WorldWideScience

Sample records for add telomeric repeats

  1. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.

    Science.gov (United States)

    Gadaleta, Mariana C; Das, Mukund M; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M; Noguchi, Eishi

    2016-03-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells. PMID:26990647

  2. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.

    Directory of Open Access Journals (Sweden)

    Mariana C Gadaleta

    2016-03-01

    Full Text Available Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless, a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless in regulation of telomere stability in cancer cells.

  3. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres

    Science.gov (United States)

    Gadaleta, Mariana C.; Das, Mukund M.; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M.; Noguchi, Eishi

    2016-01-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1Timeless, a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1Timeless in regulation of telomere stability in cancer cells. PMID:26990647

  4. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity.

    Science.gov (United States)

    Cusanelli, Emilio; Chartrand, Pascal

    2015-01-01

    Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.

  5. Telomeric repeats facilitate CENP-A(Cnp1) incorporation via telomere binding proteins.

    Science.gov (United States)

    Castillo, Araceli G; Pidoux, Alison L; Catania, Sandra; Durand-Dubief, Mickaël; Choi, Eun Shik; Hamilton, Georgina; Ekwall, Karl; Allshire, Robin C

    2013-01-01

    The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-A(Cnp1) is present in fission yeast cells. Our analyses show that additional CENP-A(Cnp1) accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-A(Cnp1) deposition. However, chromosome ends are not required as CENP-A(Cnp1) deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-A(Cnp1) near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres. PMID:23936074

  6. Telomeric repeats facilitate CENP-A(Cnp1 incorporation via telomere binding proteins.

    Directory of Open Access Journals (Sweden)

    Araceli G Castillo

    Full Text Available The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-A(Cnp1 is present in fission yeast cells. Our analyses show that additional CENP-A(Cnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-A(Cnp1 deposition. However, chromosome ends are not required as CENP-A(Cnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-A(Cnp1 near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres.

  7. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells

    OpenAIRE

    Conomos, Dimitri; Stutz, Michael D.; Hills, Mark; Neumann, Axel A.; Bryan, Tracy M.; Reddel, Roger R; Hilda A Pickett

    2012-01-01

    Telomeres in cells that use the recombination-mediated alternative lengthening of telomeres (ALT) pathway elicit a DNA damage response that is partly independent of telomere length. We therefore investigated whether ALT telomeres contain structural abnormalities that contribute to ALT activity. Here we used next generation sequencing to analyze the DNA content of ALT telomeres. We discovered that variant repeats were interspersed throughout the telomeres of ALT cells. We found that the C-type...

  8. Presence of alternative lengthening of telomeres associated circular extrachromosome telomere repeats in primary leukemia cells of chronic myeloid leukemia

    OpenAIRE

    Samassekou, Oumar; Malina, Abba; Hébert, Josée; Yan, Ju

    2013-01-01

    Background The predominant mechanism by which human tumors maintain telomere length is via telomerase. In ~10% of tumor samples, however, telomere length is conserved, despite no detectable telomerase activity, in part through activation of the alternative lengthening of telomeres (ALT) pathway. Methods We studied the circular extra-chromosomal telomeric repeat (ECTR), an ALT hallmark, and telomerase activity in 24 chronic myeloid leukemia (CML) patients in chronic phase (CP). Results We iden...

  9. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  10. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R. PMID:9451957

  11. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes

    OpenAIRE

    Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M. S.; Reddel, Roger R; Hilda A Pickett

    2013-01-01

    Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during te...

  12. Telomeric Repeat Containing RNA (TERRA): Aging and Cancer.

    Science.gov (United States)

    Sinha, Sonam; Shukla, Samriddhi; Khan, Sajid; Farhan, Mohammad; Kamal, Mohammad Amjad; Meeran, Syed Musthapa

    2015-01-01

    Telomeric repeat containing RNAs (TERRA) are small RNA molecules synthesized from telomeric regions which were previously considered as silent genomic domains. In normal cells, these RNAs are transcribed in a direction from subtelomeric region towards the chromosome ends, but in case of cancer cells, their expression remains limited or absent. Telomerase is a rate limiting enzyme for cellular senescence, cancer and aging. Most of the studies deal with the manipulation of telomerase enzyme in cancer and aging either by synthetic oligonucleotide or by natural phytochemicals. Here, we collected evidences and discussed intensely about the bio-molecular structure of TERRA, naturally occurring ligands of telomerase, and their genetic and epigenetic regulations in aging associated diseases. Due to their capability to act as naturally occurring ligands of telomerase, these RNAs can overcome the limitations possessed by synthetic oligonucleotides, which are aimed against telomerase. Drugs specifically targeting TERRA molecules could modulate telomerase-mediated telomere lengthening. Thus, targeting TERRA-mediated regulation of telomerase would be a promising therapeutic strategy against cancer and age-associated diseases.

  13. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis.

    Science.gov (United States)

    Reig-Viader, Rita; Vila-Cejudo, Marta; Vitelli, Valerio; Buscà, Rafael; Sabaté, Montserrat; Giulotto, Elena; Caldés, Montserrat Garcia; Ruiz-Herrera, Aurora

    2014-05-01

    Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins, and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the cross talk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA colocalizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT colocalization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained throughout spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidence of colocalization between telomerase and telomeres during mammalian gametogenesis.

  14. Spectroscopic investigation on the telomeric DNA base sequence repeat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Telomeres are protein-DNA complexes at the terminals of linear chromosomes, which protect chromosomal integrity and maintain cellular replicative capacity.From single-cell organisms to advanced animals and plants,structures and functions of telomeres are both very conservative. In cells of human and vertebral animals, telomeric DNA base sequences all are (TTAGGG)n. In the present work, we have obtained absorption and fluorescence spectra measured from seven synthesized oligonucleotides to simulate the telomeric DNA system and calculated their relative fluorescence quantum yields on which not only telomeric DNA characteristics are predicted but also possibly the shortened telomeric sequences during cell division are imrelative fluorescence quantum yield and remarkable excitation energy innerconversion, which tallies with the telomeric sequence of (TTAGGG)n. This result shows that telomeric DNA has a strong non-radiative or innerconvertible capability.``

  15. Chlamydomonas reinhardtii telomere repeats form unstable structures involving guanine-guanine base pairs.

    OpenAIRE

    Petracek, M E; Berman, J.

    1992-01-01

    Unusual DNA structures involving four guanines in a planar formation (guanine tetrads) are formed by guanine-rich (G-rich) telomere DNA and other G-rich sequences (reviewed in (1)) and may be important in the structure and function of telomeres. These structures result from intrastrand and/or interstrand Hoogsteen base pairs between the guanines. We used the telomeric repeat of Chlamydomonas reinhardtii, TTTTAGGG, which contains 3 guanines and has a long interguanine A + T tract, to determine...

  16. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators.

    Science.gov (United States)

    Scheibe, Marion; Arnoult, Nausica; Kappei, Dennis; Buchholz, Frank; Decottignies, Anabelle; Butter, Falk; Mann, Matthias

    2013-12-01

    Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)-based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation.

  17. DNA-directed Polymerase Subunits Play a Vital Role in Human Telomeric Overhang Processing

    OpenAIRE

    Diotti, Raffaella; Kalan, Sampada; Matveyenko, Anastasiya; Loayza, Diego

    2014-01-01

    Telomeres consist of TTAGGG repeats bound by the shelterin complex and end with a 3' overhang. In humans, telomeres shorten at each cell division, unless telomerase (TERT) is expressed and able to add telomeric repeats. For effective telomere maintenance, the DNA strand complementary to that made by telomerase must be synthesized. Recent studies have discovered a link between different activities necessary to process telomeres in the S-phase of the cell cycle in order to ref...

  18. Mutant Telomeric Repeats in Yeast Can Disrupt the Negative Regulation of Recombination-Mediated Telomere Maintenance and Create an Alternative Lengthening of Telomeres-Like Phenotype▿

    OpenAIRE

    Bechard, Laura H.; Butuner, Bilge D.; Peterson, George J.; McRae, Will; Topcu, Zeki; McEachern, Michael J.

    2008-01-01

    Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent o...

  19. Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-long terminal repeat retrotransposon, TRAS1

    Directory of Open Access Journals (Sweden)

    Yoshitake Kazutoshi

    2010-04-01

    Full Text Available Abstract Background The ends of chromosomes, termed telomeres consist of repetitive DNA. The telomeric sequences shorten with cell division and, when telomeres are critically abbreviated, cells stop proliferating. However, in cancer cells, by the expression of telomerase which elongates telomeres, the cells can continue proliferating. Many approaches for telomere shortening have been pursued in the past, but to our knowledge, cutting telomeres in vivo has not so far been demonstrated. In addition, there is lack of information on the cellular effects of telomere shortening in human cells. Results Here, we created novel chimeric endonucleases to cut telomeres by fusing the endonuclease domain (TRAS1EN of the silkworm's telomere specific non-long terminal repeat retrotransposon TRAS1 to the human telomere-binding protein, TRF1. An in vitro assay demonstrated that the TRAS1EN-TRF1 chimeric endonucleases (T-EN and EN-T cut the human (TTAGGGn repeats specifically. The concentration of TRAS1EN-TRF1 chimeric endonucleases necessary for the cleavage of (TTAGGGn repeats was about 40-fold lower than that of TRAS1EN alone. When TRAS1EN-TRF1 endonucleases were introduced into human U2OS cancer cells using adenovirus vectors, the enzymes localized at telomeres of nuclei, cleaved and shortened the telomeric DNA by double-strand breaks. When human U2OS and HFL-1 fibroblast cells were infected with EN-T recombinant adenovirus, their cellular proliferation was suppressed for about 2 weeks after infection. In contrast, the TRAS1EN mutant (H258A chimeric endonuclease fused with TRF1 (ENmut-T did not show the suppression effect. The EN-T recombinant adenovirus induced telomere shortening in U2OS cells, activated the p53-dependent pathway and caused the senescence associated cellular responses, while the ENmut-T construct did not show such effects. Conclusions A novel TRAS1EN-TRF1 chimeric endonuclease (EN-T cuts the human telomeric repeats (TTAGGGn specifically in

  20. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats

    Institute of Scientific and Technical Information of China (English)

    Thomas Simonet; Elena Giulotto; Frederique Magdinier; Béatrice Horard; Pascal Barbry; Rainer Waldmann; Eric Gison; Laure-Emmanuelle Zaragosi; Claude Philippe; Kevin Lebrigand; Clémentine Schouteden; Adeline Augereau; Serge Bauwens; Jing Ye; Marco Santagostino

    2011-01-01

    The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mech anisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-iTS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.

  1. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration.

    OpenAIRE

    Nina Wallaschek; Anirban Sanyal; Fabian Pirzer; Annie Gravel; Yasuko Mori; Louis Flamand; Kaufer, Benedikt B

    2016-01-01

    Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are ubiquitous betaherpesviruses that infects humans within the first years of life and establishes latency in various cell types. Both viruses can integrate their genomes into telomeres of host chromosomes in latently infected cells. The molecular mechanism of viral integration remains elusive. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor arrays of telomeric repeats (TMR) identical to human telomere sequences at the ends of...

  2. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  3. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, Richard J [ORNL; McDonald, W Hayes [ORNL; Hurst, Gregory {Greg} B [ORNL; Shen, Rong-Fong [National Institute on Aging, National Institutes of Health; Wang, Yisong [ORNL; Liu, Yie [National Institute on Aging, Baltimore

    2010-01-01

    Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  4. NMR observation of T-tetrads in a parallel stranded DNA quadruplex formed by Saccharomyces cerevisiae telomere repeats.

    OpenAIRE

    P.K. Patel; Hosur, R V

    1999-01-01

    We report here the NMR structure of the DNA sequence d-TGGTGGC containing two repeats of Saccharomyces cerevisiae telomere DNA which is unique in that it has a single thymine in the repeat sequence and the number of Gs can vary from one to three. The structure is a novel quadruplex incor-porating T-tetrads formed by symmetrical pairing of four Ts via O4-H3 H-bonds in a plane. This is in contrast to the previous results on other telomeric sequences which contained more than one T in the repeat...

  5. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R.; Kossenkov, Andrew V.; Showe, Louise C.; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R.; Lieberman, Paul M.

    2015-01-01

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments. PMID:26578789

  6. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes.

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R; Kossenkov, Andrew V; Showe, Louise C; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R; Lieberman, Paul M

    2015-11-17

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.

  7. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH.

    Science.gov (United States)

    Komosa, Martin; Root, Heather; Meyn, M Stephen

    2015-02-27

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain 300), range widely in length (200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602

  8. Telomerase activity and telomere length in Daphnia.

    Science.gov (United States)

    Schumpert, Charles; Nelson, Jacob; Kim, Eunsuk; Dudycha, Jeffry L; Patel, Rekha C

    2015-01-01

    Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.

  9. Detection of telomerase activity by combination of telomeric repeat amplification protocol and electrochemiluminescence assay

    Institute of Scientific and Technical Information of China (English)

    Xiao Ming Zhou; Li Jia

    2008-01-01

    A highly sensitive telomerase detection method that combines telomeric repeat amplification protocol (TRAP) and magnetic beads based electrochemiluminescence (ECL) assay has been developed. Briefly, telomerase recognizes biotinylated telomerase synthesis primer (B-TS) and synthesizes extension products, which then serve as the templates for PCR amplification using B-TS as the forward primer and Iris-(2'2'-bipyridyl) ruthenium (TBR) labeled ACX (TBR-ACX) as the reversed primer. The amplified product is captured on streptavidin-coated paramagnetic beads and detected by ECL. Telomerase positive HeLa cells were used to validate the feasibility of the method. The experimental results showed down to 10 cancer cells can be detected easily. The method is a useful tool for telomerase activity analysis due to its sensitivity, rapidity, safety, high throughput, and low cost. It can be used for screening a large amount of clinical samples.

  10. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase

    OpenAIRE

    Cohen, Haim; Sinclair, David A.

    2001-01-01

    The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repea...

  11. Telomeric circles: universal players in telomere maintenance?

    OpenAIRE

    Tomaska, Lubomir; Nosek, Jozef; Kramara, Juraj; Griffith, Jack D.

    2009-01-01

    To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-ci...

  12. Copy Numbers of Telomeric Repeat Sequences of Human Herpesvirus 6B in Clinical Isolates: Possibility of Mixed Infections

    OpenAIRE

    KATO, Yuri; Ihira, Masaru; Umeda, Mami; Higashimoto, Yuki; Kawamura, Yoshiki; Ohashi, Masahiro; Ishi, Junichi; Yoshikawa, Tetsushi

    2014-01-01

    In order to determine whether mixed infections of human herpesvirus 6B (HHV-6B) occur in immunocompetent and immunocompromised individuals, we examined the copy numbers of telomeric repeat sequences (TRS) of clinical isolates. In clinical isolates obtained from patients with exanthem subitum caused by primary HHV-6B infection, PCR products with HHV-6B TRS ranging between 400 and 800 bp were amplified. PCR products of various sizes were amplified in four clinical isolates from drug-induced hyp...

  13. Reduction of telomeric repeats as a possible predictor for development of hepatocellular carcinoma: convenient evaluation by slot-blot analysis.

    Science.gov (United States)

    Isokawa, O; Suda, T; Aoyagi, Y; Kawai, H; Yokota, T; Takahashi, T; Tsukada, K; Shimizu, T; Mori, S; Abe, Y; Suzuki, Y; Nomoto, M; Mita, Y; Yanagi, M; Igarashi, H; Asakura, H

    1999-08-01

    Hepatocellular carcinoma (HCC) mainly arises from the liver with chronic inflammation. Because telomere reduction reflects replicative history in somatic cells, we analyzed the possibility that liver tissues surrounding HCC consist of the cells carrying substantial reduction of telomere. We studied 20 HCC and surrounding noncancerous liver tissues (SL) obtained by surgical resection, and 10 laparoscopically obtained needle biopsy specimens of the liver with chronic inflammation including no overt HCC (CI). Five liver tissues without chronic liver diseases (ND) were also examined. Extracted genomic DNAs were blotted on a nylon membrane, and probed at first with radio-labeled d(TTAGGG)(3) and reprobed with radio-labeled d(CCT)(7). The intensity caused by d(TTAGGG)(3) was divided by that of d(CCT)(7). The ratio was defined as telomeric repeats content (TC). Dilution experiments reproducibly revealed almost the same TC. The reduction rate of telomere length through aging estimated by regression analysis of TC was 0.62% per year. Concomitant analyses of TC and average telomere length revealed that both values were significantly correlated (r =.45; P =.009). To compare TC in the liver with respect to chronic inflammation, the value was divided by TC in peripheral blood leukocytes (PBL) from the same donor. The ratio was defined as relative TC (RTC). There was a statistically significant decrease of RTC in CI compared with that in ND (P =.03). Furthermore, RTC in SL was significantly lower than that in CI (P =.0001). These observations suggest that RTC value in liver tissues may digitally indicate a replicative history of hepatocytes under chronic inflammation, and a risk of HCC development. PMID:10421648

  14. Novel Luminex Assay for Telomere Repeat Mass Does Not Show Well Position Effects Like qPCR.

    Directory of Open Access Journals (Sweden)

    Muhammad G Kibriya

    Full Text Available Telomere length is a potential biomarker of aging and risk for age-related diseases. For measurement of relative telomere repeat mass (TRM, qPCR is typically used primarily due to its low cost and low DNA input. But the position of the sample on a plate often impacts the qPCR-based TRM measurement. Recently we developed a novel, probe-based Luminex assay for TRM that requires ~50ng DNA and involves no DNA amplification. Here we report, for the first time, a comparison among TRM measurements obtained from (a two singleplex qPCR assays (using two different primer sets, (b a multiplex qPCR assay, and (c our novel Luminex assay. Our comparison is focused on characterizing the effects of sample positioning on TRM measurement. For qPCR, DNA samples from two individuals (K and F were placed in 48 wells of a 96-well plate. For each singleplex qPCR assay, we used two plates (one for Telomere and one for Reference gene. For the multiplex qPCR and the Luminex assay, the telomere and the reference genes were assayed from the same well. The coefficient of variation (CV of the TRM for Luminex (7.2 to 8.4% was consistently lower than singleplex qPCR (11.4 to 14.9% and multiplex qPCR (19.7 to 24.3%. In all three qPCR assays the DNA samples in the left- and right-most columns showed significantly lower TRM than the samples towards the center, which was not the case for the Luminex assay (p = 0.83. For singleplex qPCR, 30.5% of the variation in TL was explained by column-to-column variation and 0.82 to 27.9% was explained by sample-to-sample variation. In contrast, only 5.8% of the variation in TRM for the Luminex assay was explained by column-to column variation and 50.4% was explained by sample-to-sample variation. Our novel Luminex assay for TRM had good precision and did not show the well position effects of the sample that were seen in all three of the qPCR assays that were tested.

  15. Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics.

    Science.gov (United States)

    Melicher, Dora; Buzas, Edit I; Falus, Andras

    2015-11-01

    Telomeres are protective heterochromatic structures that cap the end of linear chromosomes and play a key role in preserving genomic stability. Telomere length represents a balance between processes that shorten telomeres during cell divisions with incomplete DNA replication and the ones that lengthen telomeres by the action of telomerase, an RNA-protein complex with reverse transcriptase activity which adds telomeric repeats to DNA molecule ends. Telomerase activity and telomere length have a crucial role in cellular ageing and in the pathobiology of several human diseases attracting intense research. The last few decades have witnessed remarkable advances in our understanding about telomeres, telomere-associated proteins, and the biogenesis and regulation of the telomerase holoenzyme complex, as well as about telomerase activation and the telomere-independent functions of telomerase. Emerging data have revealed that telomere length can be modified by genetic and epigenetic factors, sex hormones, reactive oxygen species and inflammatory reactions. It has become clear that, in order to find out more about the factors influencing the rate of telomere attrition in vivo, it is crucial to explore both genetic and epigenetic mechanisms. Since the telomere/telomerase assembly is under the control of multiple epigenetic influences, the unique design of twin studies could help disentangle genetic and environmental factors in the functioning of the telomere/telomerase system. It is surprising that the literature on twin studies investigating this topic is rather scarce. This review aims to provide an overview of some important immune response- and epigenetics-related aspects of the telomere/telomerase system demanding more research, while presenting the available twin data published in connection with telomere research so far. By emphasising what we know and what we still do not know in these areas, another purpose of this review is to urge more twin studies in telomere

  16. Telomeres and reproductive aging.

    Science.gov (United States)

    Keefe, David L; Liu, Lin

    2009-01-01

    Infertility, miscarriage and aneuploid offspring increase with age in women, and meiotic dysfunction underlies reproductive aging. How aging disrupts meiotic function in women remains unclear, but as women increasingly delay having children, solving this problem becomes an urgent priority. Telomeres consist of a (TTAGGG)(n) repeated sequence and associated proteins at chromosome ends, mediate aging in mitotic cells and may also mediate aging during meiosis. Telomeres shorten both during DNA replication and from the response to oxidative DNA damage. Oocytes do not divide in adult mammals, but their precursors do replicate during fetal oogenesis; eggs ovulated from older females have traversed more mitotic cell cycles before entering meiosis during fetal oogenesis than eggs ovulated from younger females. Telomeres also would be expected to shorten from inefficient DNA repair of oxidative damage, because the interval between fetal oogenesis and ovulation is exceptionally prolonged in women. We have tested the hypothesis that telomere shortening disrupts meiosis by shortening telomeres experimentally in mice, which normally do not exhibit age-related meiotic dysfunction. Interestingly, mouse telomeres are much longer than human telomeres, but genetic or pharmacological shortening of mouse telomeres recapitulates in mice the human reproductive aging phenotype as the mouse telomeres reach the length of telomeres from older women. These observations led us to propose a telomere theory of reproductive aging. Moreover, chronological oxidative stress increases with reproductive aging, leading to DNA damage preferentially at (TTAGGG)(n) repeats. Finally, if telomeres shorten with aging, how do they reset across generations? Telomerase could not play a significant role in telomere elongation during early development, because this enzyme is not active until the blastocyst stage, well after the stage when telomere elongation takes place. Rather, telomeres lengthen during the

  17. Genetic Dissection of the Kluyveromyces lactis Telomere and Evidence for Telomere Capping Defects in TER1 Mutants with Long Telomeres

    OpenAIRE

    Underwood, Dana H.; Carroll, Coleen; McEachern, Michael J.

