WorldWideScience

Sample records for address arsenic manganese

  1. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  2. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  3. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    To determine the scale of the problem of arsenic, iron and manganese contamination of groundwater in Ghana a survey was performed in the first phase of the research to provide in depth information with respect to these contaminants. Presence of these mentioned contaminants in groundwater is not

  4. Topographical Distribution of Arsenic, Manganese, and Selenium in the Normal Human Brain

    DEFF Research Database (Denmark)

    Larsen, Niels Agersnap; Pakkenberg, H.; Damsgaard, Else

    1979-01-01

    The concentrations of arsenic, manganese and selenium per gram wet tissue weight were determined in samples from 24 areas of normal human brains from 5 persons with ages ranging from 15 to 81 years of age. The concentrations of the 3 elements were determined for each sample by means of neutron......% for selenium. The results seem to indicate that arsenic is associated with the lipid phase, manganese with the dry matter and selenium with the aqueous phase of brain tissue....

  5. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bacquart, Thomas [Better Life Laboratories, Calais, VT (United States); Frisbie, Seth [Better Life Laboratories, Calais, VT (United States); Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Mitchell, Erika [Better Life Laboratories, Calais, VT (United States); Grigg, Laurie [Department of Earth and Environmental Science, Norwich University, Northfield, VT (United States); Cole, Christopher [Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Small, Colleen [Vermont Department of Health Laboratory, Burlington, VT (United States); Sarkar, Bibudhendra, E-mail: bsarkar@sickkids.ca [Department of Molecular Structure and Function, The Research Institute of The Hospital for Sick Children, University of Toronto, Toronto, Ontario (Canada); Department of Biochemistry, University of Toronto, Toronto, Ontario (Canada)

    2015-06-01

    substances. - Highlights: • We analyzed Myanmar ground and surface waters for multiple inorganic contaminants. • Arsenic, manganese, fluoride, iron, or uranium exceeded safe levels in most wells. • Most wells contained more than one contaminant above health-based reference values. • Arsenic was positively and uranium negatively correlated with iron and manganese. • Mitigation, including testing and treatment, must address multiple contaminants.

  6. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    International Nuclear Information System (INIS)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-01-01

    substances. - Highlights: • We analyzed Myanmar ground and surface waters for multiple inorganic contaminants. • Arsenic, manganese, fluoride, iron, or uranium exceeded safe levels in most wells. • Most wells contained more than one contaminant above health-based reference values. • Arsenic was positively and uranium negatively correlated with iron and manganese. • Mitigation, including testing and treatment, must address multiple contaminants

  7. Lead, arsenic and manganese metal mixture exposures: focus on biomarkers of effect

    Science.gov (United States)

    Andrade, VL; Mateus, ML; Batoréu, MC; Aschner, M; Marreilha dos Santos, AP

    2015-01-01

    Summary The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As) and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These 3 metals are commonly detected in different environmental, occupational and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals represents an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters and effects on hematopoietic system, we address putative biomarkers, which may be assist in assessing onset of neurological diseases associated with exposure to this metal mixture. PMID:25693681

  8. Arsenic and Manganese Alter Lead Deposition in the Rat

    Science.gov (United States)

    Andrade, V; Mateus, ML; Santos, D; Aschner, M; Batoreu, MC; Marreilha dos Santos, AP

    2014-01-01

    Lead (Pb) continues to be a major toxic metal in the environment. Pb exposure frequently occurs in the presence of other metals, such as arsenic (As) and manganese (Mn). Continued exposure to low levels of these metals may lead to long-term toxic effects due to their accumulation in several organs. Despite the recognition that metals in a mixture may alter each other’s toxicity by affecting deposition, there is dearth of information on their interactions in vivo. In this work, we investigated the effect of As and Mn on Pb tissue deposition, focusing on the kidney, brain and liver. Wistar rats were treated with 8 doses of each single metal, Pb (5 mg/Kg bw), As (60 mg/L) and Mn mg/Kg bw), or the same doses in a triple metal mixture. Kidney, brain, liver, blood and urine Pb, As and Mn concentrations were determined by graphite furnace atomic absorption spectrophotometry. Pb kidney, brain and liver concentrations in the metal mixture-treated group were significantly increased compared to the Pb alone treated group, being more pronounced in the kidney (5.4 fold), brain (2.5 fold) and liver (1.6 fold). Urinary excretion of Pb in the metal mixture-treated rats significantly increased compared with the Pb treated group, although blood Pb concentrations were analogous to the Pb treated group. Co-treatment with As, Mn and Pb alters Pb deposition compared to Pb alone treatment, increasing Pb accumulation predominantly in kidney and brain. Blood Pb levels, unlike urine, do not reflect the increased Pb deposition in the kidney and brain. Taken together, the results suggest that the nephro- and neurotoxicity of “real-life” Pb exposure scenarios should be considered within the context of metal mixture exposures. PMID:24715659

  9. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  10. Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): a physical insight into the mechanistic pathway

    CSIR Research Space (South Africa)

    Gupta, K

    2012-07-01

    Full Text Available Arsenic(III) sorption was investigated with nanostructured cerium incorporated manganese oxide (NCMO). The pH between 6.0 and 8.0 was optimized for the arsenic(III) sorption. Kinetics and equilibrium data (pH = 7.0 ± 0.2, T = 303 ± 1.6 K, and I = 0...

  11. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).

    Science.gov (United States)

    de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael

    2017-12-31

    This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  13. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    Science.gov (United States)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  14. Distribution of Arsenic, Manganese, and Selenium in the Human Brain in Chronic Renal Insufficiency, Parkinsons Disease and Amyotrophic Lateral Sclerosis

    DEFF Research Database (Denmark)

    Larsen, N. A.; Pakkenberg, H.; Damsgaard, Else

    1981-01-01

    The concentrations of arsenic, manganese and selenium/g wet tissue weight were determined in samples from 24 areas of the human brain from 3 patients with chronic renal insufficiency, 2 with Parkinson's disease and 1 with amyotrophic lateral sclerosis. The concentrations of the 3 elements were...... determined for each sample by neutron activation analysis with radiochemical separation. Overall arsenic concentrations were about 2.5 times higher in patients with chronic renal failure than in controls, and lower than normal in the patients with Parkinson's disease and amyotrophic lateral sclerosis...

  15. Manganese

    Science.gov (United States)

    ... growth in children who have low levels of manganese.Weak bones (osteoporosis). Taking manganese by mouth in combination with calcium, zinc, and ... and protein. It might also be involved in bone formation.

  16. Control of arsenic mobilization in paddy soils by manganese and iron oxides.

    Science.gov (United States)

    Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie

    2017-12-01

    Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Manganese

    Science.gov (United States)

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources

  18. Identification of manganese as a toxicant in a groundwater treatment system: Addressing naturally occurring toxicants

    International Nuclear Information System (INIS)

    Goodfellow, W. Jr.; Sohn, V.; Richey, M.; Yost, J.

    1995-01-01

    Effluent from a groundwater remediation system at a bulk oil storage and distribution terminal has been chronically toxic to Ceriodaphnia dubia. The remediation system was designed in response to a hydrocarbon plume in the area of the terminal. The remediation system consists of a series of groundwater recovery wells and groundwater intercept trench systems with groundwater treatment and phased-separated hydrocarbon recovery systems. The groundwater treatment and petroleum recovery systems consist of oil/water separators, product recovery tanks, air strippers, filters, and carbon adsorption units. The characteristics of this effluent are low total suspended solids, total dissolved solids, and hardness concentrations as well as meeting stringent NPDES permit requirements for lead, copper, zinc, mercury, total petroleum hydrocarbons, and BTEX. Additional priority pollutant evaluations revealed no compounds of concern. Performance of a Toxicity identification Evaluation (TIE) indicated that manganese was the principle toxicant in the effluent. Manganese is a naturally occurring constituent in this groundwater source and is not added to the treatment system. This paper will present the results of the TIE with a discussion of treatability/control options for manganese control at this facility. Recommendations for addressing naturally occurring toxicants that are not a result of the facility's operations will also be presented

  19. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Rodríguez-Barranco, Miguel; Lacasaña, Marina; Aguilar-Garduño, Clemente; Alguacil, Juan; Gil, Fernando; González-Alzaga, Beatriz; Rojas-García, Antonio

    2013-01-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  20. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Barranco, Miguel [Andalusian School of Public Health (EASP), Granada (Spain); Lacasaña, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.es [Andalusian School of Public Health (EASP), Granada (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Aguilar-Garduño, Clemente [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Centre Superior d' Investigació en Salut Pública, Conselleria de Sanitat, Valencia (Spain); Alguacil, Juan [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Biology and Public Health, University of Huelva, Huelva (Spain); Gil, Fernando [Department of Legal Medicine and Toxicology, University of Granada, Granada (Spain); González-Alzaga, Beatriz [Andalusian School of Public Health (EASP), Granada (Spain); Rojas-García, Antonio [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  1. Arsenic

    Science.gov (United States)

    ... factors for ensuring successful interventions. There is a need for community members to understand the risks of high arsenic exposure and the sources of arsenic exposure, including the intake of arsenic by crops (e.g. rice) from irrigation water and the intake of arsenic into food ...

  2. Arsenic enrichment in estuarine sediments-impact of iron and manganese mining

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.; Joseph, T.; Balachandran, K.K.; Nair, K.K.C.; Paimpillii, J.S.

    significantly enhance arsenite oxidation and may be behind the high arsenate at the marine end. The co- precipitation of arsenic with Fe or adsorption onto hydrous iron oxides is also behind the low arsenate at high salinity regions. During monsoon, the arsenic...

  3. Arsenic

    Science.gov (United States)

    ... of arsenic exposure on cognitive development, intelligence, and memory (3) . Magnitude of the problem Arsenic contamination of ... and paint tube wells or hand pumps different colours. This can be an effective and low-cost ...

  4. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).

    Science.gov (United States)

    Babaeivelni, Kamel; Khodadoust, Amid P

    2016-01-01

    Removal of arsenic from water was evaluated with manganese (III) oxide (Mn2O3) as adsorbent. Adsorption of As(III) and As(V) onto Mn2O3 was favorable according to the Langmuir and Freundlich adsorption equilibrium equations, while chemisorption of arsenic occurred according to the Dubinin-Radushkevich equation. Adsorption parameters from the Langmuir, Freundlich, and Temkin equations showed a greater adsorption and removal of As(III) than As(V) by Mn2O3. Maximum removal of As(III) and As(V) occurred at pH 3-9 and at pH 2, respectively, while removal of As(V) in the pH range of 6-9 was 93% (pH 6) to 61% (pH 9) of the maximum removal. Zeta potential measurements for Mn2O3 in As(III) was likely converted to As(V) solutions indicated that As(III) was likely converted to As(V) on the Mn2O3 surface at pH 3-9. Overall, the effective Mn2O3 sorbent rapidly removed As(III) and As(V) from water in the pH range of 6-9 for natural waters.

  5. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Kenyon, Elaina M.; Kitchin, Kirk T.

    2007-01-01

    Inorganic arsenic (iAs), an environmental drinking water contaminant, is a human toxicant and carcinogen. The public health community has developed recommendations and regulations that limit human exposure to iAs in drinking water. Although there is a vast amount of information available to regulators on the exposure, disposition and the health-related effects of iAs, there is still critical information about the toxicology of this metalloid that is needed. This necessary information includes identification of the chemical species of arsenic that is (are) the active toxicant(s), the mode(s) of action for its various toxicities and information on potentially susceptible populations. Because of these unknown factors, the risk assessment of iAs still incorporates default assumptions, leading to uncertainties in the overall assessment. The characteristics of a scientifically defensible risk assessment for iAs are that it must: (1) quantitatively link exposure and target tissue dose of active metabolites to key events in the mode of action for major health effects and (2) identify sources of variation in susceptibility to arsenic-induced health effects and quantitatively evaluate their impact wherever possible. Integration of research to address these goals will better protect the health of iAs-exposed populations

  6. In situ co-adsorption of arsenic and iron/manganese ions on raw clays

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Lhotka, M.; Grygar, Tomáš; Machovič, V.; Herzogová, L.

    2011-01-01

    Roč. 54, č. 2 (2011), s. 166-171 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Arsenic * Groundwater * Co-adsorption * Raw clays * Pre-modified clays * Fe/Mn Subject RIV: DD - Geochemistry Impact factor: 2.474, year: 2011

  7. Testing tubewell platform color as a rapid screening tool for arsenic and manganese in drinking water wells.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Jacks, Gunnar

    2012-01-03

    A low-cost rapid screening tool for arsenic (As) and manganese (Mn) in groundwater is urgently needed to formulate mitigation policies for sustainable drinking water supply. This study attempts to make statistical comparison between tubewell (TW) platform color and the level of As and Mn concentration in groundwater extracted from the respective TW (n = 423), to validate platform color as a screening tool for As and Mn in groundwater. The result shows that a black colored platform with 73% certainty indicates that well water is safe from As, while with 84% certainty a red colored platform indicates that well water is enriched with As, compared to WHO drinking water guideline of 10 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 79%, 77%, and 81%, respectively. However, the certainty values become 93% and 38%, respectively, for black and red colored platforms at 50 μg/L, the drinking water standards for India and Bangladesh. The respective efficiency, sensitivity, and specificity are 65%, 85%, and 59%. Similarly for Mn, black and red colored platform with 78% and 64% certainty, respectively, indicates that well water is either enriched or free from Mn at the Indian national drinking water standard of 300 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 71%, 67%, and 76%, respectively. Thus, this study demonstrates that TW platform color can be potentially used as an initial screening tool for identifying TWs with elevated dissolved As and Mn, to make further rigorous groundwater testing more intensive and implement mitigation options for safe drinking water supplies.

  8. Manganese associated nanoparticles agglomerate of iron(III) oxide: synthesis, characterization and arsenic(III) sorption behavior with mechanism.

    Science.gov (United States)

    Gupta, Kaushik; Maity, Arjun; Ghosh, Uday Chand

    2010-12-15

    Three samples of manganese associated hydrous iron(III) oxide (MNHFO), prepared by incinerating metal hydroxide precipitate at T (± 5)=90, 300 and 600°C, showed increase of crystalline nature in XRD patterns with decreasing As(III) removal percentages. TEM images showed the increase of crystallinity from sample-1 (MNHFO-1) to sample-3 (MNHFO-3). Dimensions (nm) of particles estimated were 5.0, 7.0 and 97.5. Optimization of pH indicated that MNHFO-1 could remove aqueous As(III) efficiently at pH between 3.0 and 7.0. Kinetic and equilibrium data of reactions under the experimental conditions described the pseudo-second order and the Langmuir isotherm equations very well, respectively. The Langmuir capacity (q(m)) estimated was 691.04 mmol kg(-1). The values of enthalpy, Gibb's free energy and entropy changes (ΔH(0)=+23.23 kJ mol(-1), ΔG(0)=-3.43 to -7.20 kJ mol(-1) at T=283-323K, ΔS(0)=+0.094 kJ mol(-1)K(-1)) suggested that the reaction was endothermic, spontaneous and took place with increasing entropy. The As(III) sorbed by MNHFO-1 underwent surface oxidation to As(V), and evidences appeared from the XPS and FTIR investigations. MNHFO-1 packed column (internal diameter: 1.0 cm, height: 3.7 cm) filtered 11.5 dm(3) groundwater (105 μg As dm(-3)) with reducing arsenic concentration to ≤ 10 μg dm(-3). Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David; McKnight, Aly

    2008-01-01

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of Black-legged Kittiwakes (Rissa tridactyla) from Shoup Bay in Prince William Sound, Alaska to determine if there were age-related differences in metal levels, and in Black Oystercatchers (Haematopus bachmani)) from the same region to determine if there were differences in oiled and unoiled birds. Except for mercury, there were no age-related differences in metals levels in the feathers of kittiwakes. Kittiwakes over 13 years of age had the highest levels of mercury. There were no differences in levels of metals in the feathers of oystercatchers from oiled and unoiled regions of Prince William Sound. Except for mercury, the feathers of oystercatchers had significantly higher levels of all metals than those of kittiwakes. Levels of mercury in kittiwake feathers (mean of 2910 ng/g [ppb]) were within the range of many species of seabirds reported for other studies, and were generally below adverse effects levels

  10. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead.

    Science.gov (United States)

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-07-01

    Hazardous Trace elements (HTEs) emitted from coal combustion has raised widespread concern. Studies on the emission characteristics of five HTEs, namely arsenic (As), chromium (Cr), barium (Ba), manganese (Mn), lead (Pb) at three different loads (100%, 83%, 71% output) and different coal types were performed on a 350 MW coal-fired power plant equipped with SCR, ESP + FF, and WFGD. HTEs in the flue gas at the inlet/outlet of each air pollution control device (APCD) were sampled simultaneously based on US EPA Method 29. During flue gas HTEs sampling, coal, bottom ash, fly ash captured by ESP + FF, fresh desulfurization slurry, desulfurization wastewater were also collected. Results show that mass balance rate for the system and each APCD is in an acceptable range. The five studied HTEs mainly distribute in bottom and ESP + FF ash. ESP + FF have high removal efficiency of 99.75-99.95%. WFGD can remove part of HTEs further. Total removal rate across the APCDs ranges from 99.84 to 99.99%. Concentration of HTEs emitted to atmosphere is within the extremely low scope of 0.11-4.93 μg/m 3 . Emission factor of the five studied HTEs is 0.04-1.54 g/10 12 J. Content of As, Pb, Ba, Cr in solid samples follows the order of ESP + FF ash > bottom ash > gypsum. More focus should be placed on Mn in desulfuration wastewater, content of which is more than the standard value. This work is meaningful for the prediction and removal of HTEs emitted from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Addresses

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Point features representing locations of all street addresses in Orange County, NC including Chapel Hill, NC. Data maintained by Orange County, the Town of Chapel...

  12. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  13. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Ajith, Nicy; Swain, K.K.; Dalvi, Aditi A.; Verma, R.

    2015-01-01

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L -1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO 2 ) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO 2

  14. Arsenic ototoxicity

    OpenAIRE

    Kesici, Gülin

    2016-01-01

    High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.

  15. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  16. ARSENIC REMOVAL BY IRON REMOVAL PROCESSES

    Science.gov (United States)

    Presentation will discuss the removal of arsenic from drinking water using iron removal processes that include oxidation/filtration and the manganese greensand processes. Presentation includes results of U.S. EPA field studies conducted in Michigan and Ohio on existing iron remo...

  17. Determination of the oxidizing capacity of manganese ores.

    Science.gov (United States)

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  18. Arsenic speciation in edible mushrooms.

    Science.gov (United States)

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  19. In-situ arsenic remediation in Carson Valley, Douglas County, west-central Nevada

    Science.gov (United States)

    Paul, Angela P.; Maurer, Douglas K.; Stollenwerk, Kenneth G.; Welch, Alan H.

    2010-01-01

    Conventional arsenic remediation strategies primarily involve above-ground treatment that include costs involved in the disposal of sludge material. The primary advantages of in-situ remediation are that building and maintaining a large treatment facility are not necessary and that costs associated with the disposal of sludge are eliminated. A two-phase study was implemented to address the feasibility of in-situ arsenic remediation in Douglas County, Nevada. Arsenic concentrations in groundwater within Douglas County range from 1 to 85 micrograms per liter. The primary arsenic species in groundwater at greater than 250 ft from land surface is arsenite; however, in the upper 150 ft of the aquifer arsenate predominates. Where arsenite is the primary form of arsenic, the oxidation of arsenite to arsenate is necessary. The results of the first phase of this investigation indicated that arsenic concentrations can be remediated to below the drinking-water standard using aeration, chlorination, iron, and pH adjustment. Arsenic concentrations were remediated to less than 10 micrograms per liter in groundwater from the shallow and deep aquifer when iron concentrations of 3-6 milligrams per liter and pH adjustments to less than 6 were used. Because of the rapid depletion of dissolved oxygen, the secondary drinking-water standards for iron (300 micrograms per liter) and manganese (100 micrograms per liter) were exceeded during treatment. Treatment was more effective in the shallow well as indicated by a greater recovery of water meeting the arsenic standard. Laboratory and field tests were included in the second phase of this study. Laboratory column experiments using aquifer material indicated the treatment process followed during the first phase of this study will continue to work, without exceeding secondary drinking-water standards, provided that groundwater was pre-aerated and an adequate number of pore volumes treated. During the 147-day laboratory experiment, no

  20. Manganese Countries

    Directory of Open Access Journals (Sweden)

    Maria Sousa Galito

    2014-05-01

    Full Text Available Cheickna Bounajim Cissé wrote an article in Mars 2013 in the Journal Les Afriques N. º 237, suggesting a new acronym, MANGANESE, for the nine African countries: Morocco, Angola, Namibia, Ghana, Algeria, Nigeria, Egypt, South Africa and Ethiopia. According to Cissé, this group of African nations will be the fastest growing states in the region over the next few years. The purpose of this article is to test the pertinence of the acronym, discuss the credibility and reliability of the future prospects of these countries by comparing selected socioeconomic and sociopolitical indicators based on the latest global rankings and trends. Likewise, the potential of Cissé's claim will be assessed, especially in relationship to drug trafficking and terrorism that may put their recent sustainability in danger now and in the future.

  1. Manganese nodules

    Science.gov (United States)

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Figure 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published in the journal Economic Geology (Mero, 1962) and later as a book (Mero, 1965). By the mid-1970s, large consortia had formed to search for and mine Mn nodules that occur between the Clarion and Clipperton fracture zones (CCZ) in the NE Pacific (Figure 2). This is still the area considered of greatest economic potential in the global ocean because of high nickel (Ni), copper (Cu), and Mn contents and the dense distribution of nodules in the area. While the mining of nodules was fully expected to begin in the late 1970s or early 1980s, this never occurred due to a downturn in the price of metals on the global market. Since then, many research cruises have been undertaken to study the CCZ nodules, and now 15 contracts for exploration sites have been given or are pending by the International Seabed Authority (ISA). Many books and science journal articles have been published summarizing the early work (e.g., Baturin, 1988; Halbach et al., 1988), and research has continued to the present day (e.g., ISA, 1999; ISA, 2010). Although the initial attraction for nodules was their high Ni, Cu, and Mn contents, subsequent work has shown that nodules host large quantities of other critical metals needed for high-tech, green-tech, and energy applications (Hein et al., 2013; Hein and Koschinsky, 2014).

  2. Chronic manganese intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.C.; Chu, N.S.; Lu, C.S.; Wang, J.D.; Tsai, J.L.; Tzeng, J.L.; Wolters, E.C.; Calne, D.B. (Chang Gung Medical College Hospital, Taipei, Taiwan (China))

    1989-10-01

    We report six cases of chronic manganese intoxication in workers at a ferromanganese factory in Taiwan. Diagnosis was confirmed by assessing increased manganese concentrations in the blood, scalp, and pubic hair. In addition, increased manganese levels in the environmental air were established. The patients showed a bradykinetic-rigid syndrome indistinguishable from Parkinson's disease that responded to treatment with levodopa.

  3. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  4. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  5. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  6. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  7. Manganese phosphate-coating

    International Nuclear Information System (INIS)

    Peyre, Y.

    1999-01-01

    Manganese phosphate-coating is one of the numerous chemical surface treatment which is used industrially. Its applications are usual for improving the friction properties of a lot of mechanical parts. Used for the treatment of steels and cast steels, baths (containing phosphoric acid, manganese phosphate and different additives) lead to the formation of nonmetal coatings of a few micrometers. These manganese-iron or manganese phosphates crystals reduce the friction coefficient and retain the lubricant film in contact with the moving parts. The running noises, the wear and the seizure risks are then strongly reduced. Pure manganese phosphate-coating is currently developing because the obtained coatings are thinner and more regular. (O.M.)

  8. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Livi, Kenneth J. T. [The High-Resolution Analytical Electron Microbeam Facility, Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, United States; Xu, Wenqian [Department of Chemistry, Brookhaven National Lab, Upton, New York 11796, United States; Li, Wei [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, People’s Republic of China; Sparks, Donald L. [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States

    2018-01-17

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption near edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of

  9. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece

    International Nuclear Information System (INIS)

    Kouras, A.; Katsoyiannis, I.; Voutsa, D.

    2007-01-01

    An integrate study aiming at the occurrence and distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece has been carried out. Groundwater samples from public water supply wells and private wells were analysed for arsenic and other quality parameters (T, pH, EC, Ca, Mg, Na, K, Cl, HCO 3 , NO 3 , SO 4 , B, Fe, Mn). Arsenic showed high spatial variation; ranged from 0.001 to 1.840 mg/L. Almost 65% of the examined groundwaters exhibit arsenic concentrations higher than the maximum concentration limit of 0.010 mg/L, proposed for water intended for human consumption. Correlation analysis and principal component analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Arsenic is highly correlated with potassium, boron, bicarbonate, sodium, manganese and iron suggesting common geogenic origin of these elements and conditions that enhance their mobility. Three groups of groundwater with different physicochemical characteristics were found in the study area: (a) groundwater with extremely high arsenic concentrations (1.6-1.9 mg/L) and high temperature (33-42 deg. C) from geothermal wells, (b) groundwater with relatively high arsenic concentrations (>0.050 mg/L), lower temperatures and relatively high concentrations of major ions, iron and manganese and, (c) groundwater with low arsenic concentrations that fulfil the proposed limits for dinking water

  10. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells

    International Nuclear Information System (INIS)

    Ek, Britt-Marie; Thunholm, Bo; Oestergren, Inger; Falk, Rolf; Mjoenes, Lars

    2008-04-01

    island of Gotland, where the bedrock is dominated by Silurian limestones, the majority of the water samples showed boron concentrations far exceeding the provisional guide line value 500 μg/l set by WHO. Metals like lead, cadmium, nickel and chromium are only rarely found in harmful concentrations in Swedish drinking-water. A conclusion of the results from this study is that ordinary analyses of physico-chemical and microbiological parameters as well as radon-222, should be complemented with analyses of metals including uranium and arsenic, especially in waters from drilled wells in bedrock. A direct finding from this study is that radium-226 accumulates in some types of common water filters, which are often used to decrease iron and manganese. With arsenic concentrations in the drinking water exceeding the guide line 10 μg/l, actions should be taken to reduce the concentrations below this limit. Recent tests by the National Board of Health and Welfare of Sweden have shown that adsorption and ion exchange can reduce arsenic in drinking water up to 98 %. This project has shown that arsenic accumulates to a large degree in common water filters installed to remove iron and manganese. This study gives an overview of how drinking water, extracted from private wells, is influenced by various elements that occur naturally in our environment. New problem areas such as a radiation dose from lead-210 and polonium-210 have been identified. Information campaigns addressing different target groups, like county councils and municipalities, are necessary to inform well owners about the issues on radon, uranium, arsenic, fluoride and water filters. Additional studies are needed to further increase our knowledge on radioactive elements, arsenic and other possibly harmful elements in drinking water. A further mapping of lead-210 and polonium-210 occurrence in drinking water would allow for better estimates of dose to the public

  11. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  12. Arsenic: natural and anthropogenic

    National Research Council Canada - National Science Library

    Matschullat, Jörg; Deschamps, Eleonora

    2011-01-01

    .... Based on state-of-the-art investigations into the global arsenic cycle, the related human toxicology and available remediation technologies, it assesses arsenic in all the environmental compartments...

  13. Fact Sheet on Arsenic

    Science.gov (United States)

    Arsenic is a naturally occurring element that is found in combination with either inorganic or organic substances to form many different compounds. Inorganic arsenic compounds are found in soils, sediments, and groundwater.

  14. Arsenic Treatment Technology Demonstrations

    Science.gov (United States)

    EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.

  15. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  16. Arsenic: homicidal intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Massey, E.W.; Wold, D.; Heyman, A.

    1984-07-01

    Arsenic-induced deaths have been known to occur from accidental poisoning, as a result of medical therapy, and from intentional poisonings in homicide and suicide. Twenty-eight arsenic deaths in North Carolina from 1972 to 1982 included 14 homicides and seven suicides. In addition, 56 hospitalized victims of arsenic poisoning were identified at Duke Medical Center from 1970 to 1980. Four case histories of arsenic poisoning in North Carolina are presented and clinical manifestations are discussed. In view of the continued widespread use of arsenic in industry and agriculture, and its ubiquity in the environment, arsenic poisoning will continue to occur. A need for knowledge of its toxicity and of the clinical manifestations of acute and chronic arsenic poisoning will also continue.

  17. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  18. Invertebrates control metals and arsenic sequestration as ecosystem engineers.

    Science.gov (United States)

    Schaller, Jörg; Weiske, Arndt; Mkandawire, Martin; Dudel, E Gert

    2010-03-01

    Organic sediments are known to be a significant sink of inorganic elements in polluted freshwater ecosystems. Hence, we investigated the role of invertebrate shredders (the freshwater shrimp Gammarus pulex L.) in metal and arsenic enrichment into organic partitions of sediments in a wetland stream at former uranium mining site. Metal and metalloid content in leaf litter increased significantly during decomposition, while at the same time the carbon content decreased. During decomposition, G. pulex as a ecosystem engineer facilitated significantly the enrichment of magnesium (250%), manganese (560%), cobalt (310%), copper (200%), zinc (43%), arsenic (670%), cadmium (100%) and lead (1340%) into small particle sizes. The enrichments occur under very high concentrations of dissolved organic carbon. Small particles have high surface area that results in high biofilm development. Further, the highest amounts of elements were observed in biofilms. Therefore, invertebrate shredder like G. pulex can enhance retention of large amounts of metal and arsenic in wetlands. 2010 Elsevier Ltd. All rights reserved.

  19. Manganese in silicon carbide

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Hallén, A.

