of error-prone HIV-1 replication. PMID:21632754

  6. In vivo expression of human ATP:cob(I)alamin adenosyltransferase (ATR) using recombinant adeno-associated virus (rAAV) serotypes 2 and 8.

    Science.gov (United States)

    Erger, Kirsten E; Conlon, Thomas J; Leal, Nicole A; Zori, Robert; Bobik, Thomas A; Flotte, Terence R

    2007-06-01

    Methylmalonic aciduria (MMA) is an autosomal recessive disease with symptoms that include ketoacidosis, lethargy, recurrent vomiting, dehydration, respiratory distress, muscular hypotonia and death due to methylmalonic acid levels that are up to 1000-fold greater than normal. CblB MMA, a subset of the mutations leading to MMA, is caused by a deficiency in the enzyme cob(I)alamin adenosyltransferase (ATR). No animal model currently exists for this disease. ATR functions within the mitochondria matrix in the final conversion of cobalamin into coenzyme B(12), adenosylcobalamin (AdoCbl). AdoCbl is a required coenzyme for the mitochondrial enzyme methylmalonyl-CoA mutase (MCM). The human ATR cDNA was cloned into a recombinant adeno-associated virus (rAAV) vector and packaged into AAV 2 or 8 capsids and delivered by portal vein injection to C57/Bl6 mice at a dose of 1 x 10(10) and 1 x 10(11) particles. Eight weeks post-injection RNA, genomic DNA and protein were then extracted and analyzed. Using primer pairs specific to the cytomegalovirus (CMV) enhancer/chicken beta-actin (CBAT) promoter within the rAAV vectors, genome copy numbers were found to be 0.03, 2.03 and 0.10 per cell in liver for the rAAV8 low dose, rAAV8 high dose and rAAV2 high dose, respectively. Western blotting performed on mitochondrial protein extracts demonstrated protein levels were comparable to control levels in the rAAV8 low dose and rAAV2 high dose animals and 3- to 5-fold higher than control levels were observed in high dose animals. Immunostaining demonstrated enhanced transduction efficiency of hepatocytes to over 40% in the rAAV8 high dose animals, compared to 9% and 5% transduction in rAAV2 high dose and rAAV8 low dose animals, respectively. These data demonstrate the feasibility of efficient ATR gene transfer to the liver as a prelude to future gene therapy experiments.

  7. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  8. Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Demaster, Amanda; Luo, Xiaoyan; Curtis, Sarah; Williams, Kyha D.; Landau, Dustin J.; Drake, Elizabeth J.; Kozink, Daniel M.; Bird, Andrew; Crane, Bayley; Sun, Francis; Pinto, Carlos R.; Brown, Talmage T.; Kemper, Alex R.

    2012-01-01

    Abstract Glycogen storage disease type Ia (GSD-Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), primarily found in liver and kidney, which causes life-threatening hypoglycemia. Dogs with GSD-Ia were treated with double-stranded adeno-associated virus (AAV) vectors encoding human G6Pase. Administration of an AAV9 pseudotyped (AAV2/9) vector to seven consecutive GSD-Ia neonates prevented hypoglycemia during fasting for up to 8 hr; however, efficacy eventually waned between 2 and 30 months of age, and readministration of a new pseudotype was eventually required to maintain control of hypoglycemia. Three of these dogs succumbed to acute hypoglycemia between 7 and 9 weeks of age; however, this demise could have been prevented by earlier readministration an AAV vector, as demonstrated by successful prevention of mortality of three dogs treated earlier in life. Over the course of this study, six out of nine dogs survived after readministration of an AAV vector. Of these, each dog required readministration on average every 9 months. However, two were not retreated until >34 months of age, while one with preexisting antibodies was re-treated three times in 10 months. Glycogen content was normalized in the liver following vector administration, and G6Pase activity was increased in the liver of vector-treated dogs in comparison with GSD-Ia dogs that received only with dietary treatment. G6Pase activity reached approximately 40% of normal in two female dogs following AAV2/9 vector administration. Elevated aspartate transaminase in absence of inflammation indicated that hepatocellular turnover in the liver might drive the loss of vector genomes. Survival was prolonged for up to 60 months in dogs treated by readministration, and all dogs treated by readministration continue to thrive despite the demonstrated risk for recurrent hypoglycemia and mortality from waning efficacy of the AAV2/9 vector. These preclinical data support the further translation of AAV

  9. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    Science.gov (United States)

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-11-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  10. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  11. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains.

    Science.gov (United States)

    Wu, Shi-Hao; Liao, Zhi-Xing; D Rizak, Joshua; Zheng, Na; Zhang, Lin-Heng; Tang, Hen; He, Xiao-Bin; Wu, Yang; He, Xia-Ping; Yang, Mei-Feng; Li, Zheng-Hui; Qin, Dong-Dong; Hu, Xin-Tian

    2017-03-18

    Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca 2+ /calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.

  12. Adeno-Associated Virus Serotype 9–Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Tijana Knezevic, PhD

    2016-12-01

    Full Text Available Mutations in Bcl-2–associated athanogene 3 (BAG3 were associated with skeletal muscle dysfunction and dilated cardiomyopathy. Retro-orbital injection of an adeno-associated virus serotype 9 expressing BAG3 (rAAV9-BAG3 significantly (p < 0.0001 improved left ventricular ejection fraction, fractional shortening, and stroke volume 9 days post-injection in mice with cardiac dysfunction secondary to a myocardial infarction. Furthermore, myocytes isolated from mice 3 weeks after injection showed improved cell shortening, enhanced systolic [Ca2+]i and increased [Ca2+]i transient amplitudes, and increased maximal L-type Ca2+ current amplitude. These results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.

  13. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa

    Science.gov (United States)

    Jimenez Cruz, Camilo A.; Garcia-Beltran, Wilfredo F.; Carlson, Jonathan M.; van Teijlingen, Nienke H.; Mann, Jaclyn K.; Jaggernath, Manjeetha; Kang, Seung-gu; Körner, Christian; Chung, Amy W.; Schafer, Jamie L.; Evans, David T.; Alter, Galit; Walker, Bruce D.; Goulder, Philip J.; Carrington, Mary; Hartmann, Pia; Pertel, Thomas; Zhou, Ruhong; Ndung’u, Thumbi; Altfeld, Marcus

    2015-01-01

    Background Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. Methods and Findings Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. Conclusions These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades

  14. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  15. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  16. The use of viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein eGFP

    OpenAIRE

    Lewis, Jo E.; Brameld, John M.; Hill, P.J.; Barrett, Perry; Ebling, Francis J.P.; Jethwa, P.H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones ...

  17. Identification and Analysis of Novel Viral and Host Dysregulated MicroRNAs in Variant Pseudorabies Virus-Infected PK15 Cells.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available Pseudorabies (PR is one of the most devastating diseases in the pig industry. To identify changes in microRNA (miRNA expression and post-transcriptional regulatory responses to PRV infection in porcine kidney epithelial (PK15 cells, we sequenced a small RNA (sRNA library prepared from infected PK15 cells and compared it to a library prepared from uninfected cells using Illumina deep sequencing. Here we found 25 novel viral miRNAs by high-throughput sequencing and 20 of these miRNAs were confirmed through stem-loop RT-qPCR. Intriguingly, unlike the usual miRNAs encoded by the α-herpesviruses, which are found clustered in the large latency transcript (LLT, these novel viral miRNAs are throughout the PRV genome like β-herpesviruses. Viral miRNAs are predicted to target multiple genes and form a complex regulatory network. GO analysis on host targets of viral miRNAs were involved in complex cellular processes, including the metabolic pathway, biological regulation, stimulus response, signaling process and immune response. Moreover, 13 host miRNAs were expressed with significant difference after infection with PRV: 8 miRNAs were up-regulated and 5 miRNAs were down-regulated, which may affect viral replication in host cell. Our results provided new insight into the characteristic of miRNAs in response to PRV infection, which is significant for further study of these miRNAs function.

  18. PNPLA 3 I148M genetic variant associates with insulin resistance and baseline viral load in HCV genotype 2 but not in genotype 3 infection

    DEFF Research Database (Denmark)

    Rembeck, Karolina; Maglio, Cristina; Lagging, Martin

    2012-01-01

    ABSTRACT: BACKGROUND: Hepatic steatosis in HCV patients has been postulated as a risk factor associated with a higher frequency of fibrosis and cirrhosis. A single genetic variant, PNPLA3 I148M, has been widely associated with increased hepatic steatosis. Previous studies of the PNPLA3 I148M...

  19. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  20. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice.

    Science.gov (United States)

    Xu, L; Daly, T; Gao, C; Flotte, T R; Song, S; Byrne, B J; Sands, M S; Parker Ponder, K

    2001-03-20

    Although AAV vectors show promise for hepatic gene therapy, the optimal transcriptional regulatory elements have not yet been identified. In this study, we show that an AAV vector with the CMV enhancer/chicken beta-actin promoter results in 9.5-fold higher expression after portal vein injection than an AAV vector with the EF1 alpha promoter, and 137-fold higher expression than an AAV vector with the CMV promoter/enhancer. Although induction of the acute-phase response with the administration of lipopolysaccharide (LPS) activated the CMV promoter/enhancer from the context of an adenoviral vector in a previous study, LPS resulted in only a modest induction of this promoter from an AAV vector in vivo. An AAV vector with the CMV-beta-actin promoter upstream of the coagulation protein human factor X (hFX) was injected intravenously into neonatal mice. This resulted in expression of hFX at 548 ng/ml (6.8% of normal) for up to 1.2 years, and 0.6 copies of AAV vector per diploid genome in the liver at the time of sacrifice. Neonatal intramuscular injection resulted in expression of hFX at 248 ng/ml (3.1% of normal), which derived from both liver and muscle. We conclude that neonatal gene therapy with an AAV vector with the CMV-beta-actin promoter might correct hemophilia due to hFX deficiency.

  1. Possible involvement of distinct phylogenetic clusters of HIV-1 variants in the discrepancies between coreceptor tropism predictions based on viral RNA and proviral DNA.

    Science.gov (United States)

    Kotani, Hiroshi; Sudo, Koji; Hasegawa, Naoki; Fujiwara, Hiroshi; Hayakawa, Tomohisa; Iketani, Osamu; Yamaguchi, Masaya; Mochizuki, Mayumi; Iwata, Satoshi; Kato, Shingo

    2016-01-01

    The coreceptor tropism testing should be conducted prior to commencing a regimen containing a CCR5 antagonist for treatment of HIV-1 infection. For aviremic patients on long antiretroviral therapy, proviral DNA is often used instead of viral RNA in genotypic tropism testing. However, the tropism predictions from RNA and DNA are sometimes different. We examined the cause of the discrepancies between HIV-1 tropism predictions based on viral RNA and proviral DNA. The nucleotide sequence of the env C2V3C3 region was determined using pair samples of plasma RNA and peripheral blood mononuclear cell DNA from 50 HIV-1 subtype B-infected individuals using population-based sequencing. The samples with discrepant tropism assessments between RNA and DNA were further analyzed using deep sequencing, followed by phylogenetic analysis. The tropism was assessed using the algorithm geno2pheno with a false-positive rate cutoff of 10 %. In population-based sequencing, five of 50 subjects showed discrepant tropism predictions between their RNA and DNA samples: four exhibited R5 tropism in RNA and X4 tropism in DNA, while one exhibited the opposite pattern. In the deep sequencing and phylogenetic analysis, three subjects had single clusters comprising of RNA- and DNA-derived sequences that were a mixture of R5 and X4 sequences. The other two subjects had two and three distinct phylogenetic clusters of sequences, respectively, each of which was dominated by R5 or X4 sequences; sequences of the R5-dominated cluster were mostly found in RNA, while sequences of the X4-dominated cluster were mostly in DNA. Some of HIV-1 tropism discrepancies between viral RNA and proviral DNA seem to be caused by phylogenetically distinct clusters which resides in plasma and cells in different frequencies. Our findings suggest that the tropism testing using PBMC DNA or deep sequencing may be required when the viral load is not suppressed or rebounds in the course of a CCR5 antagonist-containing regimen.

  2. Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases

    DEFF Research Database (Denmark)

    Chang, Cynthia X L; Tan, Anthony T; Or, Ming Yan

    2013-01-01

    exchange was accomplished for all variants as demonstrated by an ELISA-based MHC stability assay. HLA tetramers with redirected specificity could detect antigen-specific CD8(+) T-cell responses against human cytomegalovirus, hepatitis B (HBV), dengue virus (DENV), and Epstein-Barr virus (EBV) infections....... The potential of this population-centric HLA library was demonstrated with the characterization of seven novel T-cell epitopes from severe acute respiratory syndrome coronavirus, HBV, and DENV. Posthoc analysis revealed that the majority of responses would be more readily identified by our unbiased discovery...

  3. Two variants of selenium-dependent glutathione peroxidase from the disk abalone Haliotis discus discus: Molecular characterization and immune responses to bacterial and viral stresses.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Godahewa, G I; Thulasitha, William Shanthakumar; Whang, Ilson; Won, Seung Hwan; Kim, Chul; Lee, Jehee

    2015-08-01

    Glutathione peroxidase (GPx) is an essential member of the antioxidant systems of living organisms and may be involved in immune defense against pathogenic invasion. In the current study, two selenium-dependent glutathione peroxidases (AbSeGPxs) that shared 54.3% identity were identified from the disk abalone Haliotis discus discus. The open reading frames (ORFs) of AbSeGPx-a and AbSeGPx-b coded for 222 and 220 amino acids, respectively, with a characteristic selenocysteine residue encoded by an opal stop codon (TGA). The conserved selenocysteine insertion sequence (SECIS) element was predicted in the 3' untranslated region (UTR) of both isoforms, and they were found to form two stem-loop structures. Amino acid comparison and phylogenetic studies revealed that the AbSeGPxs were closely related to those in other mollusk species and were evolutionarily distinct from those of other taxonomic groups. The SYBR Green qPCR was employed in investigating the transcripts of AbSeGPxs. The expression of AbSeGPxs mRNA was examined in different embryonic developmental stages and differential expression patterns for AbSeGPx-a and AbSeGPx-b were noted. Meanwhile, the highest expression of AbSeGPxs was detected in the hepatopancreas of healthy adult animals. Next, transcriptional levels were profiled in hemocytes of adults to determine the immune responses of AbSeGPxs to microbial infections. The results revealed the significant up-regulation of AbSeGPx-a in a time-dependent manner after bacterial (Listeria monocytogenes and Vibrio parahaemolyticus) and viral (viral hemorrhagic septicemia virus) infections. Consequently, these findings indicate that AbSeGPx-a and AbSeGPx-b might be involved in the embryonic development of disk abalone and the regulation of immune defense system of adult animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    OpenAIRE

    Sandra J Kuhlman; Z Josh Huang

    2008-01-01

    We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 e...

  5. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer

    Science.gov (United States)

    Wang, Xiaofeng; Liu, Xinyang; Huang, Mingzhu; Gan, Lu; Cheng, Yufan; Li, Jin

    2016-01-01

    Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy. PMID:27009837

  6. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  7. Bone Marrow Transplantation Augments the Effect of Brain- and Spinal Cord-Directed Adeno-Associated Virus 2/5 Gene Therapy by Altering Inflammation in the Murine Model of Globoid-Cell Leukodystrophy

    Science.gov (United States)

    Reddy, Adarsh S.; Kim, Joong H.; Hawkins-Salsbury, Jacqueline A.; Macauley, Shannon L.; Tracy, Elisabeth T.; Vogler, Carole A.; Han, Xialin; Song, Sheng-Kwei; Wozniak, David F.; Fowler, Stephen C.; Klein, Robyn S.; Sands, Mark S.

    2012-01-01

    Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear. In addition, the therapeutic efficacy may have been limited since the CNS-directed gene therapy was restricted to the forebrain and thalamus. In the current study, intrathecal and intracerebellar injections were added to the therapeutic regimen and the mechanism of synergy between BMT and gene therapy was determined. Although AAV2/5 alone provided supraphysiological levels of GALC activity and reduced psychosine levels in both the brain and spinal cord, it significantly increased CNS inflammation. Bone marrow transplantation alone provided essentially no GALC activity to the CNS and did not reduce psychosine levels. When AAV2/5 is combined with BMT, there are sustained improvements in motor function and the median life span is increased to 123 d (range, 92–282 d) compared with 41 d in the untreated twitcher mice. Interestingly, addition of BMT virtually eliminates both the disease and AAV2/5-associated inflammatory response. These data suggest that the efficacy of AAV2/5-mediated gene therapy is limited by the associated inflammatory response and BMT synergizes with AAV2/5 by modulating inflammation. PMID:21734286

  8. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  9. Viral Polymerases

    Science.gov (United States)

    Choi, Kyung H.

    2016-01-01

    Viral polymerases play a central role in viral genome replication and transcription. Based on the genome type and the specific needs of particular virus, RNA-dependent RNA polymerase, RNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and DNA-dependent RNA polymerases are found in various viruses. Viral polymerases are generally active as a single protein capable of carrying out multiple functions related to viral genome synthesis. Specifically, viral polymerases use variety of mechanisms to recognize initial binding sites, ensure processive elongation, terminate replication at the end of the genome, and also coordinate the chemical steps of nucleic acid synthesis with other enzymatic activities. This review focuses on different viral genome replication and transcription strategies, and the polymerase interactions with various viral proteins that are necessary to complete genome synthesis. PMID:22297518

  10. Pemasaran ViralViral Marketing

    OpenAIRE

    Situmorang, James Rianto

    2010-01-01

    Viral marketing is an extremely powerful and effective form of internet marketing. Itis a new form of word-of-mouth through internet. In viral marketing, someone passeson a marketing message to someone else and so on. Viral marketing proposes thatmessages can be rapidly disseminated from consumer to consumer leading to largescale market acceptance. The analogy of a virus is used to described the exponentialdiffusion of information in an electronic environment and should not be confusedwith th...

  11. Anti-viral state segregates two molecular phenotypes of pancreatic adenocarcinoma: potential relevance for adenoviral gene therapy

    Directory of Open Access Journals (Sweden)

    Chiorini Jay A

    2010-01-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma (PDAC remains a leading cause of cancer mortality for which novel gene therapy approaches relying on tumor-tropic adenoviruses are being tested. Methods We obtained the global transcriptional profiling of primary PDAC using RNA from eight xenografted primary PDAC, three primary PDAC bulk tissues, three chronic pancreatitis and three normal pancreatic tissues. The Affymetrix GeneChip HG-U133A was used. The results of the expression profiles were validated applying immunohistochemical and western blot analysis on a set of 34 primary PDAC and 10 established PDAC cell lines. Permissivity to viral vectors used for gene therapy, Adenovirus 5 and Adeno-Associated Viruses 5 and 6, was assessed on PDAC cell lines. Results The analysis of the expression profiles allowed the identification of two clearly distinguishable phenotypes according to the expression of interferon-stimulated genes. The two phenotypes could be readily recognized by immunohistochemical detection of the Myxovirus-resistance A protein, whose expression reflects the activation of interferon dependent pathways. The two molecular phenotypes discovered in primary carcinomas were also observed among established pancreatic adenocarcinoma cell lines, suggesting that these phenotypes are an intrinsic characteristic of cancer cells independent of their interaction with the host's microenvironment. The two pancreatic cancer phenotypes are characterized by different permissivity to viral vectors used for gene therapy, as cell lines expressing interferon stimulated genes resisted to Adenovirus 5 mediated lysis in vitro. Similar results were observed when cells were transduced with Adeno-Associated Viruses 5 and 6. Conclusion Our study identified two molecular phenotypes of pancreatic cancer, characterized by a differential expression of interferon-stimulated genes and easily recognized by the expression of the Myxovirus-resistance A protein. We

  12. Pharyngitis - viral

    Science.gov (United States)

    ... Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Pharyngitis - viral URL of this page: //medlineplus.gov/ency/article/ ...

  13. Viral gastroenteritis

    Science.gov (United States)

    ... Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Viral gastroenteritis (stomach flu) URL of this page: //medlineplus. ...

  14. Viral Cre-LoxP tools aid genome engineering in mammalian cells.

    Science.gov (United States)

    Sengupta, Ranjita; Mendenhall, Amy; Sarkar, Nandita; Mukherjee, Chandreyee; Afshari, Amirali; Huang, Joseph; Lu, Biao

    2017-01-01

    Targeted nucleases have transformed genome editing technology, providing more efficient methods to make targeted changes in mammalian genome. In parallel, there is an increasing demand of Cre-LoxP technology for complex genome manipulation such as large deletion, addition, gene fusion and conditional removal of gene sequences at the target site. However, an efficient and easy-to-use Cre-recombinase delivery system remains lacking. We designed and constructed two sets of expression vectors for Cre-recombinase using two highly efficient viral systems, the integrative lentivirus and non-integrative adeno associated virus. We demonstrate the effectiveness of those methods in Cre-delivery into stably-engineered HEK293 cells harboring LoxP-floxed red fluorescent protein (RFP) and puromycin (Puro) resistant reporters. The delivered Cre recombinase effectively excised the floxed RFP-Puro either directly or conditionally, therefore validating the function of these molecular tools. Given the convenient options of two selections markers, these viral-based systems offer a robust and easy-to-use tool for advanced genome editing, expanding complicated genome engineering to a variety of cell types and conditions. We have developed and functionally validated two viral-based Cre-recombinase delivery systems for efficient genome manipulation in various mammalian cells. The ease of gene delivery with the built-in reporters and inducible element enables live cell monitoring, drug selection and temporal knockout, broadening applications of genome editing.

  15. Forced selection of a human immunodeficiency virus type 1 variant that uses a non-self tRNA primer for reverse transcription: Involvement of viral RNA sequences and the reverse transcriptase enzyme

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Beerens, Nancy; Berkhout, Ben

    2004-01-01

    Human immunodeficiency virus type 1 uses the tRNA(3)(Lys) molecule as a selective primer for reverse transcription. This primer specificity is imposed by sequence complementarity between the tRNA primer and two motifs in the viral RNA genome: the primer-binding site (PBS) and the primer activation

  16. Minority Variants of Drug-Resistant HIV

    Science.gov (United States)

    Gianella, Sara; Richman, Douglas D.