    2004-01-01

    In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RN...

  18. Polychlorinated Biphenyls and Leukocyte Telomere Length: An Analysis of NHANES 1999–2002

    OpenAIRE

    Franco Scinicariello; Buser, Melanie C.

    2015-01-01

    Polychlorinated biphenyls (PCBs) induce the expression of the proto-oncogene c-myc which has a role in cellular growth and proliferation programs. The c-myc up-regulates the telomerase reverse transcriptase which adds the telomeres repeating sequences to the chromosomal ends to compensate for the progressive loss of telomeric sequence. We performed multivariate linear regression to analyze the association of PCBs, polychlorinated dibenzo-p-dioxins, and 1,2,3,4,6,7,8-heptachlorodibenzofuran wi...

  19. Telomere elongation chooses TERRA ALTernatives

    OpenAIRE

    Arora, Rajika; Azzalin, Claus M.

    2015-01-01

    Alternative Lengthening of Telomeres (ALT) mechanisms allow telomerase-negative immortal cells to buffer replicative telomere shortening. ALT is naturally active in a number of human cancers and might be selected upon telomerase inactivation. ALT is thought to operate through homologous recombination (HR) occurring between telomeric repeats from independent chromosome ends. Indeed, suppression of a number of HR factors impairs ALT cell proliferation. Yet, how HR is initiated at ALT telomeres ...

  20. Telomere Restriction Fragment (TRF) Analysis

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W.

    2016-01-01

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al., 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al., 1990; Ouellette et al., 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of

  1. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths

    OpenAIRE

    Cheng, Chen; Shtessel, Ludmila; Brady, Megan M.; Ahmed, Shawn

    2012-01-01

    Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome f...

  2. Telomere elongation in immortal human cells without detectable telomerase activity.

    OpenAIRE

    Bryan, T M; Englezou, A; J Gupta; Bacchetti, S; Reddel, R. R.

    1995-01-01

    Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell line...

  3. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  4. Effect of rubidium and cesium ions on the dimeric quaduplex formed by the Oxytricha nova telomeric repeat oligonucleotide d(GGGGTTTTGGGG).

    Science.gov (United States)

    Marincola, Flaminia Cesare; Virno, Ada; Randazzo, Antonio; Lai, Adolfo

    2007-01-01

    The DNA sequence d(GGGGTTTTGGGG) consists of 1.5 units of the repeat in telomeres of Oxytricha nova. It has been shown by NMR and x-ray crystallographic analysis that it is capable to form a dimeric quadruplex structure and that a variety of cations, namely K(+), Na(+), and NH(4)(+), are able to interact with this complex with different affinity, leading to complexes characterized by different local conformations. Thus, in order to improve the knowledge of this kind of molecule, and in particular to provide further insight into the role of monovalent cations in the G-quadruplex folding and conformation, we have investigated by (1)H-NMR the effect of the addition of Rb(+) and Cs(+) to the quadruplex formed by the oligonucleotide d(GGGGTTTTGGGG).

  5. Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells

    OpenAIRE

    Zhdanova, N. S.; Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M.E.; Skvortsov, D. A.; Rubtsov, N.B.; Londoño-Vallejo, A

    2014-01-01

    The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activit...

  6. Diminished telomeric 3' overhangs are associated with telomere dysfunction in Hoyeraal-Hreidarsson syndrome.

    Directory of Open Access Journals (Sweden)

    Noa Lamm

    Full Text Available BACKGROUND: Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC and its severe form Hoyeraal-Hreidarsson Syndrome (HHS are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency. METHODOLOGY/PRINCIPAL FINDINGS: We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3' overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types. CONCLUSIONS/SIGNIFICANCE: Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres

  7. Prognostic significance of telomeric repeat length alterations in pathological stage I-IIIA non-small cell lung cancer.

    Science.gov (United States)

    Hirashima, T; Komiya, T; Nitta, T; Takada, Y; Kobayashi, M; Masuda, N; Matui, K; Takada, M; Kikui, M; Yasumitu, T; Ohno, A; Nakagawa, K; Fukuoka, M; Kawase, I

    2000-01-01

    This study was performed to evaluate the prognostic significance of alteration in telomere length in pathological stage (p-stage) I-IIIA non-small cell lung cancer (NSCLC). Paired cancer and normal lung tissues were obtained from 72 patients with histologically confirmed p-stage I-IIIA NSCLC. Terminal restriction fragment (TRF) length, which indicates telomere length, was measured by Southern blot analysis. Tumor telomerase activity was also assayed by non-radioactive PCR-ELISA in 55 patients. TRF length (mean +/- SD) in normal tissue was 6.2 +/- 1.1 Kb. Therefore, upper and lower limits of normal range in TRF length was set at 8.4 (mean + 2SD) Kb and 4.0 (mean-2SD) Kb, respectively. A tumor showing TRF length over normal range was defined as positive for the alteration. In 72 patients, 25 (34.7%) with alteration in TRF length had significantly shorter survival durations than those of the others. Telomerase activity did not correlate with survival duration. In multivariate analysis, alteration in TRF length (P = 0.0033) was second to p-stage (P = 0.0004) in importance among the various parameters.

  8. Male and female meiosis in the mountain scorpion Zabius fuscus (Scorpiones, Buthidae): heterochromatin, rDNA and TTAGG telomeric repeats.

    Science.gov (United States)

    Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mattoni, Camilo Iván; Mola, Liliana María

    2015-08-01

    All cytogenetically studied scorpions present male achiasmatic meiosis and lack heteromorphic sex chromosomes. In contrast, information about female meiosis in scorpions is scarce due to the difficulty of finding meiotic cells. The genus Zabius includes three described species and no chromosome studies have been performed on it until now. We analyzed the constitutive heterochromatin distribution, NORs and telomeric sequences in mitosis and meiosis of males and females of different populations of Zabius fuscus. All specimens presented 2n = 18 holokinetic chromosomes that gradually decreased in size. Male meiosis presented nine bivalents and a polymorphism for one reciprocal translocation in one population. Telomeric signals were detected at every terminal region, confirming also the presence of a (TTAGG) n motif in Buthidae. Constitutive heterochromatin was found in three chromosome pairs at a terminal region; moreover, NORs were embedded in the heterochromatic region of the largest pair. Chromosome size and landmarks allowed us to propose the chromosomes involved in the rearrangement. In four females, cells at different prophase I stages were analyzed. We describe a diffuse stage and the presence of ring-shaped bivalents. We discuss the possible origin of these bivalents in the framework of chiasmatic or achiasmatic female meiosis. These results contribute to increase the scarce evidence of female meiosis in scorpions and raise new questions about its mechanism.

  9. The nature of telomere fusion and a definition of the critical telomere length in human cells

    OpenAIRE

    Capper, Rebecca; Britt-Compton, Bethan; Tankimanova, Maira; Rowson, Jan; Letsolo, Boitelo; Man, Stephen; Haughton, Michele; Baird, Duncan M.

    2007-01-01

    The loss of telomere function can result in telomeric fusion events that lead to the types of genomic rearrangements, such as nonreciprocal translocations, that typify early-stage carcinogenesis. By using single-molecule approaches to characterize fusion events, we provide a functional definition of fusogenic telomeres in human cells. We show that approximately half of the fusion events contained no canonical telomere repeats at the fusion point; of those that did, the longest was 12.8 repeat...

  10. Role of TERRA in the regulation of telomere length.

    Science.gov (United States)

    Wang, Caiqin; Zhao, Li; Lu, Shiming

    2015-01-01

    Telomere dysfunction is closely associated with human diseases such as cancer and ageing. Inappropriate changes in telomere length and/or structure result in telomere dysfunction. Telomeres have been considered to be transcriptionally silent, but it was recently demonstrated that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA, a long non-coding RNA, participates in the regulation of telomere length, telomerase activity and heterochromatinization. The correct regulation of telomere length may be crucial to telomeric homeostasis and functions. Here, we summarize recent advances in our understanding of the crucial role of TERRA in the maintenance of telomere length, with focus on the variety of mechanisms by which TERRA is involved in the regulation of telomere length. This review aims to enable further understanding of how TERRA-targeted drugs can target telomere-related diseases.

  11. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells

    Directory of Open Access Journals (Sweden)

    Stella Suyong Lee

    2015-11-01

    Full Text Available Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.

  12. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis.

    Science.gov (United States)

    Miura, N; Horikawa, I; Nishimoto, A; Ohmura, H; Ito, H; Hirohashi, S; Shay, J W; Oshimura, M

    1997-01-01

    Telomeres shorten progressively with age in normal somatic cells in culture and in vivo. The maintenance of telomere length is assumed to be an obligatory step in the progression and immortalization of most human tumor cells. To understand the role of telomere dynamics in the development of hepatocellular carcinoma (HCC), we examined the length of terminal restriction fragment (TRF), as an indicator for telomere length, in HCC and surrounding tissues with chronic active hepatitis (CAH) or liver cirrhosis (LC). The study was performed in 12 hepatitis C virus (HCV) antibody-positive, 12 hepatitis B virus (HBV) antigen-positive tissues, and 4 tissue samples from virus-negative patients with HCC. The peak TRFs in all 3 types of HCC were significantly shorter than those of the surrounding tissues (i.e., LC or CAH). TRFs examined in one patient with atypical adenomatous hyperplasia (AAH) also was shortened. Thus, progressive TRF shortening occurs from normal to CAH to LC to HCC(AAH). Telomerase, an enzyme that adds repeated telomere sequences onto the chromosome ends and stabilizes telomere length in immortal cells, also was examined in tissues and detected in high levels almost exclusively in HCCs. Interestingly, the intensity of telomerase activity in the AAH case was similar to that of HCC. In addition, the telomerase activity of biopsy samples with a fine 21-gauge needle also was examined in 10 HCCs, 2 adenomatous hyperplasias (AHs), 2 LCs, and 2 CAHs. We found strong telomerase activity in all the HCCs and surprisingly in the 2 cases that were pathologically diagnosed as AH. Thus, the findings strongly suggest that persistent cell proliferation or rapid cell turnover through damage of hepatic cells result in a process of multistep hepatocellular carcinogenesis. Thus, progressive shortening of telomeres and the activation of telomerase may be a useful marker for the early detection of malignant progression in liver disease. PMID:9062581

  13. Telomere and Telomerase Therapeutics in Cancer

    Directory of Open Access Journals (Sweden)

    Yucheng Xu

    2016-05-01

    Full Text Available Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics.

  14. Telomere and Telomerase Therapeutics in Cancer

    Science.gov (United States)

    Xu, Yucheng; Goldkorn, Amir

    2016-01-01

    Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics. PMID:27240403

  15. Telomere and Telomerase Therapeutics in Cancer.

    Science.gov (United States)

    Xu, Yucheng; Goldkorn, Amir

    2016-01-01

    Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics. PMID:27240403

  16. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling.

    Directory of Open Access Journals (Sweden)

    Jianing Xu

    Full Text Available Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT cells or in the telomerase-resistant type IIR "runaway" RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability.

  17. Telomere functions grounding on TERRA firma.

    Science.gov (United States)

    Azzalin, Claus M; Lingner, Joachim

    2015-01-01

    Long noncoding telomeric repeat-containing RNAs - TERRAs - are transcribed in a regulated manner from telomeres throughout eukaryotes. TERRA molecules consist of chromosome end-specific subtelomeric sequences and telomeric repeats at their 3' ends. Recent work suggests that TERRA sustains several important functions at chromosome ends. TERRA can regulate telomere length through modulation of exonuclease 1 and telomerase, it may promote recruitment of chromatin modifiers to damaged telomeres and thereby enable DNA end-processing, and it may promote telomere protein composition changes during cell cycle progression. Furthermore, telomere transcription regulates chromosome-end mobility within the nucleus. We review how TERRA, by regulated expression and by providing a molecular scaffold for various protein enzymes, can support a large variety of vital functions.

  18. Telomeres and human health

    DEFF Research Database (Denmark)

    Bojesen, S E

    2013-01-01

    -independently associated with risk of common disorders such as cardiovascular, pulmonary and neoplastic diseases. However, in sufficiently powered studies, short telomeres are repeatedly and independently found to be associated with increased risk of early death in the general population or in subsets of individuals...

  19. Telomere elongation chooses TERRA ALTernatives.

    Science.gov (United States)

    Arora, Rajika; Azzalin, Claus M

    2015-01-01

    Alternative Lengthening of Telomeres (ALT) mechanisms allow telomerase-negative immortal cells to buffer replicative telomere shortening. ALT is naturally active in a number of human cancers and might be selected upon telomerase inactivation. ALT is thought to operate through homologous recombination (HR) occurring between telomeric repeats from independent chromosome ends. Indeed, suppression of a number of HR factors impairs ALT cell proliferation. Yet, how HR is initiated at ALT telomeres remains elusive. Mounting evidence suggests that the long noncoding telomeric RNA TERRA renders ALT telomeres recombinogenic by forming RNA:DNA hybrids with the telomeric C-rich strand. TERRA and telomeric hybrids act in concert with a number of other factors, including the RNA endoribonuclease RNaseH1 and the single stranded DNA binding protein RPA. The functional interaction network built upon these different players seems indispensable for ALT telomere maintenance, and digging into the molecular details of this previously unappreciated network might open the way to novel avenues for cancer treatments.

  20. Modulation of Telomeres in Alternative Lengthening of Telomeres Type I Like Human Cells by the Expression of Werner Protein and Telomerase

    OpenAIRE

    Aisha Siddiqa; David Cavazos; Jeffery Chavez; Linda Long; Marciniak, Robert A.

    2012-01-01

    The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae...

  1. TERRA and the state of the telomere.

    Science.gov (United States)

    Rippe, Karsten; Luke, Brian

    2015-11-01

    Long noncoding telomeric repeat-containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.

  2. Relative Telomere Length and Cognitive Decline in the Nurses’ Health Study

    OpenAIRE

    Devore, Elizabeth E.; Prescott, Jennifer; De Vivo, Immaculata; Grodstein, Francine

    2011-01-01

    Telomeres are short DNA repeats on the ends of mammalian chromosomes, which can undergo incomplete replication leading to gradual shortening with each cell cycle. Age and oxidative stress are contributors to telomere shortening; thus, telomere length may be a composite measure of biologic aging, and a potential predictor of health status in older adults. We evaluated whether relative telomere length (the proportion of telomere repeat copy number to single gene copy number, using a real-time P...

  3. Deletion of the major peroxiredoxin Tsa1 alters telomere length homeostasis

    OpenAIRE

    LU, Jian; Vallabhaneni, Haritha; Yin, Jinhu; Liu, Yie

    2013-01-01

    Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1-3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase-mediated telomere repeat addition is negatively modulated by the le...

  4. WRN loss induces switching of telomerase-independent mechanisms of telomere elongation.

    Directory of Open Access Journals (Sweden)

    April Renee Sandy Gocha

    Full Text Available Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT. ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs, suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50-70, at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.

  5. Telomeres, Early-Life Stress and Mental Illness

    OpenAIRE

    Ridout, Samuel J.; Ridout, Kathryn K.; Kao, Hung-Teh; Carpenter, Linda L.; Philip, Noah S.; Tyrka, Audrey R.; Price, Lawrence H.

    2015-01-01

    Telomeres are structures of tandem TTAGGG repeats at the ends of chromosomes which preserve the encoding DNA by serving as a disposable brake to terminate DNA duplication during chromosome replication. In this process, the telomere itself shortens with each cell division, and can consequently be thought of as a cellular “clock” reflecting the age of a cell and the time until senescence. Telomere shortening, and changes in levels of telomerase, the enzyme that maintains telomeres, occur in the...

  6. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance.

    Science.gov (United States)

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis.

  7. Telomeres and Telomerase in Cardiovascular Diseases

    Science.gov (United States)

    Yeh, Jih-Kai; Wang, Chao-Yung

    2016-01-01

    Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition, low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging myocardium with telomere shortening and accumulation of senescent cells limits the tissue regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. In this review, we summarize the current understanding of telomeres and telomerase in the aging process and their association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting the telomere system in cardiovascular disease treatments. PMID:27598203

  8. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines.

    Science.gov (United States)

    Aschacher, T; Wolf, B; Enzmann, F; Kienzl, P; Messner, B; Sampl, S; Svoboda, M; Mechtcheriakova, D; Holzmann, K; Bergmann, M

    2016-01-01

    A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.

  9. Telomere lengthening to antagonize myocardial aging

    OpenAIRE

    Cottage, Christopher Travis

    2012-01-01

    Aging is associated with onset and progression of cardiovascular disease resulting from changes at both cellular and molecular levels. Accumulation of senescent cells in the myocardium has been implicated in deterioration of hemodynamic performance and impaired reparative processes. Cellular senescence can be linked to oxidative stress and repeated cellular divisions, both of which lead to telomeric shortening. Telomeres are the distal ends of chromosomes that consist of nucleotide repeats th...

  10. Dynamics of Telomeres and Promyelocytic Leukemia Nuclear Bodies in a Telomerase-negative Human Cell Line

    OpenAIRE

    Jegou, Thibaud; Chung, Inn; Heuvelman, Gerrit; Wachsmuth, Malte; Görisch, Sabine M.; Greulich-Bode, Karin M.; Boukamp, Petra; Lichter, Peter; Rippe, Karsten

    2009-01-01

    Telomerase-negative tumor cells maintain their telomeres via an alternative lengthening of telomeres (ALT) mechanism. This process involves the association of telomeres with promyelocytic leukemia nuclear bodies (PML-NBs). Here, the mobility of both telomeres and PML-NBs as well as their interactions were studied in human U2OS osteosarcoma cells, in which the ALT pathway is active. A U2OS cell line was constructed that had lac operator repeats stably integrated adjacent to the telomeres of ch...

  11. Control of telomere length by a trimming mechanism that involves generation of t-circles

    OpenAIRE

    Hilda A Pickett; Cesare, Anthony J.; Johnston, Rebecca L; Neumann, Axel A.; Reddel, Roger R

    2009-01-01

    Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric ...

  12. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae.

    OpenAIRE

    Runge, K W; Zakian, V A

    1996-01-01

    The DNA-protein complexes at the ends of linear eukaryotic chromosomes are called the telomeres. In Saccharomyces cerevisiae, telomeric DNA consists of a variable length of the short repeated sequence C1-3A. The length of yeast telomeres can be altered by mutation, by changing the levels of telomere binding proteins, or by increasing the amount of C1-3A DNA sequences. Cells bearing the tel1-1 or tel2-1 mutations, known previously to have short telomeres, did not respond to perturbations that ...

  13. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei

    OpenAIRE

    Schaffitzel, Christiane; Berger, Imre; Postberg, Jan; Hanes, Jozef; Lipps, Hans J; Plückthun, Andreas

    2001-01-01

    Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3′-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T4G4), forms a 16-nucleotide 3′-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been proposed that guanine-quadruplex conformations may have important cellular roles including telomere function...

  14. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  15. Telomere recombination and alternative telomere lengthening mechanisms

    NARCIS (Netherlands)

    Draskovic, I.; Londono Vallejo, A.

    2013-01-01

    Telomeres are nucleoprotein structures at the ends of linear chromosomes that protect them from being recognized as DNA double stranded breaks. Telomeres shorten with every cell division and in the absence of the checkpoint mechanisms critical telomere shortening leads to chromosome end fusions and

  16. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Moravec, Martin; Wischnewski, Harry; Bah, Amadou; Hu, Yan; Liu, Na; Lafranchi, Lorenzo; King, Megan C; Azzalin, Claus M

    2016-07-01

    Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.

  17. DNA sequence analysis of newly formed telomeres in yeast.

    Science.gov (United States)

    Wang, S S; Pluta, A F; Zakian, V A

    1989-01-01

    A plasmid can be maintained in linear form in baker's yeast if it bears telomeric sequences at each end. Linear plasmids bearing cloned telomeric C4A4 repeats at one end (test end) and a natural DNA terminus with approximately 300 bps of C4A2 repeats at the other or control end were introduced by transformation into yeast. Test-end termini of 28 to 112 bps supported telomere formation. During telomere formation, C4A2 repeats were often transferred to test-end termini. To determine in greater detail the fate of test-end sequences on these plasmids after propagation in yeast, test-end telomeres were subcloned into E. coli and sequenced. DNA sequencing established a number of points about the molecular events involved in telomere formation in yeast. The results suggest that there are at least two mechanisms for telomere formation in yeast. One is mediated by a recombination event that requires neither a long stretch of homology nor the RAD52 gene product. The other mechanism is by addition of C1-3A repeats to the termini of linear DNA molecules. The telomeric sequence required to support C1-3A addition need not be at the very end of a molecule for telomere formation.

  18. Up-Regulation of Telomere-Binding Proteins, TRF1, TRF2, and TIN2 Is Related to Telomere Shortening during Human Multistep Hepatocarcinogenesis

    OpenAIRE

    Oh, Bong-Kyeong; Kim, Young-Joo; Park, Chanil; Park, Young Nyun

    2005-01-01

    The telomeric repeat-binding factor 1 (TRF1), TRF2, and the TRF1-interacting nuclear protein 2 (TIN2) are involved in telomere maintenance. We describe the regulation of expression of these genes along with their relationship to telomere length in hepatocarcinogenesis. The transcriptional expression of these genes, TRF1 protein, and telomere length was examined in 9 normal livers, 14 chronic hepatitis, 24 liver cirrhosis, 5 large regenerative nodules, 14 low-grade dysplastic nodules (DNs), 7 ...