    2012-01-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H–SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400–2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112 ¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  20. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  1. Characterization of carbon nanomaterial formation and manganese oxide reactivity

    Science.gov (United States)

    Shumlas, Samantha Lyn

    Characterization of a material's surface, structural and physical properties is essential to understand its chemical reactivity. Control over these properties helps tailor a material to a particular application of interest. The research presented in this dissertation focuses on characterizing a synthetic method for carbon nanomaterials and the determination of structural properties of manganese oxides that contribute to its reactivity for environmental chemistry. In particular, one research effort was focused on the tuning of synthetic parameters towards the formation of carbon nanomaterials from gaseous methane and gaseous mixtures containing various mixtures of methane, argon and hydrogen. In a second research effort, photochemical and water oxidation chemistry were performed on the manganese oxide, birnessite, to aid in the remediation of arsenic from the environment and provide more options for alternative energy catalysts, respectively. (Abstract shortened by ProQuest.).

  2. Pore Water Arsenic Dynamics in Rice Paddies Under Projected Future Climates

    Science.gov (United States)

    Plaganas, M.; Wang, T.; Muehe, E. M.; Fendorf, S. E.

    2016-12-01

    Rice is one of the staple crops in the world, with 50% of the global population eating rice daily. Many rice-producing regions of the world are irrigated with groundwater contaminated with arsenic (As), and in particular South and Southeast Asia, where geogenic As is leached into the groundwater. Use of groundwater pervasively high in As leads to subsequent accumulation in paddy soils. Arsenic, a toxic metalloid, also decreases rice productivity and further jeopardizes food security. Hence, rice agriculture is concerned with its productivity in a climate change impacted future and the particular impacts of arsenic on yields. However, past studies do not address the prevalence of As in paddy soils or its fate in the rhizosphere and ultimate impact on the plant. The objective of our study was to determine changes in pore water As dynamics in the rhizosphere of rice plants grown on As-contaminated paddy soil under climate conditions projected for the end of the century. In order to address this objective, we designed greenhouse chambers with today's climate and projected climate conditions for the year 2100, specifically 5°C increase in temperature and doubled concentration of atmospheric CO2. We hypothesize that the effects of climate change with these conditions will increase the mobility of As in the rhizosphere, and thus, decrease rice growth in As-bearing paddies more than, so far, expected. We examined pore water geochemistry including pH and As concentrations, and correlate that to the height of the plants. Furthermore, the dynamics of other elements in the pore water such as carbon, iron, sulfur, manganese, and silica are further evaluated for their effects on rice growth. Arsenic will have an impact on rice production and conditions induced by future climatic conditions need to be considered for food security. Considering that climate change will decrease the global agricultural output, we should urgently consider adapting our agricultural practices to aid

  3. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... trace elements does not only apply to drinking water, but also to consuming fish caught in this system. Recent studies have indicated that there has been an increase in fishing pressure on yellowfish species within the system, as well as selling of the fish on roadsides by local fishermen (Brand et al., 2009; ...

  4. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.

    Science.gov (United States)

    Allende, K Lizama; Fletcher, T D; Sun, G

    2011-01-01

    The presence of arsenic and heavy metals in drinking water sources poses a serious health risk due to chronic toxicological effects. Constructed wetlands have the potential to remove arsenic and heavy metals, but little is known about pollutant removal efficiency and reliability of wetlands for this task. This lab-scale study investigated the use of vertical subsurface flow constructed wetlands for removing arsenic, boron, copper, zinc, iron and manganese from synthetic wastewater. Gravel, limestone, zeolite and cocopeat were employed as wetland media. Conventional gravel media only showed limited capability in removing arsenic, iron, copper and zinc; and it showed virtually no capability in removing manganese and boron. In contrast, alternative wetland media: cocopeat, zeolite and limestone, demonstrated significant efficiencies--in terms of percentage removal and mass rate per m3 of wetland volume--for removing arsenic, iron, manganese, copper and zinc; their ability to remove boron, in terms of mass removal rate, was also higher than that of the gravel media. The overall results demonstrated the potential of using vertical flow wetlands to remove arsenic and metals from contaminated water, having cocopeat, zeolite or limestone as supporting media.

  5. Arsenic bioleaching in medical realgar ore and arsenic- bearing ...

    African Journals Online (AJOL)

    Conclusion: Arsenic leaching ratio of realgar and refractory gold ore can be enhanced significantly in the presence of arsenic-adapted mesophilic acidophiles. Keywords: Adaptation, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Realgar, Arsenic- bearing refractory gold ore, Arsenic leaching ratio. Tropical ...

  6. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method

    International Nuclear Information System (INIS)

    Larios, R.; Fernandez, R.; Rucandio, M. I.

    2011-01-01

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  7. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide comes as a solution (liquid) to be injected into a vein by a doctor or nurse in a medical office or clinic. Arsenic trioxide is ... high blood sugar): extreme thirst frequent urination extreme hunger weakness blurred vision If high blood sugar is ...

  8. Toxic Substances Portal- Arsenic

    Science.gov (United States)

    ... is found at low levels in breast milk. top How can families reduce their risk for exposure to arsenic? If you use arsenic-treated wood in home projects, you should wear dust masks, gloves, and protective clothing to decrease exposure to sawdust. ...

  9. Arsenical poisoning of racehorses

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.N.; Fawell, E.V.; Brown, J.K.

    1964-03-07

    A case of arsenic poisoning in a training stable of Thoroughbred racehorses is described. This was due to the accidental spilling of an arsenical rat poison into the corn bin. Nine horses were affected. The mortality rate was 100 per cent. 1 table.

  10. A biokinetic model for manganese

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W., E-mail: rwl@ornl.gov

    2011-09-15

    The International Commission on Radiological Protection (ICRP) is updating its biokinetic models used to derive dose coefficients and assess bioassay data for intake of radionuclides. This paper reviews biokinetic data for manganese and proposes a biokinetic model for systemic manganese in adult humans. The proposed model provides a more detailed and physiologically meaningful description of the behavior of absorbed manganese in the body than the current ICRP model. The proposed model and current ICRP model yield broadly similar estimates of dose per unit activity of inhaled or ingested radio-manganese but differ substantially with regard to interpretation of bioassay data. The model is intended primarily for use in radiation protection but can also serve as a baseline model for evaluation of potentially excessive intakes of stable manganese in occupational settings. - Highlights: {yields} Manganese is an essential trace element but a neurotoxin when inhaled excessively. {yields} Manganese-54 is an important radiation hazard in and around nuclear reactors. {yields} Biokinetic data for manganese are reviewed and a new biokinetic model is developed. {yields} The main purpose is to update the manganese model used in radiation protection. {yields} The model can also be applied in evaluations of manganese as a chemical hazard.

  11. A biokinetic model for manganese

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2011-01-01

    The International Commission on Radiological Protection (ICRP) is updating its biokinetic models used to derive dose coefficients and assess bioassay data for intake of radionuclides. This paper reviews biokinetic data for manganese and proposes a biokinetic model for systemic manganese in adult humans. The proposed model provides a more detailed and physiologically meaningful description of the behavior of absorbed manganese in the body than the current ICRP model. The proposed model and current ICRP model yield broadly similar estimates of dose per unit activity of inhaled or ingested radio-manganese but differ substantially with regard to interpretation of bioassay data. The model is intended primarily for use in radiation protection but can also serve as a baseline model for evaluation of potentially excessive intakes of stable manganese in occupational settings. - Highlights: → Manganese is an essential trace element but a neurotoxin when inhaled excessively. → Manganese-54 is an important radiation hazard in and around nuclear reactors. → Biokinetic data for manganese are reviewed and a new biokinetic model is developed. → The main purpose is to update the manganese model used in radiation protection. → The model can also be applied in evaluations of manganese as a chemical hazard.

  12. Arsenic and Environmental Health: State of the Science and ...

    Science.gov (United States)

    Background: Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions? Objectives: The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. Methods: The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. Discussion: More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and suscepti

  13. Analytical approaches for arsenic determination in air: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodas, Daniel, E-mail: rodas@uhu.es [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Chemistry and Materials Science, University of Huelva, 21071 Huelva (Spain); Sánchez de la Campa, Ana M. [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Mining, Mechanic and Energetic Engineering, ETSI, University of Huelva, 21071 Huelva (Spain); Alsioufi, Louay [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain)

    2015-10-22

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed. - Highlights: • Review about arsenic in the air. • Sampling, sample treatment and analysis of arsenic in particulate matter and gaseous phase. • Total arsenic determination and arsenic speciation analysis.

  14. Arsenic and drinking water. Part 1. A review of the source, distribution and behaviour of arsenic in the environment; Arsen und Trinkwasser. Teil 1. Ein Ueberblick ueber Vorkommen, Verteilung und Verhalten von Arsen in der Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Oberacker, F.; Maier, D. [Heinrich-Sontheimer-Lab., DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Maier, M. [Stadtwerke Karlsruhe GmbH, Karlsruhe (Germany)

    2002-11-01

    Arsenic is ubiquituously distributed in our environment and is subject to continuous bio-geochemical cycling. Besides the acute toxicity of arsenic its chronic effects are of special importance. The permanent uptake with drinking water for example might cause cancer. Today, arsenic compounds hardly serve as pesticides anymore, although chromated copper arsenate is still used to preserve wood. Furthermore, arsenic is used in the alloy, glass and semiconductor industry. The main part of the earths' arsenic resources are bound to sulfur in the lithosphere. By means of rock weathering and volcanism it is transferred into pedo-, hydro- and atmosphere, where it is mainly bound to oxygen. Microorganisms are able to methylate the arsenic, whereby gaseous arsenic compounds are carried into the atmosphere. Also, it is released from the lithosphere through anthropogenic mining activities, although only for a small part of the released amount useful applications exist. The arsenic behaviour in natural waters is closely related to sulfur on the one hand and to iron oxides on the other. Under strongly reducing conditions the arsenic is precipitated as sulfide, while under oxidising conditions it is adsorbed to the surfaces of iron oxides. Therefore, under aerobic conditions the arsenic concentrations of aqueous solutions are controlled by these adsorption processes rather than by the solubility of solid arsenic phases. Manganese oxides also play an important role as they are able to rapidly oxidise As(III) to As(V). These processes of release and fixation of arsenic in the nature must be studied carefully, because they are applied for arsenic elimination during drinking water production as well. (orig.)

  15. Manganese in Marine Microbiology.

    Science.gov (United States)

    Hansel, Colleen M

    2017-01-01

    The importance of manganese in the physiology of marine microbes, the biogeochemistry of the ocean and the health of microbial communities of past and present is emerging. Manganese is distributed widely throughout the global ocean, taking the form of an essential antioxidant (Mn 2+ ), a potent oxidant (Mn 3+ ) and strong adsorbent (Mn oxides) sequestering disproportionately high levels of trace metals and nutrients in comparison to the surrounding seawater. Manganese is, in fact, linked to nearly all other elemental cycles and intricately involved in the health, metabolism and function of the ocean's microbiome. Here, we briefly review the diversity of microbes and pathways responsible for the transformation of Mn within the three Mn pools and their distribution within the marine environment. Despite decades of interrogation, we still have much to learn about the players, mechanisms and consequences of the Mn cycle, and new and exciting discoveries are being made at a rapid rate. What is clear is the dynamic and ever-inspiring complexity of reactions involving Mn, and the acknowledgement that microorganisms are the catalytic engine driving the Mn cycle. © 2017 Elsevier Ltd. All rights reserved.

  16. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  17. Adsorption and removal of arsenic from water by iron ore mining waste.

    Science.gov (United States)

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  18. Speciation and Source Identification for Arsenic in the Southern High Plains Aquifer

    Science.gov (United States)

    Venkataraman, K.; Rainwater, K.; Jackson, W. A.; Ridley, M. K.

    2009-12-01

    Significant levels of arsenic have been detected in the groundwater of the Southern High Plains. The potential sources include atmospheric deposition, the use of agricultural defoliants and natural subsurface geochemical interactions. To identify the source of arsenic, groundwater and soil samples were collected by the Texas Tech University Water Resources Center from sites spread over 18 counties in the West Texas region. Arsenic and its inorganic species were quantified along with commonly occurring and related cations and anions such as iron, manganese, copper and sulfate. Correlation studies were conducted to understand the variation of arsenical species with related parameters. A geochemical modeling tool, MINTEQ was used to predict the speciation of arsenic and compare these results with lab analyses. Sensitivity analysis was also conducted with MINTEQ to study the behavior of arsenical species with variations in total iron and field parameters such as pH, ORP, and DO. The distribution of arsenic and its species in the soil profiles tested indicated a positive correlation with depth. The highest concentrations were found close to the water table while the upper soil layers had low to non-detect concentrations. In the groundwater samples, arsenic concentration and speciation varied significantly between sites. As (III) was found to be the dominant species in the majority (>80%) of the samples. MINTEQ speciation forecasts compared favorably with a majority of the groundwater analyses. Sensitivity analyses indicated a negative correlation between As(III) and ORP, while increasing iron concentration increased the levels of As(III). Decreasing iron caused no significant change in the concentration of As(III). Low concentrations of arsenic in the shallow layers of the soil have led to the elimination of atmospheric deposition and the use of defoliants as potential sources of contamination. The combination of analytical results and the geochemical simulations

  19. Arsenic and porphyrins.

    Science.gov (United States)

    Apostoli, P; Sarnico, M; Bavazzano, P; Bartoli, D

    2002-09-01

    To evaluate the possible effect of inorganic arsenic (iAs) and of its species on the urinary excretion of porphyrin homologues. Total porphyrins and their homologues (copro, penta, hexa, hepta, uroporphyrins) and arsenic species (trivalent and pentavalent As; monomethyl arsonic acid; dimethyl arsenic acid; arsenobetaine) were measured respectively by HPLC and HPLC-ICP MS in urine from 86 art glass workers exposed to iAs and from 54 controls. A significant increase in the excretion of penta and uroporphyrins was demonstrated for workers exposed to As; As3 was the species best correlated with urinary porphyrin excretion. The increase of urinary excretion for some porphyrin homologues appears to be consistent with the inhibition by As of URO-decarboxylase in the heme biosynthesis pathway. The determination of urinary porphyrin homologues could be useful to assess, on a group basis, some early effects of arsenic and to demonstrate possible individual susceptibility to the element. Copyright 2002 Wiley-Liss, Inc.

  20. Arsenic speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Linear combination fitting results of synchrotron data to determine arsenic speciation in soil samples. This dataset is associated with the following publication:...

  1. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    Science.gov (United States)

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.

  2. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles.

    Science.gov (United States)

    Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping

    2017-08-01

    Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  4. [Arsenic - Poison or medicine?].

    Science.gov (United States)

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  6. Environmental Source of Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Jin-Yong Chung

    2014-09-01

    Full Text Available Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  7. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    Science.gov (United States)

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  8. Microbial Transformation of Arsenic

    Science.gov (United States)

    Stolz, J. F.

    2004-12-01

    Whether the source is natural or anthropogenic, it has become evident that arsenic is readily transformed by a great diversity of microbial species and has a robust biogeochemical cycle. Arsenic cycling primarily involves the oxidation of As(III) and the reduction of As(V). Over thirty arsenite oxidizing prokaryotes have been reported and include alpha, beta, and gamma Proteobacteria , Deinocci and Crenarchaeota. At least twenty species of arsenate-respiring prokaryotes are now known and include Crenarchaeota, thermophilic bacteria, low and high G+C gram positive bacteria, and gamma, delta, and epsilon Proteobacteria. These organisms are metabolically diverse, and depending on the species, capable of using other terminal electron acceptors (e.g., nitrate, selenate, fumarate, sulfate). In addition to inorganic forms (e.g., sodium arsenate) organoarsenicals can be utilized as a substrate. The feed additive roxarsone (3-nitro-4-hydroxyphenyl arsonic acid) has been shown to readily degrade leading to the release of inorganic arsenic (e.g., As(V)). Degradation proceeds via the cleavage of the arsenate functional group or the reduction of the nitro functional group and deamination. The rapid degradation (within 3 days) of roxarsone by Clostridium sp. strain OhILAs appears to follow the latter pathway and may involve Stickland reactions. The activities of these organisms affect the speciation and mobilization of arsenic, ultimately impacting water quality.

  9. Arsenic Detoxification by Geobacter Species.

    Science.gov (United States)

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  10. Opening Address

    Science.gov (United States)

    Garbers, C. F.

    1987-09-01

    Ladies and gentlemen, it is indeed a great privilege and pleasure for me to present the opening address at this, the 17th International Congress on High Speed Photograpy and Photonics. Before turning to the business of the Congress, I would like to briefly introduce you to South Africa: its scientific past and its research challenges for the future.

  11. PRESIDENTIAL ADDRESS

    African Journals Online (AJOL)

    Your Excellency. Honoured Guests. Members of the Association. It is my duty and pleasure to thank H.E. Lij. Endalkatchew Makonnen for the fine address with which he has opened this First National Conference of the EAEA. He has pointedly reminded us that though. Engineers and Architects play a key role, develop-.

  12. Arsenic Content in American Wine.

    Science.gov (United States)

    Wilson, Denise

    2015-10-01

    Recent studies that have investigated arsenic content in juice, rice, milk, broth (beef and chicken), and other foods have stimulated an interest in understanding how prevalent arsenic contamination is in the U.S. food and beverage supply. The study described here focused on quantifying arsenic levels in wine. A total of 65 representative wines from the top four wine-producing states in the U.S. were analyzed for arsenic content. All samples contained arsenic levels that exceeded the U.S. Environmental Protection Agency (U.S. EPA) exposure limit for drinking water of 10 parts per billion (ppb) and all samples contained inorganic arsenic. The average arsenic detected among all samples studied was 23.3 ppb. Lead, a common co-contaminant to arsenic, was detected in 58% of samples tested, but only 5% exceeded the U.S. EPA exposure limit for drinking water of 15 ppb. Arsenic levels in American wines exceeded those found in other studies involving water, bottled water, apple juice, apple juice blend, milk, rice syrup, and other beverages. When taken in the context of consumption patterns in the U.S., the pervasive presence of arsenic in wine can pose a potential health risk to regular adult wine drinkers.

  13. Opening address

    International Nuclear Information System (INIS)

    Ianko, L.

    1993-01-01

    This short talk was the opening remarks to the attendees at this conference, presented by the Scientific Secretary, IWG-LMNPP, of the IAEA. This meeting is an effort to aid research on problems related to the general area of nuclear plant aging and life management. In particular it addresses fracture properties of reactor materials and components, both as installed, and at end of service condition. A major concern is relating measurements made on laboratory samples to properties displayed by actual reactor components

  14. Convocation address.

    Science.gov (United States)

    Zakaria, R

    1996-07-01

    By means of this graduation address at the International Institute for Population Sciences (IIPS) in Bombay, the Chancellor of Urdu University voiced his concerns about overpopulation in India. During the speaker's tenure as Health Minister of Maharashtra, he implemented a sterilization incentive program that resulted in the state's having the best family planning (FP) statistics in India for almost 10 years. The incentive program, however, was misused by overenthusiastic officials in other states, with the result that the FP program was renamed the Family Welfare Programme. Population is growing in India because of improvements in health care, but the population education necessary to change fertility will require more time than the seriousness of the population problem allows. In the longterm, poverty and illiteracy must be addressed to control population. In the meanwhile, the graduate program at the IIPS should be expanded to include an undergraduate program, marriage age laws should be enforced, and misconceptions about religious objections to FP must be addressed. India can not afford to use the measures forwarded by developed countries to control population growth. India must integrate population control efforts with the provision of health care because if population continues to grow in the face of reduced infant mortality and longer life expectancy, future generations will be forced to live in a state of poverty and economic degradation.

  15. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers.

    Directory of Open Access Journals (Sweden)

    Rebecca C Fry

    2007-11-01

    Full Text Available The long-term health outcome of prenatal exposure to arsenic has been associated with increased mortality in human populations. In this study, the extent to which maternal arsenic exposure impacts gene expression in the newborn was addressed. We monitored gene expression profiles in a population of newborns whose mothers experienced varying levels of arsenic exposure during pregnancy. Through the application of machine learning-based two-class prediction algorithms, we identified expression signatures from babies born to arsenic-unexposed and -exposed mothers that were highly predictive of prenatal arsenic exposure in a subsequent test population. Furthermore, 11 transcripts were identified that captured the maximal predictive capacity to classify prenatal arsenic exposure. Network analysis of the arsenic-modulated transcripts identified the activation of extensive molecular networks that are indicative of stress, inflammation, metal exposure, and apoptosis in the newborn. Exposure to arsenic is an important health hazard both in the United States and around the world, and is associated with increased risk for several types of cancer and other chronic diseases. These studies clearly demonstrate the robust impact of a mother's arsenic consumption on fetal gene expression as evidenced by transcript levels in newborn cord blood.

  16. Neutralization of arsenic pollutants, contained in natural waters: The theoretical analysis of solubility of some arsenates and optimization of the processes

    Directory of Open Access Journals (Sweden)

    Marta Litynska

    2017-01-01

    Full Text Available Arsenic belongs to chemical elements, which are often found in natural waters and make it unsuitable for consumption without special treatment. Neutralization of arsenic pollutants of natural waters by converting them into insoluble form is one of the perspective methods of dearsenication. Precipitation (by iron or aluminium coagulants, lime and adsorption (by oxides and hydroxides of iron, aluminium or manganese are among the most popular dearsenication methods. The use of these chemicals entails the formation of poorly soluble arsenates. Since the possibility of the release of arsenic compounds into the water due to the dissolution of formed arsenates depends on its solubility under appropriate conditions, it is necessary to have information about the dependence of arsenates solubility on pH. According to the calculations the solubilities of arsenates of iron(III, aluminium, manganese(II and calcium are highly dependent on pH. At pH

  17. Arsenic Removal from Water Using Industrial By-Products

    Directory of Open Access Journals (Sweden)

    Branislava M. Lekić

    2013-01-01

    Full Text Available In this study, removal of arsenic ions using two industrial by-products as adsorbents is represented. Removal of As(III and As(V from water was carried out with industrial by-products: residual from the groundwater treatment process, iron-manganese oxide coated sand (IMOCS, and blast furnace slag from steel production (BFS, both inexpensive and locally available. In addition, the BFS was modified in order to minimise its deteriorating impact on the initial water quality. Kinetic and equilibrium studies were carried out using batch and fixed-bed column adsorption techniques under the conditions that are likely to occur in real water treatment systems. To evaluate the application for real groundwater treatment, the capacities of the selected materials were further compared to those exhibited by commercial sorbents, which were examined under the same experimental conditions. IMOCS was found to be a good and inexpensive sorbent for arsenic, while BFS and modified slag showed the highest affinity towards arsenic. All examined waste materials exhibited better sorption performances for As(V. The maximum sorption capacity in the batch reactor was obtained for blast furnace slag, 4040 μgAs(V/g.

  18. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    International Nuclear Information System (INIS)

    Gong, Gordon; Basom, Janet; Mattevada, Sravan; Onger, Frederick

    2015-01-01

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population

  19. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Basom, Janet [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Mattevada, Sravan [Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX (United States); Onger, Frederick [Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States)

    2015-04-15

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.

  20. Manganese activated phosphate glass for dosimetry

    International Nuclear Information System (INIS)

    Regulla, D.

    1975-01-01

    A measuring element comprises a metaphosphate glass doped with manganese as an activator. The manganese activated metaphosphate glass can detect and determine radiation doses in the range between milliroentgens and more than 10 megaroentgens. (auth)

  1. The effectiveness of water-treatment systems for arsenic used in 11 homes in Southwestern and Central Ohio, 2013

    Science.gov (United States)

    Thomas, Mary Ann; Ekberg, Mike

    2016-02-23

    the raw water. In general, the treatment systems were less effective at treating higher concentrations of arsenic. For five sites with raw-water arsenic concentrations of 10–30 µg/L, the systems removed 65–81 percent of the arsenic, and the final concentrations were less than the maximum contamination level. For three sites with higher raw-water arsenic concentrations (50–75 µg/L), the systems removed 22–34 percent of the arsenic; and the final concentrations were 4–5 times more than the maximum contamination level. Other characteristics of the raw water may have affected the performance of treatment systems; in general, raw water with the higher arsenic concentrations also had higher pH, higher concentrations of organic carbon and ammonia, and more reducing (methanogenic) redox conditions.For sites with raw-water arsenic concentrations of 10–30 µg/L, two types of systems (reverse osmosis and oxidation/filtration) removed similar amounts of arsenic, but the quality of the treated water differed in other respects. Reverse osmosis caused substantial decreases in pH, alkalinity, and concentrations of most ions. On the other hand, oxidation/filtration using manganese-based media caused a large increase of manganese concentrations, from less than 50 µg/L in raw water to more than 700 µg/L in outflow from the oxidation filtration units.It is not known if the results of this study are widely applicable; the number of systems sampled was relatively small, and each system was sampled only once. Further study may be warranted to investigate whether available methods of arsenic removal are effective/practical for residential use in areas like Ohio, were groundwater with elevated arsenic concentrations is strongly reducing, and the predominant arsenic species is arsenite (As3+).

  2. Biomarkers of manganese intoxication.

    Science.gov (United States)

    Zheng, Wei; Fu, Sherleen X; Dydak, Ulrike; Cowan, Dallas M

    2011-01-01

    Manganese (Mn), upon absorption, is primarily sequestered in tissue and intracellular compartments. For this reason, blood Mn concentration does not always accurately reflect Mn concentration in the targeted tissue, particularly in the brain. The discrepancy between Mn concentrations in tissue or intracellular components means that blood Mn is a poor biomarker of Mn exposure or toxicity under many conditions and that other biomarkers must be established. For group comparisons of active workers, blood Mn has some utility for distinguishing exposed from unexposed subjects, although the large variability in mean values renders it insensitive for discriminating one individual from the rest of the study population. Mn exposure is known to alter iron (Fe) homeostasis. The Mn/Fe ratio (MIR) in plasma or erythrocytes reflects not only steady-state concentrations of Mn or Fe in tested individuals, but also a biological response (altered Fe homeostasis) to Mn exposure. Recent human studies support the potential value for using MIR to distinguish individuals with Mn exposure. Additionally, magnetic resonance imaging (MRI), in combination with noninvasive assessment of γ-aminobutyric acid (GABA) by magnetic resonance spectroscopy (MRS), provides convincing evidence of Mn exposure, even without clinical symptoms of Mn intoxication. For subjects with long-term, low-dose Mn exposure or for those exposed in the past but not the present, neither blood Mn nor MRI provides a confident distinction for Mn exposure or intoxication. While plasma or erythrocyte MIR is more likely a sensitive measure, the cut-off values for MIR among the general population need to be further tested and established. Considering the large accumulation of Mn in bone, developing an X-ray fluorescence spectroscopy or neutron-based spectroscopy method may create yet another novel non-invasive tool for assessing Mn exposure and toxicity. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Microwave Production of Manganese from Manganese (IV) Oxide ...

    African Journals Online (AJOL)

    This work investigates the production of manganese metal from MnO2 by microwave irradiation using postconsumer polypropylene (PP) as reductant. Reagent grade MnO2 was first calcined to Mn3O4 followed by reduction with pulverised PP in a domestic microwave oven (Pioneer, Model PM-25 L, 1000 W, 2.45 GHz) in a ...

  4. Microwave Production of Manganese from Manganese (IV) Oxide ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... This work investigates the production of manganese metal from MnO2 by microwave irradiation using postconsumer polypropylene (PP) as reductant. Reagent grade MnO2 was first calcined to Mn3O4 followed by reduction with pulverised PP in a domestic microwave oven (Pioneer, Model PM-25 L, 1000 ...

  5. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  6. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  7. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater.

    Science.gov (United States)

    Kamde, Kalyani; Dahake, Rashmi; Pandey, R A; Bansiwal, Amit

    2018-01-08

    Recently, removal of arsenic from different industrial effluent discharged using simple, efficient and low-cost technique has been widely considered. In this study, removal of arsenic (As) from real wastewater has been studied employing modified bio-oxidation followed by adsorptive filtration method in a novel continuous flow through the reactor. This method includes biological oxidation of ferrous to ferric ions by immobilized Acidothiobacillus ferrooxidans bacteria on granulated activated carbon (GAC) in fixed bed bio-column reactor with the adsorptive filtration unit. Removal efficiency was optimized regarding the initial flow rate of media and ferrous ions concentration. Synthetic wastewater sample having different heavy metal ions such as Arsenic (As), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb) and Manganese (Mn) were also used in the study. The structural and surface changes occurring after the treatment process were scrutinized using FT-IR and Scanning Electron Microscopy (SEM) analysis. The finding showed that not only arsenic can be removed considerably in the bioreactor system, but also removing efficiency was much more (metals in real wastewater sample. The results from TCPL test confirms that solid spent media was non-hazardous and can be safely disposed of. This study verified that combination of bio-oxidation with adsorptive filtration method improves the removal efficiency of arsenic and other heavy metal ions in wastewater sample.

  8. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  9. Inaugural address

    Science.gov (United States)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  10. Manganese: Recent advances in understanding its transport and neurotoxicity

    International Nuclear Information System (INIS)

    Aschner, Michael; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-01-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans

  11. Presidential address.

    Science.gov (United States)

    Rao, L

    1984-01-01

    Stressed in this address is the crucial stage of the population boom, peeculiar to developing countries. The phenomenal rise in India's population, over the last 10 years, is particularly emphasized as it may thwart attempts for socioeconnomic development. Population and development are congruent concerns which need to be pursued simultaneously, and family planning must be accorded the highest priority in national efforts. In its attempts to curb its population explosion, India has witnessed significant progress in health and family welfare work in its march towards the goal of health for all. Recently, the focus has been on primary health care with its emphasis on prevention against risk of disease. The key element of the goal of health for all is the provision of primary health care to all, especially those who are poor. The new 20-Point Programme of India pinpoints areas of special thrust which show immediate tangible results in health and family welfare and the increase of primary health care facilities. Family planning is discussed as a people's movement in which the government's role is that of educator in contraceptive methodds so the people can be motivated to choose, on their own, anyone of them. Trained government personnel, service facilities and contraceptive supplies are being promoted for that goal. The energies of all social, political, religious and cultural organizations have to be channelled and utilized in the process of educating the people and making them adopt the small family norm. Graduates are urged to utilize their knowledge in the service of their country.