    2010-01-01

    Minor drug-resistant variants exist in every HIV-infected patient. Since these minority variants are usually present at very low levels, they cannot be detected and quantified using conventional genotypic and phenotypic tests. Recently, several assays have been developed to characterize these low-abundance drug-resistant variants in the large genetically complex population present in every HIV-infected individual. The most important issue is, what results generated by these assays can predict clinical or treatment outcomes and might guide patient management in clinical practice. Cutoff-values for the detection of these low-abundance viral variants that predict increased risk of treatment failure should be determined. These thresholds may be specific for each mutation and treatment regimen. In this review we summarize the attributes and limitations of the currently available detection assays and review the existing information about both acquired and transmitted drug resistant minority variants. PMID:20649427

  17. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  18. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  19. Study of Viral Vectors in a Three-dimensional Liver Model Repopulated with the Human Hepatocellular Carcinoma Cell Line HepG2

    Science.gov (United States)

    Hiller, Thomas; Röhrs, Viola; Dehne, Eva-Maria; Wagner, Anke; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2016-01-01

    This protocol describes the generation of a three-dimensional (3D) ex vivo liver model and its application to the study and development of viral vector systems. The model is obtained by repopulating the extracellular matrix of a decellularized rat liver with a human hepatocyte cell line. The model permits studies in a vascularized 3D cell system, replacing potentially harmful experiments with living animals. Another advantage is the humanized nature of the model, which is closer to human physiology than animal models. In this study, we demonstrate the transduction of this liver model with a viral vector derived from adeno-associated viruses (AAV vector). The perfusion circuit that supplies the 3D liver model with media provides an easy means to apply the vector. The system permits monitoring of the major metabolic parameters of the liver. For final analysis, tissue samples can be taken to determine the extent of recellularization by histological techniques. Distribution of the virus vector and expression of the delivered transgene can be analyzed by quantitative PCR (qPCR), Western blotting and immunohistochemistry. Numerous applications of the vector model in basic research and in the development of gene therapeutic applications can be envisioned, including the development of novel antiviral therapeutics, cancer research, and the study of viral vectors and their potential side effects. PMID:27805597

  20. The production of viral vectors designed to express large and difficult to express transgenes within neurons.

    Science.gov (United States)

    Holehonnur, Roopashri; Lella, Srihari K; Ho, Anthony; Luong, Jonathan A; Ploski, Jonathan E

    2015-02-24

    Viral vectors are frequently used to deliver and direct expression of transgenes in a spatially and temporally restricted manner within the nervous system of numerous model organisms. Despite the common use of viral vectors to direct ectopic expression of transgenes within the nervous system, creating high titer viral vectors that are capable of expressing very large transgenes or difficult to express transgenes imposes unique challenges. Here we describe the development of adeno-associated viruses (AAV) and lentiviruses designed to express the large and difficult to express GluN2A or GluN2B subunits of the N-methyl-D-aspartate receptor (NMDA) receptor, specifically within neurons. We created a number of custom designed AAV and lentiviral vectors that were optimized for large transgenes, by minimizing DNA sequences that were not essential, utilizing short promoter sequences of 8 widely used promoters (RSV, EFS, TRE3G, 0.4αCaMKII, 1.3αCaMKII, 0.5Synapsin, 1.1Synapsin and CMV) and utilizing a very short (~75 bps) 3' untranslated sequence. Not surprisingly these promoters differed in their ability to express the GluN2 subunits, however surprisingly we found that the neuron specific synapsin and αCaMKII, promoters were incapable of conferring detectable expression of full length GluN2 subunits and detectable expression could only be achieved from these promoters if the transgene included an intron or if the GluN2 subunit transgenes were truncated to only include the coding regions of the GluN2 transmembrane domains. We determined that viral packaging limit, transgene promoter and the presence of an intron within the transgene were all important factors that contributed to being able to successfully develop viral vectors designed to deliver and express GluN2 transgenes in a neuron specific manner. Because these vectors have been optimized to accommodate large open reading frames and in some cases contain an intron to facilitate expression of difficult to express

  1. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    Science.gov (United States)

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  2. Switches for multiple behavioral states and a viral-based approach to non-invasive whole-brain cargo delivery (Conference Presentation)

    Science.gov (United States)

    Gradinaru, Viviana

    2017-05-01

    Over the past years we have worked on: (1) Viral-based approaches to non-invasive whole-brain cargo delivery: Genetically-encoded tools that can be used to visualize, monitor, and modulate mammalian neurons are revolutionizing neuroscience. These tools are particularly powerful in rodents and invertebrate models where intersectional transgenic strategies are available to restrict their expression to defined cell populations. However, use of genetic tools in non-transgenic animals is often hindered by the lack of vectors capable of safe, efficient, and specific delivery to the desired cellular targets. To begin to address these challenges, we have developed an in vivo Cre-based selection platform (CREATE) for identifying adeno-associated viruses (AAVs) that more efficiently transduce genetically defined cell populations. Our platform's novelty and power arises from the additional selective pressure imparted by a recovery step that amplifies only those capsid variants that have functionally transduced a genetically-defined, Cre-expressing target cell population. The Cre-dependent capsid recovery works within heterogeneous tissue samples without the need for additional steps such as selective capsid recovery approaches that require cell sorting or secondary adenovirus infection. As a first test of the CREATE platform, we selected for viruses that transduced the brain after intravascular delivery and found a novel vector, AAV-PHP.B, that is 40- to 90-fold more efficient at transducing the brain than the current standard, AAV9. AAV-PHP.B transduces most neuronal types and glia across the brain. We also demonstrate here how whole-body tissue clearing can facilitate transduction maps of systemically delivered genes. Since CNS disorders are notoriously challenging due to the restrictive nature of the blood brain barrier our discovery that recombinant vectors can be engineered to overcome this barrier is enabling for the whole field. With the exciting advances in gene

  3. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Science.gov (United States)

    Bosch, Marie K; Nerbonne, Jeanne M; Ornitz, David M

    2014-01-01

    Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  4. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Directory of Open Access Journals (Sweden)

    Marie K Bosch

    Full Text Available Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV, serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES, a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  5. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice

    Directory of Open Access Journals (Sweden)

    Tadashi eIsa

    2013-10-01

    Full Text Available Recently, by using a combination of two viral vectors, we developed a technique for pathway-selective and reversible synaptic transmission blockade, and successfully induced a behavioral deficit of dexterous hand movements in macaque monkeys by affecting a population of spinal interneurons. To explore the capacity of this technique to work in other pathways and species, and to obtain fundamental methodological information, we tried to block the crossed tecto-reticular pathway, which is known to control orienting responses to visual targets, in mice. A neuron-specific retrograde gene transfer vector with the gene encoding enhanced tetanus neurotoxin (eTeNT tagged with enhanced green fluorescent protein (EGFP under the control of a tetracycline responsive element was injected into the left medial pontine reticular formation. 7–17 days later, an adeno-associated viral vector with a highly efficient Tet-ON sequence, rtTAV16, was injected into the right superior colliculus. 5–9 weeks later, the daily administration of doxycycline (Dox was initiated. Visual orienting responses toward the left side were impaired 1 - 4 days after Dox administration. Anti-GFP immunohistochemistry revealed that a number of neurons in the intermediate and deep layers of the right superior colliculus were positively stained, indicating eTeNT expression. After the termination of Dox administration, the anti-GFP staining returned to the baseline level within 28 days. A second round of Dox administration, starting from 28 days after the termination of the first Dox administration, resulted in the reappearance of the behavioral impairment. These findings showed that pathway-selective and reversible blockade of synaptic transmission causes behavioral effects also in rodents, and that the crossed tecto-reticular pathway surely controls visual orienting behaviors.

  6. De novo assembly of highly diverse viral populations

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2012-09-01

    Full Text Available Abstract Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

  7. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  8. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation

    Directory of Open Access Journals (Sweden)

    Shu-Yi Lin

    2017-09-01

    Full Text Available Infectious bronchitis virus (IBV variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints.

  9. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Directory of Open Access Journals (Sweden)

    Sandra J Kuhlman

    2008-04-01

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  10. The formation and modification of chromatin-like structure of human parvovirus B19 regulate viral genome replication and RNA processing.

    Science.gov (United States)

    Xu, Huanzhou; Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Wang, Hanzhong; Guan, Wuxiang

    2017-03-15

    B19 virus (B19V) is a single stranded virus in the genus of Erythroparvovirus in the family of Parvoviridae. One of the limiting steps of B19V infection is the replication of viral genome which affected the alternative processing of its RNA. Minute virus of mice (MVM) and adeno-associated virus (AAV) has been reported to form chromatin-like structure within hours after infection of cells. However, the role of chromatin-like structure is unclear. In the present study, we found that B19V formed chromatin-like structure after 12h when B19V infectious clone was co-transfected with pHelper plasmid to HEK293T cells. Interestingly, the inhibitor of DNA methyl-transferase (5-Aza-2'-deoxycytidine, DAC) inhibited not only the formation of chromatin-like structure, but also the replication of the viral genomic DNA. More importantly, the splicing of the second intron at splice acceptor sites (A2-1, and A2-2) were reduced and polyadenylation at (pA)p increased when transfected HEK293T cells were treated with DAC. Our results showed that the formation and modification of chromatin-like structure are a new layer to regulate B19V gene expression and RNA processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of the efficacy of four viral vectors for transducing hypothalamic magnocellular neurosecretory neurons in the rat supraoptic nucleus.

    Science.gov (United States)

    Doherty, Faye C; Schaack, Jerome B; Sladek, Celia D

    2011-04-30

    Since transgenes were first cloned into recombinant adenoviruses almost 30 years ago, a variety of viral vectors have become important tools in genetic research. Viruses adeptly transport genetic material into eukaryotic cells, and replacing all or part of the viral genome with genes of interest or silencing sequences creates a method of gene expression modulation in which the timing and location of manipulations can be specific. The hypothalamo-neurohypophyseal system (HNS), consisting of the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, regulates fluid balance homeostasis and is highly plastic, yet tightly regulated by extracellular fluid (ECF) osmolality and volume. Its reversible plasticity and physiological relevance make it a good system for studying interactions between gene expression and physiology. Here, four viral vectors were compared for their ability to transduce magnocellular neurosecretory neurons (MNCs) of the SON in adult rats. The vectors included an adenovirus, a lentivirus (HIV) and two serotypes of adeno-associated viruses (AAV5 and AAV2). Though adenovirus and AAV2 vectors have previously been used to transduce SON neurons, HIV and AAV5 have not. All four vectors transduced MNCs, but the AAV vectors were the most effective, transducing large numbers of MNCs, with minimal or no glial transduction. The AAV vectors were injected using a convection enhanced delivery protocol to maximize dispersal through the tissue, resulting in the transduction of neurons throughout the anterior to posterior length of the SON (∼1.5mm). AAV5, but not AAV2, showed some selectivity for SON neurons relative to those in the surrounding hypothalamus. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo.

    Science.gov (United States)

    Lewis, Jo E; Brameld, John M; Hill, Phil; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2015-12-30

    The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Viral Haemorrhagic Septicaemia Virus

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  14. [Emergent viral infections

    NARCIS (Netherlands)

    Galama, J.M.D.

    2001-01-01

    The emergence and re-emergence of viral infections is an ongoing process. Large-scale vaccination programmes led to the eradication or control of some viral infections in the last century, but new viruses are always emerging. Increased travel is leading to a rise in the importation of exotic

  15. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Rowena A Bull

    2011-09-01

    Full Text Available Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral population was conducted in four subjects followed from very early acute infection to resolution of disease outcome. By means of next generation sequencing (NGS and standard cloning/Sanger sequencing, genetic diversity and viral variants were quantified over the course of the infection at frequencies as low as 0.1%. Phylogenetic analysis of reassembled viral variants revealed acute infection was dominated by two sequential bottleneck events, irrespective of subsequent chronicity or clearance. The first bottleneck was associated with transmission, with one to two viral variants successfully establishing infection. The second occurred approximately 100 days post-infection, and was characterized by a decline in viral diversity. In the two subjects who developed chronic infection, this second bottleneck was followed by the emergence of a new viral population, which evolved from the founder variants via a selective sweep with fixation in a small number of mutated sites. The diversity at sites with non-synonymous mutation was higher in predicted cytotoxic T cell epitopes, suggesting immune-driven evolution. These results provide the first detailed analysis of early within-host evolution of HCV, indicating strong selective forces limit viral evolution in the acute phase of infection.

  16. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection.

    Science.gov (United States)

    Bull, Rowena A; Luciani, Fabio; McElroy, Kerensa; Gaudieri, Silvana; Pham, Son T; Chopra, Abha; Cameron, Barbara; Maher, Lisa; Dore, Gregory J; White, Peter A; Lloyd, Andrew R

    2011-09-01

    Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral population was conducted in four subjects followed from very early acute infection to resolution of disease outcome. By means of next generation sequencing (NGS) and standard cloning/Sanger sequencing, genetic diversity and viral variants were quantified over the course of the infection at frequencies as low as 0.1%. Phylogenetic analysis of reassembled viral variants revealed acute infection was dominated by two sequential bottleneck events, irrespective of subsequent chronicity or clearance. The first bottleneck was associated with transmission, with one to two viral variants successfully establishing infection. The second occurred approximately 100 days post-infection, and was characterized by a decline in viral diversity. In the two subjects who developed chronic infection, this second bottleneck was followed by the emergence of a new viral population, which evolved from the founder variants via a selective sweep with fixation in a small number of mutated sites. The diversity at sites with non-synonymous mutation was higher in predicted cytotoxic T cell epitopes, suggesting immune-driven evolution. These results provide the first detailed analysis of early within-host evolution of HCV, indicating strong selective forces limit viral evolution in the acute phase of infection.

  17. Discovering hidden viral piracy.

    Science.gov (United States)

    Kim, Eddo; Kliger, Yossef

    2005-12-01

    Viruses and developers of anti-inflammatory therapies share a common interest in proteins that manipulate the immune response. Large double-stranded DNA viruses acquire host proteins to evade host defense mechanisms. Hence, viral pirated proteins may have a therapeutic potential. Although dozens of viral piracy events have already been identified, we hypothesized that sequence divergence impedes the discovery of many others. We developed a method to assess the number of viral/human homologs and discovered that at least 917 highly diverged homologs are hidden in low-similarity alignment hits that are usually ignored. However, these low-similarity homologs are masked by many false alignment hits. We therefore applied a filtering method to increase the proportion of viral/human homologous proteins. The homologous proteins we found may facilitate functional annotation of viral and human proteins. Furthermore, some of these proteins play a key role in immune modulation and are therefore therapeutic protein candidates.

  18. Hepatitis viral aguda

    OpenAIRE

    Héctor Rubén Hernández Garcés; René F. Espinosa Álvarez

    1998-01-01

    Se realizó una revisión bibliográfica de las hepatitis virales agudas sobre aspectos vinculados a su etiología. Se tuvieron en cuenta además algunos datos epidemiológicos, las formas clínicas más importantes, los exámenes complementarios con especial énfasis en los marcadores virales y el diagnóstico positivoA bibliographical review of acute viral hepatitis was made taking into account those aspects connected with its etiology. Some epidemiological markers, the most important clinical forms, ...

  19. Zoonotic Viral Deseases and Virus Discovery

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel

    of such being conventional PCR, real-time PCR, various multiplexbased systems, liquid phase microarray, and sequencing. Depending on project purpose either Sanger sequencing or second-generation sequencing was used. In one study, samples from bats in Bangladesh were examined as part of a continuous surveillance...... program of wildlife, and with the purpose of preventing the next disease emerging from these animals. Numerous viruses were detected of which many were novel variants, thus reaffirming the notion that attention should be focused at these animals. Near-complete viral genome sequencing was performed...

  20. Viral Gastroenteritis (Stomach Flu)

    Science.gov (United States)

    ... Viral gastroenteritis (stomach flu) Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  1. Hepatitis viral aguda

    Directory of Open Access Journals (Sweden)

    Héctor Rubén Hernández Garcés

    1998-10-01

    Full Text Available Se realizó una revisión bibliográfica de las hepatitis virales agudas sobre aspectos vinculados a su etiología. Se tuvieron en cuenta además algunos datos epidemiológicos, las formas clínicas más importantes, los exámenes complementarios con especial énfasis en los marcadores virales y el diagnóstico positivoA bibliographical review of acute viral hepatitis was made taking into account those aspects connected with its etiology. Some epidemiological markers, the most important clinical forms, and the complementary examinations with special emphasis on the viral markers and the positive diagnosis were also considered

  2. Viral pathogenesis in diagrams

    National Research Council Canada - National Science Library

    Tremblay, Michel; Berthiaume, Laurent; Ackermann, Hans-Wolfgang

    2001-01-01

    .... The 268 diagrams in Viral Pathogenesis in Diagrams were selected from over 800 diagrams of English and French virological literature, including one derived from a famous drawing by Leonardo da Vinci...

  3. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shinohara

    Full Text Available Adeno-associated virus (AAV vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb were obtained by progressively deleting the original 2.0-kb promoter from the 5' end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength and 0.2-kb (70% astrocyte specificity promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity.

  4. Novel Parvovirus and Related Variant in Human Plasma

    Science.gov (United States)

    Fryer, Jacqueline F.; Kapoor, Amit; Minor, Philip D.; Delwart, Eric

    2006-01-01

    We report a novel parvovirus (PARV4) and related variants in pooled human plasma used in the manufacture of plasma-derived medical products. Viral DNA was detected by using highly selective polymerase chain reaction assays; 5% of pools tested positive, and amounts of DNA ranged from 106 copies/mL plasma. PMID:16494735

  5. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  6. Does Viral Marketing really Effective?

    OpenAIRE

    Chien, Ho-shen

    2012-01-01

    Abstract In this article, we examine the effectiveness of viral marketing toward young adults since the majority of Internet users are in this age group. It is also noted that we will only focus on video type of viral messages, which is the most common way to utilized viral marketing for firms. We will discuss how viral video influence consumer behavior in terms of brand images, brand choice, user experience and working memory in this paper. Our results illustrated viral video helps major...

  7. Concepts in viral pathogenesis II

    Energy Technology Data Exchange (ETDEWEB)

    Notkins, A.L.; Oldstone, M.B.A.

    1986-01-01

    This paper contains papers divided among 10 sections. The section titles are: Viral Structure and Function; Viral Constructs; Oncogenes, Transfection, and Differentiation; Viral Tropism and Entry into Cells; Immune Recognition of Viruses; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Plant and Animal Models; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Diseases in Humans; New Trends in Diagnosis and Epidemiology; and Vaccines and Antiviral Therapy.

  8. Viral mechanisms of immune evasion.

    Science.gov (United States)

    Alcami, A; Koszinowski, U H

    2000-09-01

    During the millions of years they have coexisted with their hosts, viruses have learned how to manipulate host immune control mechanisms. Viral gene functions provide an overview of many relevant principles in cell biology and immunology. Our knowledge of viral gene functions must be integrated into virus-host interaction networks to understand viral pathogenesis, and could lead to new anti-viral strategies and the ability to exploit viral functions as tools in medicine.

  9. Effect of oligonucleotide primers in determining viral variability within hosts

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2004-12-01

    Full Text Available Abstract Background Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. Results To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient. Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Conclusions Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  10. Effect of oligonucleotide primers in determining viral variability within hosts.

    Science.gov (United States)

    Bracho, Maria Alma; García-Robles, Inmaculada; Jiménez, Nuria; Torres-Puente, Manuela; Moya, Andrés; González-Candelas, Fernando

    2004-12-09

    Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR) based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV) populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient). Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  11. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  12. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing.

    Directory of Open Access Journals (Sweden)

    Christopher A. de Solis

    2016-08-01

    Full Text Available The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV. Specifically, we developed an inducible gRNA (gRNAi AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as one day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e. Cas9 mouse, CRISPRi, etc., and therefore it likely can be used to render these systems inducible as well.

  13. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    Science.gov (United States)

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-08-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage.

    Science.gov (United States)

    Gao, Yang; Geng, Liyi; Orson, Frank; Kinsey, Berma; Kosten, Thomas R; Shen, Xiaoyun; Brimijoin, Stephen

    2013-03-25

    In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: (1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer; (2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100-120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  16. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  17. Viral Marketing and Academic Institution

    OpenAIRE

    Koktová, Silvie

    2010-01-01

    This bachelor thesis examines modern and constantly developing kind of internet marketing -- the so called viral marketing. It deals with its origin, principle, process, advantages and disadvantages, types of viral marketing and presumptions of creating successful viral campaign. The aim of the theoretical part is especially the understanding of viral marketing as one of the effective instruments of contemporary marketing. In this theoretical part the thesis also elaborates a marketing school...

  18. Dengue viral infections

    OpenAIRE

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing...

  19. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  20. Hepatitis viral C

    Directory of Open Access Journals (Sweden)

    Pedro A. Poma

    2011-12-01

    Full Text Available El virus de la hepatitis C se trasmite por contacto directo con la sangre de la persona infectada. La mayoría de los pacientes no presenta síntomas en la fase aguda o crónica de la hepatitis. Dos a tres décadas después, algunos pacientes progresan a la cirrosis compensada, que también es asintomática. En un examen de sangre, los anticuerpos se presentan como una sorpresa, porque no se les relaciona con un episodio de contagio. Un embarazo ocasiona la posibilidad de efectos negativos de la infección en la madre o el niño. El tratamiento actual no ofrece la certeza de cura, dependiendo del genotipo viral, y presenta efectos adversos que pueden ser severos. La cirrosis descompensada causa la mayoría de muertes relacionadas con esta infección; algunos de estos pacientes desarrollan carcinoma hepatocelular. La reproducción viral causa partículas virales diferentes del virus original, característica que ha impedido el desarrollo de una vacuna. Actualmente, la prevención consiste en evitar el contacto con sangre infectada. Este artículo revisa la infección con el virus de la hepatitis C, incluyendo los últimos progresos en tratamiento. Es necesario educar a la comunidad acerca de los efectos de este virus en la salud pública.

  1. [History of viral hepatitis].

    Science.gov (United States)

    Fonseca, José Carlos Ferraz da

    2010-01-01

    The history of viral hepatitis goes back thousands of years and is a fascinating one. When humans were first infected by such agents, a natural repetitive cycle began, with the capacity to infect billions of humans, thus decimating the population and causing sequelae in thousands of lives. This article reviews the available scientific information on the history of viral hepatitis. All the information was obtained through extensive bibliographic review, including original and review articles and consultations on the internet. There are reports on outbreaks of jaundice epidemics in China 5,000 years ago and in Babylon more than 2,500 years ago. The catastrophic history of great jaundice epidemics and pandemics is well known and generally associated with major wars. In the American Civil War, 40,000 cases occurred among Union troops. In 1885, an outbreak of catarrhal jaundice affected 191 workers at the Bremen shipyard (Germany) after vaccination against smallpox. In 1942, 28,585 soldiers became infected with hepatitis after inoculation with the yellow fever vaccine. The number of cases of hepatitis during the Second World War was estimated to be 16 million. Only in the twentieth century were the main agents causing viral hepatitis identified. The hepatitis B virus was the first to be discovered. In this paper, through reviewing the history of major epidemics caused by hepatitis viruses and the history of discovery of these agents, singular peculiarities were revealed. Examples of this include the accidental or chance discovery of the hepatitis B and D viruses.

  2. Neutralization-resistant variants of infectious hematopoietic necrosis virus have altered virulence and tissue tropism

    Science.gov (United States)

    Kim, C.H.; Winton, J.R.; Leong, J.C.

    1994-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes an acute disease in salmon and trout. In this study, a correlation between changes in tissue tropism and specific changes in the virus genome appeared to be made by examining four IHNV neutralization-resistant variants (RB-1, RB-2, RB-3, and RB-4) that had been selected with the glycoprotein (G)-specific monoclonal antibody RB/B5. These variants were compared with the parental strain (RB-76) for their virulence and pathogenicity in rainbow trout after waterborne challenge. Variants RB-2, RB-3, and RB-4 were only slightly attenuated and showed distributions of viral antigen in the livers and hematopoietic tissues of infected fish similar to those of the parental strain. Variant RB-1, however, was highly attenuated and the tissue distribution of viral antigen in RB-1-infected fish was markedly different, with more viral antigen in brain tissue. The sequences of the G genes of all four variants and RB-76 were determined. No significant changes were found for the slightly attenuated variants, but RB-1 G had two changes at amino acids 78 and 218 that dramatically altered its predicted secondary structure. These changes are thought to be responsible for the altered tissue tropism of the virus. Thus, IHNV G, like that of rabies virus and vesicular stomatitis virus, plays an integral part in the pathogenesis of viral infection.