  19. Fewer adults add salt at the table after initiation of a national salt campaign in the UK: a repeated cross-sectional analysis.

    Science.gov (United States)

    Sutherland, Jennifer; Edwards, Phil; Shankar, Bhavani; Dangour, Alan D

    2013-08-28

    In 2003, the UK Food Standards Agency and the Department of Health began attempts to reduce national salt intakes via reformulation of processed foods and a consumer awareness campaign on the negative impacts of salt on health. The present study uses large nationally representative samples of households in England to assess whether discretionary salt use was affected by the national salt reduction campaign. Large cross-sectional datasets from the Health Survey for England were used to analyse trends in adults adding salt at the table between 1997 and 2007. Since 1997, there has been a steady decline in salt use at the table. Ordinal logistic regression analysis controlling for age, sex, total household income, region, ethnicity and background trends revealed that the reduction in salt use was significantly greater after the campaign (OR 0·58; 95% CI 0·54, 0·63). Women (OR 0·71; 95% CI 0·68, 0·74), non-white ethnic groups (OR 0·69; 95% CI 0·62, 0·77), high-income households (OR 0·75; 95% CI 0·69, 0·82), middle-income households (OR 0·79; 95% CI 0·75, 0·84) and households in central (OR 0·90; 95% CI 0·84, 0·98) or the south of England (OR 0·82; 95% CI 0·77, 0·88) were less likely to add salt at the table. The results extend previous evidence of a beneficial response to the salt campaign by demonstrating the effect on salt use at the table. Future programmatic and research efforts may benefit from targeting specific population groups and improving the evidence base for evaluating the impact of the campaign.

  20. Telomere-Mediated Plasmid Segregation in Saccharomyces Cerevisiae Involves Gene Products Required for Transcriptional Repression at Silencers and Telomeres

    OpenAIRE

    Longtine, M. S.; Enomoto, S.; Finstad, S L; Berman, J

    1993-01-01

    Plasmids that contain Saccharomyces cerevisiae TG(1-3) telomere repeat sequences (TRS plasmids) segregate efficiently during mitosis. Mutations in histone H4 reduce the efficiency of TRS-mediated plasmid segregation, suggesting that chromatin structure is involved in this process. Sir2, Sir3 and Sir4 are required for the transcriptional repression of genes located at the silent mating type loci (HML and HMR) and at telomeres (telomere position effect) and are also involved in the segregation ...

  1. Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells

    NARCIS (Netherlands)

    Lisaingo, Kathleen; Uringa, Evert-Jan; Lansdorp, Peter M.

    2014-01-01

    Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein compl

  2. Defective repair of uracil causes telomere defects in mouse hematopoietic cells.

    Science.gov (United States)

    Vallabhaneni, Haritha; Zhou, Fang; Maul, Robert W; Sarkar, Jaya; Yin, Jinhu; Lei, Ming; Harrington, Lea; Gearhart, Patricia J; Liu, Yie

    2015-02-27

    Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity. PMID:25572391

  3. Telomerer og telomerase

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known...... as the biological clock of the cell, since they shorten with each cell division. Telomerase can elongate telomeres. Telomeres protect chromosome ends against being recognized as double stranded DNA breaks, and are thought to be a guard against cancer. It has furthermore been suggested that telomeres may play a role...

  4. Telomerers rolle i cancer

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are a double-edged sword when it comes to cancer. On one hand, telomeres limit the cells' ability to divide and thereby restrict the uninhibited growth seen in cancer. On the other hand, short telomeres can initiate the chromosome instability that characterizes cancer. Diseases...... with the combination of short telomeres and high cancer risk are seen, but until now the use of telomeres as predictors of cancer has, in general, been unsuccessful. Telomeres and telomerase play an important role in further cancer development. Researchers are trying to exploit this in the development of new cancer...

  5. Mec1p associates with functionally compromised telomeres

    OpenAIRE

    Hector, Ronald E; Ray, Alo; Chen, Bo-Ruei; Shtofman, Rebecca; Berkner, Kathleen L.; Runge, Kurt W.

    2012-01-01

    In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senes...

  6. Telomerase and telomeres : From basic biology to cancer treatment

    NARCIS (Netherlands)

    Helder, MN; Wisman, GBA; van der Zee, AGJ

    2002-01-01

    The limited capacity to divide is one of the major differences between normal somatic cells and cancerous cells. This finite life span' of somatic cells is closely linked to loss of telomeric DNA at telomeres, the 'chromosome caps' consisting of repeated (TTAGGG) sequences. In more than 85% of advan

  7. Functional interaction between telomere protein TPP1 and telomerase

    OpenAIRE

    Zaug, Arthur J.; Podell, Elaine R.; Nandakumar, Jayakrishnan; Cech, Thomas R.

    2010-01-01

    Human chromosome end-capping and telomerase regulation require POT1 (Protection of Telomeres 1) and TPP1 proteins, which bind to the 3′ ssDNA extension of human telomeres. POT1–TPP1 binding to telomeric DNA activates telomerase repeat addition processivity. We now provide evidence that this POT1–TPP1 activation requires specific interactions with telomerase, rather than it being a DNA substrate-specific effect. First, telomerase from the fish medaka, which extends the same telomeric DNA prime...

  8. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT associated proteins

    OpenAIRE

    Hwang, Helen; Kreig, Alex; Calvert, Jacob; Lormand, Justin; Kwon, Yongho; Daley, James M.; Sung, Patrick; Opresko, Patricia L.; Myong, Sua

    2014-01-01

    The G-rich single stranded DNA at the 3′ end of human telomeres can self-fold into G-quaduplex (GQ). However, telomere lengthening by telomerase or the recombination-based alternative lengthening of telomere (ALT) mechanism requires protein loading on the overhang. Using single molecule fluorescence spectroscopy we discovered that lengthening the telomeric overhang also increased the rate of dynamic exchanges between structural conformations. Overhangs with five to seven TTAGGG repeats, compa...

  9. Expansion of Interstitial Telomeric Sequences in Yeast.

    Science.gov (United States)

    Aksenova, Anna Y; Han, Gil; Shishkin, Alexander A; Volkov, Kirill V; Mirkin, Sergei M

    2015-11-24

    Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric (Ytel) repeats induce various gross chromosomal rearrangements (GCR) when their G-rich strands serve as the lagging strand template for replication (G orientation). Here, we show that interstitial Ytel repeats in the opposite C orientation prefer to expand rather than cause GCR. A tract of eight Ytel repeats expands at a rate of 4 × 10(-4) per replication, ranking them among the most expansion-prone DNA microsatellites. A candidate-based genetic analysis implicates both post-replication repair and homologous recombination pathways in the expansion process. We propose a model for Ytel repeat expansions and discuss its applications for genome instability and alternative telomere lengthening (ALT). PMID:26586439

  10. Modulation of Telomeres in Alternative Lengthening of Telomeres Type I Like Human Cells by the Expression of Werner Protein and Telomerase

    Directory of Open Access Journals (Sweden)

    Aisha Siddiqa

    2012-01-01

    Full Text Available The alternative lengthening of telomeres (ALT is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae RecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.

  11. Gender and telomere length

    DEFF Research Database (Denmark)

    Gardner, Michael; Bann, David; Wiley, Laura;

    2014-01-01

    It is widely believed that females have longer telomeres than males, although results from studies have been contradictory.......It is widely believed that females have longer telomeres than males, although results from studies have been contradictory....

  12. Activity of telomerase and telomeric length in Apis mellifera.

    Science.gov (United States)

    Korandová, Michala; Frydrychová, Radmila Čapková

    2016-06-01

    Telomerase is an enzyme that adds repeats of DNA sequences to the ends of chromosomes, thereby preventing their shortening. Telomerase activity is associated with proliferative status of cells, organismal development, and aging. We report an analysis of telomerase activity and telomere length in the honeybee, Apis mellifera. Telomerase activity was found to be regulated in a development and caste-specific manner. During the development of somatic tissues of larval drones and workers, telomerase activity declined to 10 % of its level in embryos and remained low during pupal and adult stages but was upregulated in testes of late pupae, where it reached 70 % of the embryo level. Upregulation of telomerase activity was observed in the ovaries of late pupal queens, reaching 160 % of the level in embryos. Compared to workers and drones, queens displayed higher levels of telomerase activity. In the third larval instar of queens, telomerase activity reached the embryo level, and an enormous increase was observed in adult brains of queens, showing a 70-fold increase compared to a brain of an adult worker. Southern hybridization of terminal TTAGG fragments revealed a high variability of telomeric length between different individuals, although the same pattern of hybridization signals was observed in different tissues of each individual. PMID:26490169

  13. Cohesin SMC1beta protects telomeres in meiocytes.

    Science.gov (United States)

    Adelfalk, Caroline; Janschek, Johannes; Revenkova, Ekaterina; Blei, Cornelia; Liebe, Bodo; Göb, Eva; Alsheimer, Manfred; Benavente, Ricardo; de Boer, Esther; Novak, Ivana; Höög, Christer; Scherthan, Harry; Jessberger, Rolf

    2009-10-19

    Meiosis-specific mammalian cohesin SMC1beta is required for complete sister chromatid cohesion and proper axes/loop structure of axial elements (AEs) and synaptonemal complexes (SCs). During prophase I, telomeres attach to the nuclear envelope (NE), but in Smc1beta(-/-) meiocytes, one fifth of their telomeres fail to attach. This study reveals that SMC1beta serves a specific role at telomeres, which is independent of its role in determining AE/SC length and loop extension. SMC1beta is necessary to prevent telomere shortening, and SMC3, present in all known cohesin complexes, properly localizes to telomeres only if SMC1beta is present. Very prominently, telomeres in Smc1beta(-/-) spermatocytes and oocytes loose their structural integrity and suffer a range of abnormalities. These include disconnection from SCs and formation of large telomeric protein-DNA extensions, extended telomere bridges between SCs, ring-like chromosomes, intrachromosomal telomeric repeats, and a reduction of SUN1 foci in the NE. We suggest that a telomere structure protected from DNA rearrangements depends on SMC1beta. PMID:19841137

  14. Telomere length variations in aging and age-related diseases.

    Science.gov (United States)

    Rizvi, Saliha; Raza, Syed Tasleem; Mahdi, Farzana

    2014-01-01

    Telomeres are gene sequences present at chromosomal ends and are responsible for maintaining genome integrity. Telomere length is maximum at birth and decreases progressively with advancing age and thus is considered as a biomarker of chronological aging. This age associated decrease in the length of telomere is linked to various ageing associated diseases like diabetes, hypertension, Alzheimer's disease, cancer etc. and their associated complications. Telomere length is a result of combined effect of oxidative stress, inflammation and repeated cell replication on it, and thus forming an association between telomere length and chronological aging and related diseases. Thus, decrease in telomere length was found to be important in determining both, the variations in longevity and age-related diseases in an individual. Ongoing and progressive research in the field of telomere length dynamics has proved that aging and age-related diseases apart from having a synergistic effect on telomere length were also found to effect telomere length independently also. Here a short description about telomere length variations and its association with human aging and age-related diseases is reviewed.

  15. Telomerase activity and telomere length in human hepatocellular carcinoma.

    Science.gov (United States)

    Huang, G T; Lee, H S; Chen, C H; Chiou, L L; Lin, Y W; Lee, C Z; Chen, D S; Sheu, J C

    1998-11-01

    Telomerase activity is activated and telomere length altered in various types of cancers, including hepatocellular carcinoma (HCC). A total of 39 HCC tissues and the corresponding non-tumour livers were analysed and correlated with clinical parameters. Telomere length was determined by terminal restriction fragment assay, and telomerase activity was assayed by telomeric repeat amplification protocol. Telomerase activity was positive in 24 of the 39 tumour tissues (1.15-285.13 total product generated (TPG) units) and in six of the 39 non-tumour liver tissues (1.05-1.73 TPG units). In the 28 cases analysed for telomere length, telomere length was shortened in 11 cases, lengthened in six cases, and unaltered in 11 cases compared with non-tumour tissues. Neither telomere length nor telomerase activity was correlated to any clinical parameters. PMID:10023320

  16. Chromatin features of plant telomeric sequences at terminal versus internal positions

    Directory of Open Access Journals (Sweden)

    Eva eMajerová

    2014-11-01

    Full Text Available Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation towards distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich and ARRET (C-rich were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.

  17. Telomeres, NAFLD and Chronic Liver Disease.

    Science.gov (United States)

    Donati, Benedetta; Valenti, Luca

    2016-01-01

    Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease. PMID:26999107

  18. A different approach to telomere analysis with ddPRINS in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Palanduz, Sukru; Serakinci, Nedime; Cefle, Kivanc;

    2006-01-01

    in acute leukemias where the cell turnover is high. B-cell chronic lymphocytic leukemia (CLL) is a particularly interesting haematological malignancy in regard to telomere dynamics because most of the malignant cells in CLL are mitotically inactive. In this study, we analysed the telomere length......Telomeric sequences, located at the very end of the chromosomes, compensate for the chromosomal shortening as it happens after each round of cell division. Telomeric sequences influence the progress of cellular senescence and cancer progression. It has been reported that telomeres are shortened...... in patients with B-cell CLL in a comparison with the control group by using ddPRINS technique. Twenty patients with CLL and four healthy donors as a control group were included. We found short telomeres and no detectable telomeric repeats at the sites of chromosome fusion. We hypothesise that the telomeric...

  19. Telomeres: Hallmarks of radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ayouaz, A.; Raynaud, C.; Heride, C.; Revaud, D.; Sabatier, L. [CEA, DSV, IRCM/SRO, F-92265 Fontenay Aux Roses (France)

    2008-07-01

    Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage.This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplifying event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells. (authors)

  20. Telomeric RNAs are essential to maintain telomeres.

    Science.gov (United States)

    Montero, Juan José; López de Silanes, Isabel; Graña, Osvaldo; Blasco, Maria A

    2016-01-01

    Telomeres are transcribed generating long non-coding RNAs known as TERRA. Deciphering the role of TERRA has been one of the unsolved issues of telomere biology in the past decade. This has been, in part, due to lack of knowledge on the TERRA loci, thus preventing functional genetic studies. Here, we describe that long non-coding RNAs with TERRA features are transcribed from the human 20q and Xp subtelomeres. Deletion of the 20q locus by using the CRISPR-Cas9 technology causes a dramatic decrease in TERRA levels, while deletion of the Xp locus does not result in decreased TERRA levels. Strikingly, 20q-TERRA ablation leads to dramatic loss of telomere sequences and the induction of a massive DNA damage response. These findings identify chromosome 20q as a main TERRA locus in human cells and represent the first demonstration in any organism of the essential role of TERRA in the maintenance of telomeres. PMID:27531349

  1. PML body meets telomere

    OpenAIRE

    Chung, Inn; Osterwald, Sarah; Deeg, Katharina I.; Rippe, Karsten

    2012-01-01

    The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active. The molecular mechanism of the ALT pathway remains elusive. In particular, the role of characteristic complexes of promyelocytic leukemia nuclear bodies (PML-NBs) with telomeres, the ALT-associated PML-NBs (APBs), is curren...

  2. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka-Sugiyama, Rie [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugiyama, Tomoyasu, E-mail: sugiyamt@biol.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  3. Computel: computation of mean telomere length from whole-genome next-generation sequencing data.

    Science.gov (United States)

    Nersisyan, Lilit; Arakelyan, Arsen

    2015-01-01

    Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease.

  4. Selaginella moellendoffii telomeres: conserved and unique features in an ancient land plant lineage

    Directory of Open Access Journals (Sweden)

    Eugene V Shakirov

    2012-07-01

    Full Text Available Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendoffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. moellendorffii and found it to consist of TTTAGGG repeats, typical of most plants. Telomere tracts in S. moellendorffii range from 1-5.5 kb, closely resembling Arabidopsis thaliana. We identified several S. moellendorffii genes encoding sequence homologues of proteins involved in telomere maintenance in other organisms, including CST complex components and the telomere-binding proteins POT1 and TRFL. Notable sequence similarities and differences were uncovered among the telomere-related genes in some of the plant lineages. Taken together, the data indicate that comparative analysis of the telomere complex in early diverging land plants such as S. moellendorffii and green algae will yield important insights into the evolution of telomeres and their protein constituents.

  5. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells.

    Science.gov (United States)

    Medves, Sandrine; Auchter, Morgan; Chambeau, Laetitia; Gazzo, Sophie; Poncet, Delphine; Grangier, Blandine; Verney, Aurélie; Moussay, Etienne; Ammerlaan, Wim; Brisou, Gabriel; Morjani, Hamid; Géli, Vincent; Palissot, Valérie; Berchem, Guy; Salles, Gilles; Wenner, Thomas

    2016-07-01

    Cancer cells protect their telomere ends from erosion through reactivation of telomerase or by using the Alternative Lengthening of Telomere (ALT) mechanism that depends on homologous recombination. Chronic lymphocytic leukaemia (CLL) B cells are characterized by almost no telomerase activity, shelterin deregulation and telomere fusions. To characterize telomeric maintenance mechanisms in B-CLL patients, we measured their telomere length, telomerase expression and the main hallmarks of the ALT activity i.e. C-circle concentration, an extra-chromosomal telomere repeat (ECTR), and the level of telomeric sister chromatid exchange (T-SCE) rate. Patients showed relative homogenous telomere length although almost no TERT transcript and nearly no C-circle were evidenced. Nevertheless, compared with normal B cells, B-CLL cells showed an increase in T-SCE rate that was correlated with a strong down-regulation of the topoisomerase III alpha (TOP3A) expression, involved in the dissolution of Holliday Junctions (HJ), together with an increased expression of SLX1A, SLX4, MUS81 and GEN1, involved in the resolution of HJ. Altogether, our results suggest that the telomere maintenance mechanism of B-CLL cells do not preferentially use telomerase or ALT. Rather, the rupture of the dissolvasome/resolvasome balance may increase telomere shuffling that could homogenize telomere length, slowing telomere erosion in this disease. PMID:26970083

  6. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  7. Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction.

    Science.gov (United States)

    Sakellariou, Despoina; Chiourea, Maria; Raftopoulou, Christina; Gagos, Sarantis

    2013-11-01

    Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth. PMID:24339742

  8. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  9. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P;

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... analysis in 548 same-sex Danish twins (274 pairs) aged 73-94 years, of whom 204 pairs experienced the death of one or both co-twins during 9-10 years of follow-up (1997-2007). From the terminal restriction fragment length (TRFL) distribution, the authors obtained the mean TRFL (mTRFL) and the mean values...... of the shorter 50% (mTRFL(50)) and shortest 25% (mTRFL(25)) of TRFLs in the distribution and computed the mode of TRFL (MTRFL). They analyzed the proportions of twin pairs in which the co-twin with the shorter telomeres died first. The proportions derived from the intrapair comparisons indicated that the shorter...

  10. Telomere Maintenance through Spatial Control of Telomeric Proteins▿

    OpenAIRE

    Chen, Liuh-Yow; Liu, Dan; Songyang, Zhou

    2007-01-01

    The six human telomeric proteins TRF1, TRF2, RAP1, TIN2, POT1, and TPP1 can form a complex called the telosome/shelterin, which is required for telomere protection and length control. TPP1 has been shown to regulate both POT1 telomere localization and telosome assembly through its binding to TIN2. It remains to be determined where such interactions take place and whether cellular compartmentalization of telomeric proteins is important for telomere maintenance. We systematically investigated h...

  11. Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells

    OpenAIRE

    Morrish, Tammy A.; Greider, Carol W

    2009-01-01

    Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase-some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we us...

  12. P53与端粒重复序列结合蛋白质1的体外相互作用%The molecular interaction between P53 and telomeric repeat binding protein 1 in vitro

    Institute of Scientific and Technical Information of China (English)

    李玲; 张波; 邹万忠; 郑杰

    2004-01-01

    目的:通过分析端粒主要结合蛋白中端粒重复序列结合蛋白质1(Telomeric repeat binding protein 1,TRBP1)与P53的体外结合,探讨P53通过端粒途径调节细胞增殖、衰老和凋亡的分子机制.方法:谷胱甘肽S转移酶(glutathione S-transferase,GST)和人P53-GST融合蛋白经大肠杆菌表达、谷胱甘肽-SepharoseTM4B纯化后,和人乳腺癌细胞MCF-7细胞蛋白进行体外结合反应(pull down),Western blot检测反应物中P53和TRBP1的结合.融合蛋白中人P53包括野生型(1~393)、C端缺失体P53 N5(2~293)、N端缺失体P53 2C(95~393)、175单个氨基酸突变体P53 R175H(R→H).结果:聚丙烯酰胺凝胶电泳和考马斯亮蓝R250染色显示,纯化的GST和4种P53-GST蛋白纯度在90%以上,且分子量与预计的完全一致.TRBP1的Western blot显示,野生型P53和P53-R175H均能沉淀MCF-7中的TRBP1,且结合力相似,而单独的GST则无沉淀TRBP1的作用.与野生型P53和P53 R175H相比,P53 2C与TRBP1的结合力明显增加,P53 N5与TRBP1的结合力明显减弱.结论:P53和TRBP1可以直接体外结合,P53的C端(293~393)是与TRBP1结合的结构域.P53和TRBP1结构域依赖性的结合可能与端粒动态变化所诱导的细胞活动有关.

  13. Human Rap1 modulates TRF2 attraction to telomeric DNA

    OpenAIRE

    Janoušková Eliška; Nečasová Ivona; Pavloušková Jana; Zimmermann Michal; Hluchý Milan; Marini Palomeque María Victoria; Nováková Monika; Hofr Ctirad

    2015-01-01

    More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1-TRF2 complex is a critical part of shelterin as it suppresses homology-directed...

  14. Short telomeres initiate telomere recombination in primary and tumor cells.

    Directory of Open Access Journals (Sweden)

    Tammy A Morrish

    2009-01-01

    Full Text Available Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase-some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR-/- and Emumyc+mTR-/- and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR-/- tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR-/- cells that had short telomeres. Using mouse mTR+/- and human hTERT+/- primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.