  12. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater...

  13. Convocation address.

    Science.gov (United States)

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  14. Keynote address

    International Nuclear Information System (INIS)

    Davis, J.M.

    1991-01-01

    DOE biomass R ampersand D programs have the potential to provide America with both plentiful, clean-burning domestic transportation fuels and cost-competitive industrial and utility fuels, benefiting energy security in the United States. Biofuels developed under our programs will also help improve air quality, reduce greenhouse gases, reduce the large daily quantities of waste we produce, and revitalize rural America. These research motivations have been documented in the National Energy Strategy. DOE looks forward to expanding its biofuels research program and to forging a partnership with private sector for cost-shared commercialization of new fuels and vehicle technologies. Many alternative fuels (e.g., ethanol, methanol, compressed natural gas, propane, or electricity) are candidates for gaining market share. Indeed, there may be significant regional variation in the future fuel mix. Alcohol fuels from biomass, particularly ethanol, have the potential to make a major contribution. Currently, ethanol in the United States is almost entirely made from corn; and the limitations of that process are well known (e.g., costly feedstock, end product requiring subsidy to be competitive, use of fossil fuels in renewable feedstock production and processing, and potential adverse impact of corn ethanol production on the price of food). To address these concerns, the DOE biofuels program is pursuing an ambitious research program to develop the technologies needed to convert these crops into alternative transportation fuels, primarily cellulose-based ethanol and methanol. Program R ampersand D has reduced the estimated cost per gallon of cellulose-based ethanol from $3.60 in 1980 to the current $1.35, with a program goal of $0.60 by the year 2000. DOE is also investigating the thermochemical conversion of biomass to methanol. The program goal is to achieve commercial production of methanol (like ethanol) at the gasoline equivalent of $0.90 per gallon by the year 2000. 4 figs

  15. Welcome Address

    Science.gov (United States)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  16. Nanomaterial-based electrochemical sensors for arsenic - A review.

    Science.gov (United States)

    Kempahanumakkagari, Sureshkumar; Deep, Akash; Kim, Ki-Hyun; Kumar Kailasa, Suresh; Yoon, Hye-On

    2017-09-15

    The existence of arsenic in the environment poses severe global health threats. Considering its toxicity, the sensing of arsenic is extremely important. Due to the complexity of environmental and biological samples, many of the available detection methods for arsenic have serious limitations on selectivity and sensitivity. To improve sensitivity and selectivity and to circumvent interferences, different electrode systems have been developed based on surface modification with nanomaterials including carbonaceous nanomaterials, metallic nanoparticles (MNPs), metal nanotubes (MNTs), and even enzymes. Despite the progress made in electrochemical sensing of arsenic, some issues still need to be addressed to realize cost effective, portable, and flow-injection type sensor systems. The present review provides an in-depth evaluation of the nanoparticle-modified electrode (NME) based methods for the electrochemical sensing of arsenic. NME based sensing systems are projected to become an important option for monitoring hazardous pollutants in both environmental and biological media. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Opening address

    International Nuclear Information System (INIS)

    Henrich, E.W.

    2005-01-01

    Full text: It is an honour for me to make this opening address on behalf of the European Commission which has cooperated with the International Atomic Energy Agency in organizing this Conference, and in particular on behalf of Hans Forsstroem from the Directorate-General, Research, who will arrive only later this week. Protection of the environment is, and will continue to be, an important consideration in the development and application of soundly based radiation protection standards. Current standards rest largely on the premise that, in protecting man, the environment is afforded an adequate level of protection. While this premise is broadly accepted by the radiation protection profession, it has come under increasing challenge in recent years. This challenge has not arisen because of any observable damage to the environment while operating within current standards. Rather, it has different origins including: - The robustness of the premise that protection of man affords protection of the environment, in particular the extent to which it is based on value judgements as opposed to rigorous scientific argument; - The more explicit inclusion of protection of the environment into national legislation on radiation protection and the need to demonstrate compliance; - A desire to achieve greater comparability between radiation and other pollutants. These trends were recognized by the Commission in the late 1990s and, as a result, the topic of protection of the environment was included as an important element of the European Union's 5th Research Framework Programme. Community support has been given to the FASSET project about which we will hear much during this Conference. This multinational project is providing much of the scientific basis underpinning and informing ongoing discussions on the development of a system of protection for the environment. Much, however, remains to be done to establish a well conceived and practicable system for protection of the environment

  18. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    Science.gov (United States)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  19. Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

    Science.gov (United States)

    Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.

    2009-01-01

    Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.

  20. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  1. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Arsenic in drinking-water and risk for cancer in Denmark

    DEFF Research Database (Denmark)

    Baastrup, Rikke; Sørensen, Mette; Balstrøm, Thomas

    2008-01-01

    BACKGROUND: Arsenic is a well-known carcinogen, which is often found in drinking-water. Epidemiologic studies have shown increased cancer risks among individuals exposed to high concentrations of arsenic in drinking-water, whereas studies of the carcinogenic effect of low doses have had...... inconsistent results. OBJECTIVE: Our aim was to determine if exposure to low levels of arsenic in drinking-water in Denmark is associated with an increased risk for cancer. METHODS: The study was based on a prospective Danish cohort of 57,053 persons in the Copenhagen and Aarhus areas. Cancer cases were...... identified in the Danish Cancer Registry, and the Danish civil registration system was used to trace and geocode residential addresses of the cohort members. We used a geographic information system to link addresses with water supply areas, then estimated individual exposure to arsenic using residential...

  3. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  4. Manganese in long term paediatric parenteral nutrition.

    OpenAIRE

    Reynolds, A P; Kiely, E; Meadows, N

    1994-01-01

    The current practice of providing manganese supplementation to neonates on long term parenteral nutrition is leading to a high incidence of hypermanganesaemia. Magnetic resonance imaging (MRI) studies in adults on long term manganese parenteral nutrition have shown changes in TI weighted MRI images and similar findings in a neonate receiving trace element supplementation are reported here. Whole blood manganese concentration in the infant was 1740 nmol/l (or 8.3 times upper reference limit). ...

  5. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen?

    Science.gov (United States)

    Ceja-Galicia, Zeltzin A; Daniel, Alberto; Salazar, Ana María; Pánico, Pablo; Ostrosky-Wegman, Patricia; Díaz-Villaseñor, Andrea

    2017-09-05

    The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Science.gov (United States)

    Thomas, Mary Ann

    2016-02-23

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  7. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Directory of Open Access Journals (Sweden)

    Masashi Kato

    Full Text Available Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L and coexposure to barium (137 µg/L and arsenic (225 µg/L. The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L and barium (700 µg/L, but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium, in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  8. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  9. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U.; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system. PMID:23805262

  10. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    Science.gov (United States)

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Dietary Arsenic Exposure in Bangladesh

    OpenAIRE

    Kile, Molly L.; Houseman, E. Andres; Breton, Carrie V.; Smith, Thomas; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C.

    2007-01-01

    Background Millions of people in Bangladesh are at risk of chronic arsenic toxicity from drinking contaminated groundwater, but little is known about diet as an additional source of As exposure. Methods We employed a duplicate diet survey to quantify daily As intake in 47 women residing in Pabna, Bangladesh. All samples were analyzed for total As, and a subset of 35 samples were measured for inorganic arsenic (iAs) using inductively coupled plasma mass spectrometry equipped with a dynamic rea...

  12. Inert C-H Bond Transformations Enabled by Organometallic Manganese Catalysis.

    Science.gov (United States)

    Hu, Yuanyuan; Zhou, Bingwei; Wang, Congyang

    2018-03-20

    Traditional organic synthesis relies heavily on the transformations of various preinstalled functional groups, such as cross-coupling reactions using organohalides and organometallic reagents. The strategy of C-H activation enables the direct formation of C-C/C-X (X = heteroatom) bonds from inert C-H bonds, which can enhance the atom- and step-economy of organic synthesis. To date, precious metals have overwhelmingly dominated the C-H activation field; however, the rarity and high cost of these metals necessitate the development of more sustainable catalysts. In this regard, catalysts based on manganese are highly desirable owing to the abundant reserve of manganese in the earth's crust and its economic benefits, low toxicity, and potentially unique reactivity. Although the first stoichiometric manganese-mediated C-H activation reaction was reported as early as 1970, manganese-catalyzed C-H activation reactions are largely underdeveloped. How to construct an efficient catalytic cycle for manganese in C-H activation reactions remains as a key issue to be addressed. In this Account, we summarize our recent advances in the manganese-catalyzed transformations of inert C-H bonds. To overcome the challenges associated with building manganese-based catalytic cycles, we developed two novel strategies, namely, synergy between manganese catalysts and bases and between manganese catalysts (with or w/o bases) and acids. By implementing the former strategy, we developed cooperative manganese/base catalytic systems that facilitate a new mode of C-H bond activation by manganese via a redox-neutral base-assisted deprotonation mechanism. As such, the requirement for the tedious preparation of MnR(CO) 5 complexes (R = Me, Bn, Ph) in stoichiometric reactions was eliminated, and a series of manganese-catalyzed C-H activation reactions of arenes with various reaction partners having C≡C and C═C bonds were achieved. Through the latter strategy of synergy between manganese catalysts

  13. 10Be in manganese nodules

    International Nuclear Information System (INIS)

    Thomas, J.; Parker, P.; Mangini, A.; Cochran, K.; Turekian, K.; Krishnaswami, S.; Sharma, P.

    1981-01-01

    10 Be (t/sub 1/2) = 1.5 MY) is(formed in the upper atmosphere by cosmic ray spallation on nitrogen and oxygen. It is transported to the earth's surface via precipitation. In the oceans it is eventually associated with solid phases depositing on the ocean floor such as manganese nodules and deep-sea sediments. One of the assumptions that is normally made in analysis of such processes is that 10 Be has been produced at a relatively uniform rate over the pat several million years. If we assume, in addition, that the initial specific concentration of 10 Be as it precipitates with a solid phase is invariant with time, then we would expect that the decrease of the 10 Be concentration as a function of depth in a deep-sea core or in a manganese nodule would provide a record of sediment accumulation rate in the former and of growth rate in the latter. The possibility of using cosmic-ray produced 10 Be for the dating of marine deposits had been proposed 25 years ago by Arnold and Goel et al. The method of analysis used by these investigators, and those subsequently pursuing the problem, was low-level β counting. Though the potential of using 10 Be for dating manganese nodules was explored more than a decade ago, only a few measurements of 10 Be in nodules exist in date. This is largely because of the 10 Be measurements in environmental samples have gained considerable momentum during the past 3 to 4 years, after the development of accelerator mass spectrometry for its determination

  14. Magnetism in intercalated compounds of layered manganese ...

    Indian Academy of Sciences (India)

    Administrator

    Magnetism in intercalated compounds of layered manganese thiophosphate. N V VENKATRAMAN and S VASUDEVAN. Department of Inorganic and Physical Chemistry, Indian Institute of Science,. Bangalore 560 012, India. Layered manganese thiophosphate MnPS3 undergoes an unusual ion-exchange intercalation ...

  15. RNASeq in C. elegans Following Manganese Exposure.

    Science.gov (United States)

    Parmalee, Nancy L; Maqbool, Shahina B; Ye, Bin; Calder, Brent; Bowman, Aaron B; Aschner, Michael

    2015-08-06

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin, are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions and a ranked list of differentially expressed genes for further study. Copyright © 2015 John Wiley & Sons, Inc.

  16. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  17. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method; Movilidad y Disponibilidad de Arsenico en Sedimentos Mediante la Aplicacion del Metodo de Extracciones Secuenciales BCR

    Energy Technology Data Exchange (ETDEWEB)

    Larios, R.; Fernandez, R.; Rucandio, M. I.

    2011-05-13

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  18. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  19. Unusual arsenic metabolism in Giant Pandas.

    Science.gov (United States)

    Braeuer, Simone; Dungl, Eveline; Hoffmann, Wiebke; Li, Desheng; Wang, Chengdong; Zhang, Hemin; Goessler, Walter

    2017-12-01

    The total arsenic concentration and the arsenic speciation in urine and feces samples of the two Giant Pandas living at Vienna zoo and of their feed, bamboo, were determined with ICPMS and HPLC-ICPMS. Urine was the main excretion route and accounted for around 90% of the ingested arsenic. The urinary arsenic concentrations were very high, namely up to 179 μg/L. Dimethylarsinic acid (DMA) was the dominating arsenic compound in the urine samples and ranged from 73 to 92% of the total arsenic, which is unusually high for a terrestrial mammal. The feces samples contained around 70% inorganic arsenic and 30% DMA. The arsenic concentrations in the bamboo samples were between 16 and 920 μg/kg dry mass. The main arsenic species in the bamboo extracts was inorganic arsenic. This indicates that the Giant Panda possesses a unique way of very efficiently methylating and excreting the provided inorganic arsenic. This could be essential for the survival of the animal in its natural habitat, because parts of this area are contaminated with arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as As...

  1. Root transcripts associated with arsenic accumulation in ...

    Indian Academy of Sciences (India)

    Hyperaccumulation of arsenic (As) by brake fern Pteris vittata has been described as an important genetic trait that providesan option for development of a sustainable phytoremediation process for As mitigation. Accumulation of very highconcentration of arsenic in above-ground tissues may be the result of arsenic vacuole ...

  2. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio development.

    Directory of Open Access Journals (Sweden)

    Laura M Beaver

    Full Text Available Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes.

  3. Magentite nanoparticle for arsenic remotion

    International Nuclear Information System (INIS)

    Viltres, H; Reguera, E; Odio, O F; Borja, R; Aguilera, Y

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl 3 and FeCl 2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As 2 O 3 and As 2 O 5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles. (paper)

  4. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Environmental Exposure to Manganese in Air: Associations ...

    Science.gov (United States)

    Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from industrial sources. Air-Mn site surface emissions method modeling for total suspended particulate (TSP) ranged from 0.03 to 1.61 µg/m(3) in Marietta and 0.01-6.32 µg/m(3) in East Liverpool. A comprehensive screening test battery of cognitive function, including the domains of abstract thinking, attention/concentration, executive function and memory was administered. The mean age of the participants was 56 years (±10.8 years). Participants were mostly female (59.1) and primarily white (94.6%). Significant relationships (pworking and visuospatial memory (e.g., Rey-0 Immediate B3=0.19, Rey-0 Delayed B3=0.16) and verbal skills (e.g., Similarities B3=0.19). Using extensive cognitive testing and computer modeling of 10-plus years of measured air monitoring data, this study suggests that long-term environmental exposure to high levels of air-Mn, the exposure metric of this paper, may result in mild deficits of cognitive function in adult populations. This study addresses research questions under Sustainable and Healthy Communities (2.2.1.6 lessons learned, best practices and stakeholder feedback from community and tribal participa

  6. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  7. Effect of manganese on calcification of bone

    Science.gov (United States)

    Tal, E.; Guggenheim, K.

    1965-01-01

    1. Young mice were maintained on a basal diet composed of meat, which is poor in both manganese and calcium. 2. The addition of small amounts (2·5–5·0mg./kg. of meat) of manganese improved weight gain and calcification of bone and decreased incorporation of injected radiocalcium into bone. 3. Prolonged treatment with larger amounts (10·0–25·0mg./kg. of meat) of manganese depressed growth, induced defective calcification of bone and increased incorporation of radiocalcium into bone. PMID:14333572

  8. Bioavailability of manganese sulfate and manganese monoxide in chicks as measured by tissue uptake of manganese from conventional dietary levels.

    Science.gov (United States)

    Henry, P R; Ammerman, C B; Miles, R D

    1986-05-01

    The biological availability of reagent grade manganese sulfate and manganese monoxide was determined in broiler chicks fed conventional dietary Mn levels. A basal corn-soybean meal diet (35 ppm Mn) was supplemented with 40, 80, or 120 ppm Mn from the two sources and fed ad libitum for 21 days. There were no differences in average daily feed intake, daily gain, or feed conversion among treatments. There was a linear (P less than .001) increase in bone, kidney, and liver Mn as dietary Mn increased. Manganese monoxide averaged 66% of the availability of manganese sulfate as determined by a combination of linear regression, multiple linear regression and tissue Mn increase. Bioavailability was similar to that obtained when sources were fed at high dietary levels in a previous study.

  9. Manganese concentrate usage in steelmaking

    Science.gov (United States)

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  10. Address Points - Allegheny County Address Points 201601

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This dataset contains Address Points in Allegheny County. The Address Points were created by GDR for the Allegheny County CAD project, October 2008. Data is updated...

  11. Low-level arsenic in drinking water and risk of incident myocardial infarction: A cohort study.

    Science.gov (United States)

    Monrad, Maria; Ersbøll, Annette Kjær; Sørensen, Mette; Baastrup, Rikke; Hansen, Birgitte; Gammelmark, Anders; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2017-04-01

    Epidemiological studies have shown that intake of drinking water with high levels of arsenic (>100μg/L) is associated with risk for cardiovascular diseases, but studies on lower levels of arsenic show inconsistent results. The aim of this study was to investigate the relationship between exposure to low level arsenic in drinking water and risk of myocardial infarction in Denmark. From the Danish Diet, Cancer and Health cohort of 57,053 people aged 50-64 years at enrolment in 1993-1997, we identified 2707 cases of incident myocardial infarction from enrolment to end of follow-up in February 2012. Cohort participants were enrolled in the Copenhagen and Aarhus areas. We geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water supply areas. Arsenic in tap water at each cohort members address from 1973 to 2012 was estimated for all cohort members. Poisson regression was used to estimate incidence rate ratios (IRRs) for myocardial infarction after adjustment for lifestyle factors and educational level. Arsenic levels in drinking water at baseline addresses ranged from 0.03 to 25.34μg/L, with the highest concentrations in the Aarhus area. We found no overall association between 20-years average concentration of arsenic and risk of myocardial infarction. However, in the Aarhus area, fourth arsenic quartile (2.21-25.34μg/L) was associated with an IRR of 1.48 (95% confidence interval (CI): 1.19-1.83) when compared with first quartile (0.05-1.83μg/L). An IRR of 1.26 (95% CI: 0.89-1.79) was found for ever (versus never) having lived at an address with 10μg/L or more arsenic in the drinking water. This study provides some support for an association between low levels of arsenic in drinking water and the risk of myocardial infarction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Optimized Production of Lignin Peroxidase, Manganese Peroxidase

    African Journals Online (AJOL)

    Mgina

    OPTIMIZED PRODUCTION OF LIGNIN PEROXIDASE, MANGANESE. PEROXIDASE AND LACCASE IN SUBMERGED CULTURES OF. TRAMETES TROGII USING VARIOUS GROWTH MEDIA. COMPOSITIONS. F Patrick*, G Mtui, AM Mshandete and A Kivaisi. Department of Molecular Biology and Biotechnology, College ...

  13. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    .... Mercury (as Hg), not more than 1 part per million. Total color, based on Mn content in “as is” sample, not less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics...

  14. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  15. Magentite nanoparticle for arsenic remotion.

    Science.gov (United States)

    Viltres, H.; Odio, O. F.; Borja, R.; Aguilera, Y.; Reguera, E.

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl3 and FeCl2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As2O3 and As2O5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles.

  16. Biological Oxidation of DCE through Manganese Addition

    Science.gov (United States)

    2008-08-01

    elevated manganese in groundwater. At high levels of manganese exposure, usually as a dust, neurotoxicity can result with ataxia, increase anxiety...The final volume of groundwater, including amendments, was 140 mL. Bottles were sealed with Teflon stoppers and aluminum seals effectively...sealed with Teflon stoppers and aluminum seals, effectively trapping an anaerobic headspace, and incubated at 15ºC. A background control

  17. Low-level arsenic in drinking water and risk of incident myocardial infarction

    DEFF Research Database (Denmark)

    Monrad, Maria; Ersbøll, Annette Kjær; Sørensen, Mette

    2017-01-01

    BACKGROUND: Epidemiological studies have shown that intake of drinking water with high levels of arsenic (>100μg/L) is associated with risk for cardiovascular diseases, but studies on lower levels of arsenic show inconsistent results. OBJECTIVE: The aim of this study was to investigate the relati......BACKGROUND: Epidemiological studies have shown that intake of drinking water with high levels of arsenic (>100μg/L) is associated with risk for cardiovascular diseases, but studies on lower levels of arsenic show inconsistent results. OBJECTIVE: The aim of this study was to investigate...... the relationship between exposure to low level arsenic in drinking water and risk of myocardial infarction in Denmark. METHODS: From the Danish Diet, Cancer and Health cohort of 57,053 people aged 50-64 years at enrolment in 1993-1997, we identified 2707 cases of incident myocardial infarction from enrolment...... 1973 to 2012 was estimated for all cohort members. Poisson regression was used to estimate incidence rate ratios (IRRs) for myocardial infarction after adjustment for lifestyle factors and educational level. RESULTS: Arsenic levels in drinking water at baseline addresses ranged from 0.03 to 25.34μg...

  18. Autonomic function in manganese alloy workers

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  19. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  20. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described. Copyright © 2016. Published by Elsevier B.V.

  1. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.

    Science.gov (United States)

    Ortega-Guerrero, Adrián

    2017-10-01

    High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ 18 O, δ 2 H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.

  2. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... Team More Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of ... Gronberg (2011) for updated arsenic map. Featured publications United States Effects of human-induced alteration of groundwater flow ...

  3. [Biological effects of arsenic and diseases: The mechanisms involved in arsenic-induced carcinogenesis].

    Science.gov (United States)

    Suzuki, Takehiro; Takumi, Shota; Okamura, Kazuyuki; Nohara, Keiko

    2016-07-01

    Chronic arsenic exposure is associated with many diseases, including cancers. Our study using in vivo assay in gpt-delta transgenic mice showed that arsenic particularly induces G : C to T : A transversions, a mutation type induced through oxidative-stress-induced 8-OHdG formation. Gestational arsenic exposure of C3H mice was reported to increase hepatic tumor incidence. We showed that gestational arsenic exposure increased hepatic tumors having activated oncogene Ha-ras by C to A mutation. We also showed that DNA methylation status of Fosb region is implicated in tumor augmentation by gestational arsenic exposure. We further showed that long-term arsenic exposure induces premature senescence. Recent studies reported that senescence is involved in not only tumor suppression, but also tumorgenesis. All these effects of arsenic might be involved in arsenic-induced carcinogenesis.

  4. Arsenic(3) extraction from fluoride-iodide solutions. Extraction-photometric determination of arsenic in tungsten

    International Nuclear Information System (INIS)

    Orlova, V.A.; Spivakov, B.Ya.; Sharova, N.A.; Malyutina, T.M.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1977-01-01

    For developing a rapid and sensitive method of determining arsenic in tungsten, extraction of arsenic and tungsten from fluoride-chloride-iodide and fluoride-iodide solutions with the aid of carbon tetrachloride, chloroform, benzene, toluene and amyl acetate has been studied. It is established that optimum extractant for separating arsenic from tungsten and fluoride ions is CCl 4 . Since in the presence of HCl considerable quantity of HF and tungsten passes into the organic phase, introducing of HCl had to be renounced. Extraction of arsenic with carbon tetrachloride increases with the growth of KI concentration and with an increase of HF concentration in the aqueous phase. A procedure is given for extraction-photometric determination of arsenic in tungsten, based on extraction of arsenic with carbon tetrachloride and subsequent determination of arsenic in the form of reduced molybdoarsenic heteropolyacid. Arsenic detection limit is 1-10 -5 %. Relative standard deviation is 0.1 to 0.2

  5. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  6. Manganese dosimetry: species differences and implications for neurotoxicity.

    Science.gov (United States)

    Aschner, Michael; Erikson, Keith M; Dorman, David C

    2005-01-01

    Manganese (Mn) is an essential mineral that is found at low levels in food, water, and the air. Under certain high-dose exposure conditions, elevations in tissue manganese levels can occur. Excessive manganese accumulation can result in adverse neurological, reproductive, and respiratory effects in both laboratory animals and humans. In humans, manganese-induced neurotoxicity (manganism) is the overriding concern since affected individuals develop a motor dysfunction syndrome that is recognized as a form of parkinsonism. This review primarily focuses on the essentiality and toxicity of manganese and considers contemporary studies evaluating manganese dosimetry and its transport across the blood-brain barrier, and its distribution within the central nervous system (CNS). These studies have dramatically improved our understanding of the health risks posed by manganese by determining exposure conditions that lead to increased concentrations of this metal within the CNS and other target organs. Most individuals are exposed to manganese by the oral and inhalation routes of exposure; however, parenteral injection and other routes of exposure are important. Interactions between manganese and iron and other divalent elements occur and impact the toxicokinetics of manganese, especially following oral exposure. The oxidation state and solubility of manganese also influence the absorption, distribution, metabolism, and elimination of manganese. Manganese disposition is influenced by the route of exposure. Rodent inhalation studies have shown that manganese deposited within the nose can undergo direct transport to the brain along the olfactory nerve. Species differences in manganese toxicokinetics and response are recognized with nonhuman primates replicating CNS effects observed in humans while rodents do not. Potentially susceptible populations, such as fetuses, neonates, individuals with compromised hepatic function, individuals with suboptimal manganese or iron intake, and

  7. Effects of arsenic deactivation on arsenic-implant induced enhanced diffusion in silicon

    International Nuclear Information System (INIS)

    Dokumaci, O.; Law, M.E.; Krishnamoorthy, V.; Jones, K.S.

    1996-01-01

    The enhanced diffusion of boron due to high dose arsenic implantation into silicon is studied as a function of arsenic dose. The behavior of both the type-V and end-of-range loops is investigated by transmission electron microscopy (TEM). The role of arsenic deactivation induced interstitials and type-V loops on enhanced diffusion is assessed. Reduction of the boron diffusivity is observed with increasing arsenic dose at three different temperatures. The possible explanations for this reduction are discussed

  8. Bioavailability Of Arsenic In Arsenical Pesticide-Amended Soils: Preliminary Greenhouse Study

    Science.gov (United States)

    Quazi, S.; Sarkar, D.; Khairom, A.; Datta, R.; Sharma, S.

    2005-05-01

    Long-term application of arsenical pesticides in agricultural lands has resulted in high levels of arsenic (As). Conversion of former agricultural lands to residential areas has resulted in increased human contact with soil As. Soil ingestion from incidental hand-to-mouth activity by children is now a very important issue in assessing human health risk associated with exposure to arsenical pesticide-applied former agricultural soils. Human health risk from direct exposure to soil As via hand to mouth action is restricted only to those fractions of As in the soil that are available to the human gastrointestinal system. Thus this study aimed at addressing the issue of soil variability on As bioavailability as a function of soil physiochemical properties in a dynamic interaction between soils, water and plants and pesticides. In the current greenhouse study two soils with drastically different chemical characteristics w.r.t As reactivity (Immokalee-low As retention potential and Millhopper-high As retention potential) and one pesticide (sodium arsenate) were used. Soils were amended with sodium arsenate at two rates representing the high and low ends of As contamination, generally representative of Superfunds site conditions: 675 and 1500 mg/kg As. Rice (Oryza sativa) was used as the test crop. Sequential digestion to estimate in-vitro As in the stomach phase and the intestinal phase was employed on soils sampled at 4 times: 0-time, after 3 mo, 6 mo and 9 mo of soil-pesticide equilibration. In-vitro bioavailability experiments were also performed with the same soils in order to obtain an estimate of the amount of As that would be absorbed to the intestinal linings in simulated systems. Following the greenhouse study, selective in-vivo bioavailability studies using As-contaminated soils will be conducted on male and female mice to correlate in-vitro results with the in-vivo data. Treatments will consist of a soil group (As in soil), a positive control group (only As

  9. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results.

    Science.gov (United States)

    Adamse, Paulien; Van der Fels-Klerx, H J Ine; de Jong, Jacob

    2017-08-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007-13 were used. Data covered a variety of feed materials and compound feeds in the Netherlands. Trends in the percentage of samples that exceeded the maximum limit (ML) set by the European Commission, and trends in average, median and 90th percentile concentrations of each of these elements were investigated. Based on the results, monitoring should focus on feed material of mineral origin, feed material of marine origin, especially fish meal, seaweed and algae, as well as feed additives belonging to the functional groups of (1) trace elements (notably cupric sulphate, zinc oxide and manganese oxide for arsenic) and (2) binders and anti-caking agents. Mycotoxin binders are a new group of feed additives that also need attention. For complementary feed it is important to make a proper distinction between mineral and non-mineral feed (lower ML). Forage crops in general do not need high priority in monitoring programmes, although for arsenic grass meal still needs attention.

  10. Natural Antioxidants Against Arsenic-Induced Genotoxicity.

    Science.gov (United States)

    Kumar, Munesh; Lalit, Minakshi; Thakur, Rajesh

    2016-03-01

    Arsenic is present in water, soil, and air in organic as well as in inorganic forms. However, inorganic arsenic is more toxic than organic and can cause many diseases including cancers in humans. Its genotoxic effect is considered as one of its carcinogenic actions. Arsenic can cause DNA strand breaks, deletion mutations, micronuclei formation, DNA-protein cross-linking, sister chromatid exchange, and DNA repair inhibition. Evidences indicate that arsenic causes DNA damage by generation of reactive free radicals. Nutritional supplementation of antioxidants has been proven highly beneficial against arsenic genotoxicity in experimental animals. Recent studies suggest that antioxidants protect mainly by reducing excess free radicals via restoring the activities of cellular enzymatic as well as non-enzymatic antioxidants and decreasing the oxidation processes such as lipid peroxidation and protein oxidation. The purpose of this review is to summarize the recent literature on arsenic-induced genotoxicity and its mitigation by naturally derived antioxidants in various biological systems.

  11. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  12. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  13. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ujević Bošnjak, M., E-mail: magdalena.ujevic@hzjz.hr [Croatian National Institute of Public Health, Rockefelerova 7, 10000 Zagreb (Croatia); Fazinić, S. [Institute Ruđer Bošković, Bijenička cesta, 10000 Zagreb (Croatia); Duić, Ž. [University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb (Croatia)

    2013-10-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole.