  3. Interdisciplinary Analysis of HIV-Specific CD8(+) T Cell Responses against Variant Epitopes Reveals Restricted TCR Promiscuity

    DEFF Research Database (Denmark)

    Hoof, Ilka; Perez, C.L.; Buggert, M.

    2010-01-01

    HIV-1 specific CTL responses play a key role in limiting viral replication. CTL responses are sensitive to viral escape mutations, which influence recognition of the virus. Although CTLs have been shown to recognize epitope variants, the extent of this cross-reactivity has not been quantitatively...

  4. Agentes anti-tumorales basados en la proteína viral A238L.

    OpenAIRE

    Fresno, Manuel; Revilla Novella, Yolanda; Granja, Aitor G.

    2007-01-01

    Agentes anti-tumorales basados en la proteína viral A238L. Se describe el empleo de un producto seleccionado entre (i) una proteína que comprende la secuencia de aminoácidos mostrada en la SEQ ID NO: 1, relacionada con la proteína viral A238L, o una variante o fragmento funcionalmente equivalente de la misma; (ii) un polinucleótido que codifica dicha proteína, variante o fragmento, (iii) una construcción génica que comprende dicho polinucleótido, (iv) un vector que ...

  5. Viral hepatitis in women of reproductive age

    Directory of Open Access Journals (Sweden)

    I.A. Zaytsev

    2017-04-01

    Full Text Available Annually in Ukraine, about 17 thousands of newborns are at risk of vertical infection with hepatitis B and C. Identification of infected women at the stage of family planning is the best way to prevent infection in newborns, and therefore it must be performed strictly in accordance with established norms. In case of detection of hepatitis, further tactics depend on the variant of the virus: in case of hepatitis C, pre-pregnancy treatment is preferable. In case of hepatitis B — pregnancy with subsequent simultaneous vaccination of the newborn. Antiviral therapy is possible in women with high viral load to prevent intrauterine infection. Similar tactics should be followed in case of in vitro fertilisation too. The text of the lecture is illustrated by clinical examples. The lecture is intended for infectious disease physicians and obstetrician-gynecologists.

  6. [Acute hemorrhagic viral conjunctivitis].

    Science.gov (United States)

    Haicl, P; Vanista, J; Danes, L

    1992-10-01

    Two cases of acute hemorrhagic conjunctivitis are described, in which the enterovirus Coxsackie 24 was found by serological examination to be the etiological agent. The virus was important from Nigeria. The patients suffered by the acute hemorrhagic keratoconjuntivitis with transient iritic irritation without the systemic symptoms. Since now this disease with serological verification was not diagnosed in our country. The question of the viral hemorrhagic conjunctivitis and their treatment is discussed. The necessity of virological investigation in inflammations of the anterior segment is stressed.

  7. Complement and Viral Pathogenesis

    Science.gov (United States)

    Stoermer, Kristina A.; Morrison, Thomas E.

    2011-01-01

    The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection. PMID:21292294

  8. Dengue viral infections

    OpenAIRE

    Gurugama Padmalal; Garg Pankaj; Perera Jennifer; Wijewickrama Ananda; Seneviratne Suranjith

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host...

  9. Hemoglobin Variants in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Raymond A.

    1965-04-22

    Variability among mammalian hemoglobins was observed many years ago (35). The chemical basis for differences among hemoglobins from different species of mammals has been studied by several investigators (5, 11, 18, 48). As well as interspecies differences, hemoglobin variants are frequently found within a species of mammals (2, 3, 7, 16) The inheritance of these intraspecies variants can be studied, and pedigrees indicate that the type of hemoglobin synthesized in an individual is genetically controlled (20). Several of the variant human hemoglobins are f'unctionally deficient (7, 16). Such hemoglobin anomalies are of basic interest to man because of the vital role of hemoglobin for transporting oxygen to all tissues of the body.

  10. Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-α Resistance.

    Directory of Open Access Journals (Sweden)

    Martin J Deymier

    2015-09-01

    Full Text Available Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF, during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC including TF variants and multiple non-transmitted (NT HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC and monocyte-derived dendritic cells (MDDC. In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential.

  11. Viral marketing as epidemiological model

    OpenAIRE

    Rodrigues, Helena Sofia; Fonseca, Manuel José

    2015-01-01

    In epidemiology, an epidemic is defined as the spread of an infectious disease to a large number of people in a given population within a short period of time. In the marketing context, a message is viral when it is broadly sent and received by the target market through person-to-person transmission. This specific marketing communication strategy is commonly referred as viral marketing. Due to this similarity between an epidemic and the viral marketing process and because the understanding of...

  12. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  13. Gag sequence variation in a human immunodeficiency virus type 1 transmission cluster influences viral replication fitness

    NARCIS (Netherlands)

    Gijsbers, Esther F.; van Nuenen, Ad C.; Schuitemaker, Hanneke; Kootstra, Neeltje A.

    2013-01-01

    Three men from a proven homosexual human immunodeficiency virus type 1 (HIV-1) transmission cluster showed large variation in their clinical course of infection. To evaluate the effect of evolution of the same viral variant in these three patients, we analysed sequence variation in the capsid

  14. Variants of glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  15. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  16. Drug Use and Viral Infections (HIV, Hepatitis)

    Science.gov (United States)

    ... DrugFacts » Drug Use and Viral Infections (HIV, Hepatitis) Drug Use and Viral Infections (HIV, Hepatitis) Email Facebook Twitter Revised April 2018 What's the relationship between drug use and viral infections? People who engage in ...

  17. Surveillance for Viral Hepatitis - United States, 2014

    Science.gov (United States)

    ... and Programs Resource Center Anonymous Feedback Viral Hepatitis Surveillance for Viral Hepatitis – United States, 2014 Recommend on ... demographic characteristics and laboratory tests – Enhanced Viral Hepatitis Surveillance Sites*, 2014 Category MA No. % MI No. % NYS† ...

  18. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    G. A. Borisov

    2015-01-01

    unresponsiveness” immunotype (40,5%, as well as humoral immunodeficiency (24,9% and adaptive immune reaction (24,5%. A group of patients with chronic viral hepatitis B and C is allocated separately in which more than 10% of the detected adaptive immunity overreaction that is probably due to the development of chronic hepatitis. These immunotypes can be regarded as different pathogenetic variants of the course of acute and chronic viral infections. Healthy people often had unresponsiveness or immunodeficiency immunotypes, that is their immune system is out of activation. Stratification of patients with viral infections by immunotypes will increase the effectiveness of treatment and implement personalized approaches to diagnosis and treatment of functional disorders of the immune system.

  19. Encefalitis virales en la infancia

    OpenAIRE

    Monserrat Téllez de Meneses; Miguel T. Vila; Pedro Barbero Aguirre; José F. Montoya

    2013-01-01

    La encefalitis viral es una enfermedad grave que implica el compromiso inflamatorio del parénquima cerebral. Las infecciones virales del SNC ocurren con frecuencia como complicación de infecciones virales sistémicas. Más de 100 virus están implicados como agentes causales, entre los cuales el virus Herpes simplex tipo I, es el agente causal más frecuente de encefalitis no epidémica en todos los grupos poblacionales del mundo; es el responsable de los casos más graves en todas las edades. Much...

  20. Enfermedades virales emergentes y reemergentes

    OpenAIRE

    Jorge Eliécer Ossa Londoño; Ana Isabel Toro Montoya

    1996-01-01

    Los virus no son una excepción al principio de que toda forma de vida de hoyes el producto de la evolución de información gen ética preexistente. Tradicionalmente se ha reconocido que ta expresión clínica de las enfermedades virales cambia con el tiempo; molecularmente se ha demostrado que esos cambios fenotípicos son el producto de variaciones en el genoma viral. La tasa de cambio
    gen ético y fenotípico no es la misma en todos los agentes virales y ello está determinado, principal...

  1. Neuroanatomy goes viral!

    Science.gov (United States)

    Nassi, Jonathan J.; Cepko, Constance L.; Born, Richard T.; Beier, Kevin T.

    2015-01-01

    The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist’s toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and

  2. Neuroanatomy goes viral!

    Directory of Open Access Journals (Sweden)

    Jonathan eNassi

    2015-07-01

    Full Text Available The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic

  3. Cytokine determinants of viral tropism

    Science.gov (United States)

    McFadden, Grant; Mohamed, Mohamed R.; Rahman, Masmudur M.; Bartee, Eric

    2015-01-01

    The specificity of a given virus for a ceil type, tissue or species — collectively known as viral tropism — is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens. PMID:19696766

  4. Viral Evolution Core | FNLCR Staging

    Science.gov (United States)

    Brandon F. Keele, Ph.D. PI/Senior Principal Investigator, Retroviral Evolution Section Head, Viral Evolution Core Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research Frederick, MD 21702-1201 Tel: 301-846-173

  5. Genotyping of CCR5 gene, CCR2b and SDF1 variants related to HIV-1 infection in Gabonese subjects.

    Science.gov (United States)

    Mombo, Landry Erik; Bisseye, Cyrille; Mickala, Patrick; Ossari, Simon; Makuwa, Maria

    2015-01-01

    Given the magnitude of the HIV epidemic infection, many viral and human factors were analyzed, and the most decisive was the variant CCR5-Δ32. The presence of a low HIV prevalence (1.8%) in Gabon in the 1990s, compared to neighboring countries, represents a paradox that led us to search for viral and human genetic variants in this country. In this study, only variants of coreceptors and chemokines were investigated. Variants of the coding region of the CCR5 gene were analyzed by denaturing gradient gel electrophoresis, and then variants of SDF1 and CCR2b were determined by polymerase chain reaction-restriction fragment length polymorphism. Four rare variants of the CCR5 coreceptor were found, while CCR5-Δ32 and CCR5m303 variants were not found. No association with CCR2b-V64I (17%) and SDF1-3'A (2%) variants was determined in relation to HIV-1 infection in Gabonese patients. The paradox of HIV seroprevalence in Gabon, which ended in the 2000s, was not caused by human genetic variants but rather by environmental factors. © 2015 S. Karger AG, Basel.

  6. Microbiological diagnostics of viral hepatitis

    OpenAIRE

    HASDEMİR, Ufuk

    2016-01-01

    Viral hepatitis is an infection that primarily affects the liverbut may also have systemic clinical manifestations. The vastmajority of viral hepatitis are caused by one of five hepatotropicviruses: hepatitis A virus (HAV), hepatitis B virus (HBV),hepatitis C virus (HCV), hepatitis D (delta) virus (HDV), andhepatitis E virus (HEV) (Table I) [1]. HBV, HCV, and HDValso cause chronic hepatitis, whereas HAV does not. HEVcauses acute hepatitis in normal hosts but can cause protractedand chronic he...

  7. Treatment of Acute Viral Bronchiolitis

    OpenAIRE

    Eber, Ernst

    2011-01-01

    Acute viral bronchiolitis represents the most common lower respiratory tract infection in infants and young children and is associated with substantial morbidity and mortality. Respiratory syncytial virus is the most frequently identified virus, but many other viruses may also cause acute bronchiolitis. There is no common definition of acute viral bronchiolitis used internationally, and this may explain part of the confusion in the literature. Most children with bronchiolitis have a self limi...

  8. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.

    Science.gov (United States)

    Dossat, Amanda M; Jourdi, Hussam; Wright, Katherine N; Strong, Caroline E; Sarkar, Ambalika; Kabbaj, Mohamed

    2017-01-06

    In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Characterization of antigenic variants of hepatitis C virus in immune evasion.

    Science.gov (United States)

    Wang, Jane H; Pianko, Matthew J; Ke, Xiaogang; Herskovic, Alex; Hershow, Ronald; Cotler, Scott J; Chen, Weijin; Chen, Zheng W; Rong, Lijun

    2011-07-29

    Antigenic variation is an effective way by which viruses evade host immune defense leading to viral persistence. Little is known about the inhibitory mechanisms of viral variants on CD4 T cell functions. Using sythetic peptides of a HLA-DRB1*15-restricted CD4 epitope derived from the non-structural (NS) 3 protein of hepatitis C virus (HCV) and its antigenic variants and the peripheral blood mononuclear cells (PBMC) from six HLA-DRB1*15-positive patients chronically infected with HCV and 3 healthy subjects, the in vitro immune responses and the phenotypes of CD4+CD25+ cells of chronic HCV infection were investigated. The variants resulting from single or double amino acid substitutions at the center of the core region of the Th1 peptide not only induce failed T cell activation but also simultaneously up-regulate inhibitory IL-10, CD25-TGF-β+ Th3 and CD4+IL-10+ Tr1 cells. In contrast, other variants promote differentiation of CD25+TGF-β+ Th3 suppressors that attenuate T cell proliferation. Naturally occuring HCV antigenic mutants of a CD4 epitope can shift a protective peripheral Th1 immune response into an inhibitory Th3 and/or Tr1 response. The modulation of antigenic variants on CD4 response is efficient and extensive, and is likely critical in viral persistence in HCV infection.

  10. Characterization of antigenic variants of hepatitis C virus in immune evasion

    Directory of Open Access Journals (Sweden)

    Hershow Ronald

    2011-07-01

    Full Text Available Abstract Background Antigenic variation is an effective way by which viruses evade host immune defense leading to viral persistence. Little is known about the inhibitory mechanisms of viral variants on CD4 T cell functions. Results Using sythetic peptides of a HLA-DRB1*15-restricted CD4 epitope derived from the non-structural (NS 3 protein of hepatitis C virus (HCV and its antigenic variants and the peripheral blood mononuclear cells (PBMC from six HLA-DRB1*15-positive patients chronically infected with HCV and 3 healthy subjects, the in vitro immune responses and the phenotypes of CD4+CD25+ cells of chronic HCV infection were investigated. The variants resulting from single or double amino acid substitutions at the center of the core region of the Th1 peptide not only induce failed T cell activation but also simultaneously up-regulate inhibitory IL-10, CD25-TGF-β+ Th3 and CD4+IL-10+ Tr1 cells. In contrast, other variants promote differentiation of CD25+TGF-β+ Th3 suppressors that attenuate T cell proliferation. Conclusions Naturally occuring HCV antigenic mutants of a CD4 epitope can shift a protective peripheral Th1 immune response into an inhibitory Th3 and/or Tr1 response. The modulation of antigenic variants on CD4 response is efficient and extensive, and is likely critical in viral persistence in HCV infection.

  11. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Kozlitina, Julia; Smagris, Eriks; Stender, Stefan

    2014-01-01

    -density lipoprotein-cholesterol (LDL-C), triglycerides and alkaline phosphatase in 3 independent populations (n > 80,000). When recombinant protein was expressed in cultured hepatocytes, 50% less Glu167Lys TM6SF2 protein was produced relative to wild-type TM6SF2. Adeno-associated virus-mediated short hairpin RNA...

  12. Cellular sensing of viral DNA and viral evasion mechanisms.

    Science.gov (United States)

    Orzalli, Megan H; Knipe, David M

    2014-01-01

    Mammalian cells detect foreign DNA introduced as free DNA or as a result of microbial infection, leading to the induction of innate immune responses that block microbial replication and the activation of mechanisms that epigenetically silence the genes encoded by the foreign DNA. A number of DNA sensors localized to a variety of sites within the cell have been identified, and this review focuses on the mechanisms that detect viral DNA and how the resulting responses affect viral infections. Viruses have evolved mechanisms that inhibit these host sensors and signaling pathways, and the study of these antagonistic viral strategies has provided insight into the mechanisms of these host responses. The field of cellular sensing of foreign DNA is in its infancy, but our currently limited knowledge has raised a number of important questions for study.

  13. [Pathology and viral metagenomics, a recent history].

    Science.gov (United States)

    Bernardo, Pauline; Albina, Emmanuel; Eloit, Marc; Roumagnac, Philippe

    2013-05-01

    Human, animal and plant viral diseases have greatly benefited from recent metagenomics developments. Viral metagenomics is a culture-independent approach used to investigate the complete viral genetic populations of a sample. During the last decade, metagenomics concepts and techniques that were first used by ecologists progressively spread into the scientific field of viral pathology. The sample, which was first for ecologists a fraction of ecosystem, became for pathologists an organism that hosts millions of microbes and viruses. This new approach, providing without a priori high resolution qualitative and quantitative data on the viral diversity, is now revolutionizing the way pathologists decipher viral diseases. This review describes the very last improvements of the high throughput next generation sequencing methods and discusses the applications of viral metagenomics in viral pathology, including discovery of novel viruses, viral surveillance and diagnostic, large-scale molecular epidemiology, and viral evolution. © 2013 médecine/sciences – Inserm.

  14. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  15. Enfermedades virales emergentes y reemergentes

    Directory of Open Access Journals (Sweden)

    Jorge Eliécer Ossa Londoño

    1996-03-01

    Full Text Available Los virus no son una excepción al principio de que toda forma de vida de hoyes el producto de la evolución de información gen ética preexistente. Tradicionalmente se ha reconocido que ta expresión clínica de las enfermedades virales cambia con el tiempo; molecularmente se ha demostrado que esos cambios fenotípicos son el producto de variaciones en el genoma viral. La tasa de cambio
    gen ético y fenotípico no es la misma en todos los agentes virales y ello está determinado, principalmente, por factores intrínsecos del virus, como la naturaleza de su ácido nucleico, y por la longevidad
    y tasa reproductiva del huésped.

  16. Competitive selection in vivo by a cell for one variant over another: implications for RNA virus quasispecies in vivo.

    OpenAIRE

    Dockter, J; Evans, C F; Tishon, A; Oldstone, M B

    1996-01-01

    Infidelity of genome applications of RNA viruses leads to the generation of viral quasispecies both in vitro and in vivo. However, the biological significance of such generated variants in vivo is largely unknown and controversial. To study this issue, we continued our evaluation of the tropism of a lymphocytic choriomeningitis virus (LCMV) variant termed clone 13 with its parental virus clonal pool ARM 53b (wild-type parent) for neuronal cells in vivo. Earlier in vivo and in vitro studies no...

  17. Variant (Swine Origin) Influenza Viruses in Humans

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Other Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  18. Non-Viral Deoxyribonucleoside Kinases

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang

    2015-01-01

    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  19. Viral Infection and Hepatocellular Carcinoma

    NARCIS (Netherlands)

    J. Li (Juan)

    2017-01-01

    markdownabstractMuch of liver pathology is related to infection with HBV and HCV and it is important to define factors associated with clinical behavior of disease following infection with these viruses. Thus in this thesis I first focus on the natural history of chronic viral diseases associated

  20. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  1. Mast cells in viral infections

    Directory of Open Access Journals (Sweden)

    Piotr Witczak

    2012-04-01

    Full Text Available  There are some premises suggesting that mast cells are involved in the mechanisms of anti-virus defense and in viral disease pathomechanisms. Mast cells are particularly numerous at the portals of infections and thus may have immediate and easy contact with the external environment and invading pathogens. These cells express receptors responsible for recognition of virus-derived PAMP molecules, mainly Toll-like receptors (TLR3, TLR7/8 and TLR9, but also RIG-I-like and NOD-like molecules. Furthermore, mast cells generate various mediators, cytokines and chemokines which modulate the intensity of inflammation and regulate the course of innate and adaptive anti-viral immunity. Indirect evidence for the role of mast cells in viral infections is also provided by clinical observations and results of animal studies. Currently, more and more data indicate that mast cells can be infected by some viruses (dengue virus, adenoviruses, hantaviruses, cytomegaloviruses, reoviruses, HIV-1 virus. It is also demonstrated that mast cells can release pre formed mediators as well as synthesize de novo eicosanoids in response to stimulation by viruses. Several data indicate that virus-stimulated mast cells secrete cytokines and chemokines, including interferons as well as chemokines with a key role in NK and Tc lymphocyte influx. Moreover, some information indicates that mast cell stimulation via TLR3, TLR7/8 and TLR9 can affect their adhesion to extracellular matrix proteins and chemotaxis, and influence expression of some membrane molecules. Critical analysis of current data leads to the conclusion that it is not yet possible to make definitive statements about the role of mast cells in innate and acquired defense mechanisms developing in the course of viral infection and/or pathomechanisms of viral diseases.

  2. Viral and Cellular Components of AAV2 Replication Compartments

    Science.gov (United States)

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  3. Variants of beta-glucosidases

    Science.gov (United States)

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2014-10-07

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  4. Variants of beta-glucosidase

    Science.gov (United States)

    Fidantsef, Ana [Davis, CA; Lamsa, Michael [Davis, CA; Gorre-Clancy, Brian [Elk Grove, CA

    2009-12-29

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  5. Viral delivery of shRNA to amygdala neurons leads to neurotoxicity and deficits in Pavlovian fear conditioning.

    Science.gov (United States)

    de Solis, Christopher A; Holehonnur, Roopashri; Banerjee, Anwesha; Luong, Jonathan A; Lella, Srihari K; Ho, Anthony; Pahlavan, Bahram; Ploski, Jonathan E

    2015-10-01

    The use of viral vector technology to deliver short hairpin RNAs (shRNAs) to cells of the nervous system of many model organisms has been widely utilized by neuroscientists to study the influence of genes on behavior. However, there have been numerous reports that delivering shRNAs to the nervous system can lead to neurotoxicity. Here we report the results of a series of experiments where adeno-associated viruses (AAV), that were engineered to express shRNAs designed to target known plasticity associated genes (i.e. Arc, Egr1 and GluN2A) or control shRNAs that were designed not to target any rat gene product for depletion, were delivered to the rat basal and lateral nuclei of the amygdala (BLA), and auditory Pavlovian fear conditioning was examined. In our first set of experiments we found that animals that received AAV (3.16E13-1E13 GC/mL; 1 μl/side), designed to knockdown Arc (shArc), or control shRNAs targeting either luciferase (shLuc), or nothing (shCntrl), exhibited impaired fear conditioning compared to animals that received viruses that did not express shRNAs. Notably, animals that received shArc did not exhibit differences in fear conditioning compared to animals that received control shRNAs despite gene knockdown of Arc. Viruses designed to harbor shRNAs did not induce obvious morphological changes to the cells/tissue of the BLA at any dose of virus tested, but at the highest dose of shRNA virus examined (3.16E13 GC/mL; 1 μl/side), a significant increase in microglia activation occurred as measured by an increase in IBA1 immunoreactivity. In our final set of experiments we infused viruses into the BLA at a titer of (1.60E+12 GC/mL; 1 μl/side), designed to express shArc, shLuc, shCntrl or shRNAs designed to target Egr1 (shEgr1), or GluN2A (shGluN2A), or no shRNA, and found that all groups exhibited impaired fear conditioning compared to the group which received a virus that did not express an shRNA. The shEgr1 and shGluN2A groups exhibited gene

  6. Attenuation of Dengue Virus Infection by Adeno-Associated Virus-Mediated siRNA Delivery

    Science.gov (United States)

    2004-08-09

    and effective prophylaxis or treatment for dengue virus (DEN) infection, a category A mosquito - borne human pathogen, is a critical global priority...through Aedes aegypti mosquito bites, and resident skin DCs are regarded as the targets of DEN infection [12]. DCs are thought to be 10-fold more per...do not induce production of neutralizing antibodies that could reduce transgene function. They possess a broad-range of tissue tropism and the

  7. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

    Czech Academy of Sciences Publication Activity Database

    Tadokoro, T.; Miyanohara, A.; Navarro, M.; Kamizato, K.; Juhás, Štefan; Juhásová, Jana; Maršala, S.; Platoshyn, O.; Curtis, E.; Gabel, B.; Ciacci, J. D.; Lukáčová, N.; Bimbová, K.; Maršala, M.