  15. Visualization of Telomere Integrity and Function In Vitro and In Vivo Using Immunofluorescence Techniques

    OpenAIRE

    Cesare, Anthony J.; Heaphy, Christopher M.; O’Sullivan, Roderick J.

    2015-01-01

    In cancer cells, telomere length maintenance occurs largely via the direct synthesis of TTAGGG repeats at chromosome ends by telomerase, or less frequently by the recombination-dependent alternative lengthening of telomeres (ALT) pathway. The latter is characterized by the atypical clustering of telomeres within promyelocytic leukemia (PML) nuclear bodies, which harbor proteins that are linked with DNA repair and recombination activity. For this reason, it is speculated that these associated ...

  16. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres.

    Science.gov (United States)

    Yu, Eun Young; Kojic, Milorad; Holloman, William K; Lue, Neal F

    2013-07-01

    Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research.

  17. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Benjamin O Farnung

    Full Text Available RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA. Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.

  18. Telomerers rolle ved aldersbetingede sygdomme

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are specialized DNA structures, protecting the ends of linear chromosomes. The association between telomeres and cellular aging is well-established, and it has been shown that there is a negative correlation between telomere length and chronological age for many types of human tissue....... On the other hand, the association between telomere length and mortality is poor. Nevertheless, it has been suggested that telomeres may play a role in the development of many aging-related diseases. This has led to attempts to develop telomere-elongating treatment....

  19. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres.

    Science.gov (United States)

    Cusanelli, Emilio; Romero, Carmina Angelica Perez; Chartrand, Pascal

    2013-09-26

    Elongation of a short telomere depends on the action of multiple telomerase molecules, which are visible as telomerase RNA foci or clusters associated with telomeres in yeast and mammalian cells. How several telomerase molecules act on a single short telomere is unknown. Herein, we report that the telomeric noncoding RNA TERRA is involved in the nucleation of telomerase molecules into clusters prior to their recruitment at a short telomere. We find that telomere shortening induces TERRA expression, leading to the accumulation of TERRA molecules into a nuclear focus. Simultaneous time-lapse imaging of telomerase RNA and TERRA reveals spontaneous events of telomerase nucleation on TERRA foci in early S phase, generating TERRA-telomerase clusters. This cluster is subsequently recruited to the short telomere from which TERRA transcripts originate during S phase. We propose that telomere shortening induces noncoding RNA expression to coordinate the recruitment and activity of telomerase molecules at short telomeres.

  20. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance.

    KAUST Repository

    Burla, Romina

    2015-06-25

    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  1. Telomere Transcripts Target Telomerase in Human Cancer Cells.

    Science.gov (United States)

    Kreilmeier, Theresa; Mejri, Doris; Hauck, Marlene; Kleiter, Miriam; Holzmann, Klaus

    2016-01-01

    Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA), were identified as blocking telomerase activity (TA), a telomere maintenance mechanism (TMM), in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT) to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV) were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV) and human RNase P RNA H1 (hH1) promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%-3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3-2.6 fold increase in TERRA levels, and a decrease in TA of 25%-58%. Dominant-negative or small hairpin RNA (shRNA) viral expression against human telomerase reverse transcriptase (hTERT) results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length) were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase. PMID:27537914

  2. SYBR Green实时定量端粒重复序列扩增法检测端粒酶活性%Combined SYBR Green Real-Time with Telomeric Repeat Amplification Protocol (RQ-TRAP) to Detect Telomerase Activity

    Institute of Scientific and Technical Information of China (English)

    麻文青; 连福治; 汪金泉; 杨磊

    2014-01-01

    目的:采用实时定量端粒重复序列扩增法(RQ-TRAP法)检测不同细胞端粒酶活性。方法用RQ-TRAP和TRAP-ELISA两种方法同时检测12种细胞的端粒酶活性,并比较两种方法的检测结果。结果 RQ-TRAP方法能准确特异地检测系列稀释的293T细胞蛋白提取液的端粒酶活性,灵敏度可达8个细胞,扩增效率为98.92%。阴性对照组则未检测到端粒酶活性。RQ-TRAP方法测得12个细胞系中端粒酶的活性与TRAP-ELISA方法结果有较强相关性(r2=0.7625)。两种方法检测肿瘤细胞端粒酶活性均高于正常细胞。结论 RQ-TRAP方法检测端粒酶可行,比TRAP-ELISA方法成本低、时间短,且支持高通量,是一种新的可快速可靠定量端粒酶活性的方法。%Objective To establish methodology to detect telomerase activity based on real-time quantitative PCR technique combined with telomeric repeat amplification protocol (TRAP). Methods RQ-TRAP system was developed by combining real-time quantitative PCR technique with conventional TRAP method. Telomerase activity was assessed and compared by RQ-TRAP assay and TRAP connected with enzyme-linked immunosorbent assay (TRAP-ELISA) respectively in 12 kinds of cells. Results The RQ-TRAP method was both accurate and specified in measuring telomerase activity in a series dilution of protein extracts from 293T cells. The sensitivity of this method was 8 cells and the amplification efficiency was 98.92%. Telomerase activity was not detected in negative control group. Statistical analysis revealed a strong correlation between the two assays (r2=0.762 5). Conclusion The feasibility of RQ-TRAP was proved in this article. Compared with TRAP-ELISA, RQ-TRAP has many advantages. Apart from sample extraction and real-time PCR cycling, no other extra time-consuming steps are needed for telomerase quantification;RQ-TRAP is less costly and more rapid and reliable than TRAP-ELISA for quantification of telomerase

  3. Molecular cytogenetics studies in Reichardia tingetana: Physical mapping of heterochromatin, telomere repeats, and 5S and 45S rDNA by 4',6-diamidino-2-phenylindole and fluorescence in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    Magdy Hussein ABD EL-TWAB

    2012-01-01

    Molecular cytogenetics studies of A-T-rich regions,telomeres,and 5S and 45S rDNA sites on the chromosomes of Reichardia tingetana Roth (2n =16; diploid) were done using 4',6-diamidino-2-phenylindole (DAPI) and fluorescence in situ hybridization (FISH).The species were collected from three geographically isolated populations at Borg El Arab (salt marsh habitat),and Rashed and Shosha (sandy clay habitats) in Egypt.The three populations showed the chromosome number of all plants are diploid except for two tetraploid samples from Shosha.Plants from both Rashed and Shosha showed similarity in the distribution of six DAPI bands on six chromosomes,whereas those of Borg El Arab showed a distribution of 16 bands on 14 chromosomes.The FISH signals of the telomeres,and 5S and 45S rDNA,were at the telomeres of all chromosomes,two interstitial,and four terminal,respectively.The combination of DAPI and FISH showed colocalization of the DAPI bands with two 5S and two 45S rDNA loci.The increased number of DAPI bands in the cytotypes from the salt marsh habitat could indicate natural genetic adaptation through increasing the heterochromatin of A-T-rich regions.

  4. Telomere Rapid Deletion Regulates Telomere Length in Arabidopsis thaliana▿

    OpenAIRE

    Watson, J. Matthew; Dorothy E Shippen

    2006-01-01

    Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shorten...

  5. Mathematical model of alternative mechanism of telomere length maintenance

    Science.gov (United States)

    Kollár, Richard; Bod'ová, Katarína; Nosek, Jozef; Tomáška, L'ubomír

    2014-03-01

    Biopolymer length regulation is a complex process that involves a large number of biological, chemical, and physical subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres—nucleoprotein structures at the ends of linear chromosomes consisting of tandemly repeated DNA sequences and a specialized set of proteins. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady-state approximation. The detailed treatment of kinetic rates yields explicit formulas for expected size distributions of telomeres that demonstrate the key role played by the J factor, a quantitative measure of bending of polymers. The results are in agreement with experimental data and point out interesting phenomena: an appearance of very long telomeric circles if the total telomere density exceeds a critical value (excess mass) and a nonlinear response of the telomere size distributions to the amount of telomeric DNA in the system. The results can be of general importance for understanding dynamics of telomeres in telomerase-independent systems as this mode of telomere maintenance is similar to the situation in tumor cells lacking telomerase activity. Furthermore, due to its universality, the model may also serve as a prototype of an interaction between linear and circular DNA structures in various settings.

  6. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes.

    Science.gov (United States)

    Wang, Zhuo; Lieberman, Paul M

    2016-08-01

    Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.

  7. Telomere dynamics in a long-lived bird, the barnacle goose

    Directory of Open Access Journals (Sweden)

    Pauliny Angela

    2012-12-01

    Full Text Available Abstract Background Theories of ageing predict a trade-off between metabolism, reproduction, and maintenance. Species with low investment in early reproduction are thus expected to be able to evolve more efficient maintenance and repair mechanisms, allowing for a longer potential life span (intrinsic longevity. The erosion of telomeres, the protective caps at the ends of linear chromosomes, plays an important role in cellular and organismal senescence, signalling the onset of age-related disease due to accumulation of unrepaired somatic damage. Using extensive longitudinal data from a long-term study of a natural population of barnacle geese Branta leucopsis, we investigated individual rates of telomere length changes over two years in 34 birds between 0 and 22 years of age, covering almost 80% of the species’ lifespan. Results We show that telomeres in this long-lived bird are very well maintained, as theoretically expected, with an average loss rate of only 5 base pairs per year among adults. We thus found no significant relationship between change in telomere length and age. However, telomeres tended to shorten at a faster pace in juveniles compared to adults. For the first time, we demonstrate a faster telomere attrition rate in females compared to males. We found no correlation between telomere loss rate and adult survival or change in body mass. Conclusions Our results add further support for a link between longevity and telomere maintenance, and highlight the complexities of telomere dynamics in natural populations.

  8. Childhood Physical and Sexual Abuse History and Leukocyte Telomere Length among Women in Middle Adulthood.

    Directory of Open Access Journals (Sweden)

    Susan M Mason

    Full Text Available Abuse victimization in childhood is associated with a variety of age-related cardiometabolic diseases, but the mechanisms remain unknown. Telomeres, which form the protective caps at the ends of chromosomes, have been proposed as measures of biological age, and a growing body of research suggests that telomere attrition may help to explain relationships between stress and cardiometabolic degradation. We examined the association between childhood abuse victimization and leukocyte telomere length among 1,135 participants in the Nurses' Health Study II (NHSII.The NHSII ascertained physical and sexual child abuse histories in 2001. Telomere length was measured in genomic DNA extracted from peripheral blood leukocytes collected between 1996 and 1999. The ratio of telomere repeat copy number to a single gene copy number (T/S was determined by a modified version of the quantitative real-time PCR telomere assay. Telomere length was log-transformed and corrected for assay variation across batch. We regressed telomere length on childhood abuse exposure variables and covariates using linear regression.We observed a reduction in telomere length associated with moderate physical abuse versus no physical abuse, but there was no evidence of a dose-response relationship for increased severity of physical abuse. No associations were noted for sexual abuse.We found no evidence of an association between severity of childhood physical or sexual abuse and leukocyte telomere length in the NHSII.

  9. Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae).

    Science.gov (United States)

    Souza, Gustavo; Vanzela, Andre L L; Crosa, Orfeo; Guerra, Marcelo

    2016-04-01

    The genera Nothoscordum and Ipheion (Allioideae, Amaryllidaceae) are cytologically characterized by a dysploid series with variable numbers of metacentric and acrocentric chromosomes typical of karyotypes rearranged by Robertsonian translocations (RT). Since they have large chromosomes, low diploid numbers, and possess two telomeric motifs [the vertebrate-type (TTAGGG) n and the Arabidopsis-type (TTTAGGG) n ] they are suitable for investigating the occurrence and possible role of interstitial telomeric sites (ITS) associated with RT. We analyzed the distributions of telomeric sites in 12 species of Nothoscordum and Ipheion and found that both telomeric probes colocalized in all chromosome termini. Cloning and sequencing PCR products obtained using both telomeric primers simultaneously revealed long stretches of (TTAGGG) n and (TTTAGGG) n sequences together with degenerated telomeric sequences. Most acrocentric chromosomes have a 45S rDNA site at the terminal region of the short arms adjacent to the most distal telomeric sites. Telomeric signals were found at all chromosome ends, but ITS were also detected in a few proximal and subterminal regions in some Nothoscordum species. Although RT are common in this group of plants, our findings suggest that proximal positioning of telomeric motifs are not necessarily related to that kind of rearrangement. Rather, transposition of telomeric sequences followed by amplification, could better explain the presence of (TTAGGG) n and (TTTAGGG) n repeats at those sites. Furthermore, a few small interstitial sites found in some Nothoscordum species indicate that dispersion of these sequences was not restricted to the proximal region.

  10. TERRA-Reinforced Association of LSD1 with MRE11 Promotes Processing of Uncapped Telomeres

    Directory of Open Access Journals (Sweden)

    Antonio Porro

    2014-02-01

    Full Text Available Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2, telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3′ telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.

  11. Visualization of Telomere Integrity and Function In Vitro and In Vivo Using Immunofluorescence Techniques.

    Science.gov (United States)

    Cesare, Anthony J; Heaphy, Christopher M; O'Sullivan, Roderick J

    2015-01-01

    In cancer cells, telomere length maintenance occurs largely via the direct synthesis of TTAGGG repeats at chromosome ends by telomerase, or less frequently by the recombination-dependent alternative lengthening of telomeres (ALT) pathway. The latter is characterized by the atypical clustering of telomeres within promyelocytic leukemia (PML) nuclear bodies, which harbor proteins that are linked with DNA repair and recombination activity. For this reason, it is speculated that these associated PML bodies represent the sites of the recombination that maintains telomere length. The protocols described here can be employed for the routine investigation of the structural integrity of telomeres and the association of proteins at telomeres in normal cells, challenged cells, and archived formalin-fixed paraffin-embedded clinical tissue specimens that may have activated the ALT pathway. PMID:26132175

  12. Primary Studies on Cotton Telomere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Arabidopsis-type telomere sequence was amplified and cloned using the primers designed from the fragment which contained the telomere sequence in an Arabidopsis BAC.In situ hybridizations with cotton metaphase chromosomes,using the telomere as probe,it indicated that the signals

  13. Ticking Telomeres/Telltale Telomerase.

    Science.gov (United States)

    Biermann, Carol A.

    1997-01-01

    Discusses telomeres, complexes of DNA and protein that form the chromatin at the ends of chromosomes. Highlights telomeres as controllers of chromosome integrity, expendable telomeres, DNA replication requirements and their consequences, protection of structural genes, telomerase as indicators of immortality, cancer cells and other immortals, and…

  14. ALT Telomeres borrow from meiosis

    OpenAIRE

    Arnoult, Nausica; Karlseder, Jan

    2014-01-01

    The clustering of telomeres is required for the homologous recombination events that maintain chromosome ends in cells relying on alternative lengthening of telomeres (ALT). New data emerged to demonstrate that damage signaling at telomeres induces directional movement and synapsis, driven by the machinery responsible for recombination in meiosis.

  15. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  16. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    Science.gov (United States)

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.

  17. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    Science.gov (United States)

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. PMID:26485466

  18. Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants

    OpenAIRE

    Eisenberg, Dan T. A.; Hayes, M. Geoffrey; Kuzawa, Christopher W.

    2012-01-01

    Telomeres are repeating DNA sequences at the ends of chromosomes that protect and buffer genes from nucleotide loss as cells divide. Telomere length (TL) shortens with age in most proliferating tissues, limiting cell division and thereby contributing to senescence. However, TL increases with age in sperm, and, correspondingly, offspring of older fathers inherit longer telomeres. Using data and samples from a longitudinal study from the Philippines, we first replicate the finding that paternal...

  19. Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach.

    Science.gov (United States)

    Delany, M E; Gessaro, T M; Rodrigue, K L; Daniels, L M

    2007-01-01

    Four mega-telomere loci were mapped to chicken chromosomes 9, 16, 28, and the W sex chromosome by dual-color fluorescence in situ hybridization using a telomeric sequence probe and BAC clones previously assigned to chicken chromosomes. The in-common features of the mega-telomere chromosomes are that microchromosomes are involved rather than macrochromosomes; in three cases (9, 16, 28) acrocentrics are involved with the mega-telomeres mapping to the p arms. Three of the four chromosomes (9, 16, W) encode tandem repeats which in two cases (9 and 16) involve the ribosomal DNA arrays (the 5S and 18S-5.8S-28S gene repeats, respectively). All involved chromosomes have a typical-sized telomere on the opposite terminus. Intra- and interindividual variation for mega-telomere distribution are discussed in terms of karyotype abnormalities and the potential for mitotic instability of some telomeres. The diversity and distribution of telomere array quantity in the chicken genome should be useful in contributing to research related to telomere length regulation - how and by what mechanism genomes and individual chromosomes establish and maintain distinct sets of telomere array sizes, as well as for future studies related to stability of the chicken genome affecting development, growth, cellular lifespan and disease. An additional impact of this study includes the listing of BAC clones (26 autosomal and six W BACs tested) that were cytogenetically verified; this set of BACs provide a useful tool for future cytogenetic analyses of the microchromosomes. PMID:17675845

  20. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Beomseok; Lee, Junho

    2016-01-01

    Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)(1). Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT(2). Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length. On the contrary, fluorescence in situ hybridization (FISH) can provide the information of the individual telomeres in cells. Here, we provide protocols and representative results of the method to determine telomere length of C. elegans by fluorescent in situ hybridization. This method provides a simple, but powerful, in situ procedure that does not cause noticeable damage to morphology. By using fluorescently labeled peptide nucleic acid (PNA) and digoxigenin-dUTP-labeled probe, we were able to visualize two different repetitive sequences: telomere repeats and template of ALT (TALT) in C. elegans embryos and gonads. PMID:27583462

  1. Donor Telomere Length SAA

    Science.gov (United States)

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  2. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  3. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings.

    Directory of Open Access Journals (Sweden)

    Owen M Wolkowitz

    Full Text Available BACKGROUND: Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of "accelerated aging" in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD, whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation. METHODOLOGY: Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio and inflammation (IL-6. Analyses were controlled for age and sex. PRINCIPAL FINDINGS: The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05. Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration was 281 base pairs shorter than that in controls (p<0.05, corresponding to approximately seven years of "accelerated cell aging." Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01 and in the controls (p<0.05 and with inflammation in the depressed subjects (p<0.05. CONCLUSIONS: These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression

  4. Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis.

    Science.gov (United States)

    Oh, Bong-Kyeong; Kim, Young-Joo; Park, Chanil; Park, Young Nyun

    2005-01-01

    The telomeric repeat-binding factor 1 (TRF1), TRF2, and the TRF1-interacting nuclear protein 2 (TIN2) are involved in telomere maintenance. We describe the regulation of expression of these genes along with their relationship to telomere length in hepatocarcinogenesis. The transcriptional expression of these genes, TRF1 protein, and telomere length was examined in 9 normal livers, 14 chronic hepatitis, 24 liver cirrhosis, 5 large regenerative nodules, 14 low-grade dysplastic nodules (DNs), 7 high-grade DNs, 10 DNs with hepatocellular carcinoma (HCC) foci, and 31 HCCs. The expression of TRF1, TRF2, TIN2 mRNA, and TRF1 protein was gradually increased according to the progression of hepatocarcinogenesis with a marked increase in high-grade DNs and DNs with HCC foci and a further increase in HCCs. There was a gradual shortening of telomere during hepatocarcinogenesis with a significant reduction in length in DNs. Most nodular lesions (52 of 67) had shorter telomeres than their adjacent chronic hepatitis or liver cirrhosis, and the telomere lengths were inversely correlated with the mRNA level of these genes (P HCC foci. In conclusion, TRF1, TRF2, and TIN2 might be involved in multistep hepatocarcinogenesis by playing crucial roles in telomere shortening. PMID:15632001

  5. Alternative lengthening of telomeres: remodeling the telomere architecture

    OpenAIRE

    Conomos, Dimitri; Hilda A Pickett; Reddel, Roger R

    2013-01-01

    To escape from the normal limits on proliferative potential, cancer cells must employ a means to counteract the gradual telomere attrition that accompanies semi-conservative DNA replication. While the majority of human cancers do this by up-regulating telomerase enzyme activity, most of the remainder use a homologous recombination-mediated mechanism of telomere elongation known as alternative lengthening of telomeres (ALT). Many molecular details of the ALT pathway are unknown, and even less ...

  6. Detection of alternative lengthening of telomeres by telomere quantitative PCR

    OpenAIRE

    Lau, Loretta M. S.; Dagg, Rebecca A.; Henson, Jeremy D.; Au, Amy Y.M.; Royds, Janice A; Reddel, Roger R

    2012-01-01

    Alternative lengthening of telomeres (ALT) is one of the two known telomere length maintenance mechanisms that are essential for the unlimited proliferation potential of cancer cells. Existing methods for detecting ALT in tumors require substantial amounts of tumor material and are labor intensive, making it difficult to study prevalence and prognostic significance of ALT in large tumor cohorts. Here, we present a novel strategy utilizing telomere quantitative PCR to diagnose ALT. The protoco...

  7. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer.