  14. Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats

    International Nuclear Information System (INIS)

    Dorman, David C.; McManus, Brian E.; Marshall, Marianne W.; James, R. Arden; Struve, Melanie F.

    2004-01-01

    In this study, we examined whether gender or age influences the pharmacokinetics of manganese sulfate (MnSO 4 ) or manganese phosphate (as the mineral form hureaulite). Young male and female rats and aged male rats (16 months old) were exposed 6 h day -1 for 5 days week -1 to air, MnSO 4 (at 0.01, 0.1, or 0.5 mg Mn m -3 ), or hureaulite (0.1 mg Mn m -3 ). Tissue manganese concentrations were determined in all groups at the end of the 90-day exposure and 45 days later. Tissue manganese concentrations were also determined in young male rats following 32 exposure days and 91 days after the 90-day exposure. Intravenous 54 Mn tracer studies were also performed in all groups immediately after the 90-day inhalation to assess whole-body manganese clearance rates. Gender and age did not affect manganese delivery to the striatum, a known target site for neurotoxicity in humans, but did influence manganese concentrations in other tissues. End-of-exposure olfactory bulb, lung, and blood manganese concentrations were higher in young male rats than in female or aged male rats and may reflect a portal-of-entry effect. Old male rats had higher testis but lower pancreas manganese concentrations when compared with young males. Young male and female rats exposed to MnSO 4 at 0.5 mg Mn m -3 had increased 54 Mn clearance rates when compared with air-exposed controls, while senescent males did not develop higher 54 Mn clearance rates. Data from this study should prove useful in developing dosimetry models for manganese that consider age or gender as potential sensitivity factors

  15. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  16. Certain cases of poisoning by arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, P.; Fourcade, J.; Ravoire, J.; Bezenech, C.

    1939-05-01

    Cases of acute and chronic poisoning by arsenic are reported. Diffuse pains, angor, edema of the limbs and genitals, complicated by heptic insufficiency and chronic bronchitis were determined in a subject having lived near an industrial plant processing arseniferous ores for several years. The plant emitted several hundred kg of finely dispersed arsenic oxide daily which settled on forage and vegetables. Symptoms of poisoning by arsenic were also detected in cattle in the same area. The installation of Cottrell type dust separators has helped to suppress the arsenic oxide emissions.

  17. Oncogenomic disruptions in arsenic-induced carcinogenesis.

    Science.gov (United States)

    Sage, Adam P; Minatel, Brenda C; Ng, Kevin W; Stewart, Greg L; Dummer, Trevor J B; Lam, Wan L; Martinez, Victor D

    2017-04-11

    Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process.

  18. Applications of nano-structured metal oxides for treatment of arsenic in water and for antimicrobial coatings

    Science.gov (United States)

    Sadu, Rakesh Babu

    Dependency of technology has been increasing radically through cellular phones for communication, data storage devices for education, drinking water purifiers for healthiness, antimicrobial-coated textiles for cleanliness, nanomedicines for deadliest diseases, solar cells for natural power, nanorobots for engineering and many more. Nanotechnology develops many unprecedented products and methodologies with its adroitness in this modern scientific world. Syntheses of nanomaterials play a significant role in the development of technology. Solution combustion and hydrothermal syntheses produce many nanomaterials with different structures and pioneering applications. Nanometal oxides, like titania, silver oxide, manganese oxide and iron oxide have their unique applications in engineering, chemistry and biochemistry. Likewise, this study talks about the syntheses and applications of nanomaterials such as magnetic graphene nanoplatelets (M-Gras) decorated with uniformly dispersed NPs, manganese doped titania nanotubes (Mn-TNTs), and silver doped titania nanopartcles (nAg-TNPs) and their polyurethane based polymer nanocomposite coating (nAg-TiO2 /PU). Basically, M-Gras, and Mn-TNTs were applied for the treatment of arsenic contaminated water, and nAg- TiO2/PU applied for antimicrobial coatings on textiles. Adsorption of arsenic over Mn- TNTs, and M-Gras was discussed while considering all the regulations of arsenic contamination in drinking water and oxidation of arsenic over Mn-TNTs also discussed with the possible surface reactions. Silver doped titania and its polyurethane nanocomposite was coated on polyester fabric and examined the coated fabric for bactericidal activity for gram-negative (E. coli) and gram-positive ( S. epidermidis) bacteria. This study elucidates the development of suitable nanomaterials and their applications to treat or rectify the environmental hazards while following the scientific standards and regulations.

  19. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  20. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  1. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  2. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  3. Lipid Metabolism of Manganese-deficient Algae

    Science.gov (United States)

    Constantopoulos, George

    1970-01-01

    The growth of photoautotrophic Euglena gracilis Z is strongly inhibited by manganese deficiency, whereas chlorophyll formation is not appreciably affected. The galactosyldiglyceride content of the manganese-deficient photo-autotrophic Euglena was about 40% lower on the basis of either chlorophyll content or dry weight. When dark-grown cultures of Euglena were grown photoheterotrophically in light sufficient for the greening of the cells, or photosynthesis, manganese deficiency resulted in a reduction of the cellular content of chlorophyll and galactosyldiglycerides to 40% of control values, indicating interference with chloroplast formation. The fatty acids of the photoheterotrophic manganese-deficient cells were mainly saturated, with an unusual accumulation (about 45%) of the total fatty acids) of myristic acid. In spite of this, the galactosyldiglycerides contain mainly unsaturated fatty acids. Ninety per cent of the fatty acids of the monogalactosyldiglyceride are unsaturated, including large amounts of α-linolenic acid. The ratio of chlorophyll to galactosyldiglyceride content of the cells was remarkably constant at all manganese deficiency levels. PMID:5436328

  4. Photogeochemical reactions of manganese under anoxic conditions

    Science.gov (United States)

    Liu, W.; Yee, N.; Piotrowiak, P.; Falkowski, P. G.

    2017-12-01

    Photogeochemistry describes reactions involving light and naturally occurring chemical species. These reactions often involve a photo-induced electron transfer that does not occur in the absence of light. Although photogeochemical reactions have been known for decades, they are often ignored in geochemical models. In particular, reactions caused by UV radiation during an ozone free early Earth could have influenced the available oxidation states of manganese. Manganese is one of the most abundant transition metals in the crust and is important in both biology and geology. For example, the presence of manganese (VI) oxides in the geologic record has been used as a proxy for oxygenic photosynthesis; however, we suggest that the high oxidation state of Mn can be produced abiotically by photochemical reactions. Aqueous solutions of manganese (II) as well as suspensions of rhodochrosite (MnCO3) were irradiated under anoxic condition using a 450 W mercury lamp and custom built quartz reaction vessels. The photoreaction of the homogeneous solution of Mn(II) produced H2 gas and akhtenskite (ɛ-MnO2) as the solid product . This product is different than the previously identified birnessite. The irradiation of rhodochrosite suspensions also produced H2 gas and resulted in both a spectral shift as well as morphology changes of the mineral particles in the SEM images. These reactions offer alternative, abiotic pathways for the formation of manganese oxides.

  5. Daily Copper and Manganese Intakes and Their Relation to Blood Pressure in Normotensive Adults

    Science.gov (United States)

    Lee, Yeon-Kyung; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Ro, Hee-Kyong; Heo, Young-Ran; Hyun, Taisun

    2015-01-01

    Although it has been proposed that trace minerals have anti-oxidative functions and are related to the control of blood pressure, only a limited number of studies directly address the issue. Thus, the purpose of our study was to assess the intake of copper and manganese, which are trace minerals, and to clarify their relation to blood pressure. In a cross-sectional study, the blood pressure of 640 normotensive adults, from 19 to 69 year-old (320 males and 320 females), was measured, and its correlation with the intake of copper and manganese was assessed using a 24-hour dietary recall method. The average value of the blood pressure was 126.4/80.2 mmHg for the males and 117.8/75.8 mmHg for the females. The daily copper intake was 1.3 mg/day for the males and 1.2 mg/day for the females. For manganese, the daily intake was 4.2 mg/day for the males and 4.1 mg/day for the females. Although the copper intake of all subjects showed a positive correlation with the systolic and diastolic blood pressures, there was no significant correlation when the potential confounding factors were adjusted. The manganese intake of the male subjects had a significantly negative correlation with the systolic blood pressure after adjusting for gender, age, body mass index, and energy intake. In conclusion, the daily manganese intake of the normotensitve adults showed a significantly negative correlation with the systolic blood pressure indicating a possibility of a positive effect of manganese on blood pressure. PMID:26566521

  6. Infrared spectrum of arsenic pentafluoride

    International Nuclear Information System (INIS)

    Blanchard, S.

    1967-01-01

    After a literature review about arsenic fluorides, we give several methods of obtaining very pure AsF 5 in order to ascertain the right spectrum of this compound. Our spectra fit well with Akers's observations, and we note that AsF 5 structure can be explained in terms of C 3v molecular symmetry, with the As-F bond stretching lying at 786 cm -1 and 811 cm -1 . (author) [fr

  7. Recovery of 'Nsutite' from Tailings Material of Ghana Manganese ...

    African Journals Online (AJOL)

    GMC) Limited Mine, Nsuta. M Ali, RK Amankwah. Abstract. An investigation was conducted for the enrichment of manganese oxide tailings generated by a spiral concentration plant at Ghana Manganese Company (GMC) Limited, Nsuta. The work ...

  8. Synthesis and molecular structure of manganese complexes with ...

    Indian Academy of Sciences (India)

    Administrator

    Manganese-dioxygen complexes are assumed to play significant roles in physiologically important enzymatic reactions including superoxide dismutation, decomposition of hydrogen peroxide and dioxygen evolution from water catalysed by manganese containing proteins 1. Accordingly, the characterization of structurally ...

  9. Manganese and acute paranoid psychosis: a case report

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kuijpers, H.J.H.

    2011-01-01

    Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later,

  10. Manganese and acute paranoid psychosis: A case report

    NARCIS (Netherlands)

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.J. Kuijpers (Harold)

    2011-01-01

    textabstractIntroduction: Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional

  11. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  12. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Periyadan K., E-mail: kkumarpk@kfupm.edu.sa [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Qurban, Mohammad A. [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Stiboller, Michael [Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, A-8010 Graz (Austria); Nachman, Keeve E. [Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD (United States); Joydas, Thadickal V.; Manikandan, Karuppasamy P.; Mushir, Shemsi Ahsan [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Francesconi, Kevin A. [Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, A-8010 Graz (Austria)

    2016-10-01

    This study reports the levels of total arsenic and arsenic species in marine biota such as clams (Meretrix meretrix; N = 21) and pearl oyster (Pinctada radiata; N = 5) collected from nine costal sites in Jan 2014, and cuttlefish (Sepia pharaonis; N = 8), shrimp (Penaeus semisulcatus; N = 1), and seven commercially important finfish species (N = 23) collected during Apr–May 2013 from seven offshore sites in the western Arabian Gulf. Total As and As species such as dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO), arsenocholine (AC), tetramethylarsonium ion (Tetra), arsenosugar-glycerol (As-Gly) and inorganic As (iAs) were determined by using ICPMS and HPLC/ICPMS. In bivalves, the total As concentrations ranged from 16 to 118 mg/kg dry mass; the toxic iAs fraction contributed on average less than 0.8% of the total As, while the nontoxic AB fraction formed around 58%. Total As concentrations for the remaining seafood (cuttlefish, shrimp and finfish) ranged from 11 to 134 mg/kg dry mass and the iAs and AB fractions contributed on average 0.03% and 81% respectively of the total As. There was no significant relationship between the tissue concentrations of total As and iAs in the samples. There was also no significant relationship between As levels in seafood and geographical location or salinity of the waters from which samples were collected. Based on our results, we recommend introducing a maximum permissible level of arsenic in seafood from the Gulf based on iAs content rather than based on total As. Our analyses of cancer risks and non-cancer hazards identified non-negligible risks and the potential for hazards; the greatest risks were identified for expatriate consumers of bivalves and high-end consumers of seafood. Despite this, many uncertainties remain that would be best addressed by further analyses. - Highlights: • Arabian Gulf seafood contains relatively high concentrations of total arsenic. • Non-toxic arsenobetaine forms

  13. Manganese in dwarf spheroidal galaxies

    Science.gov (United States)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; François, P.

    2012-05-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including α and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/α] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H] ~ -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/α] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/α] behavior can be interpreted as a result of the metal-dependent Mn yields of Type II and Type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia. Based on observations made with the FLAMES-GIRAFFE multi-object spectrograph mounted on the Kuyen VLT telescope at ESO-Paranal Observatory (programs 171.B-0588, 074.B-0415 and 076.B-0146).Appendices are available in electronic form at http://www.aanda.org

  14. Influence of virginiamycin and dietary manganese on performance, manganese utilization, and intestinal tract weight of broilers.

    Science.gov (United States)

    Henry, P R; Ammerman, C B; Miles, R D

    1986-02-01

    An experiment was conducted with day-old Cobb feather-sexed chicks for 21 days to study the effect of virginiamycin and dietary manganese on tissue uptake of manganese and intestinal tract weight. The 2 X 2 factorial arrangement of dietary treatments included 0 or 12 ppm virginiamycin and 0 or 1000 ppm added manganese as MnSO4 X H2O. Ad libitum intake was determined with four pens of five birds fed the basal corn-soybean meal diet. To eliminate the possibility that tissue manganese concentration of virginiamycin-fed birds could be attributed to increased dietary manganese intake, chicks fed experimental diets were restricted to 90% of the previous day's intake of ad libitum-fed birds. Feed intake, average daily gain, and feed efficiency were not affected by treatments. Virginiamycin decreased (P less than .001) relative intestinal tract weight from 3.34 to 2.68 g/100 g body weight. Kidney and bone manganese increased (P less than .05) when virginiamycin was fed (14.0 vs. 15.4 ppm dry basis and 21.8 vs. 24.6 ppm ash basis, respectively), indicating that virginiamycin increased absorption of manganese.

  15. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  16. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  17. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-01-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  18. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  19. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  20. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  1. Effects of manganese oxide on arsenic reduction and leaching from contaminated floodplain soil

    DEFF Research Database (Denmark)

    Ehlert, Katrin; Mikutta, Christian; Kretzschmar, Ruben

    2016-01-01

    Reductive release of the potentially toxic metalloid As from Fe(III) (oxyhydr)oxides has been identified as an important process leading to elevated As porewater concentrations in soils and sediments. Despite the ubiquitous presence of Mn oxides in soils and their oxidizing power toward As......(III), their impact on interrelated As, Fe, and Mn speciation under microbially reducing conditions remains largely unknown. For this reason, we employed a column setup and X-ray absorption spectroscopy to investigate the influence of increasing birnessite concentrations (molar soil Fe-to-Mn ratios: 4.8, 10.2, and 24.......7) on As speciation and release from an As-contaminated floodplain soil (214 mg As/kg) under anoxic conditions. Our results show that birnessite additions significantly decreased As leaching. The reduction of both As and Fe was delayed, and As(III) accumulated in birnessite-rich column parts, indicating...

  2. Determinants of Hair Manganese, Lead, Cadmium and Arsenic Levels in Environmentally Exposed Children.

    Science.gov (United States)

    Jursa, Thomas; Stein, Cheryl R; Smith, Donald R

    2018-03-22

    Biomarkers of environmental metal exposure in children are important for elucidating exposure and health risk. While exposure biomarkers for As, Cd, and Pb are relatively well defined, there are not yet well-validated biomarkers of Mn exposure. Here, we measured hair Mn, Pb, Cd, and As levels in children from the Mid-Ohio Valley to determine within and between-subject predictors of hair metal levels. Occipital scalp hair was collected in 2009-2010 from 222 children aged 6-12 years (169 female, 53 male) participating in a study of chemical exposure and neurodevelopment in an industrial region of the Mid-Ohio Valley. Hair samples from females were divided into three two centimeter segments, while males provided a single segment. Hair was cleaned and processed in a trace metal clean laboratory, and analyzed for As, Cd, Mn, and Pb by magnetic sector inductively coupled plasma mass spectrometry. Hair Mn and Pb levels were comparable (median 0.11 and 0.15 µg/g, respectively) and were ~10-fold higher than hair Cd and As levels (0.007 and 0.018 µg/g, respectively). Hair metal levels were higher in males compared to females, and varied by ~100-1000-fold between all subjects, and substantially less (10-fold lower than levels reported in other studies in children, most likely because of more rigorous hair cleaning methodology used in the present study, leading to lower levels of unresolved exogenous metal contamination of hair.

  3. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  4. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    surface geophysical data to evaluate the lateral spreading of water as it moved downward through the unsaturated zone. Three laboratory studies were undertaken. Sequential extraction was used to evaluate the abundance of iron, aluminum, and manganese oxides and selected trace elements on operationally defined sites on the surfaces of mineral grains collected before and after infiltration from the pond. Secondly, radio-labeled arsenic-73 microcosm experiments evaluated the potential for incorporation of arsenic sorbed to exchange sites on mineral grains into less reactive crystalline mineral structures with time. Finally, column studies evaluated arsenic sorption and the pH dependence of sorption for selected unsaturated zone materials.RESULTS/CONCLUSIONS Between December 2010 and July 2012, more than 120,000 cubic meters (m3 ) (about 97 acre-feet) of high-arsenic groundwater was pumped from the deep aquifer into a 0.11 hectare (about 0.27 acres) pond and infiltrated though an 80-meter (about 260 feet) thick unsaturated zone to recharge a water-table aquifer. Arsenic concentrations were lowered from 30 to 2 g/L as water infiltrated though the unsaturated zone at the site. Some uranium, possibly associated with past agricultural land use at the site, was mobilized to concentrations as high as 66 g/L within the unsaturated zone during the experiment. Uranium was resorbed and the high uranium concentrations did not reach the water table at the site. Concentrations of other trace elements, including antimony, chromium, vanadium, and selenium were low throughout the study. Infiltration rates from the pond were as high as 0.4 meters per day (1.1 feet per day, ft/d), and the wetting front moved downward about 25 centimeters per day (cm/d) (0.8 ft/d) to a depth of about 50 m (about 165 feet). Clay layers at that depth slowed the downward movement of the wetting front to about 5 cm/d (0.16 ft/d). Lateral movement of the wetting front was monitored using sequential direct

  5. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    Science.gov (United States)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  6. Manganese exposure in foundry furnacemen and scrap recycling workers

    DEFF Research Database (Denmark)

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder...

  7. Anodic Lodes and Scrapings as a Source of Electrolytic Manganese

    Directory of Open Access Journals (Sweden)

    Daniel Fernández-González

    2018-03-01

    Full Text Available Manganese is an element of interest in metallurgy, especially in ironmaking and steel making, but also in copper and aluminum industries. The depletion of manganese high grade sources and the environmental awareness have led to search for new manganese sources, such as wastes/by-products of other metallurgies. In this way, we propose the recovery of manganese from anodic lodes and scrapings of the zinc electrolysis process because of their high Mn content (>30%. The proposed process is based on a mixed leaching: a lixiviation-neutralization at low temperature (50 °C, reached due to the exothermic reactions involved in the process and a lixiviation with sulfuric acid at high temperature (150–200 °C, in heated reactor. The obtained solution after the combined process is mainly composed by manganese sulphate. This solution is then neutralized with CaO (or manganese carbonate as a first purification stage, removing H2SO4 and those impurities that are easily removable by controlling pH. Then, the purification of nobler elements than manganese is performed by their precipitation as sulphides. The purified solution is sent to electrolysis where electrolytic manganese is obtained (99.9% Mn. The versatility of the proposed process allows for obtaining electrolytic manganese, oxide of manganese (IV, oxide of manganese (II, or manganese sulphate.

  8. Manganese Concentrations In Hair and Fingernail of Some Kano ...

    African Journals Online (AJOL)

    Manganese concentrations in hair and fingernails were determined by Flame Atomic Absorption Spectrometry (AAS).The mean manganese in hair and fingernail were 0.54 ± 0.35mg/g and 0.68 ± 0.30mg/g respectively. A progressive decrease in manganese concentrations in hair and fingernails with age indicated no ...

  9. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    International Nuclear Information System (INIS)

    Gilligan, M.; Feely, M.; Morrison, L.; Henry, T.; Higgins, T.M.; Zhang, C.

    2009-01-01

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  10. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  11. Root transcripts associated with arsenic accumulation in ...

    Indian Academy of Sciences (India)

    Rasika M Potdukhe

    2018-02-06

    Feb 6, 2018 ... factors and metal transporters, biosynthesis of chelating compounds involved in uptake and accumulation mechanisms were identified. .... To validate the mRNA abundance of arsenic related genes, we randomly selected 6 genes .... Arsenic is ubiquitous in the earth's crust in the form of arsenopyrite (Zhao ...

  12. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri

    2015-01-01

    regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. While rice protein based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content...

  13. REACTION PROCESSES OF ARSENIC IN SULFIDIC SOLUTIONS

    Science.gov (United States)

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In anoxic or sulfidic environments thioarsenite ((As(OH)x(SH)yz-) species alon...

  14. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  15. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  16. Arsenic uptake in organic rice production systems

    Science.gov (United States)

    Arsenic in rice is known to be a problem in some rice-producing countries that have high levels of inorganic arsenic naturally occurring in water resources. However, it was never considered an issue for USA produced rice until international market surveys were published, indicating some USA rice sam...

  17. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining

  18. A history of arsenic in dentistry.

    Science.gov (United States)

    Hyson, John M

    2007-02-01

    The history of the use of arsenic in dentistry has been relegated to dental history. Once hailed as a panacea for the relief of pain and the answer to root canal therapy, it soon fell out of use mainly because of its misuse by unskilled and unscrupulous dentists in search of a quick fix to a complex problem. Such is the story of arsenic.

  19. Ecotoxicology of arsenic in the hydrosphere: Implications for public ...

    African Journals Online (AJOL)

    Arsenic is a naturally occurring metalloid element that is found in soil, air and water. Environmental arsenic exists in both organic and inorganic states. Organic arsenicals are generally considered non toxic, whereas inorganic forms are toxic. The most acutely toxic form is arsine gas. Inorganic arsenic exists predominantly in ...

  20. Toxicological effects of arsenic exposure in a freshwater teleost fish ...

    African Journals Online (AJOL)

    High concentration of arsenic in groundwater in the north-eastern states of India has become a major cause of concern. Inorganic arsenic of geological origin is found in groundwater used as drinking-water in several parts of the world. Arsenic is used in various industries and agriculture and excessive arsenic finds its way ...

  1. Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation

    OpenAIRE

    Chen, Jian; Qin, Jie; Zhu, Yong-Guan; de Lorenzo, Víctor; Rosen, Barry P.

    2013-01-01

    Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food.

  2. Heteronuclear compounds of arsenic and antimony

    Science.gov (United States)

    Mauser, James E.

    1982-09-01

    Volatilization of secondary metals such as arsenic, antimony, and bismuth, during the smelting of copper ores, is important because of environmental and resource considerations. The Bureau of Mines, United States Department of the Interior, has been studying copper concentrate roasting in conjunction with the volatility of these minor constituents. Some unusual vaporization behavior initiated this supplemental paper which shows that when the mixed sulfides of arsenic and antimony are heated, the volatilization of arsenic is retarded and the volatilization of antimony increased. Mixed oxides of arsenic and antimony also exhibit exceptional volatilization behavior. These anomalous vaporization behaviors are attributed to the formation of heteronuclear compounds of arsenic and antimony, but the colligative properties of solutions may also be a factor.

  3. Arsenic and selenium in microbial metabolism

    Science.gov (United States)

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  4. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  5. Soil Warming Increases Arsenic Availability in the Rice Rhizosphere

    Directory of Open Access Journals (Sweden)

    Rebecca B. Neumann

    2017-04-01

    Full Text Available Arsenic uptake by rice ( L. threatens yield and contaminates grain. Climate warming could affect these hazards. We tested the effect of elevated soil temperature on arsenic availability to and uptake by rice plants. Rice was grown in arsenic-amended soil in rhizoboxes that facilitated porewater sampling and synchrotron X-ray fluorescence (XRF imaging of the rhizosphere. Plants were subjected to similar atmospheric conditions but different soil temperatures. The XRF imaging revealed greater arsenic sequestration in root iron plaques with a warmer soil temperature. Mean and median arsenic concentrations in porewater and root, straw, and husk tissue were positively correlated with average daily maximum soil temperature. Grain arsenic concentrations did not change. Warmer soil temperatures likely increased plant-available arsenic by increasing reductive dissolution of arsenic-bearing iron minerals, but the plants effectively regulated grain arsenic. The impacts of changing environmental conditions on arsenic contamination of rice should be further explored.

  6. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  7. Synthesis Of Different Phases Of Nano Manganese Oxides And Their Dielectric Behaviour In Chitosan Composites

    Science.gov (United States)

    Harshita, B. A.; Bhat, D. Krishna; Bhatt, Aarti S.

    2011-10-01

    Nanoscale oxides of transition metals, particularly manganese, are desirable for many applications in designing electric, magnetic and heterogeneous catalytic materials. Manganese oxides exist in different phases, viz. MnO, MnO2, Mn2O3, Mn2O7 and Mn3O4. Using different synthetic routes it is possible to synthesize different phases of manganese oxides. Moreover, composites of these oxides with polymer have the potential to address the needs of emerging dielectric technologies. In the present work, using manganese chloride and hydrazine hydrate, Mn3O4 and Mn2O3 nanoparticles were successfully synthesized by conventional and hydrothermal method respectively. The variation in the formation of the different phases has been discussed. The nanoparticles were well characterized by X-ray Diffraction and using the Debye Scherrer formula, the average size of Mn3O4 and Mn2O3 nanoparticles were calculated to be 35 nm and 25 nm respectively. Using solution casting method, nanocomposites of chitosan/Mn3O4 were prepared and their electrochemical properties were studied using electrochemical impedance spectroscopy. It was observed that with increase in the content of nano oxides, the conductivity of the films increased. Also, the variation in the permittivity of these samples with respect to frequency was studied. The results suggest that the composites have a fair chance to be used in energy storage devices.

  8. Iron and manganese deposits in Uruguay

    International Nuclear Information System (INIS)

    Alvarado, B.

    1959-01-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  9. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  10. Novel manganese colorimetric chemosensing investigations of ...

    African Journals Online (AJOL)

    The dyes were investigated for their colorimetric chemosensor properties using procedures such as screening of metals and non-metals, selection of analytical wavelengths, optimization of solvents, reaction temperature and time. Validation was carried out for the determination of manganese from aqueous solution by ...

  11. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflec-.

  12. Mesoporous manganese oxide for warfare agents degradation

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Králová, Daniela; Opluštil, F.; Němec, T.

    2012-01-01

    Roč. 156, JULY (2012), s. 224-232 ISSN 1387-1811 R&D Projects: GA MPO FI-IM5/231 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : homogeneous hydrolysis * chloroacetamide * manganese(IV) oxide * warfare agents Subject RIV: CA - Inorganic Chemistry Impact factor: 3.365, year: 2012

  13. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia

    International Nuclear Information System (INIS)

    Zhou, Changbo; Wang, Jiwei; Wang, Nanfang

    2013-01-01

    Electrolytic manganese residue (EMR) from the electrolytic manganese industry is a solid waste containing mainly calcium sulfate dihydrate and quartzite. It is impossible to directly use the EMR as a building material due to some contaminants such as soluble manganese, ammonia nitrogen and other toxic substances. To immobilize the contaminants and reduce their release into the environment, treating EMR using alkaline additives for stabilizing manganese and removing ammonia was investigated. The physical and chemical characteristics of the original EMR were characterized by XRFS, XRD, and SEM. Leaching test of the original EMR shows that the risks to the environment are the high content of soluble manganese and ammonia nitrogen. The influence of various alkaline additives, solidifying reaction time, and other solidifying reaction conditions such as outdoor ventilation and sunlight, and rain flow on the efficiencies of Mn 2+ solidification and ammonia nitrogen removal was investigated. The results show that with mass ratio of CaO to residue 1 : 8, when the solidifying reaction was carried out indoors for 4 h with no rain flow, the highest efficiencies of Mn 2+ solidification and ammonia nitrogen removal (99.98% and 99.21%) are obtained. Leaching test shows that the concentration and emission of manganese and ammonia nitrogen of the treated EMR meets the requirements of the Chinese government legislation (GB8978-1996)

  14. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  15. Nanostructured manganese oxides in supercapacitors

    CSIR Research Space (South Africa)

    Makgopa, K

    2016-07-01

    Full Text Available The development of energy storage systems (ESSs) comes as a crucial factor when it comes to addressing the problem of energy in the world due to the rapid development of the global economy, the depletion of fossil fuels and the increase...

  16. Arsenic Induction of Metallothionein and Metallothionein Induction Against Arsenic Cytotoxicity.

    Science.gov (United States)

    Rahman, Mohammad Tariqur; De Ley, Marc

    Human exposure to arsenic (As) can lead to oxidative stress that can become evident in organs such as the skin, liver, kidneys and lungs. Several intracellular antioxidant defense mechanisms including glutathione (GSH) and metallothionein (MT) have been shown to minimize As cytotoxicity. The current review summarizes the involvement of MT as an intracellular defense mechanism against As cytotoxicity, mostly in blood. Zinc (Zn) and selenium (Se) supplements are also proposed as a possible remediation of As cytotoxicity. In vivo and in vitro studies on As toxicity were reviewed to summarize cytotoxic mechanisms of As. Intracellular antioxidant defense mechanisms of MT are linked in relation to As cytotoxicity. Arsenic uses a different route, compared to major metal MT inducers such as Zn, to enter/exit blood cells. A number of in vivo and in vitro studies showed that upregulated MT biosynthesis in blood components are related to toxic levels of As. Despite the cysteine residues in MT that aid to bind As, MT is not the preferred binding protein for As. Nonetheless, intracellular oxidative stress due to As toxicity can be minimized, if not eliminated, by MT. Thus MT induction by essential metals such as Zn and Se supplementation could be beneficial to fight against As toxicity.