    2017-01-01

    Roč. 125, č. 13 (2017), č. článku e55770. ISSN 1940-087X R&D Projects: GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 Keywords : AAV9 * adult mouse Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 1.232, year: 2016

  8. Viral O-GalNAc peptide epitopes

    DEFF Research Database (Denmark)

    Olofsson, Sigvard; Blixt, Klas Ola; Bergström, Tomas

    2016-01-01

    meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies......Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted...... owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have...

  9. Classification of capped tubular viral particles in the family of Papovaviridae

    Science.gov (United States)

    Keef, T.; Taormina, A.; Twarock, R.

    2006-04-01

    A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Viral capsids are usually spherical, and for a significant number of viruses they exhibit overall icosahedral symmetry. The corresponding surface lattices, that encode the locations of the capsid proteins and intersubunit bonds, can be modelled by viral tiling theory. It has been shown in vitro that under a variation of the experimental boundary conditions, such as the pH value and salt concentration, tubular particles may appear instead of, or in addition to, spherical ones. In order to develop models that describe the simultaneous assembly of both spherical and tubular variants, and hence study the possibility of triggering tubular malformations as a means of interference with the replication mechanism, viral tiling theory has to be extended to include tubular lattices with end caps. We focus here on the case of Papovaviridae, which play a distinguished role from the viral structural point of view as they correspond to all pentamer lattices, i.e. lattices formed from clusters of five protein subunits throughout. These results pave the way for a generalization of recently developed assembly models.

  10. Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding.

    Science.gov (United States)

    Rainwater, Stephanie M J; Wu, Xueling; Nduati, Ruth; Nedellec, Rebecca; Mosier, Donald; John-Stewart, Grace; Mbori-Ngacha, Dorothy; Overbaugh, Julie

    2007-03-01

    Previous studies of HIV-1 variants transmitted from mother-to-infant have focused primarily on computational analyses of partial envelope gene sequences, rather than analyses of functional envelope variants. There are very few examples of well-characterized functional envelope clones from mother-infant pairs, especially from envelope variants representing the most prevalent subtypes worldwide. To address this, we amplified the envelope variants present in 4 mother-infant transmission pairs, all of whom were infected with subtype A and three of whom presumably transmitted HIV-1 during the breastfeeding period. Functional envelope clones were constructed, either encoding full-length envelope sequences from the mother and baby or by making chimeric envelope clones in a common backbone sequence. The infant envelope sequences were genetically homogeneous compared to the maternal viruses, and pseudoviruses bearing these envelopes all used CCR5 as a coreceptor. The infant viruses were generally resistant to neutralization by maternal antibodies present near the time of transmission. There were no notable differences in sensitivity of the mother and infant envelope variants to neutralization by heterologous plasma or monoclonal antibodies 2G12 and b12, or to inhibition by sCD4, PSC-RANTES or TAK779. This collection of viral envelopes, which can be used for making pseudotyped viruses, may be useful for examining the efficacy of interventions to block mother-infant transmission, including sera from vaccine candidates, purified antibodies under consideration for passive immunization and viral entry inhibitors.

  11. Viral commercials: the consumer as marketeer

    NARCIS (Netherlands)

    Ketelaar, P.E.; Lucassen, P.; Kregting, G.H.J.

    2010-01-01

    Research into the reasons why consumers pass along viral commercials: their motives, the content characteristics of viral commercials and the medium context in which viral commercials appear. Based on the uses and gratifications perspective this study has determined which motives of consumers,

  12. Prospects for new viral vaccines.

    Science.gov (United States)

    Marmion, B P

    1980-08-11

    Animal virology has made outstanding contributions to preventive medicine by the development of vaccines for the control of infectious disease in man and animals. Cost-benefit analysis indicates substantial savings in health care costs from the control of diseases such as smallpox, poliomyelitis, yellow fever and measels. Areas for further development include vaccines for influenza (living, attenuated virus), the herpes group (varicella: cytomegalovirus), respiratory syncytial virus, rotavirus and hepatitis A, B, and non A/non B. The general options for vaccine formulation are discussed with particular emphasis on approaches with the use of viral genetics to 'tailor make' vaccine viruses with defined growth potential in laboratory systems, low pathogenicity, and defined antigens. Current progress with the development of an inactivated hepatitis B vaccine is reviewed as a case study in vaccine development. The impact of recent experiments in cloning hepatitis B virus DNA in E. coli on the production of a purified viral polypeptide vaccine is assessed.

  13. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  14. Viral diseases and human evolution.

    Science.gov (United States)

    Leal, E de S; Zanotto, P M

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effects on human progress. Recently emerged diseases causing massive pandemics (e.g., HIV-1 and HCV, dengue, etc.) are becoming formidable challenges, which may have a direct impact on the fate of our species.

  15. Viral diseases and human evolution

    OpenAIRE

    Leal, Elcio de Souza [UNIFESP; Zanotto, Paolo Marinho de Andrade [UNIFESP

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish l...

  16. Viral exanthems in the tropics.

    Science.gov (United States)

    Carneiro, Sueli Coelho da Silva; Cestari, Tania; Allen, Samuel H; Ramos e-Silva, Marcia

    2007-01-01

    Viral exanthems are a common problem in tropical regions, particularly affecting children. Most exanthems are transient and harmless, but some are potentially very dangerous. Pregnant women and malnourished or immunocompromised infants carry the greatest risk of adverse outcome. In this article, parvovirus B19; dengue and yellow fever; West Nile, Barmah Forest, Marburg, and Ebola viruses, and human herpesviruses; asymmetric periflexural exanthema of childhood; measles; rubella; enteroviruses; Lassa fever; and South American hemorrhagic fevers will be discussed.

  17. Treatment of acute viral bronchiolitis.

    Science.gov (United States)

    Eber, Ernst

    2011-01-01

    Acute viral bronchiolitis represents the most common lower respiratory tract infection in infants and young children and is associated with substantial morbidity and mortality. Respiratory syncytial virus is the most frequently identified virus, but many other viruses may also cause acute bronchiolitis. There is no common definition of acute viral bronchiolitis used internationally, and this may explain part of the confusion in the literature. Most children with bronchiolitis have a self limiting mild disease and can be safely managed at home with careful attention to feeding and respiratory status. Criteria for referral and admission vary between hospitals as do clinical practice in the management of acute viral bronchiolitis, and there is confusion and lack of evidence over the best treatment for this condition. Supportive care, including administration of oxygen and fluids, is the cornerstone of current treatment. The majority of infants and children with bronchiolitis do not require specific measures. Bronchodilators should not be routinely used in the management of acute viral bronchiolitis, but may be effective in some patients. Most of the commonly used management modalities have not been shown to have a clear beneficial effect on the course of the disease. For example, inhaled and systemic corticosteroids, leukotriene receptor antagonists, immunoglobulins and monoclonal antibodies, antibiotics, antiviral therapy, and chest physiotherapy should not be used routinely in the management of bronchiolitis. The potential effect of hypertonic saline on the course of the acute disease is promising, but further studies are required. In critically ill children with bronchiolitis, today there is little justification for the use of surfactant and heliox. Nasal continuous positive airway pressure may be beneficial in children with severe bronchiolitis but a large trial is needed to determine its value. Finally, very little is known on the effect of the various

  18. A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J.

    Science.gov (United States)

    Wang, Xiaoyu; Zhou, Defang; Wang, Guihua; Huang, Libo; Zheng, Qiankun; Li, Chengui; Cheng, Ziqiang

    2017-12-04

    The hypervariable antigenicity and immunosuppressive features of avian leukosis virus subgroup J (ALV-J) has led to great challenges to develop effective vaccines. Epitope vaccine will be a perspective trend. Previously, we identified a variant antigenic neutralizing epitope in hypervariable region 1 (hr1) of ALV-J, N-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-C. BLAST analysis showed that the mutation of A, E, T and H in this epitope cover 79% of all ALV-J strains. Base on this data, we designed a multi-variant epitope ensemble vaccine comprising the four mutation variants linked with glycine and serine. The recombinant multi-variant epitope gene was expressed in Escherichia coli BL21. The expressed protein of the variant multi-variant epitope gene can react with positive sera and monoclonal antibodies of ALV-J, while cannot react with ALV-J negative sera. The multi-variant epitope vaccine that conjugated Freund's adjuvant complete/incomplete showed high immunogenicity that reached the titer of 1:64,000 at 42 days post immunization and maintained the immune period for at least 126 days in SPF chickens. Further, we demonstrated that the antibody induced by the variant multi-variant ensemble epitope vaccine recognized and neutralized different ALV-J strains (NX0101, TA1, WS1, BZ1224 and BZ4). Protection experiment that was evaluated by clinical symptom, viral shedding, weight gain, gross and histopathology showed 100% chickens that inoculated the multi-epitope vaccine were well protected against ALV-J challenge. The result shows a promising multi-variant epitope ensemble vaccine against hypervariable viruses in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Acral manifestations of viral infections.

    Science.gov (United States)

    Adışen, Esra; Önder, Meltem

    Viruses are considered intracellular obligates with a nucleic acid RNA or DNA. They have the ability to encode proteins involved in viral replication and production of the protective coat within the host cells but require host cell ribosomes and mitochondria for translation. The members of the families Herpesviridae, Poxviridae, Papovaviridae, and Picornaviridae are the most commonly known agents for cutaneous viral diseases, but other virus families, such as Adenoviridae, Togaviridae, Parvoviridae, Paramyxoviridae, Flaviviridae, and Hepadnaviridae, can also infect the skin. Herpetic whitlow should be considered under the title of special viral infections of the acral region, where surgical incision is not recommended; along with verruca plantaris with its resistance to treatment and the search for a new group of treatments, including human papillomavirus vaccines; HIV with maculopapular eruptions and palmoplantar desquamation; orf and milker's nodule with its nodular lesions; papular-purpuric gloves and socks syndrome with its typical clinical presentation; necrolytic acral erythema with its relationship with zinc; and hand, foot, and mouth disease with its characteristics of causing infection with its strains, with high risk for complication. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pediatric Asthma and Viral Infection.

    Science.gov (United States)

    Garcia-Garcia, M Luz; Calvo Rey, Cristina; Del Rosal Rabes, Teresa

    2016-05-01

    Respiratory viral infections, particularly respiratory syncytial virus (RSV) and rhinovirus, are the most importance risk factors for the onset of wheezing in infants and small children. Bronchiolitis is the most common acute respiratory infection in children under 1year of age, and the most common cause of hospitalization in this age group. RSV accounts for approximately 70% of all these cases, followed by rhinovirus, adenovirus, metapneumovirus and bocavirus. The association between bronchiolitis caused by RSV and the development of recurrent wheezing and/or asthma was first described more than 40years ago, but it is still unclear whether bronchiolitis causes chronic respiratory symptoms, or if it is a marker for children with a genetic predisposition for developing asthma in the medium or long term. In any case, sufficient evidence is available to corroborate the existence of this association, which is particularly strong when the causative agent of bronchiolitis is rhinovirus. The pathogenic role of respiratory viruses as triggers for exacerbations in asthmatic patients has not been fully characterized. However, it is clear that respiratory viruses, and in particular rhinovirus, are the most common causes of exacerbation in children, and some type of respiratory virus has been identified in over 90% of children hospitalized for an episode of wheezing. Changes in the immune response to viral infections in genetically predisposed individuals are very likely to be the main factors involved in the association between viral infection and asthma. Copyright © 2016 SEPAR. Published by Elsevier Espana. All rights reserved.

  1. Neutrophil extracellular traps go viral

    Directory of Open Access Journals (Sweden)

    Günther Schönrich

    2016-09-01

    Full Text Available Neutrophils are the most numerous immune cells. Their importance as a first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils to produce extracellular traps (NETs in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand disproportionate NET formation can cause local or systemic damage. Only recently was it recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

  2. Viral suppression of multiple escape mutants by de novo CD8+ T cell responses in a human immunodeficiency virus-1 Infected elite suppressor

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2011-08-01

    Full Text Available Abstract Elite suppressors or controllers (ES are HIV-1 infected patients who maintain undetectable viral loads without treatment. While HLA-B*57-positive ES are usually infected with virus that is unmutated at CTL epitopes, a single, dominant variant containing CTL escape mutations is typically seen in plasma during chronic infection. We describe an ES who developed seven distinct and rare escape variants at an HLA-B*57-restricted Gag epitope over a five year period. Interestingly, he developed proliferative, de novo CTL responses that suppressed replication of each of these variants. These responses, in combination with low viral fitness of each variant, may contribute to sustained elite control in this ES.

  3. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression.

    Science.gov (United States)

    van den Pol, Anthony N; Ozduman, Koray; Wollmann, Guido; Ho, Winson S C; Simon, Ian; Yao, Yang; Rose, John K; Ghosh, Prabhat

    2009-10-20

    Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience-related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno-associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG-VSV) with the G-gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500-fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi-like appearance in all neurons or glia of regions of the brain tested. Whole-cell patch-clamp electrophysiology, calcium digital imaging with fura-2, and time-lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG-VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG-VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied.

  4. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    Science.gov (United States)

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD

  5. Hepatitis E Virus Genotypes and Evolution: Emergence of Camel Hepatitis E Variants

    OpenAIRE

    Sridhar, Siddharth; Teng, Jade L. L.; Chiu, Tsz-Ho; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2017-01-01

    Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. Zoonotic HEV is an important cause of chronic hepatitis in immunocompromised patients. The rapid identification of novel HEV variants and accumulating sequence information has prompted significant changes in taxonomy of the family Hepeviridae. This family includes two genera: Orthohepevirus, which infects terrestrial vertebrates, and Piscihepevirus, which infects fish. Within Orthohepevirus, there are four species, A?D, wit...

  6. Encefalitis virales en la infancia

    Directory of Open Access Journals (Sweden)

    Monserrat Téllez de Meneses

    2013-09-01

    Full Text Available La encefalitis viral es una enfermedad grave que implica el compromiso inflamatorio del parénquima cerebral. Las infecciones virales del SNC ocurren con frecuencia como complicación de infecciones virales sistémicas. Más de 100 virus están implicados como agentes causales, entre los cuales el virus Herpes simplex tipo I, es el agente causal más frecuente de encefalitis no epidémica en todos los grupos poblacionales del mundo; es el responsable de los casos más graves en todas las edades. Muchos de los virus para los cuales existe vacunas también pueden causar encefalitis como: sarampión, paperas, polio, rabia, rubéola, varicela. El virus produce una inflamación del tejido cerebral, la cual puede evolucionar a una destrucción de neuronas, provocar hemorragia y daño cerebral, dando lugar a encefalitis graves, como la encefalitis necrotizante o hemorrágica, con mucho peor pronóstico, produciendo secuelas graves, incluso la muerte. El cuadro clínico, incluye la presencia de cefalea, fiebre y alteración de la conciencia, de rápida progresión. El pronóstico de las encefalitis víricas es variable, algunos casos son leves, con recuperación completa, sin embargo existen casos graves que pueden ocasionar secuelas importantes a nivel cerebral. Es fundamental realizar un diagnóstico lo antes posible, a través de pruebas de laboratorio (bioquímica, PCR, cultivos y de neuroimagen (TAC, RM y ante todo, la instauración de un tratamiento precoz para evitar la evolución del proceso y sus posibles complicaciones. El pronóstico empeora si se retrasa la instauración del tratamiento.

  7. Evaluation of Viral Meningoencephalitis Cases

    Directory of Open Access Journals (Sweden)

    Handan Ilhan

    2012-08-01

    Full Text Available AIM: To evaluate retrospectively adult cases of viral encephalitis. METHOD: Fifteen patients described viral encephalitis hospitalized between the years 2006-2011 follow-up and treatment at the infectious diseases clinic were analyzed retrospectively. RESULTS: Most of the patients (%60 had applied in the spring. Fever (87%, confusion (73%, neck stiffness (73%, headache (73%, nausea-vomiting (33%, loss of consciousness (33%, amnesia (33%, agitation (20%, convulsion (%20, focal neurological signs (13%, Brudzinski-sign (13% were most frequently encountered findings. Electroencephalography test was applied to 13 of 14 patients, and pathological findings compatible with encephalitis have been found. Radiological imaging methods such as CT and MRI were performed in 9 of the 14 patients, and findings consistent with encephalitis were reported. All of initial cerebrospinal fluid (CSF samples were abnormal. The domination of the first examples was lymphocytes in 14 patients; only one patient had an increase in neutrophilic cells have been found. CSF protein level was high in nine patients, and low glucose level was detected in two patients. Herpes simplex virus polymerized chain reaction (PCR analyze was performed to fourteen patients CSF. Only two of them (14% were found positive. One of the patients sample selectively examined was found to be Parvovirus B19 (+, the other patient urine sample Jacobs-creutzfeld virus PCR was found to be positively. Empiric acyclovir therapy was given to all patients. Neuropsychiatric squeal developed at the one patient. CONCLUSION: The cases in the forefront of change in mental status viral meningoencephalitis should be considered and empirical treatment with acyclovir should be started. [TAF Prev Med Bull 2012; 11(4.000: 447-452

  8. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  9. Detection of inferred CCR5- and CXCR4-using HIV-1 variants and evolutionary intermediates using ultra-deep pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Evelien M Bunnik

    2011-06-01

    Full Text Available The emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1 variants is associated with accelerated disease progression. CXCR4-using variants are believed to evolve from CCR5-using variants, but due to the extremely low frequency at which transitional intermediate variants are often present, the kinetics and mutational pathways involved in this process have been difficult to study and are therefore poorly understood. Here, we used ultra-deep sequencing of the V3 loop of the viral envelope in combination with the V3-based coreceptor prediction tools PSSM(NSI/SI and geno2pheno([coreceptor] to detect HIV-1 variants during the transition from CCR5- to CXCR4-usage. We analyzed PBMC and serum samples obtained from eight HIV-1-infected individuals at three-month intervals up to one year prior to the first phenotypic detection of CXCR4-using variants in the MT-2 assay. Between 3,482 and 10,521 reads were generated from each sample. In all individuals, V3 sequences of predicted CXCR4-using HIV-1 were detected at least three months prior to phenotypic detection of CXCR4-using variants in the MT-2 assay. Subsequent analysis of the genetic relationships of these V3 sequences using minimum spanning trees revealed that the transition in coreceptor usage followed a stepwise mutational pathway involving sequential intermediate variants, which were generally present at relatively low frequencies compared to the major predicted CCR5- and CXCR4-using variants. In addition, we observed differences between individuals with respect to the number of predicted CXCR4-using variants, the diversity among major predicted CCR5-using variants, and the presence or absence of intermediate variants with discordant phenotype predictions. These results provide the first detailed description of the mutational pathways in V3 during the transition from CCR5- to CXCR4-usage in natural HIV-1 infection.

  10. Norovirus Polymerase Fidelity Contributes to Viral TransmissionIn Vivo.

    Science.gov (United States)

    Arias, Armando; Thorne, Lucy; Ghurburrun, Elsa; Bailey, Dalan; Goodfellow, Ian

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo . We have previously shown that norovirus intrahost genetic diversity also influences viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates between susceptible hosts than the wild-type virus and, most notably, another replication defective mutant that has wild-type levels of polymerase fidelity. These results provide the first experimental evidence that norovirus polymerase fidelity contributes to virus transmission between hosts and that maintaining diversity is important for the establishment of infection. This work supports the hypothesis that the reduced polymerase fidelity of the pandemic GII.4 human norovirus isolates may contribute to their global dominance. IMPORTANCE Virus replication fidelity and hence the intrahost genetic diversity of viral populations are known to be intricately linked to viral pathogenesis and tropism as well as to immune and antiviral escape during infection. In this study, we investigated whether changes in replication fidelity can impact the ability of a virus to transmit between susceptible hosts by the use of a mouse model for norovirus. We show that a variant encoding a high-fidelity polymerase is transmitted less efficiently between mice than the wild-type strain. This constitutes

  11. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  12. Controlling viral outbreaks: Quantitative strategies.

    Science.gov (United States)

    Mummert, Anna; Weiss, Howard

    2017-01-01

    Preparing for and responding to outbreaks of serious livestock infectious diseases are critical measures to safeguard animal health, public health, and food supply. Almost all of the current control strategies are empirical, and mass culling or "stamping out" is frequently the principal strategy for controlling epidemics. However, there are ethical, ecological, and economic reasons to consider less drastic control strategies. Here we use modeling to quantitatively study the efficacy of different control measures for viral outbreaks, where the infectiousness, transmissibility and death rate of animals commonly depends on their viral load. We develop a broad theoretical framework for exploring and understanding this heterogeneity. The model includes both direct transmission from infectious animals and indirect transmission from an environmental reservoir. We then incorporate a large variety of control measures, including vaccination, antivirals, isolation, environmental disinfection, and several forms of culling, which may result in fewer culled animals. We provide explicit formulae for the basic reproduction number, R0, for each intervention and for combinations. We evaluate the control methods for a realistic simulated outbreak of low pathogenic avian influenza on a mid-sized turkey farm. In this simulated outbreak, culling results in more total dead birds and dramatically more when culling all of the infected birds.

  13. Viral Infection in Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Jovana Cukuranovic

    2012-01-01

    Full Text Available Viruses are among the most common causes of opportunistic infection after transplantation. The risk for viral infection is a function of the specific virus encountered, the intensity of immune suppression used to prevent graft rejection, and other host factors governing susceptibility. Although cytomegalovirus is the most common opportunistic pathogen seen in transplant recipients, numerous other viruses have also affected outcomes. In some cases, preventive measures such as pretransplant screening, prophylactic antiviral therapy, or posttransplant viral monitoring may limit the impact of these infections. Recent advances in laboratory monitoring and antiviral therapy have improved outcomes. Studies of viral latency, reactivation, and the cellular effects of viral infection will provide clues for future strategies in prevention and treatment of viral infections. This paper will summarize the major viral infections seen following transplant and discuss strategies for prevention and management of these potential pathogens.

  14. T Cell Exhaustion During Persistent Viral Infections

    Science.gov (United States)

    Kahan, Shannon M.; Wherry, E. John; Zajac, Allan J.