    Science.gov (United States)

    Mirabello, Lisa; Huang, Wen-Yi; Wong, Jason Y Y; Chatterjee, Nilanjan; Reding, Douglas; Crawford, E David; De Vivo, Immaculata; Hayes, Richard B; Savage, Sharon A

    2009-08-01

    Telomeres consist of nucleotide repeats and a protein complex at chromosome ends that are essential to maintaining chromosomal integrity. Several studies have suggested that subjects with shorter telomeres are at increased risk of bladder and lung cancer. In comparison to normal tissues, telomeres are shorter in high-grade intraepithelial neoplasia and prostate cancer. We examined prostate cancer risk associated with relative telomere length as determined by quantitative PCR on prediagnostic buffy coat DNA isolated from 612 advanced prostate cancer cases and 1049 age-matched, cancer-free controls from the PLCO Cancer Screening Trial. Telomere length was analyzed as both a continuous and a categorical variable with adjustment for potential confounders. Statistically significant inverse correlations between telomere length, age and smoking status were observed in cases and controls. Telomere length was not associated with prostate cancer risk (at the median, OR = 0.85, 95% CI: 0.67, 1.08); associations were similar when telomere length was evaluated as a continuous variable or by quartiles. The relationships between telomere length and inflammation-related factors, diet, exercise, body mass index, and other lifestyle variables were explored since many of these have previously been associated with shorter telomeres. Healthy lifestyle factors (i.e., lower BMI, more exercise, tobacco abstinence, diets high in fruit and vegetables) tended to be associated with greater telomere length. This study found no statistically significant association between leukocyte telomere length and advanced prostate cancer risk. However, correlations of telomere length with healthy lifestyles were noted, suggesting the role of these factors in telomere biology maintenance and potentially impacting overall health status.

  8. Telomere Shortening Unrelated to Smoking, Body Weight, Physical Activity, and Alcohol Intake

    DEFF Research Database (Denmark)

    Weischer, Maren; Bojesen, Stig E; Nordestgaard, Børge G

    2014-01-01

    Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross......-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first...... examination, short telomere length was associated with increased age (P for trend across quartiles = 3 × 10(-77)), current smoking (P = 8 × 10(-3)), increased body mass index (P = 7 × 10(-14)), physical inactivity (P = 4 × 10(-17)), but not with increased alcohol intake (P = 0.10). At the second examination...

  9. Alternative lengthening of telomeres: remodeling the telomere architecture

    Directory of Open Access Journals (Sweden)

    Dimitri eConomos

    2013-02-01

    Full Text Available To escape from the normal limits on proliferative potential, cancer cells must employ a means to counteract the gradual telomere attrition that accompanies semi-conservative DNA replication. While the majority of human cancers do this by up-regulating telomerase enzyme activity, most of the remainder use a homologous recombination-mediated mechanism of telomere elongation known as alternative lengthening of telomeres (ALT. Many molecular details of the ALT pathway are unknown, and even less is known regarding the mechanisms by which this pathway is activated. Here, we review current findings about telomere structure in ALT cells, including DNA sequence, shelterin content, and heterochromatic state. We speculate that remodeling of the telomere architecture may contribute to the emergence and maintenance of the ALT phenotype.

  10. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences.

    Science.gov (United States)

    Altschuler, Sarah E; Dickey, Thayne H; Wuttke, Deborah S

    2011-09-01

    The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.

  11. Telomere Transcripts Target Telomerase in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theresa Kreilmeier

    2016-08-01

    Full Text Available Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA, were identified as blocking telomerase activity (TA, a telomere maintenance mechanism (TMM, in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV and human RNase P RNA H1 (hH1 promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%–3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3–2.6 fold increase in TERRA levels, and a decrease in TA of 25%–58%. Dominant-negative or small hairpin RNA (shRNA viral expression against human telomerase reverse transcriptase (hTERT results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase.

  12. Rad59-facilitated acquisition of Y' elements by short telomeres delays the onset of senescence.

    Directory of Open Access Journals (Sweden)

    Dmitri Churikov

    2014-11-01

    Full Text Available Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1-3-like tracts present between subtelomeric X and Y' elements, which is followed by BIR-mediated non-reciprocal translocation of Y' element and terminal TG1-3 repeats from the donor end onto the shortened telomere. We found that choice of the Y' donor was not random, since both engineered telomere VII-L and native VI-R acquired Y' elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y' translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1-3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y' translocation events taking place during presenescence are genetically separable from Rad51-dependent Y' amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y' translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation.

  13. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  14. Parallel telomere shortening in multiple body tissues owing to malaria infection.

    Science.gov (United States)

    Asghar, Muhammad; Palinauskas, Vaidas; Zaghdoudi-Allan, Nadège; Valkiūnas, Gediminas; Mukhin, Andrey; Platonova, Elena; Färnert, Anna; Bensch, Staffan; Hasselquist, Dennis

    2016-08-17

    Several studies have shown associations between shorter telomere length in blood and weakened immune function, susceptibility to infections, and increased risk of morbidity and mortality. Recently, we have shown that malaria accelerates telomere attrition in blood cells and shortens lifespan in birds. However, the impact of infections on telomere attrition in different body tissues within an individual is unknown. Here, we tested whether malarial infection leads to parallel telomere shortening in blood and tissue samples from different organs. We experimentally infected siskins (Spinus spinus) with the avian malaria parasite Plasmodium ashfordi, and used real-time quantitative polymerase chain reaction (PCR) to measure telomere length in control and experimentally infected siskins. We found that experimentally infected birds showed faster telomere attrition in blood over the course of infection compared with control individuals (repeatedly measured over 105 days post-infection (DPI)). Shorter telomeres were also found in the tissue of all six major organs investigated (liver, lungs, spleen, heart, kidney, and brain) in infected birds compared with controls at 105 DPI. To the best of our knowledge, this is the first study showing that an infectious disease results in synchronous telomere shortening in the blood and tissue cells of internal organs within individuals, implying that the infection induces systemic stress. Our results have far-reaching implications for understanding how the short-term effects of an infection can translate into long-term costs, such as organ dysfunction, degenerative diseases, and ageing. PMID:27488651

  15. ALT telomeres get together with nuclear receptors.

    Science.gov (United States)

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  16. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity

    OpenAIRE

    Nandakumar, Jayakrishnan; Bell, Caitlin F.; Weidenfeld, Ina; Zaug, Arthur J.; Leinwand, Leslie A.; Cech, Thomas R.

    2012-01-01

    Human chromosome ends are capped by shelterin, a protein complex that protects the natural ends from being recognized as sites of DNA damage and also regulates the telomere-replicating enzyme, telomerase 1–3 . Shelterin includes the heterodimeric POT1-TPP1 protein, which binds the telomeric single-stranded DNA tail 4–9 . TPP1 has been implicated both in recruiting telomerase to telomeres and in stimulating telomerase processivity (the addition of multiple DNA repeats after a single primer-bin...

  17. Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast

    OpenAIRE

    LU, Jian; Liu, Yie

    2009-01-01

    Telomeres consist of short guanine-rich repeats. Guanine can be oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). 8-oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Δ) strain shows telomere lengthening that is dependent...

  18. Unwinding Protein Complexes in ALTernative Telomere Maintenance

    OpenAIRE

    Bhattacharyya, Saumitri; Sandy, April; Groden, Joanna

    2010-01-01

    Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA-binding proteins and a number of three dimensional nucleic acid structures including G-quartets and D-loops. A number of studies suggest that the BLM and WRN recQ-like helicases play important roles in recombination-mediated mechanisms of telomere elongation or Alternative Lengthening of Telomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and ...

  19. Long Telomeres Bypass the Requirement for Telomere Maintenance in Human Tumorigenesis

    OpenAIRE

    Taboski, Michael A. S.; Sealey, David C.F.; Dorrens, Jennifer; Tayade, Chandrakant; Dean H Betts; Harrington, Lea

    2012-01-01

    Despite the importance of telomere maintenance in cancer cell survival via the elongation of telomeres by telomerase reverse transcriptase (TERT) or alternativelengthening of telomeres (ALT), it had not been tested directly whether telomere maintenance is dispensable for human tumorigenesis. We engineered human tumor cells containing loxP-flanked hTERT to enable extensive telomere elongation prior to complete hTERT excision. Despite unabated telomere erosion, hTERT-excised cells formed tumors...

  20. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres

    OpenAIRE

    Muntoni, Alessandra; Neumann, Axel A.; Hills, Mark; Reddel, Roger R

    2008-01-01

    Alternative lengthening of telomeres (ALT) is a telomere length maintenance mechanism based on recombination, where telomeres use other telomeric DNA as a template for DNA synthesis. About 10% of all human tumors depend on ALT for their continued growth, and understanding its molecular details is critically important for the development of cancer treatments that target this mechanism. We have previously shown that telomeres of ALT-positive human cells can become lengthened via inter-telomeric...

  1. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres

    OpenAIRE

    Wang, Yisong; Erdmann, Natalie; Giannone, Richard J.; Wu, Jun; Gomez, Marla; Liu, Yie

    2005-01-01

    Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient...

  2. Association of BLM and BRCA1 during Telomere Maintenance in ALT Cells.

    Directory of Open Access Journals (Sweden)

    Samir Acharya

    Full Text Available Fifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom's syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere dysfunction. Although BLM associates with numerous DNA damage repair proteins including BRCA1 during DNA repair, the functional consequences of BLM-BRCA1 association in telomere maintenance are not completely understood. Our earlier work showed the involvement of BRCA1 in different mechanisms of ALT, and telomere shortening upon loss of BLM in ALT cells. In order to delineate their roles in telomere maintenance, we studied their association in telomere metabolism in cells using ALT. This work shows that BLM and BRCA1 co-localize with RAD50 at telomeres during S- and G2-phases of the cell cycle in immortalized human cells using ALT but not in cells using telomerase to maintain telomeres. Co-immunoprecipitation of BRCA1 and BLM is enhanced in ALT cells at G2. Furthermore, BRCA1 and BLM interact with RAD50 predominantly in S- and G2-phases, respectively. Biochemical assays demonstrate that full-length BRCA1 increases the unwinding rate of BLM three-fold in assays using a DNA substrate that models a forked structure composed of telomeric repeats. Our results suggest that BRCA1 participates in ALT through its interactions with RAD50 and BLM.

  3. The association between global DNA methylation and telomere length in a longitudinal study of boilermakers.

    Science.gov (United States)

    Wong, Jason Y Y; De Vivo, Immaculata; Lin, Xihong; Grashow, Rachel; Cavallari, Jennifer; Christiani, David C

    2014-04-01

    The objectives of this study were to determine if global DNA methylation, as reflected in LINE-1 and Alu elements, is associated with telomere length and whether it modifies the rate of telomeric change. A repeated-measures longitudinal study was performed with a panel of 87 boilermaker subjects. The follow-up period was 29 months. LINE-1 and Alu methylation was determined using pyrosequencing. Leukocyte relative telomere length was assessed via real-time qPCR. Linear-mixed models were used to estimate the association between DNA methylation and telomere length. A structural equation model (SEM) was used to explore the hypothesized relationship between DNA methylation, proxies of particulate matter exposure, and telomere length at baseline. There appeared to be a positive association between both LINE-1 and Alu methylation levels, and telomere length. For every incremental increase in LINE-1 methylation, there was a statistically significant 1.0 × 10(-1) (95% CI: 4.6 × 10(-2), 1.5 × 10(-1), P telomere length, controlling for age at baseline, current and past smoking status, work history, BMI (log kg/m(2) ) and leukocyte differentials. Furthermore, for every incremental increase in Alu methylation, there was a statistically significant 6.2 × 10(-2) (95% CI: 1.0 × 10(-2), 1.1 × 10(-1), P = 0.02) unit increase in relative telomere length. The interaction between LINE-1 methylation and follow-up time was statistically significant with an estimate -9.8 × 10(-3) (95% CI: -1.8 × 10(-2), -1.9 × 10(-3), P = 0.02); suggesting that the rate of telomeric change was modified by the degree of LINE-1 methylation. No statistically significant association was found between the cumulative PM exposure construct, with global DNA methylation and telomere length at baseline.

  4. Short telomere length and breast cancer risk: a study in sister sets.

    Science.gov (United States)

    Shen, Jing; Terry, Mary Beth; Gurvich, Irina; Liao, Yuyan; Senie, Ruby T; Santella, Regina M

    2007-06-01

    Telomeres consist of a tandem repeats of the sequence TTAGGG at the ends of chromosomes and play a key role in the maintenance of chromosomal stability. Previous studies indicated that short telomeres are associated with increased risk for human bladder, head and neck, lung, and renal cell cancer. We investigated the association between white blood cell telomere length and breast cancer risk among 268 family sets (287 breast cancer cases and 350 sister controls). Telomere length was assessed by quantitative PCR. The mean telomere length was shorter in cases (mean, 0.70; range, 0.03-1.95) than in unaffected control sisters (mean, 0.74; range, 0.03-2.29), but no significant difference was observed (P = 0.11). When subjects were categorized according to the median telomere length in controls (0.70), affected sisters had shorter telomeres compared with unaffected sisters after adjusting for age at blood donation and smoking status [odds ratio (OR), 1.3; 95% confidence interval (95% CI), 0.9-1.8], but the association was not statistically significant. The association by quartile of telomere length (Q4 shortest versus Q1 longest) also supported an increase in risk from shorter telomere length, although the association was not statistically significant (OR, 1.6; 95% CI, 0.9-2.7). This association was more pronounced among premenopausal women (OR, 2.1; 95% CI, 0.8-5.5) than postmenopausal women (OR, 1.3; 95% CI, 0.5-3.6 for Q4 versus Q1). If these associations are replicated in larger studies, they provide modest epidemiologic evidence that shortened telomere length may be associated with breast cancer risk.

  5. Primary Studies on Cotton Telomere

    Institute of Scientific and Technical Information of China (English)

    LING Jian; PENG Ren-hai; WANG Kun-bo; WANG Chun-ying; SONG Guo-li; LIU Fang; LI Shao-hui; ZHANG Xiang-di; WANG Yu-hong

    2008-01-01

    @@ The Arabidopsis -type telomere sequence was amplified and cloned using the primers designed from the fragment which contained the telomere sequence in an Arabidopsis BAC.In situ hybridizations with cotton metaphase chromosomes,using the telomere as probe,it indicated that the signals were located at all chromosome ends of 7 diploid and 2 tetraploid cotton species.To identify the signals of FISH,the genome DNA of Xinhai 7,digested by Bal31 kinetics,was used in this study.

  6. Long Telomeres Bypass the Requirement for Telomere Maintenance in Human Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael A.S. Taboski

    2012-02-01

    Full Text Available Despite the importance of telomere maintenance in cancer cell survival via the elongation of telomeres by telomerase reverse transcriptase (TERT or alternative lengthening of telomeres (ALT, it had not been tested directly whether telomere maintenance is dispensable for human tumorigenesis. We engineered human tumor cells containing loxP-flanked hTERT to enable extensive telomere elongation prior to complete hTERT excision. Despite unabated telomere erosion, hTERT-excised cells formed tumors in mice and proliferated in vitro for up to 1 year. Telomerase reactivation or ALT was not observed, and the eventual loss of telomeric signal coincided with loss of tumorigenic potential and cell viability. Crisis was averted via the reintroduction of active but not inactive hTERT. Thus, telomere maintenance is dispensable for human tumorigenesis when telomere reserves are long. Yet, despite telomere instability and the presence of oncogenic RAS, human tumors remain susceptible to crisis induced by critically short telomeres.

  7. Telomeric Heterochromatin in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Rosaura Hernandez-Rivas

    2010-01-01

    Full Text Available Until very recently, little was known about the chromatin structure of the telomeres and subtelomeric regions in Plasmodium falciparum. In yeast and Drosophila melanogaster, chromatin structure has long been known to be an important aspect in the regulation and functioning of these regions. Telomeres and subtelomeric regions are enriched in epigenetic marks that are specific to heterochromatin, such as methylation of lysine 9 of histone H3 and lysine 20 of histone H4. In P. falciparum, histone modifications and the presence of both the heterochromatin “writing” (PfSir2, PKMT and “reading” (PfHP1 machinery at telomeric and subtelomeric regions indicate that these regions are likely to have heterochromatic structure that is epigenetically regulated. This structure may be important for telomere functions such as the silencing of the var gene family implicated in the cytoadherence and antigenic variation of these parasites.

  8. Telomere-independent cellular senescence in human fetal cardiomyocytes

    OpenAIRE

    Ball, Andrew J.; Levine, F

    2005-01-01

    Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 population doublings, as determined by growth arrest, morphological changes and senescence-associated beta-galactosidase activity. Using the telomeric repeat amplification protocol assay...

  9. miR-155 drives telomere fragility in human breast cancer by targeting TRF1.

    Science.gov (United States)

    Dinami, Roberto; Ercolani, Cristiana; Petti, Eleonora; Piazza, Silvano; Ciani, Yari; Sestito, Rosanna; Sacconi, Andrea; Biagioni, Francesca; le Sage, Carlos; Agami, Reuven; Benetti, Roberta; Mottolese, Marcella; Schneider, Claudio; Blandino, Giovanni; Schoeftner, Stefan

    2014-08-01

    Telomeres consist of DNA tandem repeats that recruit the multiprotein complex shelterin to build a chromatin structure that protects chromosome ends. Although cancer formation is linked to alterations in telomere homeostasis, there is little understanding of how shelterin function is limited in cancer cells. Using a small-scale screening approach, we identified miR-155 as a key regulator in breast cancer cell expression of the shelterin component TERF1 (TRF1). miR-155 targeted a conserved sequence motif in the 3'UTR of TRF1, resulting in its translational repression. miR-155 was upregulated commonly in breast cancer specimens, as associated with reduced TRF1 protein expression, metastasis-free survival, and relapse-free survival in estrogen receptor-positive cases. Modulating miR-155 expression in cells altered TRF1 levels and TRF1 abundance at telomeres. Compromising TRF1 expression by elevating miR-155 increased telomere fragility and altered the structure of metaphase chromosomes. In contrast, reducing miR-155 levels improved telomere function and genomic stability. These results implied that miR-155 upregulation antagonizes telomere integrity in breast cancer cells, increasing genomic instability linked to poor clinical outcome in estrogen receptor-positive disease. Our work argued that miRNA-dependent regulation of shelterin function has a clinically significant impact on telomere function, suggesting the existence of "telo-miRNAs" that have an impact on cancer and aging. PMID:24876105

  10. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    Science.gov (United States)

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-01-01

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch. PMID:27578458

  11. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  12. Metastases suppressor NME2 associates with telomere ends and telomerase and reduces telomerase activity within cells.

    Science.gov (United States)

    Kar, Anirban; Saha, Dhurjhoti; Purohit, Gunjan; Singh, Ankita; Kumar, Parveen; Yadav, Vinod Kumar; Kumar, Pankaj; Thakur, Ram Krishna; Chowdhury, Shantanu

    2012-03-01

    Analysis of chromatin-immunoprecipitation followed by sequencing (ChIP-seq) usually disregards sequence reads that do not map within binding positions (peaks). Using an unbiased approach, we analysed all reads, both that mapped and ones that were not included as part of peaks. ChIP-seq experiments were performed in human lung adenocarcinoma and fibrosarcoma cells for the metastasis suppressor non-metastatic 2 (NME2). Surprisingly, we identified sequence reads that uniquely represented human telomere ends in both cases. In vivo presence of NME2 at telomere ends was validated using independent methods and as further evidence we found intranuclear association of NME2 and the telomere repeat binding factor 2. Most remarkably, results demonstrate that NME2 associates with telomerase and reduces telomerase activity in vitro and in vivo, and sustained NME2 expression resulted in reduced telomere length in aggressive human cancer cells. Anti-metastatic function of NME2 has been demonstrated in human cancers, however, mechanisms are poorly understood. Together, findings reported here suggest a novel role for NME2 as a telomere binding protein that can alter telomerase function and telomere length. This presents an opportunity to investigate telomere-related interactions in metastasis suppression.

  13. Telomere profiles and tumor-associated macrophages with different immune signatures affect prognosis in glioblastoma.

    Science.gov (United States)

    Hung, Noelyn A; Eiholzer, Ramona A; Kirs, Stenar; Zhou, Jean; Ward-Hartstonge, Kirsten; Wiles, Anna K; Frampton, Chris M; Taha, Ahmad; Royds, Janice A; Slatter, Tania L

    2016-03-01

    Telomere maintenance is a hallmark of cancer and likely to be targeted in future treatments. In glioblastoma established methods of identifying telomerase and alternative lengthening of telomeres leave a significant proportion of tumors with no defined telomere maintenance mechanism. This study investigated the composition of these tumors using RNA-Seq. Glioblastomas with an indeterminate telomere maintenance mechanism had an increased immune signature compared with alternative lengthening of telomeres and telomerase-positive tumors. Immunohistochemistry for CD163 confirmed that the majority (80%) of tumors with an indeterminate telomere maintenance mechanism had a high presence of tumor-associated macrophages. The RNA-Seq and immunostaining data separated tumors with no defined telomere maintenance mechanism into three subgroups: alternative lengthening of telomeres like tumors with a high presence of tumor-associated macrophages and telomerase like tumors with a high presence of tumor-associated macrophages. The third subgroup had no increase in tumor-associated macrophages and may represent a distinct category. The presence of tumor-associated macrophages conferred a worse prognosis with reduced patient survival times (alternative lengthening of telomeres with and without macrophages P=0.0004, and telomerase with and without macrophages P=0.013). The immune signatures obtained from RNA-Seq were significantly different between telomere maintenance mechanisms. Alternative lengthening of telomeres like tumors with macrophages had increased expression of interferon-induced proteins with tetratricopeptide repeats (IFIT1-3). Telomerase-positive tumors with macrophages had increased expression of macrophage receptor with collagenous structure (MARCO), CXCL12 and sushi-repeat containing protein x-linked 2 (SRPX2). Telomerase-positive tumors with macrophages were also associated with a reduced frequency of total/near total resections (44% vs >76% for all other subtypes

  14. Fanconi anemia proteins in telomere maintenance.

    Science.gov (United States)

    Sarkar, Jaya; Liu, Yie

    2016-07-01

    Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell. PMID:27118469

  15. Telomeres and Telomerase in the Radiation Response: implications for instability, reprogramming, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Brock James Sishc

    2015-11-01

    Full Text Available Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks; DSBs and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles telomeres and telomerase play in the response of human cells to ionizing radiations of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET gamma(γ-rays or high LET high charge, high energy (HZE particles, delivered either acutely or at low dose rates (LDR. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprogramming. Taken together, the results reported here establish the critical importance of

  16. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    Science.gov (United States)

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction.