  17. Effects of gamma-sterilization on DOC, uranium and arsenic remobilization from organic and microbial rich stream sediments

    International Nuclear Information System (INIS)

    Schaller, Joerg; Weiske, Arndt; Dudel, E. Gert

    2011-01-01

    Organic-rich sediments are known to be effective accumulators for uranium and arsenic. Much is known about the capacity for metal or metalloid fixation by microbes and organic compounds as well as inorganic sediment particles. Experiments investigating the effect of microbes on the process of metal fixation in sediments require sterilized sediments as control treatment which is often realized by gamma-sterilization. Only few studies show that gamma-sterilization has an effect on the remobilization of metal and metalloids and on their physico-chemical properties. These studies deal with sediments with negligible organic content whereas almost nothing is known about organic-rich sediments including a probably high microbial activity. In view of this, we investigated the effect of gamma-sterilization of organic-rich sediments on uranium and arsenic fixation and release. After ten days within an exposure experiment we found a significant higher remobilization of uranium and arsenic in sterile compared to unsterile treatments. In line with these findings the content of dissolved organic carbon (DOC), manganese, and iron increased to even significantly higher concentration in the sterile compared to unsterile treatment. Gamma-sterilization seems to change the physico-chemical properties of organic-rich sediments. Microbial activity is effectively eliminated. From increased DOC concentrations in overlaying water it is concluded that microbes are eventually killed with leaching of cellular compounds in the overlaying water. This decreases the adsorption capacity of the sediment and leads to enhanced uranium and arsenic remobilization. - Research highlight s : →Remobilization of uranium and arsenic is higher in gamma-sterile treatments. →DOC mobilization is also higher in sterilized treatment. →Adsorption capacity in sediments is reduced by release of DOC.

  18. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Directory of Open Access Journals (Sweden)

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  19. Vascular permeability alterations induced by arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Tsai, Ming-Hsien; Wang, Hsiu-Jen; Yu, Hsin-Su; Chang, Louis W

    2004-01-01

    The impact of arsenic on the integrity of blood vessels in vivo via in situ exposure (local injection) of arsenic was investigated. Vascular permeability changes were evaluated by means of the Evans blue assay and the India ink tracer techniques. Rats were intravenously injected with Evans blue followed by intradermal injections of various doses of sodium arsenite on the back skins of the animals. Evans blue at different time points was extracted and assayed as indices of vascular leakage. Skin at various time point injection sites was sampled for arsenic measurement via graphite furnace atomic absorption spectroscopy. Our time course study with Evans blue technique demonstrated a biphasic pattern of vascular permeability change: an early phase of permeability reduction and a later phase of permeability promotion at all dose levels tested. The India ink tracer technique also demonstrated a time-correlated increase in vascular labelling in the tissues examined, signifying an increase in vascular leakage with time. Moreover, we found that despite an early increase in tissue arsenic content at time of injection, tissue arsenic declined rapidly and returned to near control levels after 30-60 min. Thus, an inverse correlation between tissue arsenic content and the extent of vascular permeability was apparent. This study provides the first demonstration that in situ exposure to arsenic will produce vascular dysfunction (vascular leakage) in vivo.

  20. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  1. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  2. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    Science.gov (United States)

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  3. Mitigating arsenic crisis in the developing world: role of robust, reusable and selective hybrid anion exchanger (HAIX).

    Science.gov (United States)

    German, Michael; Seingheng, Hul; SenGupta, Arup K

    2014-08-01

    In trying to address the public health crisis from the lack of potable water, millions of tube wells have been installed across the world. From these tube wells, natural groundwater contamination from arsenic regularly puts at risk the health of over 100 million people in South and Southeast Asia. Although there have been many research projects, awards and publications, appropriate treatment technology has not been matched to ground level realities and water solutions have not scaled to reach millions of people. For thousands of people from Nepal to India to Cambodia, hybrid anion exchange (HAIX) resins have provided arsenic-safe water for up to nine years. Synthesis of HAIX resins has been commercialized and they are now available globally. Robust, reusable and arsenic-selective, HAIX has been in operation in rural communities over numerous cycles of exhaustion-regeneration. All necessary testing and system maintenance is organized by community-level water staff. Removed arsenic is safely stored in a scientifically and environmentally appropriate manner to prevent future hazards to animals or people. Recent installations have shown the profitability of HAIX-based arsenic treatment, with capital payback periods of only two years in ideal locations. With an appropriate implementation model, HAIX-based treatment can rapidly scale and provide arsenic-safe water to at-risk populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Manganese binding proteins in human and cow's milk

    International Nuclear Information System (INIS)

    Loennerdal, B.; Keen, C.L.; Hurley, L.S.

    1985-01-01

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of 54 Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed

  5. Quantum entanglement in manganese(II) hexakisimidazole nitrate: on electronic structure imaging - A polarized neutron diffraction and DFT study

    Science.gov (United States)

    Wallace, Warren A.

    2016-04-01

    Quantum entanglement has been visualized for the first time, in view of the spin density distribution and electronic structure for manganese in manganese(II)hexakisimidazole nitrate. Using polarized neutron diffraction and density functional theory modelling we have found for the complex, which crystallizes in the R3¯ spacegroup, a = b = 12.4898(3) Å, c = 14.5526(4) Å, α = γ = 90°, β = 120°, Z = 3, that spatially antisymmetric and spatially symmetric shaped regions of negative spin density, in the spin density map for manganese, are a result of quantum entanglement of the high spin d5 configuration due to dative imidazole- manganese π- donation and σ-bonding interactions respectively. We have found leakage of the entangled states for manganese observed as regions of positive spin density with spherical (3.758(2) μB) and non-spherical (1.242(3) μB) contributions. Our results, which are supportive of Einstein's theory of general relativity, provide evidence for the existence of a black hole spin density distribution at the origin of an electronic structure and also address the paradoxical views of entanglement and quantum mechanics. We have also found the complex, which is an insulator, to be suitable for spintronic studies.

  6. Is it possible to avert arsenic effects on cells and tissues bypassing its toxicity and suppressive consequences of energy production? A hypothesis

    Directory of Open Access Journals (Sweden)

    Biplab Giri

    2017-01-01

    Full Text Available Arsenic, a sulfhydryl reactive metalloid, found primarily in two forms: arsenite and arsenate, causing several human health problems, is considered as a dreaded agent against public health. It mainly spreads through groundwater contamination and affects human mainly through drinking water. Arsenic contaminated groundwater is now a major threat in some parts of India (the river basin of Ganga and Brahmaputra and Bangladesh. The current authors belong to the region where arsenic poisoning and its consequences are spreading in an uncontrolled way. We are helpless to stop the spreading of geogenic groundwater arsenic contamination at present. Although most of the research on arsenic removal from drinking water and on toxicity profile has been carried out, very few preventive measures have been reported till date to balance the arsenic-induced cellular energy deficiency and oxidative stress-mediated cell death and cellular senescence. And, therefore, we need to think about alternative remedial to address such problems, which propel us to propose the current hypothesis that the adverse effects of energy imbalance due to arsenic toxicity in cells could be dodged by intake of moderate amount of alcohol. While pyruvate dehydrogenase complex is blocked by arsenic, glucose cannot be utilized through Kreb's cycle. However, alcohol can produce energy by bypassing the aerobic adenosine triphosphate (ATP production machinery. In addition, arsenic poisoning incurs cellular oxidative stress which needs to be scavenged further. So to meet this secondary problem, we also suggest consuming red grape juice (a potent antioxidant and cytoprotective agent in addition to alcohol (as per International Center for Alcohol Policies (ICAP Drinking Guidelines in our second part of the hypothesis. In conclusion, it can be suggested that the red wine which contains moderate amount of alcohol and high levels of red grape polyphenols, galic acid, resveratrol, and other

  7. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Hinhumpatch, Pantip; Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education (Thailand); Chaisatra, Krittinee; Promvijit, Jeerawan [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Mahidol, Chulabhorn [Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Ruchirawat, Mathuros, E-mail: mathuros@cri.or.th [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education (Thailand); Department of Pharmacology, Faculty of Science, Mahidol University, Phayathai, Bangkok (Thailand)

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.

  8. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    International Nuclear Information System (INIS)

    Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2013-01-01

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant

  9. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-08-18

    This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Arsenic speciation in municipal landfill leachate.

    Science.gov (United States)

    Li, Yarong; Low, Gary K-C; Scott, Jason A; Amal, Rose

    2010-05-01

    Arsenic species in municipal landfill leachates (MLL) were investigated by HPLC-DRC-ICPMS and LC-ESI-MS/MS. Various arsenic species including arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), as well as sulfur-containing organoarsenic species were detected. Two sulfur-containing arsenic species in a MLL were positively identified as dimethyldithioarsinic acid (DMDTA(V)) and dimethylmonothioarsinic acid (DMMTA(V)) by comparing their molecular ions, fragment patterns and sulfur/arsenic ratios with in-house synthesised thiol-organoarsenic compounds. The findings demonstrated the potential for transformation of DMA(V) to DMDTA(V) and DMMTA(V) in a DMA(V)-spiked MLL in a landfill leachate environment.

  11. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  12. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  13. Arsenic and its compounds in mushrooms: A review.

    Science.gov (United States)

    Falandysz, Jerzy; Rizal, Leela M

    2016-10-01

    The purpose of this article is to review the detail concentration of arsenic in some species of mushrooms as well as organic and inorganic forms of arsenic in the substrates where wild and cultivated edible mushrooms grow. We also briefly review the molecular forms of arsenic in mushrooms. There is still a lack of experimental data from the environment for a variety of species from different habitats and for different levels of geogenic arsenic in soil. This information will be useful for mushrooms consumers, nutritionists, and food regulatory agencies by describing ways to minimize arsenic content in edible mushrooms and arsenic intake from mushroom meals.

  14. Bacterial sulfate reduction limits natural arsenic contamination in groundwater

    Science.gov (United States)

    Kirk, Matthew F.; Holm, Thomas R.; Park, Jungho; Jin, Qusheng; Sanford, Robert A.; Fouke, Bruce W.; Bethke, Craig M.

    2004-11-01

    Natural arsenic contamination of groundwater, increasingly recognized as a threat to human health worldwide, is characterized by arsenic concentrations that vary sharply over short distances. Variation in arsenic levels in the Mahomet aquifer system, a regional glacial aquifer in central Illinois, appears to arise from variable rates of bacterial sulfate reduction in the subsurface, not differences in arsenic supply. Where sulfate-reducing bacteria are active, the sulfide produced reacts to precipitate arsenic, or coprecipitate it with iron, leaving little in solution. In the absence of sulfate reduction, methanogenesis is the dominant type of microbial metabolism, and arsenic accumulates to high levels.

  15. Evaluation of the transfer of soil arsenic to maize crops in suburban areas of San Luis Potosi, Mexico.

    Science.gov (United States)

    Rosas-Castor, J M; Guzmán-Mar, J L; Alfaro-Barbosa, J M; Hernández-Ramírez, A; Pérez-Maldonado, I N; Caballero-Quintero, A; Hinojosa-Reyes, L

    2014-11-01

    The presence of arsenic (As) in agricultural food products is a matter of concern because it can cause adverse health effects at low concentrations. Agricultural-product intake constitutes a principal source for As exposure in humans. In this study, the contribution of the chemical-soil parameters in As accumulation and translocation in the maize crop from a mining area of San Luis Potosi was evaluated. The total arsenic concentration and arsenic speciation were determined by HG-AFS and IC-HG-AFS, respectively. The data analysis was conducted by cluster analysis (CA) and principal component analysis (PCA). The soil pH presented a negative correlation with the accumulated As in each maize plant part, and parameters such as iron (Fe) and manganese (Mn) presented a higher correlation with the As translocation in maize. Thus, the metabolic stress in maize may induce organic acid exudation leading a higher As bioavailability. A high As inorganic/organic ratio in edible maize plant tissues suggests a substantial risk of poisoning by this metalloid. Careful attention to the chemical changes in the rhizosphere of the agricultural zones that can affect As transfer through the food chain could reduce the As-intoxication risk of maize consumers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Arsenic and Growth of Amphistegina gibbosa

    Directory of Open Access Journals (Sweden)

    Elise Keister

    2009-01-01

    Full Text Available A laboratory tested various concentrations of arsenic on the growth of foraminifera and recorded their findings. Upon examination, the plotted probability density function for each of these trials resembled a similar shape. The plots were then characterized in a general model composed of linear segments. Using calculus, statistics such as the expected value, variance and standard deviation were calculated to interpret the collected data. The statistics revealed that arsenic limits the growth of ocean life.

  17. Biosensors for Inorganic and Organic Arsenicals

    OpenAIRE

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity a...

  18. Manganese concentration in human saliva using NAA

    International Nuclear Information System (INIS)

    Lewgoy, Hugo R.; Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de

    2013-01-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  19. Manganese Olivine. Pt. 1. Electrical conductivity

    International Nuclear Information System (INIS)

    Bai, Q.; Wang, Z.C.; Kohlstedt, D.L.

    1995-01-01

    To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn 2 SiO 4 , electrical conductivity (σ) of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T = 850-1200 C and oxygen fugacities f O 2 = 10 -11 - 10 -2 atm under both Mn oxide (MO) buffered and MnSiO 3 (MS) buffered conditions

  20. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  1. Arsenic and other trace elements in groundwater and human urine in Ha Nam province, the Northern Vietnam: contamination characteristics and risk assessment.

    Science.gov (United States)

    Pham, Long Hai; Nguyen, Hue Thi; Van Tran, Cuong; Nguyen, Ha Manh; Nguyen, Tung Hoang; Tu, Minh Binh

    2017-06-01

    The contamination characteristics of arsenic and other trace elements in groundwater and the potential risks of arsenic from the groundwater were investigated. Elevated contamination of arsenic, barium and manganese was observed in tube-well water of two villages (Chuyen Ngoai and Chau Giang) in Ha Nam province in the Northern Vietnam. Concentrations of As in the groundwater ranged from 12.8 to 884 µg/L with mean values in Chuyen Ngoai and Chau Giang were 614.7 and 160.1 µg/L, respectively. About 83 % of these samples contained As concentrations exceeding WHO drinking water guideline of 10 μg/L. The mean values of Mn and Ba in groundwater from Chuyen Ngoai and Chau Giang were 300 and 657 μg/L and 650 and 468 μg/L, respectively. The mean value of Ba concentration in groundwater in both Chuyen Ngoai and Chau Giang was about 22 % of the samples exceeded the WHO guideline (700 µg/L). Arsenic concentrations in human urine of residents from Chuyen Ngoai and Chau Giang were the range from 8.6 to 458 µg/L. The mean values of Mn and Ba in human urine of local people from Chuyen Ngoai were 46.9 and 62.8 μg/L, respectively, while those in people from Chau Giang were 25.9 and 45.9 μg/L, respectively. The average daily dose from ingesting arsenic for consuming both untreated and treated groundwater is from 0.02 to 11.5 and 0.003 to 1.6 μg/kg day, respectively. Approximately, 57 % of the families using treated groundwater and 64 % of the families using untreated groundwater could be affected by elevated arsenic exposure.

  2. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  3. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  4. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Manganese and the II system in photosynthesis

    International Nuclear Information System (INIS)

    Joyard, Jacques

    1971-01-01

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author) [fr

  6. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  7. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  8. Levels of arsenic in human hair as biomarkers of arsenic exposure ...

    African Journals Online (AJOL)

    Arsenic levels were determined in human hair samples collected from a mining and non-mining community in Ghana. Hair samples were digested and analyzed using inductively coupled plasma atomic emission spectrometer (ICP–AES). Elevated levels of arsenic were found in the samples obtained from the mining ...

  9. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    Science.gov (United States)

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important ...

  10. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  11. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Liu Xiaojuan; Zhao Quanli; Sun Guoxin; Williams, Paul; Lu Xiujun; Cai Jingzhu; Liu Wenju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO 3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  12. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This

  13. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  14. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  16. A survey of neurobehavioral symptoms of welders exposed to manganese

    Directory of Open Access Journals (Sweden)

    H Hassani

    2013-05-01

    Conclusion: Welders’ exposure to manganese and its potential health effects should be evaluated periodically and effective control measures should be applied in order to to prevent neurobehavioral symptoms.

  17. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron....../manganese-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso......-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid...

  18. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    -filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration...... manganese removal. Iron had a negative effect on manganese removal and even caused an increase in manganese concentration (release). Experiments with filter material from another water works, Astrup, specially designed to remove iron biologically, showed that the biological iron removal increased...

  19. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  20. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  1. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water.

    Science.gov (United States)

    Spayd, Steven E; Robson, Mark G; Buckley, Brian T

    2015-02-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples was collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations was significantly lower (pwater treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study.

    Science.gov (United States)

    Spratlen, Miranda Jones; Gamble, Mary V; Grau-Perez, Maria; Kuo, Chin-Chi; Best, Lyle G; Yracheta, Joseph; Francesconi, Kevin; Goessler, Walter; Mossavar-Rahmani, Yasmin; Hall, Meghan; Umans, Jason G; Fretts, Amanda; Navas-Acien, Ana

    2017-07-01

    B-vitamins involved in one-carbon metabolism (OCM) can affect arsenic metabolism efficiency in highly arsenic exposed, undernourished populations. We evaluated whether dietary intake of OCM nutrients (including vitamins B2, B6, folate (B9), and B12) was associated with arsenic metabolism in a more nourished population exposed to lower arsenic than previously studied. Dietary intake of OCM nutrients and urine arsenic was evaluated in 405 participants from the Strong Heart Study. Arsenic exposure was measured as the sum of iAs, monomethylarsonate (MMA) and dimethylarsenate (DMA) in urine. Arsenic metabolism was measured as the individual percentages of each metabolite over their sum (iAs%, MMA%, DMA%). In adjusted models, increasing intake of vitamins B2 and B6 was associated with modest but significant decreases in iAs% and MMA% and increases in DMA%. A significant interaction was found between high folate and B6 with enhanced arsenic metabolism efficiency. Our findings suggest OCM nutrients may influence arsenic metabolism in populations with moderate arsenic exposure. Stronger and independent associations were observed with B2 and B6, vitamins previously understudied in relation to arsenic. Research is needed to evaluate whether targeting B-vitamin intake can serve as a strategy for the prevention of arsenic-related health effects at low-moderate arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Addressivity in cogenerative dialogues

    Science.gov (United States)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  4. Genotoxic Effect of Atrazine, Arsenic, Cadmium and Nitrate ...

    African Journals Online (AJOL)

    ATZ), Cadmium (Cd), Arsenic (As) and Nitrate (NO3) have both estrogenic activity and carcinogenic potential. Atrazine has clastogenic effects and may also act as tumor promoter as it induces the aromatase enzyme. Arsenic and Cadmium ...

  5. [Pathways of arsenic uptake in prokaryotic and eukaryotic cells].

    Science.gov (United States)

    Lis, Paweł; Litwin, Ireneusz; Maciaszczyk-Dziubińska, Ewa

    2010-01-01

    Mechanisms of arsenic uptake and detoxification are present in all studied organisms. These mechanisms are considerably well described in unicellular organisms such as bacterium Escherichia coli and baker's yeast Saccharomyces cerevisiae, still leaving much to be revealed in multicellular organisms. Full identification of arsenic uptake and detoxification is of great importance. This knowledge can be very helpful in improving effectiveness of arsenic-containing drugs used in chemotherapy of parasitoses as well as in treatment of acute promielyocytic leukemia. Increased proficiency of bioremediation of arsenic-contaminated soils can be obtained by using plants hyperaccumulating arsenic. This kind of plants can be engineered by modulating expression levels of genes encoding arsenic transporters. The same technique may be used to decrease levels of accumulated arsenic in crops. The aim of this paper is to review current knowledge about systems of arsenic uptake in every studied organism--from bacteria to human.

  6. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  7. Manganese Exposure from Drinking Water and Children’s Classroom Behavior in Bangladesh

    Science.gov (United States)

    Khan, Khalid; Factor-Litvak, Pam; Wasserman, Gail A.; Liu, Xinhua; Ahmed, Ershad; Parvez, Faruque; Slavkovich, Vesna; Levy, Diane; Mey, Jacob; van Geen, Alexander

    2011-01-01

    Background: Evidence of neurological, cognitive, and neuropsychological effects of manganese (Mn) exposure from drinking water (WMn) in children has generated widespread public health concern. At elevated exposures, Mn has been associated with increased levels of externalizing behaviors, including irritability, aggression, and impulsivity. Little is known about potential effects at lower exposures, especially in children. Moreover, little is known regarding potential interactions between exposure to Mn and other metals, especially arsenic (As). Objectives: We conducted a cross-sectional study of 201 children to investigate associations of Mn and As in tube well water with classroom behavior among elementary school children, 8–11 years of age, in Araihazar, Bangladesh. Methods: Data on exposures and behavioral outcomes were collected from the participants at the baseline of an ongoing longitudinal study of child intelligence. Study children were rated by their school teachers on externalizing and internalizing items of classroom behavior using the standardized Child Behavior Checklist-Teacher’s Report Form (CBCL-TRF). Results: Log-transformed WMn was positively and significantly associated with TRF internalizing [estimated β = 0.82; 95% confidence interval (CI), 0.08–1.56; p = 0.03], TRF externalizing (estimated β = 2.59; 95% CI, 0.81–4.37; p =0.004), and TRF total scores (estimated β = 3.35; 95% CI, 0.86–5.83; p = 0.008) in models that adjusted for log-transformed water arsenic (WAs) and sociodemographic covariates. We also observed a positive monotonic dose–response relationship between WMn and TRF externalizing and TRF total scores among the participants of the study. We did not find any significant associations between WAs and various scales of TRF scores. Conclusion: These observations reinforce the growing concern regarding the neurotoxicologic effects of WMn in children. PMID:21493178

  8. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  9. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  10. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    Science.gov (United States)

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  11. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  12. Long-Term Exposure to Low-Level Arsenic in Drinking Water and Diabetes Incidence

    DEFF Research Database (Denmark)

    Bräuner, Elvira V; Nordsborg, Rikke B; Andersen, Zorana Jovanovic

    2014-01-01

    , and 3,035 (5.8%) cases of diabetes based on a stricter definition. The adjusted incidence rate ratio's per 1 µg/L increment in arsenic levels in drinking water were (IRR = 1.03; 95% CI: 1.01, 1.06) and (IRR = 1.02; 95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. CONCLUSIONS: Long......BACKGROUND: Established causes of diabetes do not fully explain the epidemic. High level arsenic exposure has been implicated in diabetes risk but the effect of low-level arsenic exposure in drinking water remains unclear. OBJECTIVE: To determine if long-term exposure to low-level arsenic...... in drinking water in Denmark is associated with increased risk of diabetes using a large prospective cohort. METHODS: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses...

  13. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    Science.gov (United States)

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  14. Laterite-A Potential Alternative for Removal of Groundwater Arsenic ...

    African Journals Online (AJOL)

    Laterite-A Potential Alternative for Removal of Groundwater Arsenic. IMM Rahman, K Iwakabe, J Kawasaki. Abstract. Arsenic removal by heat treated laterite from contaminated water was investigated through batch adsorption experiments. The removal rate was dependent on the initial arsenic concentrations and a high

  15. Arsenic bioleaching in medical realgar ore and arsenicbearing ...

    African Journals Online (AJOL)

    However, the maximum arsenic leaching ratio from realgar in the presence of mixed unadapted strains was only 12.4 %. Besides, maximum arsenic leaching ratios from arsenic-bearing refractory gold ore by mixed adapted strains or unadapted strains were 45.0 and 22.9 %, respectively. Oxidation of these two ores by ...

  16. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  17. THE ACCUMULATION AND RELEASE OF ARSENIC FROM DISTRIBUTION SYSTEM SOLIDS

    Science.gov (United States)

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  18. Battery recycling: recovery of manganese in the form of electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Roriz, Elizabeth Rodrigues Rangel; Von Krüge, Paulo; Espinosa, Denise Crocce Romano; Tenorio, Jorge Alberto Soares

    2010-01-01

    This work seeks to verify the possibility of using depleted batteries as a source of manganese applying the electrolytic process, considering the growing demand for products containing manganese in their composition. It was used an electrolyte solution containing the metal ions: Ca (270mg / L), Ni (3000 mg / L), Co (630 mg / L), Mn (115.300 mg / L) , Ti (400 mg / L) and Pb (20 mg / L) in concentrated sulfuric acid. The production of electrolytic manganese dioxide (EMD) was performed through galvanization using a stabilized source that monitored the potential of the working electrode. It was used an electrode of lead and two counter electrodes of graphite at a temperature of 98 deg C (± 2 deg C) and current density of 1.69A.dm -2 . The material obtained was analyzed through the process of X-ray fluorescence spectrometry and X-ray diffraction. The results indicated that it is possible to obtain electrolytic manganese dioxide with a purity of about 94% and that the main allotropic variety obtained under the conditions of the experiment was the ε-MnO 2 . (author)

  19. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    Science.gov (United States)

    Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R.; Sánchez, Jesús; Peláez, Ana Isabel

    2017-01-01

    phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria. PMID:28188207

  20. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria. Copyright © 2017 American Society for Microbiology.

  1. Arsenic in private well water part 1 of 3: Impact of the New Jersey Private Well Testing Act on household testing and mitigation behavior.

    Science.gov (United States)

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Chillrud, Steven N; Braman, Stuart; Zheng, Yan

    2016-08-15

    Regularly ingesting water with elevated arsenic increases adverse health risks. Since September 2002, the NJ Private Well Testing Act (PWTA) has required testing untreated well water for arsenic during real estate transactions in 12 counties. Its implementation provides an opportunity to investigate the effects of policy intervention on well testing and treatment behavior. Here we analyze results of a survey mailed to 1943 random addresses (37% response), including responses from 502 private well households who purchased their homes prior to PWTA commencement and 168 who purchased after. We find the PWTA has significantly increased arsenic testing rates in an area where 21% of wells contain arsenic above the 5μg/L NJ drinking water standard. The PWTA has allowed identification of more wells with arsenic (20% of post-PWTA vs. 4% of pre-PWTA households) and more treatment for arsenic (19% of post-PWTA vs. 3% of pre-PWTA households). Such an Act is a partial answer to significant socioeconomic disparities in testing observed among households for whom it is not required. Additionally residents purchasing homes since 2002 are younger and disproportionately more likely to have children in their household (60% vs. 32%), a priority group given their particular vulnerability to effects of arsenic. Despite more wells tested under the PWTA, post-PWTA well owners forget or misremember arsenic test results more often, are more likely to report not knowing what kind of treatment they are using, and are not reporting better maintenance or monitoring of their treatment systems than pre-PWTA households. This suggests serious challenges to reducing arsenic exposure remain even when testing is a requirement. Furthermore, only a fraction of wells have been tested under the PWTA due to the slow pace of housing turnover. We recommend more public resources be made available to support private well testing among socially and biologically vulnerable groups. Copyright © 2016 Elsevier B

  2. Carbonate ions and arsenic dissolution by groundwater

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  3. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    OpenAIRE

    Yongfang Li; Feng Ye; Anwei Wang; Da Wang; Boyi Yang; Quanmei Zheng; Guifan Sun; Xinghua Gao

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking ...

  4. Ultrastructural cytochemical analysis of intranuclear arsenic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, E.M.B.

    1987-01-01

    To establish the chemical composition of the arsenic inclusion, freshly isolated preparations of inclusions and epon-embedded thin sections of inclusions were subjected to ultrastructural cytochemical analysis. Intranuclear inclusions are composed of amorphous, arsenic-containing subunits aligned linearly to form a coiled complex. Lipase, ribonuclease, deoxyribonuclease, trypsin, pepsin, protease, amylase, or ethylenediaminetetraacetic acid (EDTA) was used to digest or chelate these inclusions. Following enzymatic digestion or chelation, the electron opacity of inclusions was compared with that of control sections exposed for equal times to equivalent solutions lacking the enzymes. Exposure to amylase caused a consistent reduction in the electron opacity of thin sections of inclusions and almost complete digestion of the freshly isolated preparations of inclusions. This was indicative of the presence of a carbohydrate moiety within arsenic inclusions. Incubation of inclusions with EDTA resulted in solubilization of freshly isolated and thin-sectioned embedded material. These data indicated that the intranuclear arsenic inclusion is composed of both metallic and carbohydrate moieties, confirming earlier studies which identified arsenic within inclusions using instrumental neutron activation analysis and x-ray microprobe analysis.

  5. Behavior of manganese ion in basic medium: consequence for the ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2006-01-25

    Jan 25, 2006 ... adding manganese chloride or manganese sulfate to sodium hydroxyde or sodium carbonate in aqueous ... carbonate (1 M). The release of p- nitrophenoxide anion (pNP) was quantified at. 420 nm using a spectrophotometer (Spectronic. Genesis 5). .... These curves were bell-type with an ascending.

  6. Some Modifications in the Stratigraphy of Manganese Bearing ...

    African Journals Online (AJOL)

    Some Modifications in the Stratigraphy of Manganese Bearing Formations, Srikakulam District (A.P.) India. ... Hitherto unknown, these shales and algal bodies are of sedimentary origin. Their occurrence ... Keywords: crystalline algal limestone, red and green shale, Khondalite group, manganese quarries, Andhra Pradesh.

  7. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  8. Determination and stability constants of Manganese (II) amino acid ...

    African Journals Online (AJOL)

    Determination and stability constants of Manganese (II) amino acid complexes. HN Aliyu, J Na'aliya. Abstract. The stepwise and the overall stability constants of the complexes formed by manganese (II) ion and twelve (12) amino acids have been determined. The dissociation constants, pKa, of the amino acids determined ...

  9. Sublethal effects of manganese on the carbohydrate metabolism of ...

    African Journals Online (AJOL)

    Carbohydrate metabolism variables of Oreochromis mossambicuswere investigated after acute and chronic sublethal manganese exposure. The sublethal concentrations were determined from the LC50 value of manganese. After the exposures, the fish were carefully netted and blood was drawn from the caudal aorta.