    2015-01-01

    Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control. PMID:25620767

  15. MC1R variants increase risk of melanomas harboring BRAF mutations.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Fargnoli, Maria Concetia; Pike, Kris; Pfeiffer, Ruth M; Tsang, Shirley; Rozenblum, Ester; Munroe, David J; Golubeva, Yelena; Calista, Donato; Seidenari, Stefania; Massi, Daniela; Carli, Paolo; Bauer, Juergen; Elder, David E; Bastian, Boris C; Peris, Ketty; Landi, Maria T

    2008-10-01

    Melanocortin-1 receptor (MC1R) variants have been associated with BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations in non-CSD (chronic solar-damaged) melanomas in an Italian and an American population. We studied an independent Italian population of 330 subjects (165 melanoma patients and 165 controls) to verify and estimate the magnitude of this association and to explore possible effect modifiers. We sequenced MC1R in all subjects and exon 15 of BRAF in 92/165 melanoma patients. Patients with MC1R variants had a high risk of carrying BRAF mutations in melanomas (odds ratio (OR)=7.0, 95% confidence interval (CI)=2.1-23.8) that increased with the number of MC1R variants and variants associated with red hair color. Combining these subjects with the originally reported Italian population (513 subjects overall), MC1R variant carriers had a 5- to 15-fold increased risk of BRAF-mutant melanomas based on carrying one or two variants (PMC1R-melanoma risk association is confined to subjects whose melanomas harbor BRAF mutations.

  16. FGI-104: a broad-spectrum small molecule inhibitor of viral infection.

    Science.gov (United States)

    Kinch, Michael S; Yunus, Abdul S; Lear, Calli; Mao, Hanwen; Chen, Hanson; Fesseha, Zena; Luo, Guangxiang; Nelson, Eric A; Li, Limin; Huang, Zhuhui; Murray, Michael; Ellis, William Y; Hensley, Lisa; Christopher-Hennings, Jane; Olinger, Gene G; Goldblatt, Michael

    2009-01-05

    The treatment of viral diseases remains an intractable problem facing the medical community. Conventional antivirals focus upon selective targeting of virus-encoded targets. However, the plasticity of viral nucleic acid mutation, coupled with the large number of progeny that can emerge from a single infected cells, often conspire to render conventional antivirals ineffective as resistant variants emerge. Compounding this, new viral pathogens are increasingly recognized and it is highly improbable that conventional approaches could address emerging pathogens in a timely manner. Our laboratories have adopted an orthogonal approach to combat viral disease: Target the host to deny the pathogen the ability to cause disease. The advantages of this novel approach are many-fold, including the potential to identify host pathways that are applicable to a broad-spectrum of pathogens. The acquisition of drug resistance might also be minimized since selective pressure is not directly placed upon the viral pathogen. Herein, we utilized this strategy of host-oriented therapeutics to screen small molecules for their abilities to block infection by multiple, unrelated virus types and identified FGI-104. FGI-104 demonstrates broad-spectrum inhibition of multiple blood-borne pathogens (HCV, HBV, HIV) as well as emerging biothreats (Ebola, VEE, Cowpox, PRRSV infection). We also demonstrate that FGI-104 displays an ability to prevent lethality from Ebola in vivo. Altogether, these findings reinforce the concept of host-oriented therapeutics and present a much-needed opportunity to identify antiviral drugs that are broad-spectrum and durable in their application.

  17. Sendai virus intra-host population dynamics and host immunocompetence influence viral virulence duringin vivopassage.

    Science.gov (United States)

    Peña, José; Chen-Harris, Haiyin; Allen, Jonathan E; Hwang, Mona; Elsheikh, Maher; Mabery, Shalini; Bielefeldt-Ohmann, Helle; Zemla, Adam T; Bowen, Richard A; Borucki, Monica K

    2016-01-01

    In vivo serial passage of non-pathogenic viruses has been shown to lead to increased viral virulence, and although the precise mechanism(s) are not clear, it is known that both host and viral factors are associated with increased pathogenicity. Under- or overnutrition leads to a decreased or dysregulated immune response and can increase viral mutant spectrum diversity and virulence. The objective of this study was to identify the role of viral mutant spectra dynamics and host immunocompetence in the development of pathogenicity during in vivo passage. Because the nutritional status of the host has been shown to affect the development of viral virulence, the diet of animal model reflected two extremes of diets which exist in the global population, malnutrition and obesity. Sendai virus was serially passaged in groups of mice with differing nutritional status followed by transmission of the passaged virus to a second host species, guinea pigs. Viral population dynamics were characterized using deep sequence analysis and computational modeling. Histopathology, viral titer and cytokine assays were used to characterize viral virulence. Viral virulence increased with passage and the virulent phenotype persisted upon passage to a second host species. Additionally, nutritional status of mice during passage influenced the phenotype. Sequencing revealed the presence of several non-synonymous changes in the consensus sequence associated with passage, a majority of which occurred in the hemagglutinin-neuraminidase and polymerase genes, as well as the presence of persistent high frequency variants in the viral population. In particular, an N1124D change in the consensus sequences of the polymerase gene was detected by passage 10 in a majority of the animals. In vivo comparison of an 1124D plaque isolate to a clone with 1124N genotype indicated that 1124D was associated with increased virulence.

  18. GCPII Variants, Paralogs and Orthologs

    Czech Academy of Sciences Publication Activity Database

    Hlouchová, Klára; Navrátil, Václav; Tykvart, Jan; Šácha, Pavel; Konvalinka, Jan

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1316-1322 ISSN 0929-8673 R&D Projects: GA ČR GAP304/12/0847 Institutional research plan: CEZ:AV0Z40550506 Keywords : PSMA * GCPIII * NAALADase L * splice variants * homologs * PSMAL Subject RIV: CE - Biochemistry Impact factor: 4.070, year: 2012

  19. Acute Viral Hepatitis in Pediatric Age Groups

    OpenAIRE

    Sudhamshu KC; Dilip Sharma; Nandu Silwal; Bhupendra Kumar Basnet

    2014-01-01

    Introduction: Our clinical experience showed that there has been no decrease in pediatric cases of acute viral hepatitis in Kathmandu. The objective of the study was to analyze the etiology, clinical features, laboratory parameters, sonological findings and other to determine the probable prognostic factors of Acute Viral Hepatitis in pediatric population. Methods: Consecutive patients of suspected Acute Viral Hepatitis, below the age of 15 years, attending the liver clinic between Januar...

  20. Consumers’ attitude towards viral marketing in Pakistan

    OpenAIRE

    Kiani Irshad ZERNIGAH; Kamran SOHAIL

    2012-01-01

    The rapid advancement of technology has opened many costeffective avenues for marketers to promote their products. One of the emerging techniques of products promotion through the use of technology is viral marketing that is becoming a popular direct marketing tool for marketers across the world. Therefore, marketers should understand factors that result in increased acceptance of viral marketing by consumers. The present research was conducted to investigate consumers’ attitude towards viral...

  1. Viral Advertising on Facebook in Vietnam

    OpenAIRE

    Tran, Phuong

    2014-01-01

    The purpose of this thesis is to explore which factors affect the effectiveness of viral advertising on Facebook in Vietnam. The quantitative research method is applied in this research and the sample is Vietnamese Facebook users. After the data analysis stage using SPSS, it became clear that weak ties, perceptual affinity and emotions have an impact on the effectiveness of viral advertising. The results provide a pratical implication of how to make an Ad which can go viral on Facebook. Moreo...

  2. Viral Advertising: Branding Effects from Consumers’ Perspectives

    OpenAIRE

    Jiang, Yueqing

    2012-01-01

    Viral advertising is popular for its high viral transmission results online. Its increased impacts on the social media users have been noticed by the author. At the same time, viewers’ negative attitudes toward traditional advertisements become obvious which can be regarded as the phenomenon of advertisement avoidance. It arouses author’s interests to know how the viral advertising reduces the viewers’ negative emotions and its performances in branding online. This paper is going to look into...

  3. [Workshop on Molecular Epidemiology of Viral Diseases].

    Science.gov (United States)

    Gómez, B; Cabrera, L; Arias, C F

    1997-01-01

    A workshop on viral epidemiology was held on September 29, 1995 at the Medical School of the Universidad Nacional Autónoma de Mexico. The aim of this workshop was to promote interaction among scientists working in viral epidemiology. Eighteen scientists from ten institutions presented their experiences and work. General aspects of the epidemiology of meaningful viral diseases in the country were discussed, and lectures presented on the rota, polio, respiratory syncytial, dengue, papiloma, rabies, VIH and hepatitis viruses.

  4. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.

    Science.gov (United States)

    He, Zhi-Yao; Men, Ke; Qin, Zhou; Yang, Yang; Xu, Ting; Wei, Yu-Quan

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.

  5. Hepatitis A through E (Viral Hepatitis)

    Science.gov (United States)

    ... Nutrition Clinical Trials Primary Biliary Cholangitis Definition & Facts Symptoms & Causes Diagnosis Treatment Eating, Diet, & Nutrition Clinical Trials Wilson Disease Hepatitis (Viral) View or Print All Sections What ...

  6. Viral diseases of northern ungulates

    Directory of Open Access Journals (Sweden)

    K. Frölich

    2000-03-01

    Full Text Available This paper describes viral diseases reported in northern ungulates and those that are a potential threat to these species. The following diseases are discussed: bovine viral diarrhoea/mucosal disease (BVD/MD, alphaherpesvirus infections, malignant catarrhal fever (MCF, poxvirus infections, parainfluenza type 3 virus infection, Alvsborg disease, foot-and-mouth disease, epizootic haemorrhage disease of deer and bluetongue disease, rabies, respiratory syncytial virus infection, adenovirus infection, hog-cholera, Aujeszky's disease and equine herpesvirus infections. There are no significant differences in antibody prevalence to BVDV among deer in habitats with high, intermediate and low density of cattle. In addition, sequence analysis from the BVDV isolated from roe deer (Capreolus capreolus showed that this strain was unique within BVDV group I. Distinct BVDV strains might circulate in free-ranging roe deer populations in Germany and virus transmission may be independent of domestic livestock. Similar results have been obtained in a serological survey of alpha-herpesviruses in deer in Germany. Malignant catarrhal fever was studied in fallow deer (Cervus dama in Germany: the seroprevalence and positive PCR results detected in sheep originating from the same area as the antibody-positive deer might indicate that sheep are the main reservoir animals. Contagious ecthyma (CE is a common disease in domestic sheep and goats caused by the orf virus. CE has been diagnosed in Rocky Mountain bighorn sheep (Ovis canadensis, mountain goats (Oreamnos americanus, Dall sheep (Ovis dalli, chamois (Rupkapra rupi-capra, muskox {Ovibos moschatus and reindeer (Rangifer tarandus. Most parainfluenza type 3 virus infections are mild or clinically undetectable. Serological surveys in wildlife have been successfully conducted in many species. In 1985, a new disease was identified in Swedish moose (Alces alces, designated as Alvsborg disease. This wasting syndrome probably

  7. Role of HIV-specific CD8+T cells in pediatric HIV cure strategies after widespread early viral escape.

    Science.gov (United States)

    Leitman, Ellen M; Thobakgale, Christina F; Adland, Emily; Ansari, M Azim; Raghwani, Jayna; Prendergast, Andrew J; Tudor-Williams, Gareth; Kiepiela, Photini; Hemelaar, Joris; Brener, Jacqui; Tsai, Ming-Han; Mori, Masahiko; Riddell, Lynn; Luzzi, Graz; Jooste, Pieter; Ndung'u, Thumbi; Walker, Bruce D; Pybus, Oliver G; Kellam, Paul; Naranbhai, Vivek; Matthews, Philippa C; Gall, Astrid; Goulder, Philip J R

    2017-11-06

    Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection. © 2017 Leitman et al.

  8. Molecular Epidemiology of Viral Gastroenteritis in Hajj pilgrimage

    KAUST Repository

    Padron Regalado, Eriko

    2014-05-01

    Hajj is the annual gathering of Islam practitioners in Mecca, Saudi Arabia. During the event, gastrointestinal infections are usually experienced and outbreaks have always been a concern; nevertheless, a deep and integrative study of the etiological agents has never been carried out. Here, I describe for the first time the epidemiology of pathogenic enteric viruses during Hajj 2011, 2012 and 2013. The focus of this study was the common enteric viruses Astrovirus, Norovirus, Rotavirus and Adenovirus. An enzyme Immunoassay established their presence in 14.9%, 15.0% and 6.6% of the reported cases of acute diarrhea for 2011, 2012 and 2013, respectively. For the three years of study, Astrovirus accounted for the majority of the viral infections. To our knowledge, this is the first time an epidemiological study depicts Astrovirus as the main viral agent of gastroenteritis in a mass gathering event. Hajj is rich in strains of Astrovirus, Norovirus and Rotavirus. A first screening by RT-PCR resulted in ten different genotypes. Strains HAstV 2, HAstV 1 and HAstV 5 were identified for Astrovirus. GI.6, GII.3, GII.4 and GII.1 were described for Norovirus and G1P[8], G4P[8] and G3P[8] were found for Rotavirus. The majority of the Astrovirus isolates could not be genotyped suggesting the presence of a new variant(s). Cases like this encourage the use of metagenomics (and nextgeneration sequencing) as a state-of-the-art technology in clinical diagnosis. A sample containing Adenovirus particles is being used to standardize a process for detection directly from stool samples and results will be obtained in the near future. The overall findings of the present study support the concept of Hajj as a unique mass gathering event that potentiates the transmission of infectious diseases. The finding of Norovirus GII.4 Sydney, a variant originated from Australia, suggests that Hajj is a receptor of infectious diseases worldwide. This work is part of the Hajj project, a collaborative

  9. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Humans Key Facts about Human Infections with Variant Viruses Interim Guidance for Clinicians on Human Infections Background, Risk Assessment & Reporting Reported Infections with Variant Influenza Viruses in the United States since 2005 Past Outbreaks ...

  10. Clinical Implications of HIV-1 Minority Variants

    OpenAIRE

    Li, Jonathan Z.; Kuritzkes, Daniel R.

    2013-01-01

    Low-frequency HIV variants are increasingly recognized as a key factor that increases the risk of HIV treatment failure. This article will provide a review of HIV minority variants, including their demonstrated clinical impact and areas of controversy.

  11. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  12. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  13. Molecular and functional analysis of a conserved CTL epitope in HIV-1 p24 recognized from a long-term nonprogressor: constraints on immune escape associated with targeting a sequence essential for viral replication.

    Science.gov (United States)

    Wagner, R; Leschonsky, B; Harrer, E; Paulus, C; Weber, C; Walker, B D; Buchbinder, S; Wolf, H; Kalden, J R; Harrer, T

    1999-03-15

    It has been hypothesized that sequence variation within CTL epitopes leading to immune escape plays a role in the progression of HIV-1 infection. Only very limited data exist that address the influence of biologic characteristics of CTL epitopes on the emergence of immune escape variants and the efficiency of suppression HIV-1 by CTL. In this report, we studied the effects of HIV-1 CTL epitope sequence variation on HIV-1 replication. The highly conserved HLA-B14-restricted CTL epitope DRFYKTLRAE in HIV-1 p24 was examined, which had been defined as the immunodominant CTL epitope in a long-term nonprogressing individual. We generated a set of viral mutants on an HX10 background differing by a single conservative or nonconservative amino acid substitution at each of the P1 to P9 amino acid residues of the epitope. All of the nonconservative amino acid substitutions abolished viral infectivity and only 5 of 10 conservative changes yielded replication-competent virus. Recognition of these epitope sequence variants by CTL was tested using synthetic peptides. All mutations that abrogated CTL recognition strongly impaired viral replication, and all replication-competent viral variants were recognized by CTL, although some variants with a lower efficiency. Our data indicate that this CTL epitope is located within a viral sequence essential for viral replication. Targeting CTL epitopes within functionally important regions of the HIV-1 genome could limit the chance of immune evasion.

  14. Variant Humicola grisea CBH1.1

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2017-05-09

    Disclosed are variants of Humicola grisea CeI7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  15. Análisis de variantes de HPV-16 como marcador molecular antropólogico

    Directory of Open Access Journals (Sweden)

    Badano, Ines

    2007-01-01

    Full Text Available El Virus Papiloma Humano tipo 16 (HPV16 es el principal responsable del desarrollo del cáncer de cuello uterino. Además de su significado clínico, el estudio de la variación genética en las regiones E6, L1 y LCR de este virus ha permitido identificar variantes específicas de diferentes áreas geográficas. Este descubrimiento sugiere una antigua propagación del HPV16 y su coevolución con el género humano. En este contexto, las variantes podrían servir como marcador molecular antropológico, aportando nuevos datos al análisis de patrones migratorios humanos. El objetivo del trabajo fue determinar las variantes de HPV16 en las regiones genéticas E6 y L1 que infectan mujeres guaraníes de Misiones. Para ello se analizaron 39 muestras de cepillados cervicales de mujeres guaraníes infectadas con HPV16. Las variantes en E6 y L1 se identificaron por PCR e hibridación en dot blot. Los resultados obtenidos fueron: el 77% de las variantes Europeas, 20% Africanas y 3% Asiático Americanas. La baja prevalencia de variantes Asiático Americanas coincide con lo reportado por Picconi y col, 2002 para mujeres quechuas, y haría suponer una limitada diseminación del HPV16 durante la época prehispánica. El predominio de las variantes Europeas podría ser resultado de la colonización española y la inmigración europea, mientras que el tráfico de esclavos negros explicaría la presencia de variantes Africanas. Por otra parte, la hipótesis de competencia viral tampoco puede ser descartada.

  16. Simulated microgravity effects on the resistance of potato plants to viral infection

    Science.gov (United States)

    Mishchenko, L. T.; Gordyeichik, O. I.; Taran, O. P.

    Our earlier research results showed that prolonged clinostating impeded the reproduction of the wheat streak mosaic virus WSMV in artificially infected Apogee wheat plants The WSMW reproduction reduction leads to the formation of yield at the expense of the various physiologo-biochemical mechanisms of adaptation The results of our research activities open up the possibilities for the creation of new biotechnologies for both orbital and terrestrial conditions There arises a need to verify this phenomenon on potato plants which reproduce by tubers and in which viral infection unlike the WSMV is easily spread with planting material The initial parental potato plants were cultivated in a universal clinostat Cycle-2 and horizontal clinostat KG-8 on artificial substrate employing a balanced nutrient mixture of macro and microelements Viral antigens were detected in the organs of infected plants by a solid-phase immunoenzymatic analysis in its indirect das-ELISA variant sandwich variant A test system manufactured by the Bioreba firm Switzerland was employed for diagnostics The reader of the Termo Labsystems Opsis MR firm was employed for the measurements of optical density of the immunoenzymatic reaction product with a software of the Dynex Revelation Quicklik USA at wavelength of 405 630 nm Virion identification was carried out using the electron microscopy negative contrasting procedure Statistical data processing was performed using Excel AGROSTAT program We investigated the effects of clinostating on the development of viral

  17. Acute Pancreatitis in acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    S K.C.

    2011-03-01

    Full Text Available Introduction: The association of acute viral hepatitis and acute pancreatitis is well described. This study was conducted to find out the frequency of pancreatic involvement in acute viral hepatitis in the Nepalese population. Methods: Consecutive patients of acute viral hepatitis presenting with severe abdominal pain between January 2005 and April 2010 were studied. Patients with history of significant alcohol consumption and gall stones were excluded. Acute viral hepatitis was diagnosed by clinical examination, liver function test, ultrasound examination and confirmed by viral serology. Pancreatitis was diagnosed by clinical presentation, biochemistry, ultrasound examination and CT scan. Results: Severe abdominal pain was present in 38 of 382 serologically-confirmed acute viral hepatitis patients. Twenty five patients were diagnosed to have acute pancreatitis. The pancreatitis was mild in 14 and severe in 11 patients. The etiology of pancreatitis was hepatitis E virus in 18 and hepatitis A virus in 7 patients. Two patients died of complications secondary to shock. The remaining patients recovered from both pancreatitis and hepatitis on conservative treatment. Conclusions: Acute pancreatitis occurred in 6.5 % of patients with acute viral hepatitis. Cholelithiasis and gastric ulcers are the other causes of severe abdominal pain. The majority of the patients recover with conservative management. Keywords: acute viral hepatitis, acute pancreatitis, pain abdomen, hepatitis E, hepatitis A, endemic zone

  18. (Npro) protein of bovine viral d

    Indian Academy of Sciences (India)

    Prakash

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle and sheep, and causes significant respiratory and reproductive disease worldwide. Bovine viral diarrhoea virus type 1 (BVDV-1), BVDV-2 along with the border disease virus (BDV) and classical swine fever virus (CSFV) belong to the genus ...

  19. Viral reproductive pathogens of dogs and cats.

    Science.gov (United States)

    Decaro, Nicola; Carmichael, Leland E; Buonavoglia, Canio

    2012-05-01

    This article reviews the current literature on the viral agents that cause reproductive failures in domestic carnivores (dogs and cats). A meaningful update is provided on the etiologic, clinical, pathologic, diagnostic, and prophylactic aspects of the viral infections impacting canine and feline reproduction as a consequence of either direct virus replication or severe debilitation of pregnant animals.

  20. Clinicopathologic Variants of Mycosis Fungoides.

    Science.gov (United States)

    Muñoz-González, H; Molina-Ruiz, A M; Requena, L

    2017-04-01

    Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma. The clinical course of the disease is typically characterized by progression from a nonspecific phase of erythematous macules to the appearance of plaques and ultimately, in some patients, tumors. However, numerous clinical and histopathologic variants of MF with specific therapeutic and prognostic implications have been described in recent decades. Clarification of the differential diagnosis can be frustrated by the wide range of clinical manifestations and histopathologic patterns of cutaneous infiltration, particularly in the early phases of the disease. In this paper, we review the main clinical, histopathologic, and immunohistochemical characteristics of the variants of MF described in the literature in order to facilitate early diagnosis of the disease. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Ethical Considerations in Research Participation Virality.

    Science.gov (United States)

    Ellis-Barton, Carol

    2016-07-01

    This article seeks to commence and encourage discussion around the upcoming ethical challenges of virality in network structures. When the call for participation in a research project on lupus in Ireland went from an advertisement in a newsletter to a meme (unit of transmissible information) on a closed Facebook page, the ethical considerations of virality were raised. The article analyzes the Association of Internet Researchers guidelines, Facebook policies, and the context of privacy in relation to virality. Virality creates the leverage for methodological pluralism. The nature of the inquiry can determine the method rather than the other way around. Viral ethical considerations are evolving due to the cyber world becoming the primary meme of communication, with flexibility in the researcher's protocol providing opportunities for efficient, cost-effective, and diverse recruitment. © The Author(s) 2016.

  2. Origins and challenges of viral dark matter.

    Science.gov (United States)

    Krishnamurthy, Siddharth R; Wang, David

    2017-07-15

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Immunization with viral antigens: viral diseases of carp and catfish.

    Science.gov (United States)

    Dixon, P

    1997-01-01

    The viral diseases of carp and catfish for which vaccines have been produced are spring viraemia of carp (SVC), grass carp haemorrhage disease (GCHD) and channel catfish virus disease (CCVD). Field trials of a commercially produced injectable vaccine conducted over several years have shown that carp can be protected against SVC. However the supporting data were predominantly qualitative rather than quantitative. Large-scale field trials of an experimental oral attenuated vaccine against SVC virus over a five year period were successful, and no reversion to virulence of the vaccine was recorded. Injectable inactivated and attenuated vaccines against GCHD have predominantly been tested under laboratory conditions, although a small number of field trials have been reported. In such trials of bath and injectable vaccines, survival rates of 50-90% were achieved. In China, commercially available vaccines are being used against GCHD. Only laboratory trials of vaccines against CCVD have been reported. Bath vaccination of eggs of fry with a subunit vaccine and bath immunisation of fingerlings with an attenuated virus vaccine have been successful. Problems with current approaches and areas for research are discussed.