  17. Cloning and Analysis of Telomere-associated Sequences of Ginkgo biloba L.

    Institute of Scientific and Technical Information of China (English)

    Liu Di; Lu Hai; Ji Fei-teng; Li Feng-lan; Guo Hui-hong

    2005-01-01

    Total genomic DNA was extracted from leaves of Ginkgo biloba L. by the method of hot CTAB. After determining quantification of DNA sample by microclorimetric spectrophotography, Arabidopsis-type telomere primer and Sau3A I cassette primer were used to isolate telomere-associated sequences from G. biloba L. by the method of cassette-ligation-mediated polymerase chain reaction (PCR). Using this method, two telomere-associated sequences, TAS 1 and TAS2, were isolated. The authors preformed Southern hybridization ofEcoR I -treated G. biloba genomic DNA with each clone. The hybridization pattern showed that the clones obtained were derived from G. biloba genomic DNA. There are the Arabidopsis-type TTTAGGG tandem repeats in telomeres of G.biloba.

  18. Increased chemosensitivity of paclitaxel by telomeric fusion-induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Seon Rang; Juhn, Kyoung Mi; Park, Jeong Eun; Ju, Yeun Jin; Yun, Mi Yong; Lee, Kee Ho [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Gil Hong; Kim, Joon [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    A telomere is a region of repetitive DNA at the end of chromosomes. They protect a cell's chromosomes from fusing with each other or rearranging and so cells are normally destroyed when their telomeres are consumed. Most normal somatic cells lose telomeric repeats after each cell division. Telomeric shortening in humans can induce replicative senescence which blocks cell division. This mechanism appears to prevent genomic instability by limiting the number of cell divisions. Telomerase is an attractive molecular target, since its activity has been found in more than 85% of human cancers. Combination therapy with chemotherapeutic agent is superior to single in overall response rate and progression free survival. In this study, we showed that telomerase null cells are more hypersensitive by paclitaxel treatment than at wild type cells.

  19. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    Science.gov (United States)

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction. PMID:26815240

  20. Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Raarup, Merete Krog; Nielsen, Morten Muhlig;

    2010-01-01

    G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate...... the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G......-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast...

  1. Nutrients, foods, dietary patterns and telomere length: Update of epidemiological studies and randomized trials.

    Science.gov (United States)

    Freitas-Simoes, Tania-Marisa; Ros, Emilio; Sala-Vila, Aleix

    2016-04-01

    Identifying simple strategies to prevent or delay age-associated pathologies is a major public health concern. Attrition of telomeres, chromatin structures that help maintain genome stability, leads to cell death or senescence. Thus telomere length is a reliable hallmark of biological aging and the risk of developing age-related chronic diseases through common oxidation and inflammation mechanisms. Variability in telomere shortening that is independent of chronological age suggests that it is a modifiable factor, which may be explained in part by lifestyle variables such as smoking, adiposity, physical exercise, and diet. Here we summarize data from published studies focused on nutrition (nutrients, foods, and dietary patterns) and telomere length. Research on the topic is incipient and most data comes from epidemiologic studies, often cross-sectional in design. Consistent with well-known evidence of benefit or harm for chronic age-related diseases, dietary antioxidants and consumption of antioxidant-rich, plant-derived foods help maintain telomere length. In contrast, total and saturated fat intake and consumption of refined flour cereals, meat and meat products, and sugar-sweetened beverages relate to shorter telomeres. Data on alcohol and dairy products is controversial. There is evidence that adherence to the Mediterranean diet is associated with longer telomeres. Randomized clinical trials are limited to seafood-derived long-chain n-3 polyunsaturated fatty acids, with promising results. To fill the many gaps in our knowledge of the aging process and confirm nutrition as a useful tool to counteract biological aging more research is warranted, particularly observational studies using repeated measurements of telomere length and randomized trials of foods and dietary patterns with sequential telomere analyses.

  2. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine.

    Science.gov (United States)

    Zhang, Yong-Wei; Zhang, Zhi-Xiang; Miao, Ze-Hong; Ding, Jian

    2008-03-01

    Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.

  3. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination

    OpenAIRE

    Dmitri Churikov; Ferose Charifi; Nadine Eckert-Boulet; Sonia Silva; Marie-Noelle Simon; Michael Lisby; Vincent Géli

    2016-01-01

    In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs). However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier)-targeted ubiquitin ligase (STUbL) Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocaliz...

  4. Recombination at Long Mutant Telomeres Produces Tiny Single- and Double-Stranded Telomeric Circles

    OpenAIRE

    Groff-Vindman, Cindy; Cesare, Anthony J.; Natarajan, Shobhana; Griffith, Jack D.; McEachern, Michael J.

    2005-01-01

    Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small (∼100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a...

  5. Alternative Lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin.

    OpenAIRE

    Episkopou, Charikleia; Draskovic, Irena; Van Beneden, Amandine; Tilman, Gaëlle; Mattiussi, Marina; Gobin, Matthieu; Arnoult, Nausica; Londoño-Vallejo, Arturo; Decottignies, Anabelle

    2014-01-01

    International audience Proper telomeric chromatin configuration is thought to be essential for telomere homeostasis and stability. Previous studies in mouse suggested that loss of heterochromatin marks at telomeres might favor onset of Alternative Lengthening of Telomeres (ALT) pathway, by promoting homologous recombination. However, analysis of chromatin status at human ALT telomeres has never been reported. Here, using isogenic human cell lines and cellular hybrids, which rely either on ...

  6. Topoisomerase IIIα is required for normal proliferation and telomere stability in alternative lengthening of telomeres

    OpenAIRE

    Temime-Smaali, Nassima; Guittat, Lionel; Wenner, Thomas; Bayart, Emilie; Douarre, Céline; Gomez, Dennis; Giraud-Panis, Marie-Josèphe; Londono-Vallejo, Arturo; Gilson, Eric; Amor-Guéret, Mounira; Riou, Jean-François

    2008-01-01

    Topoisomerase (Topo) IIIα associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIα colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIα immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immu...

  7. Pilocytic Astrocytomas Have Telomere-Associated Promyelocytic Leukemia Bodies without Alternatively Lengthened Telomeres

    OpenAIRE

    Slatter, Tania; Gifford-Garner, Jennifer; Wiles, Anna; Tan, Xin; Chen, Yu-Jen; MacFarlane, Martin; Sullivan, Michael; Royds, Janice; Hung, Noelyn

    2010-01-01

    Telomere maintenance by either telomerase activity or the recombination-mediated alternative lengthening of telomeres (ALT) mechanism is a hallmark of cancer. Tumors that use ALT as their telomere maintenance mechanism are characterized by long telomeres of great heterogeneity in length and by specific nuclear structures of co-localized promyelocytic leukemia protein and telomere DNA, called ALT-associated promyelocytic leukemia bodies (APBs). Recent advances have revealed a direct role for A...

  8. Maintenance of Very Long Telomeres by Recombination in the Kluyveromyces lactis stn1-M1 Mutant Involves Extreme Telomeric Turnover, Telomeric Circles, and Concerted Telomeric Amplification

    OpenAIRE

    Xu, Jianing; McEachern, Michael J.

    2012-01-01

    Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces...

  9. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation.

    Science.gov (United States)

    Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael

    2016-06-01

    Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length. PMID:27340887

  10. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation.

    Science.gov (United States)

    Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael

    2016-06-01

    Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.

  11. Shrouding add-on information: an experimental study

    OpenAIRE

    Wenzel, Tobias; Normann, Hans-Theo

    2015-01-01

    We explore how competition affects firms obfuscation strategies in laboratory experiments. Firms sell a base good and an add-on product. The price of the add-on may be shrouded and, if so, myopic consumers pay too much. Shrouding is an equilibrium but an unshrouding equilibrium coexists. In our experiments, competition matters in that only duopolistic markets are frequently shrouded whereas fourfirm markets are not. With repeated interaction, shrouding rates do not increase. However, the oppo...

  12. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening.

    Science.gov (United States)

    Osterwald, Sarah; Deeg, Katharina I; Chung, Inn; Parisotto, Daniel; Wörz, Stefan; Rohr, Karl; Erfle, Holger; Rippe, Karsten

    2015-05-15

    The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation. PMID:25908860

  13. Spermatozoa telomeres determine telomere length in early embryos and offspring.

    Science.gov (United States)

    de Frutos, C; López-Cardona, A P; Fonseca Balvís, N; Laguna-Barraza, R; Rizos, D; Gutierrez-Adán, A; Bermejo-Álvarez, P

    2016-01-01

    Offspring telomere length (TL) has been correlated with paternal TL, but the mechanism for this parent of origin-specific inheritance remains unclear. The objective of this study has been to determine the role of spermatozoa TL in embryonic telomere lengthening by using two mouse models showing dimorphism in their spermatozoa TL: Mus musculus vs Mus spretus and old vs young Mus musculus. Mus spretus spermatozoa displayed a shorter TL than Mus musculus. Hybrid offspring exhibited lower TL compared with Mus musculus starting at the two-cell stage, before the onset of telomerase expression. To analyze the role of spermatozoa telomeres in early telomere lengthening, we compared the TL in oocytes, zygotes, two-cell embryos and blastocysts produced by parthenogenesis or by fertilization with Mus musculus or Mus spretus spermatozoa. TL was significantly higher in spermatozoa compared with oocytes, and it increased significantly from the oocyte to the zygote stage in those embryos fertilized with Mus musculus spermatozoa, but not in those fertilized with Mus spretus spermatozoa or produced by parthenogenesis. A further increase was noted from the zygote to the two-cell stage in fertilized Mus musculus embryos, whereas hybrid embryos maintained the oocyte TL. Spermatozoa TL shortened with age in Mus musculus and the offspring from young males showed a significantly higher TL compared with that fathered by old males. These significant differences were already noticeable at the two-cell stage. These results suggest that spermatozoa telomeres act as a guide for telomerase-independent telomere lengthening resulting in differences in TL that persist after birth. PMID:26475708

  14. Telomere loss, not average telomere length, confers radiosensitivity to TK6-irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, F.; Nieri, D.; Sgura, A.; Tanzarella, C. [Dip. Di Biologia, Università “Roma Tre”, Rome (Italy); INFN – “Roma Tre”, Rome (Italy); Antoccia, A., E-mail: antoccia@uniroma3.it [Dip. Di Biologia, Università “Roma Tre”, Rome (Italy); INFN – “Roma Tre”, Rome (Italy)

    2012-12-15

    Highlights: ► Ionizing radiation induced telomere lengthening in TK6 clones from a single cell. ► Telomerase is not involved in the telomere lengthening observed. ► TK6 cells display very heterogeneous values in telomere length and telomere loss. ► A selective process account for telomere lengthening in irradiated cells. ► Telomere loss, not mean telomere length, is predictive of radiosensitivity. - Abstract: Many and varied are the proposed mechanisms that lead to resistance to ionizing radiation treatment. Among them, an inverse relationship between telomere length and radioresistance has been recently advanced. Investigating such a relationship in TK6 lymphoblasts, we found that clones originating from cells survived to 4 Gy of X-rays showed a significantly higher telomere length when compared with clones grown from untreated cells. The lengthening observed was not attributable to a radiation-induced increase in telomerase activity, as demonstrated by TRAP assay performed in the dose range of 1–10 Gy. Given the evidence that TK6 whole population was characterized by heterogeneity in cellular mean telomere length and telomere loss, we tested the hypothesis that a process of selection may favour cells with longer telomeres (more radioresistant cells) following exposure to irradiation. In order to do this 15 independent TK6 clones were selected and characterized for telomere length and loss on the basis of q-FISH and flow-FISH analysis. Among the screened clones four characterized by long telomeres and four characterized by short telomeres were tested for their radiosensitivity by means of clonogenic assay. The results obtained showed that, in our experimental conditions (cellular model, radiation doses) no significant correlation was observed between radiosensitivity and mean telomere lengths, whereas a positive correlation was observed with respect to telomere loss. Overall, these results indicate that telomere loss and not mean telomere length plays

  15. Telomere and telomerase in oncology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Shortening of the telomeric DNA at the chromosome ends is presumed to limit the lifespan of human cells and elicit a signal for the onset of cellular senescence. To continually proliferate across the senescent checkpoint, cells must restore and preserve telomere length. This can be achieved by telomerase, which has the reverse transcriptase activity. Telomerase activity is negative in human normal somatic cells but can be detected in most tumor cells. The enzyme is proposed to be an essential factor in cell immortalization and cancer progression. In this review we discuss the structure and function of telomere and telomerase and thefr roles in cell immortalization and oncogenesis. Simultaneously the experimental studies of telomerase assays for cancer detection and diagnosis are reviewed. Finally, we discuss the potential use of inhibitors of telomerase in anti-cancer therapy.

  16. Need telomere maintenance? Call 911.

    Science.gov (United States)

    Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio

    2007-01-17

    "Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres.

  17. Analysis and location of a rice BAC clone containing telomeric DNA sequences

    Institute of Scientific and Technical Information of China (English)

    翟文学; 陈浩; 颜辉煌; 严长杰; 王国梁; 朱立煌

    1999-01-01

    BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG) n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescence in situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.

  18. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  19. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin.

    Science.gov (United States)

    Bandaria, Jigar N; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-02-11

    Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, but not by DNA methylation, histone deacetylation, or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres accumulate DDR signals and become more accessible to telomere-associated proteins. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  20. Characterization and rescue of telomeric abnormalities in ICF syndrome type I fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiran eYehezkel

    2013-02-01

    Full Text Available Mutations in the human DNA methyltransferase 3B (DNMT3B gene lead to ICF (immunodeficiency, centromeric region instability, facial anomalies syndrome type I. We have previously described a telomere-related phenotype in cells from these patients, involving severe hypomethylation of subtelomeric regions, abnormally short telomeres and high levels of telomeric-repeat-containing RNA (TERRA. Here we demonstrate that ICF-patient fibroblasts carry abnormally short telomeres at a low population doubling and enter senescence prematurely. Accordingly, we attempted to rescue the senescence phenotype by ectopic expression of human telomerase, which led to elongated telomeres with hypomethylated subtelomeres. The senescence phenotype was overcome under these conditions, thus dissociating subtelomeric-DNA hypomethylation per se from the senescence phenotype. In addition, we examined whether the subtelomeric methylation could be restored by expression of a normal copy of full length DNMT3B1 in ICF fibroblasts. Ectopic expression of DNMT3B1 failed to rescue the abnormal hypomethylation at subtelomeres. However, partial rescue of subtelomeric-hypomethylation was achieved by co-expression of DNMT3B1 together with DNA methyltransferase 3-like (DNMT3L, encoding a protein that functions as a stimulator of DNMT3A and DNMT3B. DNMT3B1 and DNMT3L are predominantly expressed during early embryonic development, suggesting that de novo subtelomeric DNA methylation during crucial stages of human embryonic development may be necessary for setting and maintaining normal telomere length.

  1. Karyotype rearrangements and telomere analysis in Myzus persicae (Hemiptera, Aphididae strains collected on Lavandula sp. plants

    Directory of Open Access Journals (Sweden)

    Mauro Mandrioli

    2014-10-01

    Full Text Available Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776, collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the M. persicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans.

  2. Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid

    Directory of Open Access Journals (Sweden)

    Gunge Norio

    2003-01-01

    Full Text Available Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid which carried the host telomeric repeats TG1-3 of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat, suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1-3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.

  3. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  4. Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    Full Text Available The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA. The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2 causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

  5. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  6. Telomere dynamics in dyskeratosis congenita: the long and the short of iPS

    Institute of Scientific and Technical Information of China (English)

    Suneet Agarwal; George Q Daley

    2011-01-01

    Seminal experiments by Hayflick in the 1960s demonstrated that normal human diploid cells have a finite replicative life span in culture [1].The Hayflick "limit" is explained at least in part by the decay in telomeres, repeat sequences that cap the ends of chromosomes [2].

  7. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells.

    OpenAIRE

    Nabetani, Akira; Ishikawa, Fuyuki

    2011-01-01

    Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent...

  8. Telomere length is inherited with resetting of the telomere set-point

    OpenAIRE

    Chiang, Y. Jeffrey; Calado, Rodrigo T.; Karen S Hathcock; Lansdorp, Peter M.; Young, Neal S; Richard J Hodes

    2010-01-01

    We have studied models of telomerase haploinsufficiency in humans and mice to analyze regulation of telomere length and the significance of “set points” in inheritance of telomere length. In three families with clinical syndromes associated with short telomeres resulting from haploinsufficient mutations in TERT, the gene encoding telomerase reverse transcriptase, we asked whether restoration of normal genotypes in offspring of affected individuals would elongate inherited short telomeres. Tel...

  9. Do Telomeres Adapt to Physiological Stress? Exploring the Effect of Exercise on Telomere Length and Telomere-Related Proteins

    Directory of Open Access Journals (Sweden)

    Andrew T. Ludlow

    2013-01-01

    Full Text Available Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.

  10. Paternal age and telomere length in twins

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo;

    2015-01-01

    Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an 'epigenetic' mechanism through which paternal age plays a role in telomere length regulation in humans....... Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age......-dependent germ stem cell selection process, whereby the selected stem cells have longer telomeres, are more homogenous with respect to telomere length, and share resistance to aging....

  11. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres

    OpenAIRE

    Gadaleta, Mariana C.; Das, Mukund M.; Hideki Tanizawa; Ya-Ting Chang; Ken-ichi Noma; Nakamura, Toru M.; Eishi Noguchi

    2016-01-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus...

  12. The association of telomere length and genetic variation in telomere biology genes.

    Science.gov (United States)

    Mirabello, Lisa; Yu, Kai; Kraft, Peter; De Vivo, Immaculata; Hunter, David J; Prescott, Jennifer; Wong, Jason Y Y; Chatterjee, Nilanjan; Hayes, Richard B; Savage, Sharon A

    2010-09-01

    Telomeres cap chromosome ends and are critical for genomic stability. Many telomere-associated proteins are important for telomere length maintenance. Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in genes encoding telomere-associated proteins (RTEL1 and TERT-CLPTM1) as markers of cancer risk. We conducted an association study of telomere length and 743 SNPs in 43 telomere biology genes. Telomere length in peripheral blood DNA was determined by Q-PCR in 3,646 participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial and Nurses' Health Study. We investigated associations by SNP, gene, and pathway (functional group). We found no associations between telomere length and SNPs in TERT-CLPTM1L or RTEL1. Telomere length was not significantly associated with specific functional groups. Thirteen SNPs from four genes (MEN1, MRE11A, RECQL5, and TNKS) were significantly associated with telomere length. The strongest findings were in MEN1 (gene-based P=0.006), menin, which associates with the telomerase promoter and may negatively regulate telomerase. This large association study did not find strong associations with telomere length. The combination of limited diversity and evolutionary conservation suggest that these genes may be under selective pressure. More work is needed to explore the role of genetic variants in telomere length regulation.

  13. Dual recognition of the human telomeric G-quadruplex by a neomycin-anthraquinone conjugate.

    Science.gov (United States)

    Ranjan, Nihar; Davis, Erik; Xue, Liang; Arya, Dev P

    2013-06-28

    The authors report the recognition of a G-quadruplex formed by four repeat human telomeric DNA with aminosugar intercalator conjugates. The recognition of the G-quadruplex through dual binding mode ligands significantly increased the affinity of ligands for the G-quadruplex. One such example is a neomycin-anthraquinone conjugate (2) which exhibited nanomolar affinity for the quadruplex, and the affinity of (2) is nearly 1000 fold higher for the human telomeric G-quadruplex DNA than its constituent units, neomycin and anthraquinone.

  14. Stress and Telomere Biology: A Lifespan Perspective

    OpenAIRE

    Shalev, Idan; Entringer, Sonja; Pathik D Wadhwa; Wolkowitz, Owen M.; Puterman, Eli; Lin, Jue; Epel, Elissa S.

    2013-01-01

    In the past decade, the growing field of telomere science has opened exciting new avenues for understanding the cellular and molecular substrates of stress and stress-related aging processes ver the lifespan. Shorter telomere length is associated with advancing chronological age and also increased disease morbidity and mortality. Emerging studies suggest that stress accelerates the erosion of telomeres from very early in life and possibly even influences the initial (newborn) setting of telom...

  15. ATRX represses alternative lengthening of telomeres

    OpenAIRE

    Napier, Christine E.; Huschtscha, Lily I.; Harvey, Adam; Bower, Kylie; Noble, Jane R.; Hendrickson, Eric A.; Reddel, Roger R

    2015-01-01

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here th...

  16. Identification of telomere dysfunction in Friedreich ataxia

    OpenAIRE

    Anjomani Virmouni, Sara; Al-Mahdawi, Sahar; Sandi, Chiranjeevi; Yasaei, Hemad; Giunti, Paola; Slijepcevic, Predrag; Mark A. Pook

    2015-01-01

    Background Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker. Results Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identifie...

  17. Telomere behavior in a hybrid yeast

    Institute of Scientific and Technical Information of China (English)

    Ona C Martin; Christopher G De Sevo; Benjamin Z Guo; Douglas E Koshland; Maiterya J Dunham; Yixian Zheng

    2009-01-01

    @@ Dear Editor, Telomeres and the protein/RNA complexes involved in maintaining them are rapidly evolving systems across eukaryotes.Using two Saccharomyces species, among S.cerevisiae and S.bayanus, we provide evidence that the telomere systems of these two closely related yeasts have evolved significantly apart and that the gene in one spe-cies cannot maintain the set-point of telomere length of the other soecies in the hybrid.

  18. Telomeric circles are abundant in the stn1-M1 mutant that maintains its telomeres through recombination

    OpenAIRE

    Evelina Y Basenko; Cesare, Anthony J.; Iyer, Shilpa; Griffith, Jack D.; McEachern, Michael J.