  10. Influence of Manganese on Ochratoxin A Detoxification in Rats ...

    African Journals Online (AJOL)

    The Influence of manganese on ochratoxin A detoxification was studied in 3- month old female white albino rats administered with 0.00, 500 and 500μg/kg body weight of ochratoxin A intraperitoneally daily for five days. In addition to the ochratoxin A, 0.5ml of 5% Manganese (II) chloride was administered to one of the test ...

  11. Effect of paramagnetic manganese ions doping on frequency and ...

    Indian Academy of Sciences (India)

    The manganese doped layered ceramic samples (Na1.9Li0.1)Ti3O7 : XMn(0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as ...

  12. from Tailings Material of Ghana Manganese Company (GMC)

    African Journals Online (AJOL)

    user

    1 Introduction. The name „Nsutite‟ (γ - MnO2); referred to as better- grade manganese oxide mineral type, was named after Nsuta, where extraction from the Nsuta-. Dagwin manganese deposits began almost a century ago. According to Kesse (1985), the deposits mainly contain oxide (chiefly pyrolusite and psilomelane) ...

  13. Synthesis and characterization of monomeric manganese(II) and ...

    African Journals Online (AJOL)

    The geometry at the manganese center is seven-coordinate, and is best described as a capped trigonal pyramid with the water molecule forming the cap and the six nitrogen atoms of the tpen ligand occupying the pyramidal sites. The manganese atom and the water molecule lie on a crystallographic twofold axis.

  14. Preparation of highly efficient manganese catalase mimics.

    Science.gov (United States)

    Triller, Michael U; Hsieh, Wen-Yuan; Pecoraro, Vincent L; Rompel, Annette; Krebs, Bernt

    2002-10-21

    The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.

  15. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  16. Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius-endophytic Arthrobacter creatinolyticus interactions.

    Science.gov (United States)

    Prum, Channratha; Dolphen, Rujira; Thiravetyan, Paitip

    2018-05-01

    In this study, Echinodorus cordifolius was the best plant for arsenic removal compared to Cyperus alternifolius, Acrostichum aureum and Colocasia esculenta. Under arsenic stress, the combination of E. cordifolius with microbes (Bacillus subtilis and Arthrobacter creatinolyticus) was investigated. It was found that A. creatinolyticus, a native microbe, can endure arsenic toxicity, produce higher indole-3 acetic acid (IAA) and ammonium production better than B. subtilis. Interestingly, E. cordifolius-endophytic A. creatinolyticus interactions showed that dipping plant roots in A. creatinolyticus suspension for 5 min had the highest arsenic removal efficiency compared to dipping plant roots in A. creatinolyticus suspension for 2 h and inoculating A. creatinolyticus with E. cordifolius directly. Our findings indicated that under this inoculation condition, the inoculum could colonize from the roots to the shoots of the host tissues in order to avoid arsenic toxicity and favored arsenic removal by the host through plant growth-promoting traits, such as IAA production. Highest levels of IAA were found in plant tissues and the plants exhibited higher root elongation than other conditions. Moreover, low level of reactive oxygen species (ROS) was related to low arsenic stress. In addition, dipping E. cordifolius roots in A. creatinolyticus for 5 min was applied in a constructed wetland, the result showed higher arsenic removal than conventional method. Therefore, this knowledge can be applied at a real site for improving plant tolerance stress, plant growth stimulation, and enhancing arsenic remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  18. Addressing Sexual Harassment

    Science.gov (United States)

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  19. Addressing Social Issues.

    Science.gov (United States)

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  20. Sesotho Address Forms

    Directory of Open Access Journals (Sweden)

    Akindele, Dele Femi

    2008-01-01

    Full Text Available Address forms constitute an integral part of Basotho sociolinguistic etiquette. They are regarded as a kind of emotional capital that may be invested in putting others at ease. They are indicators of deference, politeness and markers of social distance. (Fasold 1990, Akindele 1990, 1991, 1993 This paper examines the address forms used by the Basotho people. It analyzes and discusses the various types and the factors determining their use. The discussion of address forms in Sesotho focuses on First Name, Title plus First Name, Title plus Last Name, Nickname, Multiple Names, and Teknonym. Drawing data from semi-literate and literate urban and rural population of Maseru district of Lesotho, it was found that the commonest form of address used by the Basotho people is title plus first name. e.g. ntate Thabo (father Thabo, 'm'e Puleng (mother Puleng, ausi Maneo (sister Maneo, abuti Mahao (brother Mahao. It is used by close relations, associates, and familiar people in both formal and informal situations.

  1. Addressivity in Cogenerative Dialogues

    Science.gov (United States)

    Hsu, Pei-Ling

    2014-01-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one…

  2. Alternative irradiation system for efficiency manganese bath determination

    Energy Technology Data Exchange (ETDEWEB)

    Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Xavier da Silva, Ademir, E-mail: ademir@con.ufrj.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil)

    2010-12-15

    An alternative irradiation system, which works with a radionuclide neutron source and manganese sulphate solution volume have been proposed for efficiency determination of a Manganese Bath System (MBS). This irradiation system was designed by simulation with MCNP5 code, considering a californium neutron source in several manganese sulphate volumes and different neutron reflectors. Although its solution specific activity are less than those in nuclear reactors, the simulation results have showed that the irradiation system proposed takes a manganese neutron capture increase up to 200 times when it compared to manganese neutron capture from a MBS whose diameter is about 100 cm. That becomes possible to use those samples for some of the absolute specific activity measuring methods.

  3. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  4. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  5. Arsenic analysis II: rapid separation and quantification of inorganic arsenic plus metabolites and arsenobetaine from urine.

    Science.gov (United States)

    Nixon, D E; Moyer, T P

    1992-12-01

    We describe the rapid separation of inorganic arsenic plus metabolites from arsenobetaine or seafood arsenic in urine. Traditional, high-pressure liquid chromatography is replaced by disposable silica-based cation-exchange cartridges for this separation. Both fractions are quickly separated and collected for analysis by atomic absorption spectrophotometry. Analytical recovery of both fractions is > or = 95%, with an overall precision (CV) ranging from 1.6% to 6.4%. Using this method, we correctly identified the sources of arsenic exposure, whether of inorganic or seafood origin, in 11 urine specimens supplied by the Centre de Toxicologie du Quebec.

  6. Applying the redox process to arsenical concentrates

    Science.gov (United States)

    Beattie, M. J. V.; Ismay, Arnaldo

    1990-01-01

    Extensive batch and continuous testing has been completed using a high-temperature, nitric acid pressure leach (Redox) process for oxidizing the refractory gold-containing arsenopyrite tailings presently stockpiled at Snow Lake, Manitoba. This process has achieved up to 99% oxidation of the arsenopyrite compound and precipitated more than 90% arsenic into a stable iron-arsenic compound (resembling ferric arsenate) in less than eight minutes of overall retention time at temperatures of 195-210°C and an oxygen overpressure of 345 kPa. The oxidation step then exposes the contained gold, allowing a recovery of 91.5% in a standard carbon-in-leach circuit. The main advantages of this process are fast reaction rates, the high proportion of arsenic precipitated, and the stability of the precipitate.

  7. Arsenic Exposure and the Induction of Human Cancers

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.

  8. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  9. Preparation and Characterization of Manganese Ferrite Aluminates

    Directory of Open Access Journals (Sweden)

    R. L. Dhiman

    2008-01-01

    Full Text Available Aluminum doped manganese ferrites MnAlxFe2−xO4 with 0.0≤x≤1.0 have been prepared by the double ceramic route. The formation of mixed spinel phase has been confirmed by X-ray diffraction analysis. The unit cell parameter `aO' is found to decrease linearly with aluminum concentration due to smaller ionic radius of aluminum. The cation distributions were estimated from X-ray diffraction intensities of various planes. The theoretical lattice parameter, X-ray density, oxygen positional parameter, ionic radii, jump length, and bonds and edges lengths of the tetrahedral (A and octahedral (B sites were determined. 57Fe Mössbauer spectra recorded at room temperature were fitted with two sextets corresponding to Fe3+ ions at A- and B-sites. In the present ferrite system, the area ratio of Fe3+ ions at the A- and B-sites determined from the spectral analysis of Mössbauer spectra gives evidence that Al3+ ions replace iron ions at B-sites. This change in the site preference reflects an abrupt change in magnetic hyperfine fields at A- and B-sites as aluminum concentration increases, which has been explained on the basis of supertransferred hyperfine field. On the basis of estimated cation distribution, it is concluded that aluminum doped manganese ferrites exhibit a 55% normal spinel structure.

  10. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  11. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Meharg, Andrew A.; Sun, Guoxin; Williams, Paul N.; Adomako, Eureka; Deacon, Claire; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea

    2008-01-01

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  12. An insight of environmental contamination of arsenic on animal health

    Directory of Open Access Journals (Sweden)

    Paramita Mandal

    2017-03-01

    Full Text Available The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Although adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues and is even increasing in some areas. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Therefore, measures should be taken to reduce arsenic exposure in the general population in order to minimize the risk of adverse health effects. Animal are being exposed to arsenic through contaminated drinking water, feedstuff, grasses, vegetables and different leaves. Arsenic has been the most common causes of inorganic chemical poisoning in farm animals. Although, sub-chronic and chronic exposure of arsenic do not generally reveal external signs or symptoms in farm animals but arsenic (or metabolites concentrations in blood, hair, hoofs and urine are remained high in animals of arsenic contaminated zones. So it is assumed that concentration of arsenic in blood, urine, hair or milk have been used as biomarkers of arsenic exposure in field animals.

  13. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  14. [Tissue distribution of arsenic of liushen pills and realgar].

    Science.gov (United States)

    Zhang, Qing-Li; Wu, Qian; Xie, Yuan-Yuan; Shen, Lian-Zhong; Fan, Min-Wei; Liang, Qiong-Lin; Wang, Yi-Ming; Luo, Guo-An

    2011-06-01

    This study is to report the tissue distribution of arsenic after giving different doses of realgar and Liushen pills to Beagle dogs, in order to provide basis for the safety evaluation of Liushen pills. ICP-MS was used to measure arsenic concentration, and HPLC-ICP-MS was used to analyze arsenic speciation. The concentration of total arsenic and As(III) + DMA (arsenite + dimethylarsenic acid) increased with dosing of realgar. Total arsenic concentration in most tissues and As(III) + DMA concentration in all tissues of Liushen pills group are lower than that of realgar group, but AsB concentration in liver, spleen and kidney of Liushen pills group increased. The concentration of total arsenic showed a dose-dependent manner with dosage administered. It was indicated that components in Liushen pills can reduce solubility of arsenic in realgar, which may decrease toxicity of realgar.

  15. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  16. Total and inorganic arsenic in fish samples from Norwegian waters.

    Science.gov (United States)

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (level in fish used in the recent EFSA opinion on arsenic in food.

  17. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia.

    Science.gov (United States)

    Phan, Kongkea; Kim, Kyoung-Woong; Huoy, Laingshun; Phan, Samrach; Se, Soknim; Capon, Anthony Guy; Hashim, Jamal Hisham

    2016-06-01

    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.

  18. Effect Of Soil Properties On The Geochemical Speciation Of Arsenic In Contaminated Soils: A Greenhouse Study

    Science.gov (United States)

    Sharma, S.; Sarkar, D.; Datta, R.

    2005-05-01

    Land-applied arsenical pesticides have contributed elevated soil arsenic (As) levels. Many baseline risk assessments As-contaminated sites assume that all As present in the soil is bioavailable, thereby potentially overestimating the actual health risk. However, risk from As exposure is associated only with those forms of As that are potentially extractable by the human gastrointestinal juices. It has been demonstrated that As may exist in several geochemical forms depending on soil chemical properties, which may or may not be bioavailable. The current study aims at addressing the issue of soil variability on As bioavailability as a function of soil physico-chemical properties in a greenhouse setting involving dynamic interactions between soil, water and plants. Four different soils were chosen based on their potential differences with respect to As reactivity: Immokalee, an acid sand with low extractable Fe/Al, having minimal arsenic retention capacity; Millhopper, an acid sandy loam with high extractable Fe/Al oxides; Pahokee Muck soil with 85% soil organic matter (SOM) as well as high Fe/Al content; and Orelia soil with high clay and Fe/Al content. Soils were amended with sodium arsenate (675 and 1500 mg/Kg). Rice (Oryza sativa) was used as the test crop. A sequential extraction scheme was employed to identify the geochemical forms of As in soils (soluble, exchangeable, organic, Fe/Al-bound, Ca/Mg-bound, residual) immediately after spiking; after 3 mo; and after 6 mo of equilibration time. Concentrations of these As forms were correlated with the in-vitro bioavailable As fractions to identify those As fractions that are most likely to be bioavailable. Results from this study showed that there was little to no plant growth in the contaminated soils. Sequential extractions of the soil indicated that arsenic is strongly adsorbed onto soil amorphous iron/aluminum oxides, and the degree of arsenic retention is a direct function of equilibration time.

  19. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  20. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Robert, R.V.D.

    1981-01-01

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  1. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to which...

  2. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.

    Science.gov (United States)

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C; Morgun, Andriy; Kile, Molly L

    2017-01-01

    Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.

  3. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  4. Seasonal and spatial variations in settling manganese fluxes in the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Ramaswamy, V.; Shankar, R.; Ittekkot, V.

    *Corresponding author. Fax: 0091-832-223340. E-mail address: bnair@csnio.ren.nic.in (T.M. Balakrishnan Nair) Deep-Sea Research I 46 (1999) 1827}1839 Seasonal and spatial variations in settling manganese #uxes in the Northern Arabian Sea T.M. Balakrishnan Nair... undergoes bacterially mediated oxidative scavenging throughout the water column, aided by settling particles (Klinkhammer and Bender, 1980; Cowen and Li, 1991; Mo!ett, 1997). The vertical #uxes of particulate Mn are important in the marine environment, as Mn...

  5. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Hug, Stephan J; Ammann, Adrian; Zikoudi, Antonia; Hatziliontos, Christodoulos

    2007-09-20

    The cities in the Aksios and Kalikratia areas in Northern Greece rely on arsenic contaminated groundwater for their municipal water supply. As remedial action strongly depends on arsenic speciation, the presence of other possible contaminants, and on the general water composition, a detailed study with samples from 21 representative locations was undertaken. Arsenic concentrations were typically 10-70 microg/L. In the groundwaters of the Aksios area with lower Eh values (87-172 mV), pH 7.5-8.2 and 4-6 mM HCO(3) alkalinity, As(III) predominated. Manganese concentrations were mostly above the EC standard of 0.05 mg/L (0.1-0.7 mg/L). In groundwaters of the Kalikratia area with higher Eh values (272-352 mV), pH 6.7-7.5 and 6-12 mM HCO(3) alkalinity, As(V) was the main species. Uranium in the groundwaters was also investigated and correlations with total arsenic concentrations and speciation were examined to understand more of the redox chemistry of the examined groundwaters. Uranium concentrations were in the range 0.01-10 microg/L, with the higher concentrations to occur in the oxidizing groundwaters of the Kalikratia area. Uranium and total arsenic concentrations showed no correlation, whereas uranium concentrations correlated strongly with As(III)/As(tot) ratios, depicting their use as a possible indicator of groundwater redox conditions. Finally, boron was found to exceed the EC drinking water standard of 1 mg/L in some wells in the Kalikratia area and its removal should also be considered in the design of a remedial action.

  6. Determination of semi-empirical relationship between the manganese and hydrogen atoms ratio, physical density and concentration in an aqueous solution of manganese sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Bittencourt, Guilherme, E-mail: bittencourt@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    The Manganese sulphate solution has been used for neutron metrology through the method of Manganese Bath. This method uses physical parameters of manganese sulphate solution to obtain its corrections. This work established a functional relationship, using the gravimetric method, between those physical parameters: density, concentration and hydrogen to manganese ratio. Comparisons were done between manganese sulphate solution concentration from the Manganese Bath system of Laboratory of Metrology of Ionising Radiation and estimated values from the functional relationship obtained, showing percentage difference of less than 0.1%. This result demonstrates the usefulness in the correlation of the physical values of the solution to the MB.

  7. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    Science.gov (United States)

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  8. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water.

    Science.gov (United States)

    Smith, E; Juhasz, A L; Weber, J; Naidu, R

    2008-03-25

    The accumulation of arsenic (As) by rice (Oryza sativa L.) is of great interest considering the dietary intake of rice is potentially a major As exposure pathway in countries where rice is irrigated with As contaminated groundwater. A small scale rice paddy experiment was conducted to evaluate the uptake of As by rice. Arsenic concentrations in rice tissue increased in the order grainassessment as inorganic As species are more bioavailable than methylated As species.

  9. Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh.

    Science.gov (United States)

    Islam, Md Rafiqul; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Slater, Christine; Islam, Md Monirul; Akhter, Ayesha; d'Este, Catherine; Peel, Roseanne; Akter, Shahnaz; Smith, Wayne; Begg, Stephen; Milton, Abul Hasnat

    2014-12-04

    Early life exposure to inorganic arsenic may be related to adverse health effects in later life. However, there are few data on postnatal arsenic exposure via human milk. In this study, we aimed to determine arsenic levels in human milk and the correlation between arsenic in human milk and arsenic in mothers and infants urine. Between March 2011 and March 2012, this prospective study identified a total of 120 new mother-baby pairs from Kashiani (subdistrict), Bangladesh. Of these, 30 mothers were randomly selected for human milk samples at 1, 6 and 9 months post-natally; the same mother baby pairs were selected for urine sampling at 1 and 6 months. Twelve urine samples from these 30 mother baby pairs were randomly selected for arsenic speciation. Arsenic concentration in human milk was low and non-normally distributed. The median arsenic concentration in human milk at all three time points remained at 0.5 μg/L. In the mixed model estimates, arsenic concentration in human milk was non-significantly reduced by -0.035 μg/L (95% CI: -0.09 to 0.02) between 1 and 6 months and between 6 and 9 months. With the progression of time, arsenic concentration in infant's urine increased non-significantly by 0.13 μg/L (95% CI: -1.27 to 1.53). Arsenic in human milk at 1 and 6 months was not correlated with arsenic in the infant's urine at the same time points (r = -0.13 at 1 month and r = -0.09 at 6 month). Arsenite (AsIII), arsenate (AsV), monomethyl arsonic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite in infant urine. We observed a low arsenic concentration in human milk. The concentration was lower than the World Health Organization's maximum permissible limit (WHO Permissible Limit 15 μg/kg-bw/week). Our findings support the safety of breastfeeding even in arsenic contaminated areas.

  10. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  11. Isolation of Arsenic Resistant Escherichia coli from Sewage Water and Its Potential in Arsenic Biotransformation

    Directory of Open Access Journals (Sweden)

    Basanta Bista

    2017-04-01

    Full Text Available Arsenic contamination in drinking water from ground water poses a threat to the health of a large population in developing countries in Asia. This has sparked great interests in the potential of different microbes in arsenic resistance and removal from water. This study involves isolation of arsenic resistant Escherichia coli from sewage water from Kathmandu University and investigation of its attributes. Arsenic resistant E. coli was successfully isolated which could survive in high concentration of arsenic. The maximum tolerance of arsenite was 909.79 mg/L (sodium arsenite and 3120.1 mg/L arsenate (sodium arsenate which is well above most natural concentration of arsenic in ground water. This particular E. coli tolerated multiple heavy metal like silver nitrate, cobalt sulphate, cadmium chloride, nickel chloride, mercury chloride, copper sulphate, and zinc chloride at concentration 20 µM, 1 mM, 0.5mM, 1mM, 0.01 mM, 1 mM, and 1 mM respectively which are concentrations known to be toxic to E. coli. Biotransformation of arsenite to arsenate was also checked for by a qualitative silver nitrate technique. This E. coli was able to transform arsenate to arsenite. It showed some sensitivity to Ciprofloxacin, Gentamicin and Nalidixic Acid. As E. coli and its genome are very widely studied, these particular properties have a lot of potential in microbial remediation or microbial recovery of metals and possible recombination approaches.

  12. Manganese abundances in Galactic bulge red giants

    Science.gov (United States)

    Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.; Trevisan, M.; Dutra, N.

    2013-11-01

    Context. Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut between the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. Aims: The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. Methods: High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. Results: We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Galactic bulge. We find [Mn/Fe] ~ -0.7 at [Fe/H] ~ -1.3, increasing to a solar value at metallicities close to solar, and showing a spread around - 0.7 ≲ [Fe/H] ≲ -0.2, in good agreement with other work on Mn in bulge stars. There is also good agreement with chemical evolution models. We find no clear difference in the behaviour of the four bulge fields. Whereas [Mn/Fe] vs. [Fe/H] could be identified with the behaviour of the thick disc stars, [Mn/O] vs. [O/H] has a behaviour running parallel, at higher metallicities, compared to thick disc stars, indicating that the bulge enrichment might have proceeded differently from that of the thick disc. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196).Tables 1-6 and Figs. 1-6 are available in electronic form at http://www.aanda.org

  13. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.

    Science.gov (United States)

    Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo

    2017-12-01

    The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. EFFECTS OF ARSENIC EXPOSURE IN HUMAN HEALTH

    Directory of Open Access Journals (Sweden)

    Aline Sueli de Lima Rodrigues

    2008-10-01

    Full Text Available In recent years, ingestion of inorganic arsenic from drinking water has emerged as an important public health concern. It enters drinking water supplies from natural deposits in the earth or from agricultural and industrial practices, mainly the mining. The health consequences of chronic arsenic exposure include increased risk for various forms of cancer and numerous pathologic effects, such as cutaneous effects (hyperpigmentation and hyperkeratoses, gastrointestinal effects, vascular effects, diabetes mellitus, and peripheral neuropathy. This way, this study presents through a critical revision of the literature, the more relevant current aspects on the immunological consequences, carcinogenic and resulting genetics of the human intoxication for arsenic. They were identified and analyzed 50 works published on the subject among the years of 1979 and 2008, being used as main sources LILACS-BIREME MEDLINE/Index Medicus, SciELO and PubMed. The specific Arsênio e saúde humana effects of the intoxication for arsenic about the human health are not still completely elucidated. Thus, is possible that this element affects functions still unknown, becoming important the scientificexploration on the subject.

  15. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    Kabir, Babar

    2001-01-01

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  16. Bioluminescent bioreporter for assessment of arsenic contamination ...

    Indian Academy of Sciences (India)

    The bioreporter sensor system developed in this study can measure the estimated range of 0.74–60 g of As/L and is both specific and selective for sensing bioavailable As. The constructed bacterial biosensor was further used for the determination of arsenic ion concentration in different environmental samples of India.

  17. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  18. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    Science.gov (United States)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  19. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Science.gov (United States)

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  20. Statistical modeling of global geogenic arsenic contamination in groundwater.

    Science.gov (United States)

    Amini, Manouchehr; Abbaspour, Karim C; Berg, Michael; Winkel, Lenny; Hug, Stephan J; Hoehn, Eduard; Yang, Hong; Johnson, C Annette

    2008-05-15

    Contamination of groundwaters with geogenic arsenic poses a major health risk to millions of people. Although the main geochemical mechanisms of arsenic mobilization are well understood, the worldwide scale of affected regions is still unknown. In this study we used a large database of measured arsenic concentration in groundwaters (around 20,000 data points) from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. A novel rule-based statistical procedure was used to combine the physical data and expert knowledge to delineate two process regions for arsenic mobilization: "reducing" and "high-pH/ oxidizing". Arsenic concentrations were modeled in each region using regression analysis and adaptive neuro-fuzzy inferencing followed by Latin hypercube sampling for uncertainty propagation to produce probability maps. The derived global arsenic models could benefit from more accurate geologic information and aquifer chemical/physical information. Using some proxy surface information, however, the models explained 77% of arsenic variation in reducing regions and 68% of arsenic variation in high-pH/oxidizing regions. The probability maps based on the above models correspond well with the known contaminated regions around the world and delineate new untested areas that have a high probability of arsenic contamination. Notable among these regions are South East and North West of China in Asia, Central Australia, New Zealand, Northern Afghanistan, and Northern Mali and Zambia in Africa.

  1. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...

  2. Correlation between airborne manganese concentration at the workstations in the iron foundry and manganese concentration in workers’ blood

    Directory of Open Access Journals (Sweden)

    Seyedtaghi Mirmohammadi

    2017-08-01

    Full Text Available Background: Manganese (Mn used as raw material for melting process in the ferrous foundry is considered as hazardous neurotoxic substance because it accumulates in the central nervous system and may cause neurological disorders. The furnace-men and melting department workers are potentially exposed to manganese particles or fume in the workplace. The objective of the research has been to investigate the sources and levels of manganese exposure in the foundry by correlation of blood-manganese (B-Mn and air-manganese (air-Mn measurement. Material and Methods: Air-Mn and Mn of blood serum were measured involving workers who worked in a big-sized foundry during 1 year. The standard method of the Occupational Safety and Health Administration (OSHA ID-121 was used for air and blood assessment and atomic absorption spectroscopy (AAS was carried out for air and blood sample analysis. Results: The air sampling results have revealed that there is a high exposure to manganese (4.5 mg/m3 in the workplace as compared to the National Institute for Occupational Safety and Health’s (NIOSH time weighted average (the reference time-weighted average (TWA = 1 mg/m3. The average blood serum Mn concentration was 2.745 μg/l for subjects working for shorter than 3 months and 274.85 μg/l for subjects working 3–12 months. Conclusions: Against the research hypothesis there was no correlation between the air-Mn concentration and the B-Mn (serum level of manganese in the serum of the exposed subjects. It may be due to short time of air sampling of manganese airborne particles, and a real-time monitoring of airborne manganese particles is suggested for any future study. Med Pr 2017;68(4:449–458

  3. Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers

    International Nuclear Information System (INIS)

    Wen Weihua; Wen Jinghua; Lu Lin; Liu Hua; Yang Jun; Cheng Huirong; Che Wangjun; Li Liang; Zhang Guanbei

    2011-01-01

    Recent studies have shown that monomethylarsonous acid is more cytotoxic and genotoxic than arsenate and arsenite, which may attribute to the increased levels of reactive oxygen species. In this study, we used hydride generation-atomic absorption spectrometry to determine three arsenic species in urine of workers who had been working in arsenic plants,and calculated primary and secondary methylation indexes. The damages of exon 5, 6, 8 of p53 gene were determined by the method developed by Sikorsky, et al. Results show that the concentrations of each urinary arsenic species,and damage indexes of exon 5 and 8 of p53 gene in the exposed population were significantly higher, but SMI was significantly lower than in the control group. The closely positive correlation between the damage index of exon 5 and PMI,MMA, DMA were found, but there was closely negative correlation between the damage index of exon 5 and SMI. Those findings suggested that DNA damage of exon 5 and 8 of p53 gene existed in the population occupationally exposed to arsenic. For exon 5, the important factors may include the model of arsenic metabolic transformation, the concentrations of MMA and DMA, and the MMA may be of great importance. - Research Highlights: → In our study, the mean SMI for workers came from arsenic plants is 4.06, so they may be in danger. → There are more MMA, there are more damage of exon 5 of p53 gene. → MMA and damage of exon 5 of p53 gene may be useful biomarkers to assess adverse health effects caused by arsenic.

  4. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  5. India's manganese nodule mine site in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  6. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  7. A cross-linked manganese porphyrin as highly efficient ...

    Indian Academy of Sciences (India)

    linked manganese ... Debkumar Bandyopadhyay. Regular Articles Volume 126 Issue 6 November 2014 pp 1707-1713 ... Bandyopadhyay1. Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India ...

  8. Studies on inorganic exchangers : hydrous manganese (II) oxide

    International Nuclear Information System (INIS)

    Mathew, C.; Rao, K.L.N.; Dash, A.; Varma, R.N.; Balasubramanian, K.R.; Murthy, T.S.

    1992-01-01

    The inorganic exchanger hydrous manganese dioxide has been prepared and its characteristics evaluated. A method has been developed for the separation of 144 Ce from fission products solution using this exchanger. (author). 16 refs., 4 figs., 5 tabs

  9. Manganese nodules in the Exclusive Economic Zone of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; ShyamPrasad, M.

    The distribution of manganese nodules in the Exclusive Economic Zone of the island nation Mauritius was delineated during cruise SK-35 of ORV Sagar Kanya in 1987. The areas surveyed included Saya de Malha and Nazareth Banks, the Cargados Carajos...

  10. Manganese nodules as a possible source of precious metals

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.

    100 times more Pt. Thus the manganese nodules resources at Central Indian Basin, could be a potential source for precious metals including Pt, Palladium (Pd) and Silver (Ag). In this article the possible precious metal resources present in the Central...

  11. Supported lipid bilayers as templates to design manganese oxide ...

    Indian Academy of Sciences (India)

    Abstract. This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and.

  12. Occupational neurotoxicology due to heavy metals-especially manganese poisoning

    International Nuclear Information System (INIS)

    Inoue, Naohide

    2007-01-01

    The most hazardous manganese exposures occur in mining and smelting of ore. Recently, the poisoning has been frequently reported to be associated with welding. In occupational exposure, manganese is absorbed mainly by inhalation. Manganese preferentially accumulates in tissues rich in mitochondria. It also penetrates the blood brain barrior and accumulate in the basal ganglia, especially the globus pallidus, but also the striatum. Manganese poisoning is clinically characterized by the central nervous system involvement including psychiatric symptomes, extrapyramidal signs, and less frequently other neurological manifestations. Psychiatric symptomes are well described in the manganese miners and incrude sleep disturbance, disorientation, emotional lability, compulsive acts, hallucinations, illusions, and delusions. The main characteristic manifestations usually begin shortly after the appearance of these psychiatric symptomes. The latter neurological signs are progressive bradykinesia, dystonia, and disturbance of gait. Bradykinesia is one of the most important findings. There is a remarkable slowing of both active and passive movements of the extremities. Micrographia is frequently observed and a characteristic finding. The patients may show some symmetrical tremor, which usually not so marked. The dystonic posture of the limbs is often accompanied by painfull cramps. This attitudal hypertonia has a tendency to decrease or disappear in the supine position and to increase in orthostation. Cog-wheel rigidity is also elisited on the passive movement of all extremities. Gait disturbance is also characteristic in this poisoning. In the severe cases, cook gait has been reported. The patient uses small steps, but has a tendency to elevate the heels and to rotate them outward. He progress without pressing on the flat of his feet, but only upon the metatarsophalangeal articulations, mainly of the fourth and fifth toes. Increased signal in T1-weighted image in the basal

  13. Dinuclear Manganese Complexes for Artificial Photosynthesis : Synthesis and Properties

    OpenAIRE

    Anderlund, Magnus

    2005-01-01

    This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II. The redox properties of these complexes ...