  4. Microcystic Variant of Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Anthony Kodzo-Grey Venyo

    2013-01-01

    Full Text Available Background. Microcystic variant of urothelial carcinoma is one of the new variants of urothelial carcinoma that was added to the WHO classification in 2004. Aims. To review the literature on microcystic variant of urothelial carcinoma. Methods. Various internet search engines were used to identify reported cases of the tumour. Results. Microscopic features of the tumour include: (i Conspicuous intracellular and intercellular lumina/microcysts encompassed by malignant urothelial or squamous cells. (ii The lumina are usually empty; may contain granular eosinophilic debris, mucin, or necrotic cells. (iii The cysts may be variable in size; round, or oval, up to 2 mm; lined by urothelium which are either flattened cells or low columnar cells however, they do not contain colonic epithelium or goblet cells; are infiltrative; invade the muscularis propria; mimic cystitis cystica and cystitis glandularis; occasionally exhibit neuroendocrine differentiation. (iv Elongated and irregular branching spaces are usually seen. About 17 cases of the tumour have been reported with only 2 patients who have survived. The tumour tends to be of high-grade and high-stage. There is no consensus opinion on the best option of treatment of the tumour. Conclusions. It would prove difficult at the moment to be dogmatic regarding its prognosis but it is a highly aggressive tumour. New cases of the tumour should be reported in order to document its biological behaviour.

  5. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use...... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  6. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures.

    Science.gov (United States)

    Nakamura, Kyle J; Heath, Laura; Sobrera, Edwin R; Wilkinson, Thomas A; Semrau, Katherine; Kankasa, Chipepo; Tobin, Nicole H; Webb, Nicholas E; Lee, Benhur; Thea, Donald M; Kuhn, Louise; Mullins, James I; Aldrovandi, Grace M

    2017-01-26

    Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother-infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission.

  7. Phylogenetically related, clinically different: human papillomaviruses 6 and 11 variants distribution in genital warts and in laryngeal papillomatosis.

    Science.gov (United States)

    Godínez, J M; Nicolás-Párraga, S; Pimenoff, V N; Mengual-Chuliá, B; Muñoz, N; Bosch, F X; Sánchez, G I; McCloskey, J; Bravo, I G

    2014-06-01

    Genital warts (GWs) and laryngeal papillomatosis (LP) are two usually benign pathologies related to infection with human papillomaviruses (HPVs), mainly HPV6 and HPV11. The aim of this work was to describe the genetic diversity of HPV6 and HPV11 isolates found in GWs and LPs, and to analyse the differential involvement of viral variants in either lesion. A total of 231 samples diagnosed as GWs (n = 198) or LP (n = 33) and caused by HPV6 or HPV11 monoinfections were analysed. The phylogenetic relationships of the retrieved viral sequences were explored. We have identified the long control region and the intergenic E2-L2 region as the two most variable regions in both HPV6 and HPV11 genomes. We have generated new HPV6 (n = 166) or HPV11 (n = 65) partial sequences from GWs and LPs lesions spanning both regions and studied them in the context of all available sequences of both types (final n = 412). Our results show a significant (p <0.01) differential presence of HPV6 variants among both pathologies, with HPV6 B variants being preferentially found in GW versus LP samples. No differential involvement of HPV11 variants was observed. Our findings suggest that different HPV6 variants may either show differential tropism or have different potential to induce lesions in different epithelia. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  8. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    Science.gov (United States)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  9. Viral triggers of multiple sclerosis.

    Science.gov (United States)

    Kakalacheva, Kristina; Münz, Christian; Lünemann, Jan D

    2011-02-01

    Genetic and environmental factors jointly determine the susceptibility to develop Multiple Sclerosis (MS). Collaborative efforts during the past years achieved substantial progress in defining the genetic architecture, underlying susceptibility to MS. Similar to other autoimmune diseases, HLA-DR and HLA-DQ alleles within the HLA class II region on chromosome 6p21 are the highest-risk-conferring genes. Less-robust susceptibility effects have been identified for MHC class I alleles and for non-MHC regions. The role of environmental risk factors and their interaction with genetic susceptibility alleles are much less well defined, despite the fact that infections have long been associated with MS development. Current data suggest that infectious triggers are most likely ubiquitous, i.e., highly prevalent in the general population, and that they require a permissive genetic trait which predisposes for MS development. In this review article, we illustrate mechanisms of infection-induced immunopathologies in experimental animal models of autoimmune CNS inflammation, discuss challenges for the translation of these experimental data into human immunology research, and provide future perspectives on how novel model systems could be utilized to better define the role of viral pathogens in MS. 2010 Elsevier B.V. All rights reserved.

  10. Bullous Variant of Sweet's Syndrome after Herpes Zoster Virus Infection

    Science.gov (United States)

    Endo, Yuichiro; Tanioka, Miki; Tanizaki, Hideaki; Mori, Minako; Kawabata, Hiroshi; Miyachi, Yoshiki

    2011-01-01

    Aim Cutaneous manifestations of Sweet's syndrome (SS) are typically painful plaque-forming erythematous papules, while bullae are quite uncommon. We present a case of bullous variant of SS in acute myeloid leukaemia. In this case, herpes infection of the left mandible had preceded the development of SS. Case Report A 75-year-old male with myelodysplastic syndrome first presented with herpes zoster virus infection-like bullae and erosive plaques on the left side of the face and neck. Treatment with valacyclovir and antibiotics was effective only for the initial lesions, whereas the other bullae kept developing predominantly on the left side. Histopathological study revealed epidermal bulla formation, pandermal neutrophilic infiltration, erythrocyte extravasation and subepidermal oedema, but no vasculitis. The findings suggested the diagnosis of bullous variant of SS. Discussion Our case was unique in that bullous SS symptoms developed predominantly on one side of the cheek and neck where the herpes zoster infection occurred prior to SS. The tendency may explain the possible association between viral infection and development of SS. PMID:22220147

  11. Viral infections of the folds (intertriginous areas).

    Science.gov (United States)

    Adışen, Esra; Önder, Meltem

    2015-01-01

    Viruses are considered intracellular obligates with a nucleic acid, either RNA or DNA. They have the ability to encode proteins involved in viral replication and production of the protective coat within the host cells but require host cell ribosomes and mitochondria for translation. The members of the families Herpesviridae, Poxviridae, Papovaviridae, and Picornaviridae are the most commonly known agents for the cutaneous viral diseases, but other virus families, such as Adenoviridae, Togaviridae, Parvoviridae, Paramyxoviridae, Flaviviridae, and Hepadnaviridae, can also infect the skin. Though the cutaneous manifestations of viral infections are closely related to the type and the transmission route of the virus, viral skin diseases may occur in almost any part of the body. In addition to friction caused by skin-to-skin touch, skin folds are warm and moist areas of the skin that have limited air circulation. These features provide a fertile breeding ground for many kinds of microorganisms, including bacteria and fungi. In contrast to specific bacterial and fungal agents that have an affinity for the skin folds, except for viral diseases of the anogenital area, which have well-known presentations, viral skin infections that have a special affinity to the skin folds are not known. Many viral exanthems may affect the skin folds during the course of the infection, but here we focus only on the ones that usually affect the fold areas and also on the less well-known conditions or recently described associations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T., E-mail: a.t.das@amc.uva.nl

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  13. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    International Nuclear Information System (INIS)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  14. Occurrence of novel GII.17 and GII.21 norovirus variants in the coastal environment of South Korea in 2015.

    Science.gov (United States)

    Koo, Eung Seo; Kim, Man Su; Choi, Yong Seon; Park, Kwon-Sam; Jeong, Yong Seok

    2017-01-01

    Human norovirus (HNoV), a positive-sense RNA virus, is the main causative agent of acute viral gastroenteritis. Multiple pandemic variants of the genogroup II genotype 4 (GII.4) of NoV have attracted great attention from researchers worldwide. However, novel variants of GII.17 have been overtaking those pandemic variants in some areas of East Asia. To investigate the environmental occurrence of GII in South Korea, we collected water samples from coastal streams and a neighboring waste water treatment plant in North Jeolla province (in March, July, and December of 2015). Based on capsid gene region C analysis, four different genotypes (GII.4, GII.13, GII.17, and GII.21) were detected, with much higher prevalence of GII.17 than of GII.4. Additional sequence analyses of the ORF1-ORF2 junction and ORF2 from the water samples revealed that the GII.17 sequences in this study were closely related to the novel strains of GII.P17-GII.17, the main causative variants of the 2014-2015 HNoV outbreak in China and Japan. In addition, the GII.P21-GII.21 variants were identified in this study and they had new amino acid sequence variations in the blockade epitopes of the P2 domain. From these results, we present two important findings: 1) the novel GII.P17-GII.17 variants appeared to be predominant in the study area, and 2) new GII.21 variants have emerged in South Korea.

  15. Vaccines in the Prevention of Viral Pneumonia.

    Science.gov (United States)

    Fraser, Clementine S; Jha, Akhilesh; Openshaw, Peter J M

    2017-03-01

    Pneumonia is of great global public health importance. Viral infections play both direct and indirect parts in its cause across the globe. Influenza is a leading cause of viral pneumonia in both children and adults, and respiratory syncytial virus is increasingly recognized as causing disease at both extremes of age. Vaccination offers the best prospect for prevention but current influenza vaccines do not provide universal and durable protection, and require yearly reformulation. In the future, it is hoped that influenza vaccines will give better and universal protection, and that new vaccines can be found for other causes of viral pneumonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Viral Evasion of Natural Killer Cell Activation.

    Science.gov (United States)

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  17. A skeptical look at viral immune evasion.

    Science.gov (United States)

    Davis, I A; Rouse, B T

    1997-12-01

    In the past several years, many viral gene products have been found to encode proteins which interfere with immune defense mechanisms. Whether these interactions between virus and immune system components are actually evasion mechanisms used during viral infections in their natural hosts remains to be proven. In vitro studies do, however, reveal several tactics which may aid viral replication and dissemination by interfering with components of both the innate and adaptive immune systems. In this manuscript, we discuss the more intensively studied of these putative in vitro evasion tactics and ponder their relevance in in vivo situations.

  18. Expansion of the CRF19_cpx Variant in Spain.

    Science.gov (United States)

    Patiño Galindo, Juan Angel; Torres-Puente, Manoli; Gimeno, Concepción; Ortega, Enrique; Navarro, David; Galindo, María José; Navarro, Laura; Navarro, Vicente; Juan, Amparo; Belda, Josefina; Bracho, María Alma; González-Candelas, Fernando

    2015-08-01

    HIV-1 CRF19_cpx, is a recombinant variant found almost exclusively in Cuba and recently associated to a faster AIDS onset. Infection with this variant leads to higher viral loads and levels of RANTES and CXCR4 co-receptor use. The goal of this study was to assess the presence of CRF19_cpx in the Spanish province of Valencia, given its high pathogenicity. 1294 HIV-1 protease-reverse transcriptase (PR/RT) sequences were obtained in Valencia (Spain), between 2005 and 2014. After subtyping, the detected CRF19_cpx sequences were aligned with 201 CRF19_cpx and 66 subtype D sequences retrieved from LANL, and subjected to maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. The presence of resistance mutations in the PR/RT region of these sequences was also analyzed. Among the 9 CRF19_cpx sequences from different patients found (prevalence <0.1%), 7 grouped in two well-supported clades (groups A, n=4, and B, n=3), suggesting the existence of at least two independent introductions which subsequently started to expand in the studied Spanish region. Unprotected sex between men was the only known transmission route. Coalescent analyses suggested that the introductions in Valencia occurred between 2008 and 2010. Resistance mutations in the RT region were found in all sequences from group A (V139D) and in two sequences from group B (E138A). This study reports for the first time the recent expansion of CRF19_cpx outside Cuba. Our results suggest that CRF19_cpx might become an emerging HIV variant in Spain, affecting Spanish native MSM and not only Cuban migrants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires’ disease in humans

    NARCIS (Netherlands)

    Ruiz-Moreno, J.S. (Juan S.); Hamann, L. (Lutz); Shah, J.A. (Javeed A.); A. Verbon (Annelies); Mockenhaupt, F.P. (Frank P.); Puzianowska-Kuznicka, M. (Monika); Naujoks, J. (Jan); Sander, L.E. (Leif E.); Witzenrath, M. (Martin); Cambier, J.C. (John C.); Suttorp, N. (Norbert); Schumann, R.R. (Ralf R.); Jin, L. (Lei); T.R. Hawn; Opitz, B. (Bastian)

    2018-01-01

    textabstractThe cyclic GMP-AMP synthase (cGAS)-STING pathway is central for innate immune sensing of various bacterial, viral and protozoal infections. Recent studies identified the common HAQ and R232H alleles of TMEM173/STING, but the functional consequences of these variants for primary

  20. Viral Marketing -­ How can a campaign succeed in going viral? What are the pros and cons of viral marketing?

    OpenAIRE

    Guyot, Maëlle

    2016-01-01

    This research contains an in-­depth analysis of viral marketing used by modern firms as a tool to advertise their offerings and increase brand exposure. Initially, the current marketing environment has been analyzed, in order to understand modern consumer behavior and what is trending (or not) in terms of marketing techniques. Subsequently, the relevant theory about viral marketing was explored, to have a deep understanding of the phenomenon (of its characteristics, forms and objectives). ...

  1. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  2. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  3. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis.

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    Full Text Available Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.

  4. Evolution and taxonomic classification of human papillomavirus 16 (HPV16-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67.

    Directory of Open Access Journals (Sweden)

    Zigui Chen

    Full Text Available Human papillomavirus 16 (HPV16 species group (alpha-9 of the Alphapapillomavirus genus contains HPV16, HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. These HPVs account for 75% of invasive cervical cancers worldwide. Viral variants of these HPVs differ in evolutionary history and pathogenicity. Moreover, a comprehensive nomenclature system for HPV variants is lacking, limiting comparisons between studies.DNA from cervical samples previously characterized for HPV type were obtained from multiple geographic regions to screen for novel variants. The complete 8 kb genomes of 120 variants representing the major and minor lineages of the HPV16-related alpha-9 HPV types were sequenced to capture maximum viral heterogeneity. Viral evolution was characterized by constructing phylogenic trees based on complete genomes using multiple algorithms. Maximal and viral region specific divergence was calculated by global and pairwise alignments. Variant lineages were classified and named using an alphanumeric system; the prototype genome was assigned to the A lineage for all types.The range of genome-genome sequence heterogeneity varied from 0.6% for HPV35 to 2.2% for HPV52 and included 1.4% for HPV31, 1.1% for HPV33, 1.7% for HPV58 and 1.1% for HPV67. Nucleotide differences of approximately 1.0% - 10.0% and 0.5%-1.0% of the complete genomes were used to define variant lineages and sublineages, respectively. Each gene/region differs in sequence diversity, from most variable to least variable: noncoding region 1 (NCR1 /noncoding region 2 (NCR2 >upstream regulatory region (URR> E6/E7 > E2/L2 > E1/L1.These data define maximum viral genomic heterogeneity of HPV16-related alpha-9 HPV variants. The proposed nomenclature system facilitates the comparison of variants across epidemiological studies. Sequence diversity and phylogenies of this clinically important group of HPVs provides the basis for further studies of discrete viral evolution, epidemiology, pathogenesis and

  5. Novel strategy to evaluate infectious salmon anemia virus variants by high resolution melting.

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available Genetic variability is a key problem in the prevention and therapy of RNA-based virus infections. Infectious Salmon Anemia virus (ISAv is an RNA virus which aggressively attacks salmon producing farms worldwide and in particular in Chile. Just as with most of the Orthomyxovirus, ISAv displays high variability in its genome which is reflected by a wider infection potential, thus hampering management and prevention of the disease. Although a number of widely validated detection procedures exist, in this case there is a need of a more complex approach to the characterization of virus variability. We have adapted a procedure of High Resolution Melting (HRM as a fine-tuning technique to fully differentiate viral variants detected in Chile and projected to other infective variants reported elsewhere. Out of the eight viral coding segments, the technique was adapted using natural Chilean variants for two of them, namely segments 5 and 6, recognized as virulence-associated factors. Our work demonstrates the versatility of the technique as well as its superior resolution capacity compared with standard techniques currently in use as key diagnostic tools.

  6. [Use of the cultural variants of Coxsackie A viruses in virological practice].

    Science.gov (United States)

    Seĭbil', V B; Malyshkina, L P; Gracheva, L A; Kozlov, V G

    2012-01-01

    Coxsackie A viruses belong to the enteroviruses, the isolation of which from infectious materials and further cultivation are possible only when laboratory animals are infected. The authors could adapt the strains of 17 of 23 serotypes of these viruses to RD cell culture. The strains of 8 serotypes were additionally adapted to Vero cell culture. The cultural variants of Coxsackle A viruses were used to prepare immune sera. The Bacterial and Viral Agents Enterprise, M. P. Chumakov Institute of Poliomyelitis and Virus Encephalitides, Russian Academy of Medical Sciences, has set up the production of bacterial and viral drugs based on the cultural variants of 5 Coxsackie A virus serotypes. The cultural variants of 14 Coxsackie A virus serotypes were used to carry out a virus neutralization test. Examination of more than 600 children from Moscow and the Moscow Region showed the wide circulation of individual Coxsackie A virus serotypes. It also demonstrated a drastic reduction in Coxsackie A-7 virus circulation in the past 50 years.

  7. NNDSS - Table II. Hepatitis (viral, acute) C

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) C - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  8. NNDSS - Table II. Hepatitis (viral, acute)

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases but...

  9. NNDSS - Table II. Hepatitis (viral, acute) C

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) C - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  10. NNDSS - Table II. Hepatitis (viral, acute)

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  11. NNDSS - Table II. Hepatitis (viral, acute)

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  12. Dynamical Implications of Viral Tiling Theory

    OpenAIRE

    ElSawy, K. M.; Taormina, A.; Twarock, R.; Vaughan, L.

    2007-01-01

    The Caspar–Klug classification of viruses whose protein shell, called viral capsid, exhibits icosahedral symmetry, has recently been extended to incorporate viruses whose capsid proteins are exclusively organised in pentamers. The approach, named ‘Viral Tiling Theory’, is inspired by the theory of quasicrystals, where aperiodic Penrose tilings enjoy 5-fold and 10-fold local symmetries. This paper analyses the extent to which this classification approach informs dynamical properties of the vir...

  13. Rapid and highly fieldable viral diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.

    2016-12-20

    The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.

  14. [Liver hemosiderosis study in chronic viral hepatitis].

    Science.gov (United States)

    Cojocariu, Camelia; Trifan, Anca; Mihailovici, Maria Sultana; Danciu, M; Stanciu, C

    2008-01-01

    In chronic viral hepatitis the histopathological exam can reveal the presence of liver iron deposits in 10 to 73% of patients. Iron deposits are usually found in Kupffer cells, in endothelial cells and portal macrophages, and extremely rarely in hepatocytes. To evaluate the incidence of hepatic hemosiderosis in chronic viral hepatitis. 549 morphopathological features of liver biopsy specimens performed in the Gastroenterology and Hepatology Institute IaSi, between January 1 2003 and December 31 2007 have been analyzed. Semiquantitative assessment of the degree of hepatic iron overload was performed and the localization of haemosiderin deposits: at the level of hepatocytes, the reticuloendothelial system or mixedly. The same anatomopathologist examined the blades and interpreted the results. The medium age of patients who underwent liver biopsy was 45.08 years +/- 10.045. Positive iron staining was found in 22.8% of cases, more frequently in males (31%), and in 91.82% of cases iron deposits were grade 1-2. The association of alcoholic etiology did not influence the incidence of hemosiderosis: 23% in patients with hepatitis and no ethanol exposure vs 25% in cases of strictly viral etiology. Deposits of haemosiderin were more frequent in viral hepatitis B (38.6%) than in viral hepatitis C (26.9%). In 34% of cases stainable iron was found only in reticuloendothelial system and in 46% of cases both in Kupffer cells and hepatocytes. Almost a quarter of chronic viral hepatitis cases are associated with liver deposits of haemosiderin, with features of secondary iron overload (deposits localized in the mesenchymal areas or mixedly). There is a higher risk of hemosiderosis in men, especially for those between 30 and 50. Liver iron overload levels in chronic viral hepatitis are, in most cases, low or medium, and the association with an alcoholic etiology does not influence the incidence of hemosiderosis in chronic viral hepatitis.

  15. The fecal viral flora of wild rodents.

    OpenAIRE

    Tung G Phan; Beatrix Kapusinszky; Chunlin Wang; Robert K Rose; Howard L Lipton; Eric L Delwart

    2011-01-01

    The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae...

  16. Institute of Medicine's Report on Viral Hepatitis

    Centers for Disease Control (CDC) Podcasts

    2010-05-18

    In this podcast, Dr. John Ward, Director of CDC’s Division of Viral Hepatitis, discusses the 2010 report, Hepatitis and Liver Cancer: A National Strategy for Prevention and Control of Hepatitis B and C, from the Institute of Medicine.  Created: 5/18/2010 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 5/18/2010.

  17. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    Science.gov (United States)

    2014-09-01

    Award Number: W81XWH-11-1-0387 TITLE: Viral Oncolytic Therapeutics for Neoplastic Meningitis PRINCIPAL INVESTIGATOR: Mikhail Papisov, PhD...SUBTITLE Viral Oncolytic Therapeutics for Neoplastic Meningitis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0387 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...for neoplastic meningitis ( meningeal metastasis of breast cancer). The proposed therapy will be based on direct (intrathecal) administration of

  18. [Viral interactions with the host's immune system].

    Science.gov (United States)

    Humlová, Z

    2001-01-01

    Viruses are obligatory intracellular parasites, which differ in their structure and strategy of replication. The establishment of an antiviral state in uninfected cells and the elimination of virally infected cells are critical tasks in the host defence. Against the extensive array of immune modalities, viruses have successfully learned how to manipulate host immune control mechanisms. The study of viral strategies of immune evasion can provide insights into host-virus interactions and also illuminates essential functions of the immune system.

  19. Pediatric knowledge about acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    Rita Franca

    Full Text Available Knowledge about hepatotropic viruses is crucial for pediatricians because of the high prevalence of viral hepatitis during childhood. The multiplicity of hepatotropic viruses, the spectrum of acute and chronic infections, and the sequels of viral hepatitis result in a need for physicians to better understand the clinical and epidemiological context of patients with viral hepatitis, as well as the importance of prevention measures for hepatitis. A descriptive cross-sectional study was made of pediatrician's knowledge about viral hepatitis, through questionnaires to 574 pediatricians, with no obligation of identification. The pediatricians were recruited among those who attended a national Congress of Pediatrics in Brasília, Brazil. Among these pediatricians, 50.1% frequently treated cases of hepatitis, and 74.7% indicated that they had knowledge of the existence of five hepatotropic viruses; 14.5% knew about at least four types of hepatitis complications, while only 7.7% and 4.3% were able to correctly diagnose viral hepatitis A and B, respectively. Many (28.4% did not know how to treat the patients adequately. Only 37.5% had already recommended vaccination against hepatitis B. Only 50.2% of the pediatricians had been vaccinated against hepatitis B. We concluded that it is crucial to make pediatricians more knowledgeable about viral hepatitis, through continued education programs, especially emphasizing prevention procedures.