    2009-01-01

    Some human cancers maintain their telomeres using the alternative lengthening of telomeres (ALT) mechanism; a process thought to involve recombination. Different types of recombinational telomere elongation pathways have been identified in yeasts. In senescing yeast telomerase deletion (ter1-Δ) mutants with very short telomeres, it has been hypothesized that copying a tiny telomeric circle (t-circle) by a rolling circle mechanism is the key event in telomere elongation. In other cases more cl...

  19. Leukocyte telomere dynamics in the elderly

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Mortensen, Laust Hvas;

    2013-01-01

    Limited data suggest that leukocytes of the elderly display ultra-short telomeres. It was reported that in some elderly persons leukocyte telomere length (LTL) shows age-dependent elongation. Using cross-sectional and longitudinal models, we characterized LTL dynamics in participants......, assuming a 340 bp attrition during this period. This was not significantly different from the empirical observation of 7.5 % of individuals showing LTL elongation. We conclude that accumulation of ultra-short telomeres in leukocytes of the elderly reflects a shift toward shorter telomeres in the entire...

  20. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  1. Telomere hypervariability in Magnaporthe oryzae.

    Science.gov (United States)

    Farman, Mark L; Kim, Yun-Sik

    2005-05-01

    SUMMARY The gray leaf spot disease of perennial ryegrass and tall fescue is caused by the fungus Magnaporthe oryzae (anamorph = Pyricularia oryzae). A collection of single-copy and repetitive DNA markers was used to investigate genetic diversity among 22 isolates of the gray leaf spot pathogen. The single-copy DNA markers revealed only three polymorphisms among 95 restriction fragments spanning approximately 0.6% of the genome. In addition, Southern hybridization analysis and mating tests revealed that all isolates possessed the MAT1-2 mating-type allele. Fingerprinting of repetitive DNA loci using the Pot2 and MGR583 probes also revealed a high degree of genetic similarity (> 85%) among isolates. These data are consistent with the gray leaf spot pathogens having a recent evolutionary origin. In contrast to the results obtained with probes for internal chromosome loci, a telomere probe revealed that the chromosome ends of the very same isolates are highly divergent, with most isolates sharing less than 20% fingerprint similarity with any other isolate. Telomere mutations arise extremely frequently and changes in telomere fingerprint profiles were readily observed during vegetative growth and among cultures derived from single spores isolated from agar medium and from lesions on perennial ryegrass leaves. PMID:20565657

  2. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study.

    Science.gov (United States)

    Shalev, I; Moffitt, T E; Sugden, K; Williams, B; Houts, R M; Danese, A; Mill, J; Arseneault, L; Caspi, A

    2013-05-01

    There is increasing interest in discovering mechanisms that mediate the effects of childhood stress on late-life disease morbidity and mortality. Previous studies have suggested one potential mechanism linking stress to cellular aging, disease and mortality in humans: telomere erosion. We examined telomere erosion in relation to children's exposure to violence, a salient early-life stressor, which has known long-term consequences for well-being and is a major public-health and social-welfare problem. In the first prospective-longitudinal study with repeated telomere measurements in children while they experienced stress, we tested the hypothesis that childhood violence exposure would accelerate telomere erosion from age 5 to age 10 years. Violence was assessed as exposure to maternal domestic violence, frequent bullying victimization and physical maltreatment by an adult. Participants were 236 children (49% females; 42% with one or more violence exposures) recruited from the Environmental-Risk Longitudinal Twin Study, a nationally representative 1994-1995 birth cohort. Each child's mean relative telomere length was measured simultaneously in baseline and follow-up DNA samples, using the quantitative PCR method for T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). Compared with their counterparts, the children who experienced two or more kinds of violence exposure showed significantly more telomere erosion between age-5 baseline and age-10 follow-up measurements, even after adjusting for sex, socioeconomic status and body mass index (B=-0.052, s.e.=0.021, P=0.015). This finding provides support for a mechanism linking cumulative childhood stress to telomere maintenance, observed already at a young age, with potential impact for life-long health. PMID:22525489

  3. Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Eun Young Yu

    2015-10-01

    Full Text Available A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR. These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs. The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.

  4. Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis.

    Science.gov (United States)

    Yu, Eun Young; Pérez-Martín, José; Holloman, William K; Lue, Neal F

    2015-10-01

    A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs). The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.

  5. Stable expression of promyelocytic leukaemia (PML protein in telomerase positive MCF7 cells results in alternative lengthening of telomeres phenotype

    Directory of Open Access Journals (Sweden)

    Yong Jacklyn W Y

    2012-08-01

    Full Text Available Abstract Background Cancer cells can employ telomerase or the alternative lengthening of telomeres (ALT pathway for telomere maintenance. Cancer cells that use the ALT pathway exhibit distinct phenotypes such as heterogeneous telomeres and specialised Promyelocytic leukaemia (PML nuclear foci called APBs. In our study, we used wild-type PML and a PML mutant, in which the coiled-coil domain is deleted (PML C/C-, to investigate how these proteins can affect telomere maintenance pathways in cancer cells that use either the telomerase or ALT pathway. Results Stable over-expression of both types of PML does not affect the telomere maintenance in the ALT cells. We report novel observations in PML over-expressed telomerase-positive MCF7 cells: 1 APBs are detected in telomerase-positive MCF7 cells following over-expression of wild-type PML and 2 rapid telomere elongation is observed in MCF7 cells that stably express either wild-type PML or PML C/C-. We also show that the telomerase activity in MCF7 cells can be affected depending on the type of PML protein over-expressed. Conclusion Our data suggests that APBs might not be essential for the ALT pathway as MCF7 cells that do not contain APBs exhibit long telomeres. We propose that wild-type PML can either definitively dominate over telomerase or enhance the activity of telomerase, and PML C/C- can allow for the co-existence of both telomerase and ALT pathways. Our findings add another dimension in the study of telomere maintenance as the expression of PML alone (wild-type or otherwise is able to change the dynamics of the telomerase pathway.

  6. Telomere and telomerase in the initial stage of immortalization of esophageal epithelial cell

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; En-Min Li; Wei-Jia Cai; Min-Hua Chen; Jian Shen; Yi Zeng

    2002-01-01

    AIM: To search for the biomarker of cellular immortalization,the telomere length, telomerase activity and its subunits incultured epithelial cells of human fetal esophagus in theprocess of immortalization.METHODS: The transgenic cell line of human fetalesophageal epithelium (SHEE) was established with E6 E7genes of bt man papillomavirus (HPV) type 18 in ourlaboratory. Morphological phenotype of cultured SHEE cellsfrom the 6th to 30th passages, was examined by phasecontrast microscopy, the telomere length was assayed bySouthern blot method, and the activity of telomerase wasanalyzed by telomeric repeat amplification protocol (TRAP).Expressions of subunits of telomerase, hTR and hTERT,were assessed by RT-PCR. DNA content in cell cycle wasdetected by flow cytometry. The cell apoptosis wasexamined by electron microscopy (EM) and TUNEL label.RESULTS: SHEE cells from the 6 th to 10 th passagesshowed cellular proliferation with a good differentiation.From the 12 th to the 16 th passages, many senescent andapoptotic cells appeared, and the telomere length sharplyshortened from 23 kb to 17 kb without expression of hTERTand telornerase activity. At the 20 th passage, SHEE cellsovercame the senescence and apoptosis and restored theirproliferative activity with expression of telomerase andhTERT at low levels, but the telomere length shortenedcontinuously to the lowest of 3 kb. After the 30 th passagecells proliferation was restored by increment of cells at S andG2M phase in the cell cycle end telomerase activity expressedat high levels and with maintenance of telomere length.CONCLUSION: At the early stage of SHEE cells, telomeresare shortened without expression of telomerase and hTERTcausing cellular senescence and cell death. From the 20 thto the 30 th passages, the activation of telomerase andmaintenance of telomere length show a progressive processfor immortalization of esophageal epithelial cells. Theexpression of telomerase may constitute a biomarker fordetection of

  7. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination

    Directory of Open Access Journals (Sweden)

    Dmitri Churikov

    2016-05-01

    Full Text Available In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs. However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier-targeted ubiquitin ligase (STUbL Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocalization to NPCs and type II telomere recombination, a counterpart of mammalian alternative lengthening of telomeres (ALT. Moreover, artificial tethering of a telomere to a NPC promotes type II telomere recombination but cannot bypass the lack of Slx5-Slx8 in this process. Together, our results indicate that SUMOylation positively contributes to telomere relocalization to the NPC, where poly-SUMOylated proteins that accumulated over time have to be removed. We propose that STUbL-dependent relocalization of telomeres to NPCs constitutes a pathway in which excessively SUMOylated proteins are removed from “congested” intermediates to ensure unconventional recombination.

  8. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination.

    Science.gov (United States)

    Churikov, Dmitri; Charifi, Ferose; Eckert-Boulet, Nadine; Silva, Sonia; Simon, Marie-Noelle; Lisby, Michael; Géli, Vincent

    2016-05-10

    In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs). However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier)-targeted ubiquitin ligase (STUbL) Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocalization to NPCs and type II telomere recombination, a counterpart of mammalian alternative lengthening of telomeres (ALT). Moreover, artificial tethering of a telomere to a NPC promotes type II telomere recombination but cannot bypass the lack of Slx5-Slx8 in this process. Together, our results indicate that SUMOylation positively contributes to telomere relocalization to the NPC, where poly-SUMOylated proteins that accumulated over time have to be removed. We propose that STUbL-dependent relocalization of telomeres to NPCs constitutes a pathway in which excessively SUMOylated proteins are removed from "congested" intermediates to ensure unconventional recombination. PMID:27134164

  9. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility.

    Science.gov (United States)

    Hosgood, H Dean; Cawthon, Richard; He, Xingzhou; Chanock, Stephen; Lan, Qing

    2009-11-01

    Telomeres are responsible for the protection of the chromosome ends and shortened telomere length has been associated with risk of multiple cancers. Genetic variation in telomere-related genes may alter cancer risk associated with telomere length. Using lung cancer cases (n=120) and population-based controls (n=110) from Xuanwei, China, we analyzed telomere length separately and in conjunction with single nucleotide polymorphisms in the telomere maintenance genes POT1, TERT, and TERF2, which we have previously reported were associated with risk of lung cancer in this study. POT1 rs10244817, TERT rs2075786, and TERF2 rs251796 were significantly associated with lung cancer (p(trend)telomere length was not significantly associated with risk of lung cancer (OR=1.58; 95% CI=0.79-3.18) when compared to the longest tertile of telomere length. When stratified by genotype, there was a suggestion of a dose-response relationship between tertiles of telomere length and risk of lung cancer among the POT1 rs10244817 common variant carriers (OR (95% CI)=1.33 (0.47-3.75), 3.30 (1.14-9.56), respectively) but not among variant genotype carriers (p(interaction)=0.05). Our findings provide evidence that telomere length and genetic variation in telomere maintenance genes may be associated with risk of lung cancer susceptibility and warrant replication in larger studies.

  10. Is telomere length a biomarker for aging: cross-sectional evidence from the west of Scotland?

    Directory of Open Access Journals (Sweden)

    Geoff Der

    Full Text Available BACKGROUND: The search for biomarkers of aging (BoAs has been largely unsuccessful to-date and there is widespread skepticism about the prospects of finding any that satisfy the criteria developed by the American Federation of Aging Research. This may be because the criteria are too strict or because a composite measure might be more appropriate. Telomere length has attracted a great deal of attention as a candidate BoA. We investigate whether it meets the criteria to be considered as a single biomarker of aging, and whether it makes a useful contribution to a composite measure. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a large population based study, we show that telomere length is associated with age, with several measures of physical and cognitive functioning that are related to normal aging, and with three measures of overall health. In the majority of cases, telomere length adds predictive power to that of age, although it was not nearly as good a predictor overall. We used principal components analysis to form two composites from the measures of functioning, one including telomere length and the other not including it. These composite BoAs were better predictors of the health outcomes than chronological age. There was little difference between the two composites. CONCLUSIONS: Telomere length does not satisfy the strict criteria for a BoA, but does add predictive power to that of chronological age. Equivocal results from previous studies might be due to lack of power or the choice of measures examined together with a focus on single biomarkers. Composite biomarkers of aging have the potential to outperform age and should be considered for future research in this area.

  11. Single-Cell Telomere-Length Quantification Couples Telomere Length to Meristem Activity and Stem Cell Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mary-Paz González-García

    2015-05-01

    Full Text Available Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.

  12. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    Science.gov (United States)

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. PMID:25937286

  13. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    Science.gov (United States)

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.

  14. Telomere biology in healthy aging and disease

    NARCIS (Netherlands)

    Oeseburg, Hisko; de Boer, Rudolf A.; van Gilst, Wiek H.; van der Harst, Pim

    2010-01-01

    Aging is a biological process that affects most cells, organisms and species. Telomeres have been postulated as a universal biological clock that shortens in parallel with aging in cells. Telomeres are located at the end of the chromosomes and consist of an evolutionary conserved repetitive nucleoti

  15. Twin correlations of telomere length metrics

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören;

    2015-01-01

    BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL...... childhood are crucial for understanding the role of telomere genetics in human ageing and longevity....

  16. The heritability of leucocyte telomere length dynamics

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören;

    2015-01-01

    BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL...... childhood are crucial for understanding the role of telomere genetics in human ageing and longevity....

  17. Long telomeres: too much of a good thing

    NARCIS (Netherlands)

    Chang, Michael

    2012-01-01

    Telomeres, the physical ends of linear eukaryotic chromosomes, protect chromosome ends from end fusions and degradation. Telomere length is tightly regulated to ensure that telomeres are neither too short nor too long. Short telomeres are preferentially elongated by the enzyme telomerase. In the abs

  18. Telomere Length Reprogramming in Embryos and Stem Cells

    Directory of Open Access Journals (Sweden)

    Keri Kalmbach

    2014-01-01

    Full Text Available Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism’s lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg’s capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.

  19. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisong [ORNL; Giannone, Richard J [ORNL; Wu, Jun [ORNL; Gomez, Marla V [ORNL; Liu, Yie [ORNL

    2005-01-01

    Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert -/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert -/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert -/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert +/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert -/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.

  20. Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes.

    Science.gov (United States)

    López de Silanes, Isabel; Graña, Osvaldo; De Bonis, Maria Luigia; Dominguez, Orlando; Pisano, David G; Blasco, Maria A

    2014-01-01

    Telomeric RNAs (TERRAs) are UUAGGG repeat-containing RNAs that are transcribed from the subtelomere towards the telomere. The precise genomic origin of TERRA has remained elusive. Using a whole-genome RNA-sequencing approach, we identify novel mouse transcripts arising mainly from the subtelomere of chromosome 18, and to a lesser extend chromosome 9, that resemble TERRA in several key aspects. Those transcripts contain UUAGGG-repeats and are heterogeneous in size, fluctuate in abundance in a TERRA-like manner during the cell cycle, are bound by TERRA RNA-binding proteins and are regulated in a manner similar to TERRA in response to stress and the induction of pluripotency. These transcripts are also found to associate with nearly all chromosome ends and downregulation of the transcripts that originate from chromosome 18 causes a reduction in TERRA abundance. Interestingly, downregulation of either chromosome 18 transcripts or TERRA results in increased number of telomere dysfunction-induced foci, suggesting a protective role at telomeres.

  1. Repeated Miscarriage

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ100 PREGNANCY Repeated Miscarriages • What is recurrent pregnancy loss? • What is the likelihood of having repeated miscarriages? • What is the most common cause of miscarriage? • ...

  2. Alternative lengthening of telomeres in normal mammalian somatic cells

    OpenAIRE

    Neumann, Axel A.; Watson, Catherine M.; Noble, Jane R.; Hilda A Pickett; Tam, Patrick P.L.; Reddel, Roger R

    2013-01-01

    Alternative lengthening of telomeres (ALT), a mechanism involving the replication of new telomeric DNA from a DNA template, is used by some cancer cells to lengthen their telomeres. Reddel and colleagues now show that ALT activity exists in normal somatic tissues as well. A telomere with a DNA tag is found to be intertelomerically copied in normal somatic cells but not germline cells, providing important implications for understanding telomere maintenance and its evolution.

  3. Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis

    OpenAIRE

    Cho, Nam Woo; Dilley, Robert L.; Lampson, Michael A.; Greenberg, Roger A.

    2014-01-01

    Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, approximately 10-15% employ a recombination-dependent telomere maintenance pathway known as Alternative Lengthening of Telomeres (ALT) that is characterized by multi-telomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-ran...

  4. Telomere Length Reprogramming in Embryos and Stem Cells

    OpenAIRE

    Keri Kalmbach; LeRoy G. Robinson; Fang Wang; Lin Liu; David Keefe

    2014-01-01

    Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism’s lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg’s capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly re...

  5. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

    OpenAIRE

    Arora, Rajika; Lee, Yongwoo; Wischnewski, Harry; Brun, Catherine M.; Schwarz, Tobias; Azzalin, Claus M.

    2014-01-01

    A fraction of cancer cells maintain telomeres through the telomerase-independent, ‘Alternative Lengthening of Telomeres’ (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA–DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to t...

  6. Long Telomeres are Preferentially Extended During Recombination-Mediated Telomere Maintenance

    OpenAIRE

    Chang, Michael; Dittmar, John C; Rothstein, Rodney

    2011-01-01

    Most human somatic cells do not express telomerase. Consequently, with each cell division their telomeres progressively shorten until replicative senescence is induced. Approximately 15% of human cancers maintain their telomeres using telomerase-independent, recombination-based mechanisms collectively termed Alternative Lengthening of Telomeres (ALT). In the yeast Saccharomyces cerevisiae, ALT cells are referred to as “survivors”. One type of survivor (type II) resembles human ALT cells in th...

  7. The telomere lengthening conundrum - artifact or biology?

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Kark, Jeremy D;

    2013-01-01

    Recent longitudinal studies of age-dependent leukocyte telomere length (LTL) attrition have reported that variable proportions of individuals experience LTL lengthening. Often, LTL lengthening has been taken at face value, and authors have speculated about the biological causation of this finding....... Based on empirical data and theoretical considerations, we show that regardless of the method used to measure telomere length (Southern blot or quantitative polymerase chain reaction-based methods), measurement error of telomere length and duration of follow-up explain almost entirely the absence of age...

  8. Ataxia telangiectasia mutated (Atm) is not required for telomerase-mediated elongation of short telomeres

    OpenAIRE

    Feldser, David; Strong, Margaret A.; Greider, Carol W

    2006-01-01

    Telomerase-mediated telomere addition counteracts telomere shortening due to incomplete DNA replication. Short telomeres are the preferred substrate for telomere addition by telomerase; however, the mechanism by which telomerase recognizes short telomeres is unclear. In yeast, the Ataxia telangiectasia mutated (Atm) homolog, Tel1, is necessary for normal telomere length regulation likely by altering telomere structure, allowing telomerase recruitment to short telomeres. To examine the role of...

  9. Maternal telomere length inheritance in the king penguin.

    Science.gov (United States)

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.

  10. Telomere length and the risk of lung cancer.

    Science.gov (United States)

    Jang, Jin Sung; Choi, Yi Young; Lee, Won Kee; Choi, Jin Eun; Cha, Sung Ick; Kim, Yeon Jae; Kim, Chang Ho; Kam, Sin; Jung, Tae Hoon; Park, Jae Yong

    2008-07-01

    Telomeres play a key role in the maintenance of chromosome integrity and stability. There is growing evidence that short telomeres induce chromosome instability and thereby promote the development of cancer. We investigated the association of telomere length and the risk of lung cancer. Relative telomere length in peripheral blood lymphocytes was measured by quantitative polymerase chain reaction in 243 lung cancer patients and 243 healthy controls that were frequency-matched for age, sex and smoking status. Telomere length was significantly shorter in lung cancer patients than in controls (mean +/- standard deviation: 1.59 +/- 0.75 versus 2.16 +/- 1.10, P telomere length, the risk of lung cancer was found to increase as telomere length shortened (P(trend) telomere length was used as the cutoff between long and short telomeres, individuals with short telomeres were at a significantly higher risk of lung cancer than those with long telomeres (adjusted odds ratio = 3.15, 95% confidence interval = 2.12-4.67, P telomere length on the risk of lung cancer was more pronounced in patients with small cell carcinoma than in those with squamous cell carcinoma and adenocarcinoma (P = 0.001, test for homogeneity). These findings suggest that shortening of the telomeres may be a risk factor for lung cancer, and therefore, the presence of shortened telomeres may be used as a marker for susceptibility to lung cancer.

  11. The telomere bouquet regulates meiotic centromere assembly.

    Science.gov (United States)

    Klutstein, Michael; Fennell, Alex; Fernández-Álvarez, Alfonso; Cooper, Julia Promisel

    2015-04-01

    The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres. PMID:25774833

  12. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis

    OpenAIRE

    Venteicher, Andrew S.; Abreu, Eladio B.; Meng, Zhaojing; McCann, Kelly E.; Terns, Rebecca M.; Veenstra, Timothy D.; Terns, Michael P.; Artandi, Steven E.

    2009-01-01

    Telomerase is a ribonucleoprotein (RNP) complex that synthesizes telomere repeats in tissue progenitor cells and cancer cells. Active human telomerase consists of at least three principal subunits, including the telomerase reverse transcriptase (TERT), the telomerase RNA (TERC), and dyskerin. Here, we identify a holoenzyme subunit, TCAB1 (telomerase Cajal body protein1), uniquely enriched in Cajal bodies, nuclear sites of RNP processing important for telomerase function. TCAB1 associates with...

  13. Chromatid interchanges at intrachromosomal telomeric DNA sequences

    International Nuclear Information System (INIS)

    Chinese hamster Don cells were exposed to X-rays, mitomycin C and teniposide (VM-26) to induce chromatid exchanges (quadriradials and triradials). After fluorescence in situ hybridization (FISH) of telomere sequences it was found that interstitial telomere-like DNA sequence arrays presented around five times more breakage-rearrangements than the genome overall. This high recombinogenic capacity was independent of the clastogen, suggesting that this susceptibility is not related to the initial mechanisms of DNA damage. (author)

  14. [Telomere Recombination in Normal Mammalian Cells].