  14. Coupled anoxic nitrification/manganese reduction in marine sediments

    OpenAIRE

    Hulth, Stefan; Aller, Robert Curwood; Gilbert, Franck

    1999-01-01

    International audience; Pore water and solid phase distributions of oxygen, manganese, and nitrogen from hemipelagic and shelf sediments sometimes indicate a close coupling between the manganese and nitrogen redox cycles. Reaction coupling must be sustained in part by biological reworking of Mn-oxide-rich surface sediments into underlying anoxic zones. Surface sediment from Long Island Sound (USA) was used in laboratory experiments to simulate such intermittent natural mixing processes and su...

  15. Aquatic environmental risk assessment of manganese processing industries.

    Science.gov (United States)

    Marks, Becky; Peters, Adam; McGough, Doreen

    2017-01-01

    An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL -1 for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions

  16. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  17. MATHEMATICAL MODELING OF BATCH ADSORPTION OF MANGANESE ONTO BONE CHAR

    OpenAIRE

    Maria, M. E.; Mansur, M. B.

    2016-01-01

    Abstract The present study investigated the dynamics of batch adsorption of manganese onto bone char by using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models assumed spherical particles and adequately described the transient behavior of metal adsorption under changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better at distinct particle sizes even when small particles were used (dp ≤ 0.147 ...

  18. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast...... of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  19. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  20. Failure of manganese to protect from Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Marsha A Gaston

    Full Text Available Shiga toxin (Stx, the main virulence factor of Shiga toxin producing Escherichia coli, is a major public health threat, causing hemorrhagic colitis and hemolytic uremic syndrome. Currently, there are no approved therapeutics for these infections; however manganese has been reported to provide protection from the Stx1 variant isolated from Shigella dysenteriae (Stx1-S both in vitro and in vivo. We investigated the efficacy of manganese protection from Stx1-S and the more potent Stx2a isoform, using experimental systems well-established for studying Stx: in vitro responses of Vero monkey kidney cells, and in vivo toxicity to CD-1 outbred mice. Manganese treatment at the reported therapeutic concentration was toxic to Vero cells in culture and to CD-1 mice. At lower manganese concentrations that were better tolerated, we observed no protection from Stx1-S or Stx2a toxicity. The ability of manganese to prevent the effects of Stx may be particular to certain cell lines, mouse strains, or may only be manifested at high, potentially toxic manganese concentrations.

  1. The content of manganese and iron in hip joint tissue.

    Science.gov (United States)

    Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Sobczyk, Krzysztof; Wiechuła, Danuta

    2013-07-01

    Manganese and iron are elements that constitute components of bone tissue. The aim of this study was to determine presence of manganese and iron in hip joint tissue and interdependencies between these elements. The objects of the research were hip joint elements from people residing in cities on the territory of the Upper Silesian Industrial District. The number of people in the study group was 91 samples, including 66 samples from women and 25 from a man. The examined tissues were obtained intraoperatively during hip replacement procedures. The content of manganese and iron was determined using the atomic absorption spectrophotometry (AAS) method. The lowest content of manganese and iron was found in the cortical bone, and the largest, in the case of manganese, in the articular cartilage, whereas in the case of iron in a fragment of the cancellous bone from the intertrochanteric area. The content of iron in selected elements of the hip joint decreased with age. Higher content of manganese in hip joint tissue of women compared to men was confirmed. What is more, higher content of iron in hip joint tissue of men was confirmed as well. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    Science.gov (United States)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  3. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  4. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic

    Science.gov (United States)

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu

    2018-01-01

    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  5. Environmental exposure to arsenic and chromium in an industrial area

    OpenAIRE

    Vimercati, Luigi; Gatti, Maria F; Gagliardi, Tommaso; Cuccaro, Francesco; De Maria, Luigi; Caputi, Antonio; Quarato, Marco; Baldassarre, Antonio

    2017-01-01

    Arsenic and chromium are widespread environmental contaminants that affect global health due to their toxicity and carcinogenicity. To date, few studies have investigated exposure to arsenic and chromium in a population residing in a high-risk environmental area. The aim of this study is to evaluate the exposure to arsenic and chromium in the general population with no occupational exposure to these metals, resident in the industrial area of Taranto, Southern Italy, through biological monitor...

  6. Quality of our groundwater resources: Arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  7. Counting addressing method: Command addressable element and extinguishing module

    Directory of Open Access Journals (Sweden)

    Ristić Jovan D.

    2009-01-01

    Full Text Available The specific requirements that appear in addressable fire detection and alarm systems and the shortcomings of the existing addressing methods were discussed. A new method of addressing of detectors was proposed. The basic principles of addressing and responding of a called element are stated. Extinguishing module is specific subsystem in classic fire detection and alarm systems. Appearing of addressable fire detection and alarm systems didn't caused essential change in the concept of extinguishing module because of long calling period of such systems. Addressable fire security system based on counting addressing method reaches high calling rates and enables integrating of the extinguishing module in addressable system. Solutions for command addressable element and integrated extinguishing module are given in this paper. The counting addressing method was developed for specific requirements in fire detection and alarm systems, yet its speed and reliability justifies its use in the acquisition of data on slowly variable parameters under industrial conditions. .

  8. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    Science.gov (United States)

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, PiAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, PiAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  9. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    Science.gov (United States)

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), parsenic urine wash out (measured as a sum of iAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Molecular insight of arsenic-induced carcinogenesis and its prevention.

    Science.gov (United States)

    Mandal, Paramita

    2017-05-01

    Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.

  11. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  12. Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity

    Directory of Open Access Journals (Sweden)

    Clare Pace

    2017-12-01

    Full Text Available Arsenic is a potent cardiovascular toxicant associated with numerous biomarkers of cardiovascular diseases in exposed human populations. Arsenic is also a carcinogen, yet arsenic trioxide is used as a therapeutic agent in the treatment of acute promyelotic leukemia (APL. The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. Many of the toxic effects of arsenic are mediated by mitochondrial dysfunction and related to arsenic’s effect on oxidative stress. Therefore, we investigated the effectiveness of antioxidants against arsenic induced cardiovascular dysfunction. A growing body of evidence suggests that antioxidant phytonutrients may ameliorate the toxic effects of arsenic on mitochondria by scavenging free radicals. This review identifies 21 antioxidants that can effectively reverse mitochondrial dysfunction and oxidative stress in cardiovascular cells and tissues. In addition, we propose that antioxidants have the potential to improve the cardiovascular health of millions of people chronically exposed to elevated arsenic concentrations through contaminated water supplies or used to treat certain types of leukemias. Importantly, we identify conceptual gaps in research and development of new mito-protective antioxidants and suggest avenues for future research to improve bioavailability of antioxidants and distribution to target tissues in order reduce arsenic-induced cardiovascular toxicity in a real-world context.

  13. Arsenic contamination in food chain: Thread to food security

    Science.gov (United States)

    Shekhar Azad Kashyap, Chandra; Singh, Swati

    2017-04-01

    The supply of good quality food is a necessity for economic and social health welfare of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.

  14. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  15. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.

    Science.gov (United States)

    Nidheesh, P V; Singh, T S Anantha

    2017-08-01

    Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Manganese--a public health concern: its relevance for occupational health and safety policy and regulation in South Africa.

    Science.gov (United States)

    Hermanus, M A

    2000-01-01

    Concerns about the effects of low-level manganese exposures on human health arise at a time when South Africa finds itself in competition with newcomers to the market economy, China and the CIS. This case study illustrates how decisions about occupational health and safety and the environment are influenced by incompleteness of scientific knowledge, competing interests, differences over what is fair or just, and the compartmentalization of public policy. In addition, an assessment is made of the ability of the occupational health and safety system in South Africa in its current form to address the challenges posed by manganese-related issues. The importance of tracking developments abroad, strengthening participatory processes, developing national policy, linking economic policy and OHS policy, and establishing appropriate trade agreements is stressed.

  17. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail; Cascio, Duilio; Cabelli, Diane E.; Valentine, Joan Selverstone (EWHA); (UCLA); (BNL)

    2012-10-10

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusively through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.

  18. Life Redefined: Microbes Built with Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Sam (SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey)

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  19. The Arsenic crisis in Bangladesh (Invited)

    Science.gov (United States)

    Harvey, C.; Ashfaque, K.; Neumann, R. B.; Badruzzaman, B.; Ali, A.

    2010-12-01

    The Ganges Delta suffers from water-borne disease. Arsenic in the groundwater pumped from drinking water wells is causing severe and widespread disease, and these wells were installed, in part, to avoid pathogens in the surface water supply. I will discuss the hydrogeologic controls of arsenic concentrations in groundwater, specifically the role of enhanced groundwater circulation driven by irrigation pumping and the effects of the solute loads transported into aquifers with recharge through different surface features, such as rice fields, rivers, and ponds. I will contrast the approaches taken in Southeast Asia for studying groundwater contamination with methods used in the U.S. I will compare findings from several sites in the region and consider how improved models of the coupled hydrologic and biogeochemical system can be used to provide safer water.

  20. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  1. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... is related to Mn efficiency in plants....

  2. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  3. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides.

    Science.gov (United States)

    Bahadar, Haji; Mostafalou, Sara; Abdollahi, Mohammad

    2014-01-01

    This review is undertaken to address the possible role of arsenic and pesticides in the prevalence of diabetes in Pakistan and to highlight a resourceful targeted research in this area. A bibliographic search of scientific databases was conducted with key words of "epidemics of diabetes in Pakistan", "diabetes in Asia", "diabetes mellitus and environmental pollutants", "diabetes mellitus and heavy metals", "diabetes mellitus and pesticides", "prevalence of pesticides in Pakistan", and "heavy metals contamination of drinking water, "vegetables and fruits in Pakistan". More than 200 articles were examined. Studies reporting the prevalence of diabetes mellitus (DM), pesticides and heavy metal contamination of drinking water, fruits and vegetables were included in the study. According to WHO 2011 report, about 12.9 million people are suffering from DM and the number is constantly increasing. Water pollution is a major public health threat in Pakistan. Most of the people in Pakistan are exposed to arsenic and pesticides either in drinking water or through vegetables, fruits, and other edible items with various concentrations above the WHO/FAO permissible limits. Being an agricultural country, a 1169% increase has been recorded with the use of different types of pesticides since last two decades, and almost similar rise in the burden of diabetes. There is a growing global concern of arsenic and pesticides exposure with the incidence of DM. Besides other factors, the environmental attributors in the incidence of DM in Pakistan have not been conclusively elucidated yet which in turn deserve a resourceful targeted research.

  4. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad Mahmudur; Asaduzzaman, Md. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106 (Australia)

    2013-11-15

    Highlights: ► Concentrations of As and other elements in vegetables and drinking water. ► Concentrations of As and other elements in garden soils. ► Daily dietary intake of As and other elements for adults from vegetables and water. ► Potential health risk was estimated comparing with the FAO/WHO values of metals. ► Vegetables alone contribute the elemental intake below the PMTDI values. -- Abstract: The study assesses the daily consumption by adults of arsenic (As) and other elements in drinking water and home-grown vegetables in a severely As-contaminated area of Bangladesh. Most of the examined elements in drinking water were below the World Health Organization (WHO) guideline values except As. The median concentrations of As, cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), Mn, nickel (Ni), and zinc (Zn) in vegetables were 90 μg kg{sup −1}, 111 μg kg{sup −1}, 0.80 mg kg{sup −1}, 168 μg kg{sup −1}, 13 mg kg{sup −1}, 2.1 mg kg{sup −1}, 65 mg kg{sup −1}, 1.7 mg kg{sup −1}, and 50 mg kg{sup −1}, respectively. Daily intakes of As, Cd, Cr, Co, Cu, Pb, manganese (Mn), Ni, and Zn from vegetables and drinking water for adults were 839 μg, 2.9 μg, 20.8 μg, 5.5 μg, 0.35 mg, 56.4 μg, 2.0 mg, 49.1 μg, and 1.3 mg, respectively. The health risks from consuming vegetables were estimated by comparing these figures with the WHO/FAO provisional tolerable weekly or daily intake (PTWI or PTDI). Vegetables alone contribute 0.05 μg of As and 0.008 mg of Cu per kg of body weight (bw) daily; 0.42 μg of Cd, 8.77 mg of Pb, and 0.03 mg of Zn per kg bw weekly. Other food sources and particularly dietary staple rice need to be evaluated to determine the exact health risks from such foods.

  5. Hot coal gas desulfurization with manganese-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Ben-Slimane, R.

    1994-10-01

    In this paper, the physical and chemical behavior of several sorbent formulations fabricated from a manganese-containing compound, alundum (Al{sub 2}O{sub 3}), and a binder are addressed. The thermodynamic feasibility of hydrogen sulfide (H{sub 2}S)-removal from hot-simulated coal-gases using these sorbents and their subsequent regeneration with air are established. A formulation, FORM4-A, which consists of MnCO{sub 3}, alundum, and bentonite exhibits the best combination of capacity and reactivity; whereas, FORM1-A, which consists of Mn-ore, alundum, and dextrin exhibits the best combination of strength and reactivity. One important finding is that the capacity of the pellets for sulfur pickup from a H{sub 2}/H{sub 2}S mixture (at 950{degrees}C) and the kinetics of reduction, sulfidation and regeneration (at 1000{degrees}C) improve with recycling without compromising the strength. The leading formulation, FORM4-A, was subjected to 20 consecutive cycles of sulfidation and regeneration at 900{degrees}C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization.

  6. In vivo neutron activation analysis of bone manganese in workers.

    Science.gov (United States)

    Liu, Yingzi; Rolle-McFarland, Danelle; Mostafaei, Farshad; Zhou, Yuanzhong; Li, Yan; Zheng, Wei; Wells, Ellen; Nie, Linda H

    2018-03-23

    Manganese (Mn) is a neurotoxin. However, the impact of elevated, chronic Mn exposure is not well understood, partially due to the lack of a cumulative exposure biomarker. To address this gap, our group developed a compact in vivo neutron activation analysis (IVNAA) system to quantify Mn concentration in bone (MnBn). In this study, we used this system and determined MnBn among male Chinese workers and compared results to their blood Mn (MnB), a measure of recent exposure, and the years of employment, a measure of cumulative exposure. A cross-sectional study was conducted with 30 ferroalloy smelters (exposed) and 30 general manufacturing workers (controls). MnBn was assessed using IVNAA, MnB was measured with inductively coupled plasma mass spectrometry, and occupational history and demographics were obtained via questionnaire. Mn-doped phantoms were used to generate a calibration curve; spectra from these phantoms were consistent with in vivo spectra. The median (interquartile range (IQR)) values for Mn biomarkers were 2.7 µg g -1 (7.2) for MnBn and 14.1 µg l -1 (4.0) for MnB. In regression models adjusted for age and education, the natural log transformed MnBn (ln(MnBn)) was significantly associated with the exposed/control status (β  =  0.44, p  =  0.047) and years of employment (β  =  0.05, p  =  0.002), but not with natural log transformed MnB (ln(MnB)) (β  =  0.54, p  =  0.188). Our results support the use of IVNAA to quantify MnBn and the use of MnBn as a biomarker of cumulative Mn exposure.

  7. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  8. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  9. Redundancy among manganese peroxidases in Pleurotus ostreatus.

    Science.gov (United States)

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2013-04-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members.

  10. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  11. Exposure to Environmental Air Manganese and Medication ...

    Science.gov (United States)

    Manganese (Mn) is an essential element with natural low levels found in water, food, and air, but due to industrialized processes, both workplace and the environmental exposures to Mn have increased. Recently, environmental studies have reported physical and mental health problems associated with air-Mn exposure, but medical record reviews for exposed residents are rare in the literature. When medical records and clinical testing are unavailable, examination of residents’ prescribed medication use may be used as a surrogate of health effects associated with Mn. We examined medication use among adult Ohio residents in two towns with elevated air-Mn (n=185) and one unexposed control town (n=90). Study participants recorded medication use in a health questionnaire and brought their currently prescribed medication, over-the-counter and supplement lists to their interview. Two physicians (family and psychiatric medicine) reviewed the provided medication list and developed medical categories associated with the medications used. The exposed (E) and control (C) groups were compared on the established 12 medication and 1 supplement categories using chi-square tests. The significant medication categories were further analyzed using hierarchical binomial logistic regression adjusting for education, personal income, and years of residency. The two groups were primarily white (E:94.6%; C:96.7%) but differed on education (E:13.8; C:15.2 years), residence length in their re

  12. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  13. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  14. Mathematical modeling of the effects of glutathione on arsenic methylation.

    Science.gov (United States)

    Lawley, Sean D; Yun, Jina; Gamble, Mary V; Hall, Megan N; Reed, Michael C; Nijhout, H Frederik

    2014-05-16

    Arsenic is a major environmental toxin that is detoxified in the liver by biochemical mechanisms that are still under study. In the traditional metabolic pathway, arsenic undergoes two methylation reactions, each followed by a reduction, after which it is exported and released in the urine. Recent experiments show that glutathione plays an important role in arsenic detoxification and an alternative biochemical pathway has been proposed in which arsenic is first conjugated by glutathione after which the conjugates are methylated. In addition, in rats arsenic-glutathione conjugates can be exported into the plasma and removed by the liver in the bile. We have developed a mathematical model for arsenic biochemistry that includes three mechanisms by which glutathione affects arsenic methylation: glutathione increases the speed of the reduction steps; glutathione affects the activity of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated downstream products. The model is based as much as possible on the known biochemistry of arsenic methylation derived from cellular and experimental studies. We show that the model predicts and helps explain recent experimental data on the effects of glutathione on arsenic methylation. We explain why the experimental data imply that monomethyl arsonic acid inhibits the second methylation step. The model predicts time course data from recent experimental studies. We explain why increasing glutathione when it is low increases arsenic methylation and that at very high concentrations increasing glutathione decreases methylation. We explain why the possible temporal variation of the glutathione concentration affects the interpretation of experimental studies that last hours. The mathematical model aids in the interpretation of data from recent experimental studies and shows that the Challenger pathway of arsenic methylation, supplemented by the glutathione effects described above, is sufficient to understand

  15. Arsenic Concentrations and Speciation in Shellfishes from Korea

    Science.gov (United States)

    Yoon, C.; Yoon, H.

    2005-12-01

    Speciation of arsenic has received significant attention over the past 20 years in both mechanistic and exposure assessment research. Because the toxicity of arsenic is related to its oxidation state and its chemical forms, the determination of the total arsenic contents in a sample is not adequate to allow its impact on living organisms to be estimated. The inorganic arsenic species, arsenite (As3+) and arsenate (As5+), have been classified as carcinogenic and the methylated forms, monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) have recently been identified as cancer promoters. The highly methylated compounds like as arsenobetaine (AsB) and arsenocholine (AsC) are considered to be nontoxic. Although organisms in marine environment contain high amounts of total arsenic (ppm level), it is not usually present as inorganic arsenic or simple methylated forms well known as one of the toxic species. Arsenobetaine is the dominant species in marine animals and arsenosugars are most abundant in marine algae. This study aims to clarify those arsenic species present in the whole body of eleven different shellfishes from Korea. And those arsenic species were separated and measured by characterization using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) coupled system. The separation of arsenic species was achieved on anion exchange column and cation exchange column using phosphate and pyridine eluent, respectively. The ultrasonic extraction was employed for extraction of arsenic from whole body of shellfishes. The method was validated by analyzing three certified reference materials (DORM-2, TORT-2, 1566b). Total arsenic concentrations ranged from 0.1 mg/kg dry mass to 21.7 mg/kg dry mass. Most marine shellfishes contained higher arsenobetaine and arsenocholine with the exception of two shellfishes living in river. The lower amounts of inorganic arsenic species were also found in the some sample extracts

  16. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  17. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  18. Chronic arsenic toxicity: Studies in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Debendranath Guha Mazumder

    2011-09-01

    Full Text Available Chronic arsenic toxicity (arsenicosis as a result of drinking arsenic-contaminated groundwater is a major environmental health hazard throughout the world, including India. A lot of research on health effects, including genotoxic effect of chronic arsenic toxicity in humans, have been carried out in West Bengal during the last 2 decades. A review of literature including information available from West Bengal has been made to characterize the problem. Scientific journals, monographs, and proceedings of conferences with regard to human health effects, including genotoxicity, of chronic arsenic toxicity have been reviewed. Pigmentation and keratosis are the specific skin diseases characteristic of chronic arsenic toxicity. However, in West Bengal, it was found to produce various systemic manifestations, such as chronic lung disease, characterized by chronic bronchitis, chronic obstructive and/or restrictive pulmonary disease, and bronchiectasis; liver diseases, such as non cirrhotic portal fibrosis; polyneuropathy; peripheral vascular disease; hypertension; nonpitting edema of feet/hands; conjunctival congestion; weakness; and anemia. High concentrations of arsenic, greater than or equal to 200 μg/L, during pregnancy were found to be associated with a sixfold increased risk for stillbirth. Cancers of skin, lung, and urinary bladder are the important cancers associated with this toxicity. Of the various genotoxic effects of arsenic in humans, chromosomal aberration and increased frequency of micronuclei in different cell types have been found to be significant. Various probable mechanisms have been incriminated to cause DNA damage because of chronic arsenic toxicity. The results of the study in West Bengal suggest that deficiency in DNA repair capacity, perturbation of methylation of promoter region of p53 and p16 genes, and genomic methylation alteration may be involved in arsenic-induced disease manifestation in humans. P53 polymorphism has been

  19. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  20. Arsenic metabolites in humans after ingestion of wakame seaweed

    Directory of Open Access Journals (Sweden)

    Hata A.

    2013-04-01

    Full Text Available Seaweed contains large amounts of various arsenic compounds such as arsenosugars (AsSugs, but their relative toxicities have not yet been fully evaluated. A risk evaluation of dietary arsenic would be necessary. After developing an arsenic speciation analysis of wakame seaweed (Undaria pinnatifida, we conducted a wakame ingestion experiment using volunteers. Five volunteers ingested 300 g of commercial wakame after refraining from seafood for 5 days. Arsenic metabolites in the urine were monitored over a 5-day period after ingestion. Total arsenic concentration of the wakame seaweed was 34.3 ± 2.1 mg arsenic/kg (dry weight, n = 3. Two AsSugs, 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β-ribofuranosyloxy]-propylene glycol (AsSug328 and 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β- ribofuranosyl-oxy]-2-hydroxypropyl-2,3-dihydroxy-propyl phosphate (AsSug482 were detected, but arsenobetaine, dimethylarsinic acid (DMA, monomethylarsonic acid, and inorganic arsenics (iAs were not detected. The major peak was AsSug328, which comprised 89% of the total arsenic. Approximately 30% of the total arsenic ingested was excreted in the urine during the 5-day observation. Five arsenic compounds were detected in the urine after ingestion, the major one being DMA, which comprised 58.1 ± 5.0% of the total urinary arsenic excreted over the 5 days. DMA was believed to be metabolized not from iAs but from AsSugs, and its biological half-time was approximately 13 h.

  1. Assessment of environmental arsenic levels in Prievidza district.

    Science.gov (United States)

    Keegan, T; Hong, Bing; Thornton, I; Farago, M; Jakubis, P; Jakubis, M; Pesch, B; Ranft, U; Nieuwenhuijsen, M J

    2002-05-01

    A coal-burning power station in the Nitra Valley in central Slovakia annually emitted large quantities of arsenic (up to 200 tonnes) between 1953 and 1989. Since then, pollution-control measures have reduced arsenic emissions to less than 2 tonnes a year. However, the power station was still a source of airborne arsenic pollution. As part of an EU-funded study on exposure to arsenic and cancer risk in central and Eastern Europe we carried out a study of environmental levels of arsenic in the homes and gardens of residents of the district. Garden soil samples (n=210), house dust samples (n=210) and composite house dust samples (n=109) were collected and analysed using inductively coupled plasma atomic absorption spectroscopy (ICP-AES) at Imperial College. The mean arsenic content of coal and ash in samples taken from the plant was 519 microg/g (n=19) and 863 microg/g (n=22), respectively. The geometric mean (GM) arsenic concentration of garden soils was 26 microg/g (range 8.8-139.0 microg/g), for house dust 11.6 microg/g (range 2.1-170 microg/g) and for composite house dust 9.4 microg/g (range 2.3-61.5 microg/g). The correlation between the arsenic levels in soil and in house dust was 0.3 (P<0.01), in soil and composite house dust 0.4 and house dust and composite house dust 0.4 (P<0.01 for both), i.e., were moderate. Arsenic levels in both house dust and soil decreased with distance from the power station. Overall, levels in both fell by half 5 km from the point source. Weak correlations were seen between the total urinary arsenic concentrations and arsenic concentrations in composite house dust.

  2. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Vibol, Sao; Hashim, Jamal Hisham; Sarmani, Sukiman

    2015-01-01

    The research was carried out at 3 study sites with varying groundwater arsenic (As) levels in the Kandal Province of Cambodia. Kampong Kong Commune was chosen as a highly contaminated site (300–500 μg/L), Svay Romiet Commune was chosen as a moderately contaminated site (50–300 μg/L) and Anlong Romiet Commune was chosen as a control site. Neurobehavioral tests on the 3 exposure groups were conducted using a modified WHO neurobehavioral core test battery. Seven neurobehavioral tests including digit symbol, digit span, Santa Ana manual dexterity, Benton visual retention, pursuit aiming, trail making and simple reaction time were applied. Children's hair samples were also collected to investigate the influence of hair As levels on the neurobehavioral test scores. The results from the inductively coupled plasma-mass spectrometry (ICP-MS) analyses of hair samples showed that hair As levels at the 3 study sites were significantly different (p<0.001), whereby hair samples from the highly contaminated site (n=157) had a median hair As level of 0.93 μg/g, while the moderately contaminated site (n=151) had a median hair As level of 0.22 μg/g, and the control site (n=214) had a median hair As level of 0.08 μg/g. There were significant differences among the 3 study sites for all the neurobehavioral tests scores, except for digit span (backward) test. Multiple linear regression clearly shows a positive significant influence of hair As levels on all the neurobehavioral test scores, except for digit span (backward) test, after controlling for hair lead (Pb), manganese (Mn) and cadmium (Cd). Children with high hair As levels experienced 1.57–4.67 times greater risk of having lower neurobehavioral test scores compared to those with low hair As levels, after adjusting for hair Pb, Mn and Cd levels and BMI status. In conclusion, arsenic-exposed school children from the Kandal Province of Cambodia with a median hair As level of 0.93 µg/g among those from the highly

  3. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Vibol, Sao [United Nations University – International Institute for Global Health, Kuala Lumpur (Malaysia); Faculty of Agricultural Technology and Management, Royal University of Agriculture, Phnom Penh (Cambodia); Hashim, Jamal Hisham, E-mail: jamalhas@hotmail.com [United Nations University – International Institute for Global Health, Kuala Lumpur (Malaysia); Department of Community Health, National University of Malaysia, Kuala Lumpur (Malaysia); Sarmani, Sukiman [Faculty of Science and Technology, National University of Malaysia, Bangi (Malaysia)

    2015-02-15

    The research was carried out at 3 study sites with varying groundwater arsenic (As) levels in the Kandal Province of Cambodia. Kampong Kong Commune was chosen as a highly contaminated site (300–500 μg/L), Svay Romiet Commune was chosen as a moderately contaminated site (50–300 μg/L) and Anlong Romiet Commune was chosen as a control site. Neurobehavioral tests on the 3 exposure groups were conducted using a modified WHO neurobehavioral core test battery. Seven neurobehavioral tests including digit symbol, digit span, Santa Ana manual dexterity, Benton visual retention, pursuit aiming, trail making and simple reaction time were applied. Children's hair samples were also collected to investigate the influence of hair As levels on the neurobehavioral test scores. The results from the inductively coupled plasma-mass spectrometry (ICP-MS) analyses of hair samples showed that hair As levels at the 3 study sites were significantly different (p<0.001), whereby hair samples from the highly contaminated site (n=157) had a median hair As level of 0.93 μg/g, while the moderately contaminated site (n=151) had a median hair As level of 0.22 μg/g, and the control site (n=214) had a median hair As level of 0.08 μg/g. There were significant differences among the 3 study sites for all the neurobehavioral tests scores, except for digit span (backward) test. Multiple linear regression clearly shows a positive significant influence of hair As levels on all the neurobehavioral test scores, except for digit span (backward) test, after controlling for hair lead (Pb), manganese (Mn) and cadmium (Cd). Children with high hair As levels experienced 1.57–4.67 times greater risk of having lower neurobehavioral test scores compared to those with low hair As levels, after adjusting for hair Pb, Mn and Cd levels and BMI status. In conclusion, arsenic-exposed school children from the Kandal Province of Cambodia with a median hair As level of 0.93 µg/g among those from the highly

  4. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol

    Science.gov (United States)

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen

    2017-01-01

    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of {O}_2- species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  5. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  6. Quantification of manganese in human hand bones: a feasibility study

    Science.gov (United States)

    Aslam; Pejović-Milić, A.; Chettle, D. R.; McNeill, F. E.