  20. Generating viral metagenomes from the coral holobiont

    Directory of Open Access Journals (Sweden)

    Karen Dawn Weynberg

    2014-05-01

    Full Text Available Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.

  1. Viral Metagenomics: MetaView Software

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Smith, J

    2007-10-22

    The purpose of this report is to design and develop a tool for analysis of raw sequence read data from viral metagenomics experiments. The tool should compare read sequences of known viral nucleic acid sequence data and enable a user to attempt to determine, with some degree of confidence, what virus groups may be present in the sample. This project was conducted in two phases. In phase 1 we surveyed the literature and examined existing metagenomics tools to educate ourselves and to more precisely define the problem of analyzing raw read data from viral metagenomic experiments. In phase 2 we devised an approach and built a prototype code and database. This code takes viral metagenomic read data in fasta format as input and accesses all complete viral genomes from Kpath for sequence comparison. The system executes at the UNIX command line, producing output that is stored in an Oracle relational database. We provide here a description of the approach we came up with for handling un-assembled, short read data sets from viral metagenomics experiments. We include a discussion of the current MetaView code capabilities and additional functionality that we believe should be added, should additional funding be acquired to continue the work.

  2. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  3. Modeling and Selection of Software Service Variants

    OpenAIRE

    Wittern, John Erik

    2015-01-01

    Providers and consumers have to deal with variants, meaning alternative instances of a service?s design, implementation, deployment, or operation, when developing or delivering software services. This work presents service feature modeling to deal with associated challenges, comprising a language to represent software service variants and a set of methods for modeling and subsequent variant selection. This work?s evaluation includes a POC implementation and two real-life use cases.

  4. Analysis of viral (zucchini yellow mosaic virus) genetic diversity during systemic movement through a Cucurbita pepo vine.

    Science.gov (United States)

    Dunham, J P; Simmons, H E; Holmes, E C; Stephenson, A G

    2014-10-13

    Determining the extent and structure of intra-host genetic diversity and the magnitude and impact of population bottlenecks is central to understanding the mechanisms of viral evolution. To determine the nature of viral evolution following systemic movement through a plant, we performed deep sequencing of 23 leaves that grew sequentially along a single Cucurbita pepo vine that was infected with zucchini yellow mosaic virus (ZYMV), and on a leaf that grew in on a side branch. Strikingly, of 112 genetic (i.e. sub-consensus) variants observed in the data set as a whole, only 22 were found in multiple leaves. Similarly, only three of the 13 variants present in the inoculating population were found in the subsequent leaves on the vine. Hence, it appears that systemic movement is characterized by sequential population bottlenecks, although not sufficient to reduce the population to a single virion as multiple variants were consistently transmitted between leaves. In addition, the number of variants within a leaf increases as a function of distance from the inoculated (source) leaf, suggesting that the circulating sap may serve as a continual source of virus. Notably, multiple mutational variants were observed in the cylindrical inclusion (CI) protein (known to be involved in both cell-to-cell and systemic movement of the virus) that were present in multiple (19/24) leaf samples. These mutations resulted in a conformational change, suggesting that they might confer a selective advantage in systemic movement within the vine. Overall, these data reveal that bottlenecks occur during systemic movement, that variants circulate in the phloem sap throughout the infection process, and that important conformational changes in CI protein may arise during individual infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds.

    Science.gov (United States)

    Baron, A V; Osipov, N V; Yashchenko, S V; Kokotukha, Yu A; Baron, I J; Puzyr, A P; Olkhovskiy, I A; Bondar, V S

    2016-07-01

    Adsorption of viral particles from the blood plasma of patients with viral hepatitis B and C on modified nanodiamonds (MNDs) was shown in the in vitro experiments. PCR method showed the treatment of plasma with MNDs leads to a decrease in the viral load by 2-3 orders of magnitude or more in both cases studied. These results make it possible to predict the applicability of MNDs for the development of new technologies of hemodialysis and plasmapheresis for binding and removal of viral particles from the blood of infected patients.

  6. An Odyssey to Viral Pathogenesis.

    Science.gov (United States)

    Oldstone, Michael B A

    2016-05-23

    polishing by Karl Habel (a superb senior virologist who left the National Institutes of Health and came to Scripps), and the gifted postdoctoral fellows who joined my laboratory over four decades form the log of my scientific voyage. The strong friendships and collaborations developed with other young but growing experimentalists like Bernie Fields and Abner Notkins are the fabric of the tale I will weave and were pivotal in the establishment of viral pathogenesis as a discipline.

  7. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder.

    Science.gov (United States)

    Torres, Anthony R; Sweeten, Thayne L; Johnson, Randall C; Odell, Dennis; Westover, Jonna B; Bray-Ward, Patricia; Ward, David C; Davies, Christopher J; Thomas, Aaron J; Croen, Lisa A; Benson, Michael

    2016-01-01

    The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations ( Table 2 ). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations ( Table 2 ). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism

  8. Molecular piracy: the viral link to carcinogenesis.

    Science.gov (United States)

    Flaitz, C M; Hicks, M J

    1998-11-01

    The vast majority of the human experience with viral infections is associated with acute symptoms, such as malaise, fever, chills, rhinitis and diarrhea. With this acute or lytic phase, the immune system mounts a response and eliminates the viral agent while acquiring antibodies to that specific viral subtype. With latent or chronic infections, the viral agent becomes incorporated into the human genome. Viral agents capable of integration into the host's genetic material are particularly dangerous and may commandeer the host's ability to regulate normal cell growth and proliferation. The oncogenic viruses may immortalize the host cell, and facilitate malignant transformation. Cell growth and proliferation may be enhanced by viral interference with tumor suppressor gene function (p53 and pRb). Viruses may act as vectors for mutated proto-oncogenes (oncogenes). Overexpression of these oncogenes in viral-infected cells interferes with normal cell function and allows unregulated cell growth and proliferation, which may lead to malignant transformation and tumour formation. Development of oral neoplasms, both benign and malignant, has been linked to several viruses. Epstein-Barr virus is associated with oral hairy leukoplakia, lymphoproliferative disease, lymphoepithelial carcinoma, B-cell lymphomas, and nasopharyngeal carcinoma. Human herpesvirus-8 has been implicated in all forms of Kaposi's sarcoma, primary effusion lymphomas, multiple myeloma, angioimmunoblastic lymphadenopathy, and Castleman's disease. Human herpesvirus-6 has been detected in lymphoproliferative disease, lymphomas, Hodgkin's disease, and oral squamous cell carcinoma. The role of human papillomavirus in benign (squamous papilloma, focal epithelial hyperplasia, condyloma acuminatum, verruca vulgaris), premalignant (oral epithelial dysplasia), and malignant (squamous cell carcinoma) neoplasms within the oral cavity is well recognized. Herpes simplex virus may participate as a cofactor in oral squamous

  9. Raw Sewage Harbors Diverse Viral Populations

    Science.gov (United States)

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

  10. Dicer-2 processes diverse viral RNA species.

    Directory of Open Access Journals (Sweden)

    Leah R Sabin

    Full Text Available RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi is mediated by small interfering RNAs (siRNAs, which are liberated from double-stranded (dsRNA precursors by Dicer and guide the RNA-induced silencing complex (RISC to targets. Although principles governing small RNA sorting into RISC have been uncovered, the spectrum of RNA species that can be targeted by Dicer proteins, particularly the viral RNAs present during an infection, are poorly understood. Dicer-2 potently restricts viral infection in insects by generating virus-derived siRNAs from viral RNA. To better characterize the substrates of Dicer-2, we examined the virus-derived siRNAs produced during the Drosophila antiviral RNAi response to four different viruses using high-throughput sequencing. We found that each virus was uniquely targeted by the RNAi pathway; dicing substrates included dsRNA replication intermediates and intramolecular RNA stem loops. For instance, a putative intergenic RNA hairpin encoded by Rift Valley Fever virus generates abundant small RNAs in both Drosophila and mosquito cells, while repetitive sequences within the genomic termini of Vaccinia virus, which give rise to abundant small RNAs in Drosophila, were found to be transcribed in both insect and mammalian cells. Moreover, we provide evidence that the RNA species targeted by Dicer-2 can be modulated by the presence of a viral suppressor of RNAi. This study uncovered several novel, heavily targeted features within viral genomes, offering insight into viral replication, viral immune evasion strategies, and the mechanism of antiviral RNAi.

  11. Semantic prioritization of novel causative genomic variants.

    Directory of Open Access Journals (Sweden)

    Imane Boudellioua

    2017-04-01

    Full Text Available Discriminating the causative disease variant(s for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  12. Semantic prioritization of novel causative genomic variants.

    Science.gov (United States)

    Boudellioua, Imane; Mahamad Razali, Rozaimi B; Kulmanov, Maxat; Hashish, Yasmeen; Bajic, Vladimir B; Goncalves-Serra, Eva; Schoenmakers, Nadia; Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

    2017-04-01

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  13. Conditionally replicating HIV and SIV variants

    NARCIS (Netherlands)

    Das, Atze T.; Berkhout, Ben

    2016-01-01

    Conditionally replicating human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) variants that can be switched on and off at will are attractive tools for HIV and SIV research. We constructed HIV and SIV variants in which the natural transcription control mechanism was replaced

  14. Adaptive ridge regression for rare variant detection.

    Directory of Open Access Journals (Sweden)

    Haimao Zhan

    Full Text Available It is widely believed that both common and rare variants contribute to the risks of common diseases or complex traits and the cumulative effects of multiple rare variants can explain a significant proportion of trait variances. Advances in high-throughput DNA sequencing technologies allow us to genotype rare causal variants and investigate the effects of such rare variants on complex traits. We developed an adaptive ridge regression method to analyze the collective effects of multiple variants in the same gene or the same functional unit. Our model focuses on continuous trait and incorporates covariate factors to remove potential confounding effects. The proposed method estimates and tests multiple rare variants collectively but does not depend on the assumption of same direction of each rare variant effect. Compared with the Bayesian hierarchical generalized linear model approach, the state-of-the-art method of rare variant detection, the proposed new method is easy to implement, yet it has higher statistical power. Application of the new method is demonstrated using the well-known data from the Dallas Heart Study.

  15. Adaptive ridge regression for rare variant detection.

    Science.gov (United States)

    Zhan, Haimao; Xu, Shizhong

    2012-01-01

    It is widely believed that both common and rare variants contribute to the risks of common diseases or complex traits and the cumulative effects of multiple rare variants can explain a significant proportion of trait variances. Advances in high-throughput DNA sequencing technologies allow us to genotype rare causal variants and investigate the effects of such rare variants on complex traits. We developed an adaptive ridge regression method to analyze the collective effects of multiple variants in the same gene or the same functional unit. Our model focuses on continuous trait and incorporates covariate factors to remove potential confounding effects. The proposed method estimates and tests multiple rare variants collectively but does not depend on the assumption of same direction of each rare variant effect. Compared with the Bayesian hierarchical generalized linear model approach, the state-of-the-art method of rare variant detection, the proposed new method is easy to implement, yet it has higher statistical power. Application of the new method is demonstrated using the well-known data from the Dallas Heart Study.

  16. Semantic prioritization of novel causative genomic variants

    KAUST Repository

    Boudellioua, Imene

    2017-04-17

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  17. Immune Responses against Conserved and Variable Viral Epitopes

    OpenAIRE

    Bittner, B.; Wahl, L. M.

    2000-01-01

    We extend well-known mathematical models of viral infection to examine the response of cytotoxic T lymphocytes (CTL) to both conserved and variable viral epitopes. Because most viruses are subject to error-prone reproduction, CTL recognition may be faced with highly variable epitopes, while other CTL epitopes may remain conserved across viral strains. In this paper we examine the steady state conditions for a simple model of viral-immune system dynamics in which the viral strain can be limite...

  18. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...resolution. However, viral RNA tends to cluster in specific subcellular sites (e.g. viral replication factories). Thus while true single-molecule...assays [4]. Detection of viral RNA allows for in depth interrogation of the subcellular sites of viral replication and such experiments will help further

  19. View and review on viral oncology research

    Directory of Open Access Journals (Sweden)

    Parolin Cristina

    2010-05-01

    Full Text Available Abstract To date, almost one and a half million cases of cancer are diagnosed every year in the US and nearly 560,000 Americans are expected to die of cancer in the current year, more than 1,500 people a day (data from the American Cancer Society at http://www.cancer.org/. According to the World Health Organization (WHO, roughly 20% of all cancers worldwide results from chronic infections; in particular, up to 15% of human cancers is characterized by a viral aetiology with higher incidence in Developing Countries. The link between viruses and cancer was one of the pivotal discoveries in cancer research during the past Century. Indeed, the infectious nature of specific tumors has important implications in terms of their prevention, diagnosis, and therapy. In the 21st Century, the research on viral oncology field continues to be vigorous, with new significant and original studies on viral oncogenesis and translational research from basic virology to treatment of cancer. This review will cover different viral oncology aspects, starting from the history of viral oncology and moving to the peculiar features of oncogenic RNA and DNA viruses, with a special focus on human pathogens.

  20. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  1. Viral Dynamics of Acute HIV-1 Infection

    Science.gov (United States)

    Little, Susan J.; McLean, Angela R.; Spina, Celsa A.; Richman, Douglas D.; Havlir, Diane V.

    1999-01-01

    Viral dynamics were intensively investigated in eight patients with acute HIV infection to define the earliest rates of change in plasma HIV RNA before and after the start of antiretroviral therapy. We report the first estimates of the basic reproductive number (R 0), the number of cells infected by the progeny of an infected cell during its lifetime when target cells are not depleted. The mean initial viral doubling time was 10 h, and the peak of viremia occurred 21 d after reported HIV exposure. The spontaneous rate of decline (α) was highly variable among individuals. The phase 1 viral decay rate (δI = 0.3/day) in subjects initiating potent antiretroviral therapy during acute HIV infection was similar to estimates from treated subjects with chronic HIV infection. The doubling time in two subjects who discontinued antiretroviral therapy was almost five times slower than during acute infection. The mean basic reproductive number (R 0) of 19.3 during the logarithmic growth phase of primary HIV infection suggested that a vaccine or postexposure prophylaxis of at least 95% efficacy would be needed to extinguish productive viral infection in the absence of drug resistance or viral latency. These measurements provide a basis for comparison of vaccine and other strategies and support the validity of the simian immunodeficiency virus macaque model of acute HIV infection. PMID:10499922

  2. Recombination-dependent concatemeric viral DNA replication.

    Science.gov (United States)

    Lo Piano, Ambra; Martínez-Jiménez, María I; Zecchi, Lisa; Ayora, Silvia

    2011-09-01

    The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Viral miRNAs and immune evasion.

    Science.gov (United States)

    Boss, Isaac W; Renne, Rolf

    2011-01-01

    Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells.

    Directory of Open Access Journals (Sweden)

    Claudia V Filomatori

    2017-03-01

    Full Text Available The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3'UTRs (known as sfRNAs, relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3'UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3'UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of

  5. Local binary patterns new variants and applications

    CERN Document Server

    Jain, Lakhmi; Nanni, Loris; Lumini, Alessandra

    2014-01-01

    This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.

  6. Fundamental Characteristics of Industrial Variant Specification Systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Hvam, Lars

    2004-01-01

    This paper focuses on the operational task of creating customised variants of industrial specifications (e.g. drawings, routings and bill-of-materials). Rooted in a lack of existing literature on the subject the paper describes the nature of variant specification systems. It introduces some...... fundamental concepts related to this task, which are relevant to understand for academia and practitioners working with the subject. This is done through a description of variant specification tasks and typical aspects of system solutions. To support the description of variant specification tasks and systems...... examples. In general the paper discusses an important focus area within mass customization and build-to-order production: the nature of industrial variant specification systems....

  7. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  8. Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    Science.gov (United States)

    Chen, Haoyan; Hayashi, Genki; Lai, Olivia Y.; Dilthey, Alexander; Kuebler, Peter J.; Wong, Tami V.; Martin, Maureen P.; Fernandez Vina, Marcelo A.; McVean, Gil; Wabl, Matthias; Leslie, Kieron S.; Maurer, Toby; Martin, Jeffrey N.; Deeks, Steven G.; Carrington, Mary; Bowcock, Anne M.; Nixon, Douglas F.; Liao, Wilson

    2012-01-01

    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis. PMID:22577363

  9. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  10. Systematic comparison of variant calling pipelines using gold standard personal exome variants.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M

    2015-12-07

    The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners--BWA-MEM, Bowtie2, and Novoalign--and four variant callers--Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes.

  11. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  12. Viral vector-based influenza vaccines.

    Science.gov (United States)

    de Vries, Rory D; Rimmelzwaan, Guus F

    2016-11-01

    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.

  13. Vertebral artery dissection associated with viral meningitis

    Directory of Open Access Journals (Sweden)

    Pan Xudong

    2012-08-01

    Full Text Available Abstract Background Vertebral artery dissection (VAD is often associated with trauma or occurs spontaneously, inevitably causing some neurological deficits. Even though acute infection can be related to the development of spontaneous VAD (sVAD, VAD associated with viral meningitis has never been reported in the literature. Case presentation A 42-year-old man with fever, sore throat, and runny nose developed sudden onset of occipital headache, vertigo, transient confusion, diplopia, and ataxia. Brain stem encephalitis was diagnosed initially because the cerebrospinal fluid (CSF study showed inflammatory changes. However, subsequent diffusion-weighted (DWI magnetic resonance imaging of his brain demonstrated left lateral medullary infarction, and the digital subtraction angiography (DSA confirmed VAD involving left V4 segment of the artery. Consequently, the patient was diagnosed as VAD accompanied by viral meningitis. Conclusion This case suggests that viral meningitis might lead to inflammatory injury of the vertebral arterial wall, even sVAD with multiple neurological symptoms.

  14. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  15. CT images of infantile viral encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, Tateo; Okazaki, Hitoshi; Woo, Man

    1985-01-01

    Cranial CT scanning was undertaken in 40 patients with infantile viral encephalitis seen from 1977 to 1983. According to the pathogenic viruses, abnormal CT findings were detected most frequently in cases of herpes simplex encephalitis (HSE), followed by non-eruptive viral encephalitis, measles encephalitis, and rubella encephalitis in that order, which coincided well with neurological prognosis. Although CT findings lay within a normal range in cases of measles encephalitis, except a case in which cerebral ventricle was slightly dilated, the degree of consciousness disturbance was unfavorable and it persisted long. This revealed that there is no distinct correlation between the degree of consciousness disturbance and CT findings. Normal CT findings were detected in 13% of patients aged less than 5 years and 76.5% of patients aged 5 years or more. In many patients who had an attack of viral encephalitis at the age of 5 years or more, epileptic seizures occurred frequently, even though CT findings were normal. (Namekawa, K.)

  16. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications.

    Directory of Open Access Journals (Sweden)

    Larance Ronsard

    Full Text Available BACKGROUND: Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. METHODS: Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. RESULTS: Phylogenetic analysis of Tat exon-1 variants (n = 120 revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. CONCLUSIONS: The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the

  17. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications.

    Science.gov (United States)

    Ronsard, Larance; Lata, Sneh; Singh, Jyotsna; Ramachandran, Vishnampettai G; Das, Shukla; Banerjea, Akhil C

    2014-01-01

    Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. Phylogenetic analysis of Tat exon-1 variants (n = 120) revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART) recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the ORF of Tat exon-1. These events are likely to have

  18. Acute Viral Hepatitis in Pediatric Age Groups

    Directory of Open Access Journals (Sweden)

    Sudhamshu KC

    2014-03-01

    Full Text Available Introduction: Our clinical experience showed that there has been no decrease in pediatric cases of acute viral hepatitis in Kathmandu. The objective of the study was to analyze the etiology, clinical features, laboratory parameters, sonological findings and other to determine the probable prognostic factors of Acute Viral Hepatitis in pediatric population. Methods: Consecutive patients of suspected Acute Viral Hepatitis, below the age of 15 years, attending the liver clinic between January 2006 and December2010were studied. After clinical examination they were subjected to blood tests and ultrasound examination of abdomen. The patients were divided in 3 age groups; 0–5, 5–10 and 5–15 years. Clinical features, laboratory parameters, ultrasound findings were compared in three age groups. Results: Etiology of Acute Viral Hepatitis was Hepatitis A virus 266 (85%, Hepatitis E virus in 24 (8%, Hepatitis B virus in 15 (5%. In 7(2% patients etiology was unknown. Three patients went to acute liver failure but improved with conservative treatment. There was no statistical difference in most of the parameters studied in different age groups. Ascites was more common in 5-10 years age group. Patients with secondary bacterial infection, ultrasound evidence of prominent biliary tree and ascites were associated with increased duration of illness. Patients with history of herbal medications had prolonged cholestasis. Conclusions: Hepatitis A is most common cause of Acute Viral Hepatitis in pediatric population. Improper use of herbal medications, secondary bacterial infection and faulty dietary intake was associated with prolonged illness. Patients with prominent biliary radicals should be treated with antibiotics even with normal blood counts for earlier recovery. Keywords: Acute viral hepatitis; hepatitis A; hepatitis E; herbal medications.

  19. The fecal viral flora of wild rodents.

    Directory of Open Access Journals (Sweden)

    Tung G Phan

    2011-09-01

    Full Text Available The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in

  20. Somatic cancer variant curation and harmonization through consensus minimum variant level data

    Directory of Open Access Journals (Sweden)

    Deborah I. Ritter

    2016-11-01

    Full Text Available Abstract Background To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG of the Clinical Genome Resource (ClinGen, in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD. MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice. Methods We developed MVLD through a consensus approach by i reviewing clinical actionability interpretations from institutions participating in the WG, ii conducting extensive literature search of clinical somatic interpretation schemas, and iii survey of cancer variant web portals. A forthcoming guideline on cancer variant interpretation, from the Association of Molecular Pathology (AMP, can be incorporated into MVLD. Results Along with harmonizing standardized terminology for allele interpretive and descriptive fields that are collected by many databases, the MVLD includes unique fields for cancer variants such as Biomarker Class, Therapeutic Context and Effect. In addition, MVLD includes recommendations for controlled semantics and ontologies. The Somatic WG is collaborating with ClinVar to evaluate MVLD use for somatic variant submissions. ClinVar is an open and centralized repository where sequencing laboratories can report summary-level variant data with clinical significance, and ClinVar accepts cancer variant data. Conclusions We expect the use of the MVLD to streamline clinical interpretation of cancer variants, enhance interoperability among multiple redundant curation efforts, and increase submission of

  1. Viral pneumonias: Typical and atypical findings

    Energy Technology Data Exchange (ETDEWEB)

    Westhoff-Bleck, M.; Bleck, J.S.; Schirg, E.