    2008-08-01

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4π geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The 26Mg(n,γ)27Mg reaction produces γ-rays of 0.843 MeV from the decay of 27Mg, which interfere with the 0.847 MeV γ-rays from the decay of 56Mn, produced by the 55Mn(n,γ)56Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection limit in the hand of human subjects of 1.6 µg/g Ca. It

  7. Manganese and acute paranoid psychosis: a case report

    Directory of Open Access Journals (Sweden)

    Egger Jos I

    2011-04-01

    Full Text Available Abstract Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later, several organ systems may be affected and, due to neurotoxicity, an atypical parkinsonian syndrome may emerge. With regard to neuropsychiatry, an array of symptoms may develop up to 30 years after intoxication, of which gait and speech abnormalities, cognitive and motor slowing, mood changes and hallucinations are the most common. Psychotic phenomena are rarely reported. Case presentation We describe the case of a 49-year-old Caucasian man working as a welder who was referred to our facility for evaluation of acute paranoid psychotic behavior. Our patient's medical history made no mention of any somatic complaints or psychiatric symptoms, and he had been involved in a professional career as a metalworker. On magnetic resonance imaging scanning of his brain, a bilateral hyperdensity of the globus pallidus, suggestive for manganese intoxication, was found. His manganese serum level was 52 to 97 nmol/L (range: 7 to 20 nmol/L. A diagnosis of organic psychotic disorder due to manganese overexposure was made. His psychotic symptoms disappeared within two weeks of treatment with low-dose risperidone. At three months later, serum manganese was decreased to slightly elevated levels and the magnetic resonance imaging T1 signal intensity was reduced. No signs of Parkinsonism were found and a definite diagnosis of manganese-induced apathy syndrome was made. Conclusion Although neuropsychiatric and neurological symptoms caused by (chronic manganese exposure have been reported frequently in the past, in the present day the disorder is rarely diagnosed. In this report we stress that manganese intoxication can still occur, in our case in a confined

  8. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  9. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  10. Arsenic removal using silver-impregnated Prosopis spicigera L ...

    African Journals Online (AJOL)

    Arsenic removal using silver-impregnated Prosopis spicigera L. wood (PSLW) activated carbon: batch and column studies. ... Arsenic uptake has no regular trend with increasing pH; contains two adsorption maxima, the first adsorption maximum at pH 4.0 and a second adsorption maximum at pH 10.0. The extent of As (III) ...

  11. 21 CFR 862.3120 - Arsenic test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section 862.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood...

  12. Isolation and screening of arsenic resistant rhizobacteria of ...

    African Journals Online (AJOL)

    Ludwigia octovalvis was characterized for its potential in arsenic phytoremediation. Epiphyte rhizobacteria from the roots of L. octovalvis were isolated in five different arsenic concentrations (4, 20, 40, 60 and 80 mg kg-1) and control after single exposure for 35 days. Results show that 109 colonies were isolated which were ...

  13. A Preliminary Investigation into the Stability of Inorganic Arsenic ...

    African Journals Online (AJOL)

    A simple method to preserve arsenic species in simulated pore water was investigated. Synthetic pore water containing high levels of Fe, Mn and S (as sulfide, S2–) were synthesized and spiked with different arsenic species. Arsenite [As(III)], arsenate [As(V)], dimethylarsinate [(CH3)2AsO2–, DMA], monomethylarsonate ...

  14. Removal of arsenic from aqueous solution by synthetic hematite ...

    African Journals Online (AJOL)

    A hematite was synthesized and subjected to batch equilibration of arsenic and it's desorption processes that control the mobility, toxicity and availability of arsenic in the water environment. The pHpzc of the synthesized hematite as determined by mass and potentiometric titration techniques were 9.18 and 9.20 respectively.

  15. Arsenic exposure and its impact on health in Chile.

    Science.gov (United States)

    Ferreccio, Catterina; Sancha, Ana María

    2006-06-01

    The problem of arsenic in Chile was reviewed. In Chile, the population is exposed to arsenic naturally via drinking-water and by air pollution resulted from mining activities. The sources of arsenic were identified to estimate the exposure of population to arsenic through air, water, and food. Health effects, particularly early effects, observed in children and adults, such as vascular diseases (premature cardiac infarct), respiratory illnesses (bronchiectasis), and skin lesions have been described. Chronic effects, such as lung and bladder cancers, were reported 20 years after peak exposure and persisted 27 years after mitigation measures for removing arsenic from drinking surface water were initiated. Although the effects of arsenic are similar in different ethnic and cultural groups (e.g. Japanese, Chinese, Indian, Bangladeshi, American, and Taiwanese), variations could be explained by age at exposure, the dose received, smoking, and nutrition. Since health effects were observed at arsenic levels of 50 microg/L in drinking-water, it is advised that Chile follows the World Health Organization's recommendation of 10 microg/L. The Chilean experience in removal of arsenic suggests that it is feasible to reach this level using the conventional coagulation process.

  16. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Weijma, J.; Weijden, van der R.D.; Buisman, C.J.N.

    2010-01-01

    Scorodite is an arsenic mineral with the chemical formula FeAsO4·2H2O. It is the most common natural arsenate associated with arsenic-bearing ore deposits. In the present study we show that the thermoacidophilic iron-oxidizing archaeon Acidianus sulfidivorans is able to precipitate scorodite in the

  17. Arsenic in detergents: possible danger and pollution hazard.

    Science.gov (United States)

    Angino, E E; Magnuson, L M; Waugh, T C; Galle, O K; Bredfeldt, J

    1970-04-17

    Arsenic at a concentration of 10 to 70 parts per million has been detected in several common presoaks and household detergents. Arsenic values of 2 to 8 parts per billion have been measured in the Kansas River. These concentrations are close to the amount (10 parts per billion) recommended by the United States Public Health Service as a drinking-water standard.

  18. Uptake kinetics of arsenic by lettuce cultivars under hydroponics ...

    African Journals Online (AJOL)

    Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As uptake kinetics of the ...

  19. Genome sequences of Listeria monocytogenes strains with resistance to arsenic

    Science.gov (United States)

    Listeria monocytogenes frequently exhibits resistance to arsenic. We report here the draft genome sequences of eight genetically diverse arsenic-resistant L. monocytogenes strains from human listeriosis and food-associated environments. Availability of these genomes would help to elucidate the role ...

  20. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be thedetoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba Men, Inner Mo...

  1. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  2. Mercury, arsenic and cadmium in the unfried and fried fish

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1978-01-01

    Determination of mercury, arsenic and cadmium in unfried and fried fish samples has been carried out by neutron activation followed by chemical separation to remove the interfering activies of copper, zinc etc. This paper presents results of finding on losses of mercury, arsenic and cadmium in the unfried and fried fish. (author)

  3. Arsenic Removal using Silver-Impregnated Prosopis spicigera L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-02

    Dec 2, 2017 ... ABSTRACT: Silver-impregnated carbon (SIC) and its precursor (un-impregnated) derived from an easily available low cost plant material Prosopis spicigera L. wood (PSLW) carbon was investigated for their ability to remove arsenic from aqueous solutions in batch and column experiments. Arsenic uptake ...

  4. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... Pronounced increases in endogenous NO production was found in plants after exposure to arsenic stress. The results suggested that arsenic stress elevated endogenous NO level and that NO might act as a .... defined as the amount of enzyme required to cause 50% inhibition of the reduction of nitroblue ...

  5. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  6. Estimation of arsenic in nail using silver diethyldithiocarbamate method

    Directory of Open Access Journals (Sweden)

    Habiba Akhter Bhuiyan

    2015-08-01

    Full Text Available Spectrophotometric method of arsenic estimation in nails has four steps: a washing of nails, b digestion of nails, c arsenic generation, and finally d reading absorbance using spectrophotometer. Although the method is a cheapest one, widely used and effective, it is time consuming, laborious and need caution while using four acids.

  7. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  8. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Dumouchel, A.; Wong, W.P.; Brown, C.E.

    2002-01-01

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  9. Secondary arsenic minerals in the environment: A review

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Filippi, Michal

    2009-01-01

    Roč. 35, č. 8 (2009), s. 1243-1255 ISSN 0160-4120 R&D Projects: GA AV ČR KJB300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : arsenic * secondary arsenic mineral * environmental sample * solubility * environmental stability Subject RIV: DD - Geochemistry Impact factor: 4.786, year: 2009

  10. Uptake kinetics of arsenic by lettuce cultivars under hydroponics

    African Journals Online (AJOL)

    GREG

    2013-05-10

    May 10, 2013 ... Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and. Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As ...

  11. Arsenic contamination levels in drinking water sources in mining ...

    African Journals Online (AJOL)

    Arsenic contamination in drinking water is a public health problem all over the World especially in mining areas. The study herein reported assessed the concentration levels of arsenic in some drinking water sources in the mining areas in the Lake Victoria Basin and investigated the potential for its removal by adsorption ...

  12. Arsenic removal from drinking water using granular ferric hydroxide ...

    African Journals Online (AJOL)

    In continuous column tests (five cycles) with tap water using GFH, consistently less than 5 mg/l of arsenic was achieved in the finished water for 38 to 42 hours of column operation, where the influent had a spiked arsenic concentration of 500 mg/l. High bed volumes (1260 and 1140) up to a breakthrough concentration of 5 ...

  13. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  14. Effects of dietary manganese contents on 54Mn metabolism in mice

    International Nuclear Information System (INIS)

    Sato, I.; Matsusaka, N.; Kobayashi, H.; Nishimura, Y.

    1996-01-01

    Several parameters of 54 Mn metabolism were noted in mice maintained on diets with manganese contents of 80 to 8000 mg/kg. Excretion of 54 Mn was promoted as the dietary manganese contents increased. Clearance of 54 Mn from the liver, kidneys, pancreas, and spleen was markedly accelerated by feeding mice a high-manganese diet, but clearance from the muscles, femurs, and brain was relatively insensitive to the dietary manganese. Manganese concentrations in the tissue were regulated homoestatically upto the dietary manganese content of 2400 mg/kg, but marked accumulations of manganese occurred when mice were given 8000 mg/kg diet. No toxic symptoms were found up to the 2400 mg/kg diet, but consumption of the 8000 mg/kg diet was less than for other diets. These results suggest that an oral intake of excess manganese is effective for promoting the excretion of 54 Mn from a body contaminated with this isotope. (author)

  15. Manganese in the shelf sediments off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, P.S.N.; Rao, Ch.M.; Reddy, C.V.G.

    The distribution pattern of manganese in the marine sediments of the west coast of India was studied in relation to the source and environmental factors. The progressive decrease in the manganese content of the sediments in the seaward direction...

  16. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...

  17. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS

    Science.gov (United States)

    Inorganic species are considered more toxic to humans than organic arsenic and total arsenic. Analysis of total arsenic in metallic form, organic and inorganic arsenic species from seaweeds and dietary supplements using LC-ICP-MS was developed. Solvent extraction with sonication and microwave extr...

  18. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    International Nuclear Information System (INIS)

    Sun Lu; Yan Xiulan; Liao Xiaoyong; Wen Yi; Chong Zhongyi; Liang Tao

    2011-01-01

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: → Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. → P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. → Phenanthrene suppresses arsenic translocation from roots to fronds. → Phenanthrene causes As(III) elevation in roots while reduction in fronds. → Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  19. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    Science.gov (United States)

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A novel method to remove arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally

  1. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  2. Speciation and distribution of arsenic and localization of nutrients in rice grains

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Scheckel, K.G.; Pallon, J.; Carey, A.M.; Zhu, Y.G.; Meharg, A.A. (EPA); (UCopenhagen); (Aberdeen); (Lund); (Chinese Aca. Sci.)

    2012-09-05

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques ({mu}-XANES, {mu}-X-ray fluorescence ({mu}-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.

  3. Determination of gold and arsenic in Indian tobacco leaves

    International Nuclear Information System (INIS)

    Purkayastha, B.C.; Bhattacharyya, D.K.

    1975-01-01

    Two varieties of Indian Tobacco leaves have been analysed for gold and arsenic by neutron activation ( 76 As, 198 Au). Nicotiana rustica variety from North Bengal was found to contain 3.7x10 -1 ppm of gold and 4.0x10 -3 ppm of arsenic and the nicotiana tabaccum variety from Andhra Pradesh contains 1.26x10 -1 ppm of gold and 5.1x10 -3 ppm of arsenic, respectively. Unlike those in other countries Indian tobacco leaves seem to be enriched in the gold content and depleted in the arsenic content. The soil of North Bengal is richer in gold than the soil of Andhra Pradesh which requires further investigation, and the amount of arsenic in both soils is physiologically insignificant. Irradiation of leaf samples was done in a CIRUS reactor at a neutron flux of 10 13 n cm -2 s -1 for seven days. (F.G.)

  4. Neutron activation analysis on determination of arsenic in biological matrixes

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida

    2013-01-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k 0 -Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  5. Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study.

    Science.gov (United States)

    Pinakidou, F; Katsikini, M; Paloura, E C; Simeonidis, K; Mitraka, E; Mitrakas, M

    2016-09-01

    The implementation of amorphous tetravalent manganese feroxyhyte (TMFx) nanoparticles, prepared via co-precipitation synthesis, as an efficient As(V)-removal material is investigated using X-ray absorption fine structure (XAFS) spectroscopy at the Fe-, Mn- and As-K-edges. The optimum synthesis conditions and chemical composition of the TMFx adsorbent were determined by the degree of polymerization in the adsorbents' microstructure. Under synthesis into mildly acidic conditions, the change in the polymerization of the metal-oxyhydroxyl chains (metal=Fe, Mn) provides more adsorption sites at edges and corner sites in the bonding environment of Fe and Mn, respectively, thereby enhancing As uptake. After exposure to As-polluted water, similar microstructural changes related to As-bidentate and monodentate geometries are generated: As(V) preferentially occupies the high energy adsorption sites ((2)C complexes) available in the Mn-oxyhydroxyl groups and the low energy edge sites offered by Fe ((2)E complexes). It is revealed that optimum arsenic-removal by TMFx occurs into mildly acidic synthesis pH and for iron to manganese molar ratio equal to 3. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  7. Manganese and the Evolution of Photosynthesis.

    Science.gov (United States)

    Fischer, Woodward W; Hemp, James; Johnson, Jena E

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet-it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn(2+), and ultimately water.

  8. Manganese superoxide dismutase: beyond life and death.

    Science.gov (United States)

    Holley, Aaron K; Dhar, Sanjit Kumar; Xu, Yong; St Clair, Daret K

    2012-01-01

    Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP(5+)). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP(5+) following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP(5+) prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention.

  9. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  10. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Plášil, Jakub; Škoda, R.; Gescher, J.; Kögler, F.; Rusznyak, A.; Küsel, K.; Neu, T.R.; Mangold, S.; Rothe, J.

    2014-01-01

    Roč. 48, č. 23 (2014), s. 13685-13693 ISSN 0013-936X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : extreme arsenic concentration Subject RIV: DB - Geology ; Mineralogy Impact factor: 5.330, year: 2014

  11. Accumulation of arsenic in leaves and grain are affected by variety and soil arsenic

    Science.gov (United States)

    The arsenic (As) levels in rice grains and food products can reach toxic levels when produced under certain growing conditions found mostly in Asia. The World Health Organization (WHO) recently set a CODEX limit of 0.2 ppm inorganic As in milled white rice, and lower limits are expected to be set f...

  12. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    Science.gov (United States)

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  13. Synthesis, Characterization, and Reactivities of Manganese(V)-Oxo Porphyrin Complexes

    OpenAIRE

    Song, Woon Ju; Seo, Mi Sook; George, Serena DeBeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I.; Nam, Wonwoo

    2007-01-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H2O2, produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(...

  14. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    Science.gov (United States)

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  15. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption.

    Science.gov (United States)

    Batista, Bruno L; Souza, Juliana M O; De Souza, Samuel S; Barbosa, Fernando

    2011-07-15

    Rice is an important source of essential elements. However, rice may also contain toxic elements such as arsenic. Therefore, in the present study, the concentration of total arsenic and five main chemical species of arsenic (As(3+), As(5+), DMA, MMA and AsB) were evaluated in 44 different rice samples (white, parboiled white, brown, parboiled brown, parboiled organic and organic white) from different Brazilian regions using high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The mean level of total arsenic was 222.8 ng g(-1) and the daily intake of inorganic arsenic (the most toxic form) from rice consumption was estimated as 10% of the Provisional Tolerable Daily Intake (PTDI) with a daily ingestion of 88 g of rice. Inorganic arsenic (As(3+), As(5+)) and dimethylarsinic acid (DMA) are the predominant forms in all samples. The percentages of species were 38.7; 39.7; 3.7 and 17.8% for DMA, As(3+), MMA and As(5+), respectively. Moreover, rice samples harvested in the state of Rio Grande do Sul presented more fractions of inorganic arsenic than rice in Minas Gerais or Goiás, which could lead to different risks of arsenic exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Transcriptomic Response of Purple Willow (Salix purpurea to Arsenic Stress

    Directory of Open Access Journals (Sweden)

    Aymeric Yanitch

    2017-06-01

    Full Text Available Arsenic (As is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation, including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production.

  17. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-01-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  18. Assessment of arsenic exposures and controls in gallium arsenide production.

    Science.gov (United States)

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  19. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  20. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  1. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  2. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  3. Interaction of dietary calcium, manganese, and manganese source (Mn oxide or Mn methionine complex) on chick performance and manganese utilization.

    Science.gov (United States)

    Scheideler, S E

    1991-06-01

    Two trials were conducted to determine the utilization of manganese (Mn) as influenced by the level and source of Mn and the level of dietary calcium (Ca) in broiler chickens. Trial One was a 2 x 2 x 3 factorial arrangement of two Mn sources (Mn methionine or manganous oxide), two levels of dietary Ca (1.8 or 1.0), and three levels of supplemental Mn (30, 60, or 200 mg/kg) fed until 4 wk of age. Total phosphorus (available phosphorus) levels were 0.70% (0.48%) during all ages. High levels of dietary Ca caused a slower early rate of growth (0.53 vs. 0.64 kg) for chicks fed 1.8 vs 1.0% Ca, respectively. Chick weight was equivalent for all diets within the Ca-treatment group, except the dietary combination of high Ca and 200 mg/kg Mn as Mn methionine. Bone and liver Mn were significantly increased as the Mn level increased, but were not affected by the Mn source. Chicks fed 1.8% Ca had higher levels of bone Mn (9.28 ppm) than chicks fed 1.0% Ca (7.23 ppm). High levels of dietary Ca and 200 ppm Mn methionine dramatically depressed early growth, feed intake, and bone ash in this trial, raising the question of a diet x environment (heat-stress) effect. Trial Two was a 2 x 2 factorial arrangement of two levels of dietary Ca (1.8 or 1.0%) and two Mn sources (200 mg/kg Mn as Mn methionine or MnO) up to 3 wk of age in a controlled heat-stress environment. No growth depression in the chicks fed high levels of Ca and Mn methionine was observed. In the presence of high levels of dietary Ca, bone Mn was significantly higher when chicks were fed the MnO source. In summary, dietary Ca did not decrease Mn utilization in these trials, and availability of Mn in Mn methionine as a source compared to MnO depended on dietary Ca levels.

  4. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  5. 75 FR 70665 - Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide

    Science.gov (United States)

    2010-11-18

    ... Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide AGENCY: Environmental... as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1) which was the subject of... section 5(a)(2) of TSCA for the chemical substance identified as cobalt lithium manganese nickel oxide...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  7. 78 FR 54269 - Electrolytic Manganese Dioxide From Australia and China; Institution of Five-Year Reviews

    Science.gov (United States)

    2013-09-03

    ... Manganese Dioxide From Australia and China; Institution of Five-Year Reviews AGENCY: United States... determine whether revocation of the antidumping duty orders on electrolytic manganese dioxide from Australia... electrolytic manganese dioxide from Australia and China (73 FR 58537-58539). The Commission is conducting...

  8. The sensitized luminescence of manganese-activated calcite

    Science.gov (United States)

    Schulman, J.H.; Evans, L.W.; Ginther, R.J.; Murata, K.J.

    1947-01-01

    Synthetic manganese-activated calcites are shown to be practically inert to ultraviolet excitation in the range 2000-3500A, while they are luminescent under cathode-ray excitation. The incorporation of small amounts of an auxiliary impurity along with the manganese produces the strong response to ultraviolet radiation hitherto ascribed to CaCO3:Mn itself. Three such impurities have been studied: lead, thallium, and cerium. The first two induce excitation in the neighborhood of the mercury resonance line, while the cerium introduces a response principally to longer wave ultraviolet. The strong response to 2537A excitation shown by some natural calcites is likewise found to be due to the presence of lead along with the manganese, rather than to the manganese alone. The data do not warrant ascribing the longer wave-length ultraviolet-excited luminescence of all natural calcites to the action of an auxiliary impurity. The essential identity of the cathode-ray excited luminescence spectra of CaCO 3:Mn, CaCO3: (Pb+Mn), CaCO3:(Tl+Mn), and CaCO3:(Ce+Mn) with the 2537A-excited spectra of the latter three is evidence that the luminescent center in all cases is the manganese ion or the MnO6 group. It is shown that a "cascade" mechanism for the action of the auxiliary impurities, lead, thallium, and cerium, is incorrect; and that the phenomenon must be considered as a case of sensitized luminescence. Owing to the nature of cathode-ray excitation, the manganese activator can be excited by this agent even in the absence of a second impurity. For optical excitation, however, an absorption band for the ultraviolet must be established by building into the CaCO3:Mn a second impurity or "sensitizer.".

  9. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  10. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  11. Bone manganese as a biomarker of manganese exposure: a feasibility study.

    Science.gov (United States)

    Pejović-Milić, Ana; Chettle, David R; Oudyk, John; Pysklywec, Michael W; Haines, Ted

    2009-10-01

    There is a need for a diagnostic tool with the ability to measure cumulative exposure to manganese (Mn) in the workplace. Measuring bone Mn levels with in vivo neutron activation analysis (IVNAA) could serve as a biomarker of past exposure. Bone Mn levels of welders were measured and compared to the levels found in subjects without exposure to the element. Forty subjects (30 welders and 10 controls) were recruited. An occupational history was obtained and subjects underwent IVNAA bone Mn measurements. The mean bone Mn levels were (2.9 +/- 0.4) and (0.1 +/- 0.7) microg Mn/g Ca for welders and controls, respectively (P bone Mn between Mn-exposed welders and non-occupationally exposed subjects. It appears that bone Mn levels do reflect differences in the occupational exposure of welders. Copyright 2009 Wiley-Liss, Inc.

  12. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Tseng, C.-H.; Huang, Y.-K.; Huang, Y.-L.; Chung, C.-J.; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2005-01-01

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (As III ) and arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were determined. Primary methylation index [PMI = MMA V /(As III + As V )] and secondary methylation index (SMI = DMA V /MMA V ) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMA V . The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  13. Environmental contamination and human exposure to manganese--contribution of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline.

    Science.gov (United States)

    Zayed, J; Vyskocil, A; Kennedy, G

    1999-01-01

    The organomanganese compound MMT (methylcyclopentadienyl manganese tricarbonyl), an antiknock additive in unleaded gasoline, has been used in Canada since 1976. Indeed, Canada is the only country where MMT is almost exclusively used. In October 1995, by court decision the Environmental protection Agency (EPA) granted Ethyl's waiver for the use of MMT in the United States. Paradoxically, in 1997 the federal government of Canada adopted a law (C-29) that banned both the interprovincial trade and the importation for commercial purposes of manganese-based substances, including MMT. However, MMT is currently widely used in Canada because of substantial stockpiling, and six Canadian provinces are challenging the law in the courts. Moreover, MMT has been approved for use in Argentina, Australia, Bulgaria, Russia, and conditionally, in New Zealand. It has been suggested by some scientists that combustion of MMT may be a significant source of exposure to inorganic Mn in urban areas. The crucial question is whether Mn contamination from industrial sources combined with the additional contamination that would result from the widespread use of MMT would lead to toxic effects. Our research efforts have attempted to assess the environmental/ecosystem Mn contamination arising from the combustion of MMT in abiotic and biotic systems as well as human exposure. The experimental evidence acquired so far provides useful information on certain environmental consequences of the use of MMT as well as raising a number of questions. Our results gave evidence indicating that roadside air, soils, plants, and animals may be contaminated by Mn. As well, some specific groups of the population could have a higher level of exposure to Mn. Nevertheless, the levels of exposure remain below international guide values. Further studies and further characterization of dose-response relationships are thus needed to provide successful implementation of evidence-based risk-assessment approaches.

  14. Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates

    International Nuclear Information System (INIS)

    Bamforth, Selina M.; Manning, David A.C.; Singleton, Ian; Younger, Paul L.; Johnson, Karen L.

    2006-01-01

    Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate

  15. Speciation of arsenic in biological samples.

    Science.gov (United States)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T

    2004-08-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.

  16. Speciation of arsenic in biological samples

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T.

    2004-01-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs III , 11.3), arsenate (iAs V , 10.1), monomethylarsonous acid (MMA III , 6.6), monomethylarsonic acid (MMA V , 10.5), dimethylarsinous acid (DMA III , 13.0), and dimethylarsinic acid (DMA V , 47.5); fingernail contained iAs III (62.4%), iAs V (20.2), MMA V (5.7), DMA III (8.9), and DMA V (2.8); hair contained iAs III (58.9%), iAs V (34.8), MMA V (2.9), and DMA V (3.4); RBCs contained AsB (22.5%) and DMA V (77.5); and blood plasma contained AsB (16.7%), iAs III (21.1), MMA V (27.1), and DMA V (35.1). MMA III , DMA III , and iAs V were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas

  17. Land scale biogeography of arsenic biotransformation genes in estuarine wetland.

    Science.gov (United States)

    Zhang, Si-Yu; Su, Jian-Qiang; Sun, Guo-Xin; Yang, Yunfeng; Zhao, Yi; Ding, Junjun; Chen, Yong-Shan; Shen, Yu; Zhu, Guibing; Rensing, Christopher; Zhu, Yong-Guan

    2017-06-01

    As an analogue of phosphorus, arsenic (As) has a biogeochemical cycle coupled closely with other key elements on the Earth, such as iron, sulfate and phosphate. It has been documented that microbial genes associated with As biotransformation are widely present in As-rich environments. Nonetheless, their presence in natural environment with low As levels remains unclear. To address this issue, we investigated the abundance levels and diversities of aioA, arrA, arsC and arsM genes in estuarine sediments at low As levels across Southeastern China to uncover biogeographic patterns at a large spatial scale. Unexpectedly, genes involved in As biotransformation were characterized by high abundance and diversity. The functional microbial communities showed a significant decrease in similarity along the geographic distance, with higher turnover rates than taxonomic microbial communities based on the similarities of 16S rRNA genes. Further investigation with niche-based models showed that deterministic processes played primary roles in shaping both functional and taxonomic microbial communities. Temperature, pH, total nitrogen concentration, carbon/nitrogen ratio and ferric iron concentration rather than As content in these sediments were significantly linked to functional microbial communities, while sediment temperature and pH were linked to taxonomic microbial communities. We proposed several possible mechanisms to explain these results. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Poisoning by coal smoke containing arsenic and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    An, D.; He, Y.G.; Hu, Q.X. [Guizhou Sanitary and Epidemiological Station, Guiyang (China)

    1997-02-01

    An investigation was made into a disease involving skin pigmentation, keratosis of the hands and feet, dental discoloration, and generalized bone and joint pain, stiffness and rigidity, in the village of Bazhi, Zhijin County, Ghizhou Province, People`s Republic of China. Measurements were made of the arsenic and fluoride levels of coal, water, air, food, urine and hair in Bazhi and a control village, Xinzhai, in which coal with a low arsenic content was used. Up to 188 people, including children, in Bazhi and 752 in Xinzhai, were examined for the presence of chronic arsenium, skeletal fluorosis, dental fluorosis and electrocardiogram abnormalities. The coal in Bazhi was found to contain high levels of arsenic and fluoride resulting, after burning in homes without an adequate chimney systems, in pollution of air and food with arsenic and fluoride. The coal in Xinzhai did not cause arsenic pollution but did produce a higher level of fluoride pollution. It was concluded that the endemic disease in Bazhi was caused by pollution by coal smoke containing arsenic and fluoride. It is suggested that arsenic may act synergistically with fluoride so that a lower level of fluoride may produce fluoride toxicity with dental and skeletal fluorosis.

  19. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  20. Arsenic in drinking water and lung cancer: A systematic review

    International Nuclear Information System (INIS)

    Celik, Ismail; Gallicchio, Lisa; Boyd, Kristina; Lam, Tram K.; Matanoski, Genevieve; Tao Xuguang; Shiels, Meredith; Hammond, Edward; Chen Liwei; Robinson, Karen A.; Caulfield, Laura E.; Herman, James G.; Guallar, Eliseo; Alberg, Anthony J.

    2008-01-01

    Exposure to inorganic arsenic via drinking water is a growing public health concern. We conducted a systematic review of the literature examining the association between arsenic in drinking water and the risk of lung cancer in humans. Towards this aim, we searched electronic databases for articles published through April 2006. Nine ecological studies, two case-control studies, and six cohort studies were identified. The majority of the studies were conducted in areas of high arsenic exposure (100 μg/L) such as southwestern Taiwan, the Niigata Prefecture, Japan, and Northern Chile. Most of the studies reported markedly higher risks of lung cancer mortality or incidence in high arsenic areas compared to the general population or a low arsenic exposed reference group. The quality assessment showed that, among the studies identified, only four assessed arsenic exposure at the individual level. Further, only one of the ecological studies presented results adjusted for potential confounders other than age; of the cohort and case-control studies, only one-half adjusted for cigarette smoking status in the analysis. Despite these methodologic limitations, the consistent observation of strong, statistically significant associations from different study designs carried out in different regions provide support for a causal association between ingesting drinking water with high concentrations of arsenic and lung cancer. The lung cancer risk at lower exposure concentrations remains uncertain