    1987-10-01

    The clinical and radiological features of viral pneumonias are summarized and discussed. Although viral infections of the lung belong to atypical pneumonias they demonstrate not always the radiographic pattern of an interstitial pneumonia. Characteristic radiographic findings are quite rare. In most cases the microbial etiology cannot be predicted from chest radiographs. The appearance varies depending on the virulence of the organism and the resistence of the host. In this regard knowledge of epidemiological data as well as patients condition and underlying disease is of utmost importance. Differentiation between community- and hospital-acquired infection may be very helpful.

  2. Broad-Spectrum Drugs Against Viral Agents

    Directory of Open Access Journals (Sweden)

    Jonathan P. Wong

    2008-09-01

    Full Text Available Development of antivirals has focused primarily on vaccines and on treatments for specific viral agents. Although effective, these approaches may be limited in situations where the etiologic agent is unknown or when the target virus has undergone mutation, recombination or reassortment. Augmentation of the innate immune response may be an effective alternative for disease amelioration. Nonspecific, broad-spectrum immune responses can be induced by double-stranded (dsRNAs such as poly (ICLC, or oligonucleotides (ODNs containing unmethylated deocycytidyl-deoxyguanosinyl (CpG motifs. These may offer protection against various bacterial and viral pathogens regardless of their genetic makeup, zoonotic origin or drug resistance.

  3. Viral diseases in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew

    Honey bees are important insects for human welfare, due to pollination as well as honey production. Viral diseases strongly impact honey bee health, especially since the spread of varroa mites. This dissertation deals with the interactions between honey bees, viruses and varroa mites. A new tool...... was developed to diagnose three viruses in honey bees. Quantitative PCR was used to investigate the distribution of two popular viruses in five different tissues of 86 honey bee queens. Seasonal variation of viral infection in honey bee workers and varroa mites were determined by sampling 23 colonies under...

  4. Viral pneumonias: Typical and atypical findings

    International Nuclear Information System (INIS)

    Westhoff-Bleck, M.; Bleck, J.S.; Schirg, E.

    1987-01-01

    The clinical and radiological features of viral pneumonias are summarized and discussed. Although viral infections of the lung belong to atypical pneumonias they demonstrate not always the radiographic pattern of an interstitial pneumonia. Characteristic radiographic findings are quite rare. In most cases the microbial etiology cannot be predicted from chest radiographs. The appearance varies depending on the virulence of the organism and the resistence of the host. In this regard knowledge of epidemiological data as well as patients condition and underlying disease is of utmost importance. Differentiation between community- and hospital-acquired infection may be very helpful. (orig.) [de

  5. Structure of viral hepatitis in infants

    Directory of Open Access Journals (Sweden)

    T.V. Sorokman

    2017-03-01

    Full Text Available Background. Many current studies are devoted to the study of hepatitis caused by viral infections, which are qualified as TORCH-infection. In infants TORCH-induced lesions prevail in the structure of viral hepatitis, the largest proportion is hepatitis of cytomegalovirus etiology. The purpose was to study the structure of viral hepatitis in infants. Materials and methods. The study included sixty-two children (mean age 1.8 ± 0.9 years born in 2007–2016 treated in Chernivtsi Regional Children’s Clinical Hospital. The comparison group consisted of 36 healthy children of the same age. The pathogens of viral hepatitis B, C, TORCH infections were verified by enzyme immunoassay and polymerase chain reaction. The results of the research were analyzed using computer package Statistica StatSoft Inc. and Excel XP for Windows for a personal computer. Results. The results of the analysis of the liver diseases structure in 62 young children, according to hospital statistics, determined that the overwhelming majority (38 children; 61.3 % had viral hepatitis (VH, the other 24 (38.7 % patients were divided by the etiological structure of liver damage as follows: 8 (12.9 % patients had prolonged conjunctive jaundice, 7 (11.3 % patients had congenital metabolic disorders, 9 (14.5 % patients had congenital hepatobiliary abnomalities. 16.6 % of young children had hepatitis B and C viruses. In 5.8 % of cases VH was caused by viruses of the TORCH group of infections. Conclusions. In the structure of hepatobiliary diseases in infants, viral hepatitis (68.4 % is on the first ranked place. Among the viral hepatitis in children in the first year of life, CMV-hepatitis (68.4 % is most common, in children over 1 year old chronic hepatitis B and C. Severe obstetrical anamnesis, violations of pregnancy, placental infection are rather significant in the group of children with viral hepatitis. The main clinical signs of CMV-hepatitis are prolonged jaundice, cholestasis

  6. Importance of viral diseases in irradiated persons

    International Nuclear Information System (INIS)

    Blaha, M.; Jebavy, L.; Merka, V.; Horacek, J.

    1988-01-01

    A preliminary study was performed aimed at establishing the incidence of some viral diseases in radiation syndrome patients and the significance of the diseases for prognosis. In the study, 77 patients with syndromologically identical acute hematological forms of radiation sickness, mainly leukemic patients suffering from severe blood formation suppression and/or hematoblastosis were examined for concurrent herpes simplex virus and cytomegalovirus infections. Active viruses were isolated in almost 30% of the patients; nearly 90% of the patients were serologically positive, shedding antibodies. The findings thus confirmed the view that viral disease, especially in immunocompromised patients, has a critical effect on the survival of radiation sickness sufferers. (L.O.). 12 refs

  7. Non-random patterns in viral diversity

    DEFF Research Database (Denmark)

    Anthony, Simon J.; Islam, Ariful; Johnson, Christine

    2015-01-01

    ) or stochastic (not predictable) processes. We sample macaque faeces across nine sites in Bangladesh and use consensus PCR and sequencing to discover 184 viruses from 14 viral families. We then use network modelling and statistical null-hypothesis testing to show the presence of non-random deterministic patterns...... at different scales, between sites and within individuals. We show that the effects of determinism are not absolute however, as stochastic patterns are also observed. In showing that determinism is an important process in viral community assembly we conclude that it should be possible to forecast changes...

  8. Tissue interactions of avian viral attachment proteins

    OpenAIRE

    Ambepitiya Wickramasinghe, I.N.

    2015-01-01

    Viruses can infect a wide range of hosts; varying from bacteria and plants to animals and humans. While many viral infections may pass unnoticed, some are of major importance due to their implications on health and welfare of plants, animals and/or humans. In particular, viruses that can infect avian hosts have been studied intensively due the occurrence of the pandemics of highly pathogenic influenza A virus infection or “bird flu’’. Viral infections in domesticated birds can result in huge ...

  9. Viral miRNAs and immune evasion

    OpenAIRE

    Boss, Isaac W.; Renne, Rolf

    2011-01-01

    Viral miRNAs, ∼22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses expre...

  10. Variantes de lesões intra-epiteliais escamosas: relato de quatro casos Variants of intraepithelial squamous lesions: report of four cases

    Directory of Open Access Journals (Sweden)

    Álvaro P. Pinto

    2005-04-01

    Full Text Available Entre a rotina de biópsias e produtos cirúrgicos provenientes do colo uterino, um número significativo de lesões intra-epiteliais escamosas (LIE pode causar dificuldade quanto a caracterização e graduação histológica. Tais lesões têm sido identificadas e descritas isoladamente por artigos científicos como variantes histológicas de LIE cervicais. São elas a metaplasia papilar imatura atípica (MPIA e as variantes de neoplasia intra-epitelial cervical graus II/III: queratinizante, com padrão metaplásico imaturo de crescimento e escamomucinosa. Neste artigo são exemplificados quatro casos representativos das entidades citadas acima, provenientes das rotinas do Programa de Prevenção do Câncer Ginecológico do Estado do Paraná e de um laboratório privado especializado em patologia ginecológica de Curitiba, o Laboratório de Citopatologia e Anatomia Patológica Annalab. Os principais critérios diagnósticos são descritos, assim como a correlação citológica e molecular relacionada à presença e à localização do ácido nucleico viral (papilomavírus humano [HPV] nas lesões.In routine basis, among biopsies and surgical specimens derived from uterine cervix, a significant number of squamous intraepithelial lesions (SIL may be difficult to diagnose and grade. Some of these lesions were identified, isolated and reported in scientific articles as histological variants of SIL. They are: metaplastic papillary immature atypia (MPIA and the following grade II/III cervical intraepithelial neoplasia variants: keratinized, immature metaplastic-like proliferation and mucin-producing. In this article four cases representative of these variants are described. They were retrieved from the routines of a large scale gynecological cancer screening program and a private laboratory specialized on gynecological pathology, both from Paraná State, Brazil. The main histological criteria for diagnosis are described, as well cytological and

  11. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  12. HIV-1 viral diversity and its implications for viral load testing: review of current platforms.

    Science.gov (United States)

    Luft, LeeAnne M; Gill, M John; Church, Deirdre L

    2011-10-01

    The 2008 Recommendations for care of the International AIDS Society reaffirmed the importance of both accurate and sensitive viral load assessment, and by necessity, access to viral load assays. HIV-1 viral load testing is considered essential when initiating antiretroviral therapy (ART), when monitoring ART response, and when considering switching ART regimens. The demand for accurate, reproducible, and cost-effective viral load assays is therefore a global issue. Although the North American and Western European experience has historically been with HIV-1 group M subtype B virus, this paradigm is changing rapidly as migrants and refugees from developing countries with non-B subtype infections often now present for care in the developed world, and travelers to developing countries acquire non-B subtype infection abroad and present for care at home. Awareness of any clinical or laboratory differences between the common HIV-1 group M subtype B and the newer HIV-1 strains being seen in practice is therefore increasingly important. This review of current HIV-1 viral load testing is focused on the potential value of a standardized genotype assignment for HIV-1 viral subtypes, regular monitoring of the performance of available commercial HIV viral load assays on emerging non-B HIV subtypes, circulating recombinant forms (CRFs) and unique recombinant forms (URFs), and a discussion of the implications for resource-limited settings. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Directory of Open Access Journals (Sweden)

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  14. A proteomics perspective on viral DNA sensors in host defense and viral immune evasion mechanisms.

    Science.gov (United States)

    Crow, Marni S; Javitt, Aaron; Cristea, Ileana M

    2015-06-05

    The sensing of viral DNA is an essential step of cellular immune response to infections with DNA viruses. These human pathogens are spread worldwide, triggering a wide range of virus-induced diseases, and are associated with high levels of morbidity and mortality. Despite similarities between DNA molecules, mammalian cells have the remarkable ability to distinguish viral DNA from their own DNA. This detection is carried out by specialized antiviral proteins, called DNA sensors. These sensors bind to foreign DNA to activate downstream immune signaling pathways and alert neighboring cells by eliciting the expression of antiviral cytokines. The sensing of viral DNA was shown to occur both in the cytoplasm and in the nucleus of infected cells, disproving the notion that sensing occurred by simple spatial separation of viral and host DNA. A number of omic approaches, in particular, mass-spectrometry-based proteomic methods, have significantly contributed to the constantly evolving field of viral DNA sensing. Here, we review the impact of omic methods on the identification of viral DNA sensors, as well as on the characterization of mechanisms involved in host defense or viral immune evasion. Copyright © 2015. Published by Elsevier Ltd.

  15. High Frequency of Transmitted HIV-1 Gag HLA Class I-Driven Immune Escape Variants but Minimal Immune Selection over the First Year of Clade C Infection

    Science.gov (United States)

    Gounder, Kamini; Padayachi, Nagavelli; Mann, Jaclyn K.; Radebe, Mopo; Mokgoro, Mammekwa; van der Stok, Mary; Mkhize, Lungile; Mncube, Zenele; Jaggernath, Manjeetha; Reddy, Tarylee; Walker, Bruce D.; Ndung’u, Thumbi

    2015-01-01

    In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses. PMID:25781986

  16. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats with the asymptomatic infection of BN (Brown Norway. Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains, displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus named Hse6 towards the end of chromosome 4 (160.89-174Mb containing the Vwf (von Willebrand factor gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism. Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008 after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  17. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  18. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  19. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  20. Human Cytomegalovirus US28 Facilitates Cell-to-Cell Viral Dissemination

    Directory of Open Access Journals (Sweden)

    Vanessa M. Noriega

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV encodes a number of viral proteins with homology to cellular G protein-coupled receptors (GPCRs. These viral GPCRs, including US27, US28, UL33, and UL78, have been ascribed numerous functions during infection, including activating diverse cellular pathways, binding to immunomodulatory chemokines, and impacting virus dissemination. To investigate the role of US28 during virus infection, two variants of the clinical isolate TB40/E were generated: TB40/E-US28YFP expressing a C-terminal yellow fluorescent protein tag, and TB40/E-FLAGYFP in which a FLAG-YFP cassette replaces the US28 coding region. The TB40/E-US28YFP protein localized as large perinuclear fluorescent structures at late times post-infection in fibroblasts, endothelial, and epithelial cells. Interestingly, US28YFP is a non-glycosylated membrane protein throughout the course of infection. US28 appears to impact cell-to-cell spread of virus, as the DUS28 virus (TB40/E-FLAGYFP generated a log-greater yield of extracellular progeny whose spread could be significantly neutralized in fibroblasts. Most strikingly, in epithelial cells, where dissemination of virus occurs exclusively by the cell-to-cell route, TB40/E-FLAGYFP (DUS28 displayed a significant growth defect. The data demonstrates that HCMV US28 may contribute at a late stage of the viral life cycle to cell-to-cell dissemination of virus.

  1. Viral gene therapy strategies: from basic science to clinical application.

    Science.gov (United States)

    Young, Lawrence S; Searle, Peter F; Onion, David; Mautner, Vivien

    2006-01-01

    A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Ultrasonographic imaging of papillary thyroid carcinoma variants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Hee [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Ultrasonography (US) is routinely used to evaluate thyroid nodules. The US features of papillary thyroid carcinoma (PTC), the most common thyroid malignancy, include hypoechogenicity, spiculated/microlobulated margins, microcalcifications, and a nonparallel orientation. However, many PTC variants have been identified, some of which differ from the classic type of PTC in terms of biological behavior and clinical outcomes. This review describes the US features and clinical implications of the variants of PTC. With the introduction of active surveillance replacing immediate biopsy or surgical treatment of indolent, small PTCs, an understanding of the US characteristics of PTC variants will facilitate the individualized management of patients with PTC.

  3. Histological variants of cutaneous Kaposi sarcoma

    Directory of Open Access Journals (Sweden)

    Pantanowitz Liron

    2008-07-01

    Full Text Available Abstract This review provides a comprehensive overview of the broad clinicopathologic spectrum of cutaneous Kaposi sarcoma (KS lesions. Variants discussed include: usual KS lesions associated with disease progression (i.e. patch, plaque and nodular stage; morphologic subtypes alluded to in the older literature such as anaplastic and telangiectatic KS, as well as several lymphedematous variants; and numerous recently described variants including hyperkeratotic, keloidal, micronodular, pyogenic granuloma-like, ecchymotic, and intravascular KS. Involuting lesions as a result of treatment related regression are also presented.

  4. IL-10 and IL-28B gene variants as predictors of sustained response to peginterferon and ribavirin therapy in chronic HCV infection.

    Science.gov (United States)

    Sghaier, Ikram; Mouelhi, Leila; Rabia, Noor A; Ghazoueni, Ezzedine; Almawi, Wassim Y; Loueslati, Besma Yacoubi

    2017-04-05

    Interleukin-10 (IL-10) plays an important role in the immunity to hepatitis C virus (HCV). Insofar as IL-10 variants are associated with altered levels of IL-10, previous studies that examined the association of IL-10 polymorphisms with the susceptibility to and progression of chronic HCV, and response to anti-viral treatment were inconsistent. We investigated the association between common IL-10 variants in the intron and the promotor region with HCV and associated features. Study subjects comprised 120 patients infected with HCV-1b, and treated with Peg-IFN/RBV. Genotyping of six IL-10 promoter variants in the intron region (rs1878672, rs1554286, rs1518111) and promotor region (rs1800872, rs1800871, rs1800896) were done by real-time PCR. Compared to G/G, carriage of IL-10 rs1800896 (-1082A/G) A/A genotype was more frequent in patients with sustained virological response (SVR). The decline in viral load over the first 12weeks of treatment was more pronounced in rs1800896 A/A genotype carriers, compared to G/G genotype carriers, and was irrespective of the treatment dosage. Carriage of rs1800896 A/A genotype was positively associated with improvement in viral load decline, which was simultaneous, with and without carriage of the common favourable IL-28B variant. Carriage of both IL-10 rs1800896 G/G and IL-28B non-favourable genotype was associated with twice the risk of getting slow decline of viral load during treatment. Haploview analysis identified ACGCTA and CCGCTG haplotypes to be linked with excellent PegIFN/RBV cure rate, and complete HCV eradication. On the other hand, ACGCTG and CCGCTA haplotypes were associated with resistance to PegIFN/RBV treatment. IL-10 rs1800896 variant markedly influences the clinical outcome of HCV infection, and is a determinant of the response to HCV treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Meta-analyses on viral hepatitis

    DEFF Research Database (Denmark)

    Gluud, Lise L; Gluud, Christian

    2009-01-01

    This article summarizes the meta-analyses of interventions for viral hepatitis A, B, and C. Some of the interventions assessed are described in small trials with unclear bias control. Other interventions are supported by large, high-quality trials. Although attempts have been made to adjust...

  6. Content Recommendation for Viral Social Influence

    DEFF Research Database (Denmark)

    Ivanov, Sergei; Theocharidis, Konstantinos; Terrovitis, Manolis

    2017-01-01

    How do we create content that will become viral in a whole network after we share it with friends or followers? Significant research activity has been dedicated to the problem of strategically selecting a seed set of initial adopters so as to maximize a meme’s spread in a network. This line of wo...

  7. Sanitation of viral haemorrhagic septicaemia (VHS)

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen

    1998-01-01

    A sanitation programme for stamping-out viral haemorrhagic septicaemia (VHS) was implemented in Denmark in 1965. The programme has resulted in a dramatic reduction in the number of infected rainbow trout farms, from approximate to 400 to 26. The programme is carried out on a voluntary basis...

  8. Neurons under viral attack: victims or warriors?

    Science.gov (United States)

    Chakraborty, Swarupa; Nazmi, Arshed; Dutta, Kallol; Basu, Anirban

    2010-01-01

    When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the ... of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses.

  10. Bovine viral diarrhea virus: biosecurity and control

    Science.gov (United States)

    This paper discusses the recommended procedures involved in setting up biosecurity and control programs designed to limit bovine viral diarrhea virus infections in beef cattle operations. For the purpose of these discussions, a working definition of a biosecurity plan was considered to be an organiz...

  11. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  12. Viral Hepatitis and Thrombosis: A Narrative Review

    NARCIS (Netherlands)

    Squizzato, Alessandro; Gerdes, Victor E. A.

    2012-01-01

    Venous thromboembolism (VTE) is a multicausal disease. Among minor risk factors, acute infections in general are associated with a transient increased risk of VTE. However, acute hepatitis is usually not reported as a potential risk factor for VTE. Recent studies suggest a possible role of viral

  13. Microbial oceanography: Viral strategies at sea

    Science.gov (United States)

    Thingstad, T. Frede; Bratbak, Gunnar

    2016-03-01

    The finding that marine environments with high levels of host microbes have fewer viruses per host than when host abundance is low challenges a theory on the relative roles of lysogenic and lytic viral-survival strategies. See Article p.466

  14. Vaccination of cattle against bovine viral diarrhoea

    NARCIS (Netherlands)

    Oirschot, van J.T.; Bruschke, C.J.M.; Rijn, van P.A.

    1999-01-01

    This brief review describes types and quality (efficacy and safety) of bovine viral diarrhoea virus (BVDV) vaccines that are in the market or under development. Both conventional live and killed vaccines are available. The primary aim of vaccination is to prevent congenital infection, but the few

  15. Viral hepatitis among prisoners in Norway.

    Science.gov (United States)

    Hurlen, B; Siebke, J C; Stensland, A

    1980-12-01

    The present survey reveals high frequencies of hepatitis B surface antigen and antibody in criminals committed to prison in Norway compared to the general population. The high rate of antigen carriers and the intramural supply of illicit drugs constitute a threat to fellow prisoners regarding viral hepatitis as well as drug addiction.

  16. Viral immune evasion: a masterpiece of evolution

    NARCIS (Netherlands)

    Vossen, Mireille T. M.; Westerhout, Ellen M.; Söderberg-Nauclér, Cécilia; Wiertz, Emmanuel J. H. J.

    2002-01-01

    Coexistence of viruses and their hosts imposes an evolutionary pressure on both the virus and the host immune system. On the one hand, the host has developed an immune system able to attack viruses and virally infected cells, whereas on the other hand, viruses have developed an array of immune

  17. Tissue interactions of avian viral attachment proteins

    NARCIS (Netherlands)

    Ambepitiya Wickramasinghe, I.N.

    2015-01-01

    Viruses can infect a wide range of hosts; varying from bacteria and plants to animals and humans. While many viral infections may pass unnoticed, some are of major importance due to their implications on health and welfare of plants, animals and/or humans. In particular, viruses that can infect

  18. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    Unknown

    et al 1978) and gp41 (Ebenbichler et al 1991) and gp120. (Susal et al 1994) of human immunodeficiency virus. (HIV-1) .... Blocks binding of properdin and C5 to C3b. Friedman et al 1984; Fries et al. 1986; Kostavasil .... respective viral genomes (Zezulak and Spear 1984;. Swain et al 1985). It is important to note that none of.

  19. Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.

    Science.gov (United States)

    van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J

    2017-10-01

    Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is

  20. Acute Viral Hepatitis in Pediatric Age Groups.

    Science.gov (United States)

    Kc, Sudhamshu; Sharma, Dilip; Poudyal, Nandu; Basnet, Bhupendra Kumar

    2014-01-01

    Our clinical experience showed that there has been no decrease in pediatric cases of acute viral hepatitis in Kathmandu. The objective of the study was to analyze the etiology, clinical features, laboratory parameters, sonological findings and other to determine the probable prognostic factors of Acute Viral Hepatitis in pediatric population. Consecutive patients of suspected Acute Viral Hepatitis, below the age of 15 years, attending the liver clinic between January 2006 and December 2010 were studied. After clinical examination they were subjected to blood tests and ultrasound examination of abdomen. The patients were divided in 3 age groups; 0-5, 5-10 and 5-15 years. Clinical features, laboratory parameters, ultrasound findings were compared in three age groups. Etiology of Acute Viral Hepatitis was Hepatitis A virus 266 (85%), Hepatitis E virus in 24 (8%), Hepatitis B virus in 15 (5%). In 7(2%) patients etiology was unknown. Three patients went to acute liver failure but improved with conservative treatment. There was no statistical difference in most of the parameters studied in different age groups. Ascites was more common in 5-10 years age group. Patients with secondary bacterial infection, ultrasound evidence of prominent biliary tree and ascites were associated with increased duration of illness. Patients with history of herbal medications had prolonged cholestasis. Hepatitis A is most common cause of Acute Viral Hepatitis in pediatric population. Improper use of herbal medications, secondary bacterial infection and faulty dietary intake was associated with prolonged illness. Patients with prominent biliary radicals should be treated with antibiotics even with normal blood counts for earlier recovery.