    Science.gov (United States)

    Zhdanova, N S; Rubtsov, N B

    2016-01-01

    Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15-20% of tumors lacking active telomerase and, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the "gold standard" of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed,and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed. PMID:27183789

  15. Functional diversification of yeast telomere associated protein, Rif1, in higher eukaryotes

    Directory of Open Access Journals (Sweden)

    Sreesankar Easwaran

    2012-06-01

    Full Text Available Abstract Background Telomeres are nucleoprotein complexes at the end of linear eukaryotic chromosomes which maintain the genome integrity by regulating telomere length, preventing recombination and end to end fusion events. Multiple proteins associate with telomeres and function in concert to carry out these functions. Rap1 interacting factor 1 (Rif1, was identified as a protein involved in telomere length regulation in yeast. Rif1 is conserved upto mammals but its function has diversified from telomere length regulation to maintenance of genome integrity. Results We have carried out detailed bioinformatic analyses and identified Rif1 homologues in 92 organisms from yeast to human. We identified Rif1 homologues in Drosophila melanogaster, even though fly telomeres are maintained by a telomerase independent pathway. Our analysis shows that Drosophila Rif1 (dRif1 sequence is phylogenetically closer to the one of vertebrates than yeast and has identified a few Rif1 specific motifs conserved through evolution. This includes a Rif1 family specific conserved region within the HEAT repeat domain and a motif involved in protein phosphatase1 docking. We show that dRif1 is nuclear localized with a prominent heterochromatin association and unlike human Rif1, it does not respond to DNA damage by localizing to damaged sites. To test the evolutionary conservation of dRif1 function, we expressed the dRif1 protein in yeast and HeLa cells. In yeast, dRif1 did not perturb yeast Rif1 (yRif1 functions; and in HeLa cells it did not colocalize with DNA damage foci. Conclusions Telomeres are maintained by retrotransposons in all Drosophila species and consequently, telomerase and many of the telomere associated protein homologues are absent, including Rap1, which is the binding partner of Rif1. We found that a homologue of yRif1 protein is present in fly and dRif1 has evolutionarily conserved motifs. Functional studies show that dRif1 responds differently to DNA

  16. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA.

    Science.gov (United States)

    Školáková, Petra; Foldynová-Trantírková, Silvie; Bednářová, Klára; Fiala, Radovan; Vorlíčková, Michaela; Trantírek, Lukáš

    2015-05-19

    There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10-15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5'-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5'-C-rich and 3'-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model. PMID:25855805

  17. Measuring telomere length and telomere dynamics in evolutionary biology and ecology

    NARCIS (Netherlands)

    Nussey, Daniel H.; Baird, Duncan; Barrett, Emma; Boner, Winnie; Fairlie, Jennifer; Gemmell, Neil; Hartmann, Nils; Horn, Thorsten; Haussmann, Mark; Olsson, Mats; Turbill, Chris; Verhulst, Simon; Zahn, Sandrine; Monaghan, Pat

    2014-01-01

    Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, in

  18. p53 Prevents Entry into Mitosis with Uncapped Telomeres

    Science.gov (United States)

    Thanasoula, Maria; Escandell, Jose Miguel; Martinez, Paula; Badie, Sophie; Muñoz, Purificacion; Blasco, María A.; Tarsounas, Madalena

    2016-01-01

    Summary Telomeres are protected by capping structures consisting of core protein complexes that bind with sequence specificity to telomeric DNA (reviewed in [1]). In their absence, telomeres trigger a DNA damage response, materialized in accumulation at the telomere of damage response proteins, e.g., phosphorylated histone H2AX (γH2AX), into telomere-dysfunction-induced foci [2, 3]. Telomere uncapping occurs transiently in every cell cycle in G2 [4], following DNA replication, but little is known about how protective structures are reassembled or whether this process is controlled by the cell-cycle surveillance machinery. Here, we report that telomere capping is monitored at the G2/M transition by the p53/p21 damage response pathway. Unlike their wild-type counterparts, human and mouse cells lacking p53 or p21 progress into mitosis prematurely with persisting uncapped telomeres. Furthermore, artificially uncapped telomeres delay mitotic entry in a p53- and p21-dependent manner. Uncapped telomeres that persist in mitotic p53-deficient cells are shorter than average and religate to generate end-to-end fusions. These results suggest that a p53-dependent pathway monitors telomere capping after DNA replication and delays G2/M progression in the presence of unprotected telomeres. This mechanism maintains a cell-cycle stage conducive for capping reactions and prevents progression into stages during which uncapped telomeres are prone to deleterious end fusions. PMID:20226664

  19. [Association study of telomere length with idiopathic male infertility].

    Science.gov (United States)

    Shuyuan, Liu; Changjun, Zhang; Haiying, Peng; Xiaoqin, Huang; Hao, Sun; Keqin, Lin; Kai, Huang; Jiayou, Chu; Zhaoqing, Yang

    2015-11-01

    Telomeres are evolutionary conserved, multifunctional DNA-protein complexes located at the ends of eukaryotic chromosomes. Telomeres maintain chromosome stability and genome integrity and also play an important role in meiosis which aid in synapsis, homologous recombination, and segregation. Sperm telomere has been reported to play an important role in fertilization and embryo development. Nowadays, the association between telomere and reproduction is one of the major areas of interest, however whether sperm telomere associated with male infertility is not clear. In this study, in order to find out the association between Chinese idiopathic infertility and sperm telomere length, we analyzed the difference of sperm telomere length between idiopathic infertile men and normal fertile men, as well as the correlations between sperm telomere length and human semen characteristics. We analyzed 126 Chinese idiopathic infertile men and 138 normal fertile men for sperm telomere length by using quantitative PCR. We found that the relative sperm mean telomere length of infertile men was significantly shorter than that of fertile men (2.894 ± 0.115 vs. 4.016 ± 0.603, P=5.097 x 10⁻⁵). Both sperm count and semen progressive motility are related with telomere length. Our results suggest that sperm telomere length is associated with idiopathic male infertility of China and we proposed the possibility that shorter telomeres in sperm chromosome will reduce spermatogenesis and sperm functions, which finally affected the fertility of male.

  20. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  1. Conformational variability of recombination R-triplex formed by the mammalian telomeric sequence.

    Science.gov (United States)

    Shchyolkina, Anna K; Kaluzhny, Dmitry N; Borisova, Olga F; Arndt-Jovin, Donna J; Jovin, Thomas M; Zhurkin, Victor B

    2016-06-01

    Alignment of three nucleic acids strands, in which the third strand is identical to one of the DNA duplex strands, occurs in various cellular systems. In the case of telomeric t-loops, recognition between the DNA duplex and the homologous single strand is likely to be mediated by proteins through formation of the transient recombination-type R-triplex. Earlier, using 2-aminopurine as a fluorescent reporting base, we evaluated the thermodynamic characteristics of intramolecular R-triplex formed by a mixed nucleotide sequence. Here, we used this approach to explore a propensity of the telomeric TTAGGG repeat to form the R-triplex. The circular dichroism spectral changes detected upon formation of the R-triplex suggest that this process is accompanied by specific conformational changes in DNA, including a local destabilization of the target duplex next to a GGG run revealed by the fluorescence of the reporting 2-aminopurine base. Surprisingly, stability of the R-triplex formed by telomeric sequence depends strikingly on the counter ion, being higher for Na(+) than for Li(+). Taken together these findings indicate a significant conformational variability of telomeric DNA in the context of recombination-type R-triplex, a phenomenon of possible biological relevance. PMID:26308235

  2. Frailty and telomere length: cross-sectional analysis in 3537 older adults from the ESTHER cohort.

    Science.gov (United States)

    Saum, Kai-Uwe; Dieffenbach, Aida Karina; Müezzinler, Aysel; Müller, Heiko; Holleczek, Bernd; Stegmaier, Christa; Butterbach, Katja; Schick, Matthias; Canzian, Federico; Stammer, Hermann; Boukamp, Petra; Hauer, Klaus; Brenner, Hermann

    2014-10-01

    Both telomere length and frailty were observed to be associated with aging. Whether and to what extent telomere length is related to frailty is essentially unknown. In this cross-sectional analysis of baseline data of 3537 community-dwelling adults aged 50 to 75 years of a large German cohort study, we assessed the hypothesis that shorter telomere length might be a biological marker for frailty. Using whole blood DNA we examined mean telomere repeat copy to single gene copy number (T/S ratio) using quantitative PCR. Construction of a frailty index (FI) was based on a deficit accumulation approach, which quantifies frailty as ratio of the deficits present divided by the total number of deficits considered. Mean FI was determined according to age by tertiles of T/S ratio. Furthermore, we used correlation analyses stratified for gender and age groups to examine the association of the T/S ratio with frailty. Mean FI value was similar across tertiles of the T/S ratio (0.24±0.14, 0.24±0.14 and 0.23±0.14, respectively (p=0.09)), and FI and the T/S ratio were uncorrelated in gender- and age-specific analyses. In conclusion, T/S ratio and frailty were unrelated in this large sample of older adults. T/S ratio may therefore not be a meaningful biological marker for frailty.

  3. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  4. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length.

    Directory of Open Access Journals (Sweden)

    Hannah S Bender

    Full Text Available Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii are of particular interest in light of the emergence of devil facial tumour disease (DFTD, a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.

  5. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  6. Renal failure induces telomere shortening in the rat heart

    NARCIS (Netherlands)

    Wong, L. S.; Windt, W. A.; Roks, A. J.; van Dokkum, R. P.; Schoemaker, R. G.; de Zeeuw, D.; Henning, R. H.

    2009-01-01

    Background. Renal failure aggravates pathological cardiac remodelling induced by myocardial infarction (MI). Cardiac remodelling is associated with telomere shortening, a marker for biological ageing. We investigated whether mild and severe renal failure shorten cardiac telomeres and excessively sho

  7. SMARCAL1 Resolves Replication Stress at ALT Telomeres.

    Science.gov (United States)

    Cox, Kelli E; Maréchal, Alexandre; Flynn, Rachel Litman

    2016-02-01

    Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT) pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombination. Here, we demonstrate that the replication stress response protein SMARCAL1 is a critical regulator of ALT activity. SMARCAL1 associates with ALT telomeres to resolve replication stress and ensure telomere stability. In the absence of SMARCAL1, persistently stalled replication forks at ALT telomeres deteriorate into DNA double-strand breaks promoting the formation of chromosome fusions. Our studies not only define a role for SMARCAL1 in ALT telomere maintenance, but also demonstrate that resolution of replication stress is a crucial step in the ALT mechanism. PMID:26832416

  8. SMARCAL1 Resolves Replication Stress at ALT Telomeres

    Directory of Open Access Journals (Sweden)

    Kelli E. Cox

    2016-02-01

    Full Text Available Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombination. Here, we demonstrate that the replication stress response protein SMARCAL1 is a critical regulator of ALT activity. SMARCAL1 associates with ALT telomeres to resolve replication stress and ensure telomere stability. In the absence of SMARCAL1, persistently stalled replication forks at ALT telomeres deteriorate into DNA double-strand breaks promoting the formation of chromosome fusions. Our studies not only define a role for SMARCAL1 in ALT telomere maintenance, but also demonstrate that resolution of replication stress is a crucial step in the ALT mechanism.

  9. Mice with Pulmonary Fibrosis Driven by Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Juan M. Povedano

    2015-07-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a degenerative disease of the lungs with an average survival post-diagnosis of 2–3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells. We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments.

  10. Telomere biology: cancer firewall or aging clock?

    Science.gov (United States)

    Mitteldorf, J J

    2013-09-01

    It has been a decade since the first surprising discovery that longer telomeres in humans are statistically associated with longer life expectancies. Since then, it has been firmly established that telomere shortening imposes an individual fitness cost in a number of mammalian species, including humans. But telomere shortening is easily avoided by application of telomerase, an enzyme which is coded into nearly every eukaryotic genome, but whose expression is suppressed most of the time. This raises the question how the sequestration of telomerase might have evolved. The predominant assumption is that in higher organisms, shortening telomeres provide a firewall against tumor growth. A more straightforward interpretation is that telomere attrition provides an aging clock, reliably programming lifespans. The latter hypothesis is routinely rejected by most biologists because the benefit of programmed lifespan applies only to the community, and in fact the individual pays a substantial fitness cost. There is a long-standing skepticism that the concept of fitness can be applied on a communal level, and of group selection in general. But the cancer hypothesis is problematic as well. Animal studies indicate that there is a net fitness cost in sequestration of telomerase, even when cancer risk is lowered. The hypothesis of protection against cancer has never been tested in animals that actually limit telomerase expression, but only in mice, whose lifespans are not telomerase-limited. And human medical evidence suggests a net aggravation of cancer risk from the sequestration of telomerase, because cells with short telomeres are at high risk of neoplastic transformation, and they also secrete cytokines that exacerbate inflammation globally. The aging clock hypothesis fits well with what is known about ancestral origins of telomerase sequestration, and the prejudices concerning group selection are without merit. If telomeres are an aging clock, then telomerase makes an

  11. How shelterin solves the telomere end-protection problem.

    Science.gov (United States)

    de Lange, T

    2010-01-01

    The symphony of the human genome concludes with a long Gregorian chant of TTAGGG repeats. This monotonous coda represents one of the most complex problems in chromosome biology: the question of how cells distinguish their natural chromosome ends from double-strand breaks elsewhere in the genome. McClintock's classic finding of chromosome breakage-fusion-bridge cycles, first reported by her at one of the early Cold Spring Harbor Laboratory Symposia (the ninth), served as a prelude to this question. The 75th Cold Spring Harbor Laboratory Symposium marks the completion of a series of mouse gene deletion experiments that revealed DNA-damage-response pathways that threaten chromosome ends and how the components of the telomeric shelterin complex prevent activation of these pathways.

  12. How shelterin solves the telomere end-protection problem.

    Science.gov (United States)

    de Lange, T

    2010-01-01

    The symphony of the human genome concludes with a long Gregorian chant of TTAGGG repeats. This monotonous coda represents one of the most complex problems in chromosome biology: the question of how cells distinguish their natural chromosome ends from double-strand breaks elsewhere in the genome. McClintock's classic finding of chromosome breakage-fusion-bridge cycles, first reported by her at one of the early Cold Spring Harbor Laboratory Symposia (the ninth), served as a prelude to this question. The 75th Cold Spring Harbor Laboratory Symposium marks the completion of a series of mouse gene deletion experiments that revealed DNA-damage-response pathways that threaten chromosome ends and how the components of the telomeric shelterin complex prevent activation of these pathways. PMID:21209389

  13. [Telomere length and telomerase activity in hepatocellular carcinoma].

    Science.gov (United States)

    Nakashio, R; Kitamoto, M; Nakanishi, T; Takaishi, H; Takahashi, S; Kajiyama, G

    1998-05-01

    Telomerase activity and terminal restriction fragment (TRF) length were examined in hepatocellular carcinoma (HCC). Telomerase activity was assayed by telomeric repeat amplification protocol (TRAP) connected with an internal telomerase assay standard (ITAS). The incidence of strong telomerase activity (highly variable level compared with the activity of non-cancerous liver tissue) was 79% in well, 84% in moderately, and 100% in poorly differentiated HCC, while 0% in non-cancerous liver tissues. The incidence of TRF length alteration (reduction or elongation) was 53% in HCC. The incidence of TRF alteration was significantly higher in HCC exceeding 3 cm in diameter, moderately or poorly differentiated in histology. Telomerase activity was not associated with TRF length alteration in HCC. In conclusion, strong telomerase activity and TRF length alteration increased with HCC tumor progressions. PMID:9613130

  14. Drug addiction is associated with leukocyte telomere length

    OpenAIRE

    Yang, Zhaoyang; Ye, Junyi; Li, Candong; Zhou, Daizhan; Shen, Qin; Wu, Ji; Cao, Lan; Wang, Ting; Cui, Daxiang; He, Shigang; Qi, Guoyang; He, Lin; Liu, Yun

    2013-01-01

    Telomeres are protective chromosomal structures that play a key role in preserving genomic stability. Telomere length is known to be associated with ageing and age-related diseases. To study the impairment of telomeres induced by drug abuse, we conducted an association study in the Chinese Han population. Multivariate linear regression analyses were performed to evaluate the correlation of leukocyte telomere length (LTL) with addiction control status adjusted for age and gender. The results s...

  15. Five dysfunctional telomeres predict onset of senescence in human cells

    OpenAIRE

    Kaul, Zeenia; Cesare, Anthony J.; Huschtscha, Lily I.; Neumann, Axel A.; Reddel, Roger R

    2011-01-01

    Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cel...

  16. Telomere reprogramming and maintenance in porcine iPS cells.

    Directory of Open Access Journals (Sweden)

    Guangzhen Ji

    Full Text Available Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells. Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  17. SMARCAL1 Resolves Replication Stress at ALT Telomeres

    OpenAIRE

    Kelli E. Cox; Alexandre Maréchal; Rachel Litman Flynn

    2016-01-01

    Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT) pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombina...

  18. Firefox add-ons for medical reference.

    Science.gov (United States)

    Hoy, Matthew B

    2010-07-01

    Firefox is a Web browser created by the Mozilla project, an open-source software group. Features of the browser include automated updates, advanced security and standards compliance, and the ability to add functionality through add-ons and extensions. First introduced in 2004, Firefox now accounts for roughly 30% of the browser market. This article will focus primarily on add-ons and extensions available for the browser that are useful to medical researchers. PMID:20677067

  19. Heritability of telomere length in the Zebra Finch

    NARCIS (Netherlands)

    Atema, Els; Mulder, Ellis; Dugdale, Hannah L.; Briga, Michael; van Noordwijk, Arie J.; Verhulst, Simon

    2015-01-01

    Telomere length predicts survival in birds, and many stressors that presumably reduce fitness have also been linked to telomere length. The response to selection of telomere length will be largely determined by the heritability of this trait; however, little is known about the genetic component of t

  20. Cause-specific telomere factors deregulation in hepatocellular carcinoma.

    OpenAIRE

    El Idrissi, Manale; Hervieu, Valérie; Merle, Philippe; Mortreux, Franck; Wattel, Eric

    2013-01-01

    International audience BACKGROUND: Among the numerous genetic defects associated with hepatocarcinogenesis, telomere abnormalities appear to play a role both in tumor promotion and maintenance. Telomeres, the chromosome extremities, are protected by specific proteins, the shelterin complex and by additional factors. Besides telomerase dysregulation, expression changes of these telomere factors have been observed in cancers. METHODS: Here, we tested the hypothesis that such dysregulation mi...

  1. Telomere length in human liver diseases.

    Science.gov (United States)

    Urabe, Y; Nouso, K; Higashi, T; Nakatsukasa, H; Hino, N; Ashida, K; Kinugasa, N; Yoshida, K; Uematsu, S; Tsuji, T

    1996-10-01

    To determine the role of telomere-mediated gene stability in hepatocarcinogenesis, we examined the telomere length of human liver with or without chronic liver diseases and hepatocellular carcinomas (HCC). The mean telomere restriction fragment (TRF) length of normal liver (n = 13), chronic hepatitis (n = 11), liver cirrhosis (n = 24) and HCC (n = 24) was 7.8 +/- 0.2, 7.1 +/- 0.3, 6.4 +/- 0.2 and 5.2 +/- 0.2 kb, respectively (mean +/- standard error). TRF length decreased with a progression of chronic liver diseases and that in HCC was significantly shorter than that in other chronic liver diseases (p HCC to that of corresponding surrounding liver of well differentiated (n = 7), moderately differentiated (n = 10) and poorly differentiated (n = 4) HCCs were 0.83 +/- 0.06, 0.75 +/- 0.05 and 0.98 +/- 0.09, respectively. The ratio of poorly differentiated HCC was significantly higher than that of moderately differentiated HCC (p telomere length ratio of moderately differentiated HCCs revealed a decrease of the ratio with size until it reached 50 mm in diameter. In contrast, the ratio increased as the size enlarged over 50 mm. These findings suggest that the gene stability of the liver cells mediated by the telomere is reduced as chronic liver disease progresses and that telomerase is activated in poorly differentiated HCC and moderately differentiated HCC over 50 mm in diameter. PMID:8938628

  2. Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein–Barr virus

    OpenAIRE

    Kamranvar, S A; Chen, X; Masucci, M G

    2013-01-01

    Malignant cells achieve replicative immortality by two alternative mechanisms, a common one dependent on de novo synthesis of telomeric DNA by telomerase, and a rare one based on telomere recombination known as alternative lengthening of telomeres (ALT). Epstein–Barr virus (EBV) transforms human B-lymphocytes into lymphoblastoid cell lines with unlimited growth potential in vitro and in vivo. Here we show that newly EBV-infected cells exhibit multiple signs of telomere dysfunction, including ...

  3. Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening.

    Science.gov (United States)

    Holohan, Brody; De Meyer, Tim; Batten, Kimberly; Mangino, Massimo; Hunt, Steven C; Bekaert, Sofie; De Buyzere, Marc L; Rietzschel, Ernst R; Spector, Tim D; Wright, Woodring E; Shay, Jerry W

    2015-08-01

    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications.

  4. Alternative Lengthening of Telomeres-An Enhanced Chromosomal Instability in Aggressive Non-MYCN Amplified and Telomere Elongated Neuroblastomas

    NARCIS (Netherlands)

    G. Lundberg; D. Sehic; J.K. Lansberg; I. Ora; A. Frigyesi; V. Castel; S. Navarro; M. Piqueras; T. Martinsson; R. Noguera; D. Gisselsson

    2011-01-01

    Telomere length alterations are known to cause genomic instability and influence clinical course in several tumor types, but have been little investigated in neuroblastoma (NB), one of the most common childhood tumors. In the present study, telomere-dependent chromosomal instability and telomere len

  5. Telomere length alterations unique to invasive lobular carcinoma.

    Science.gov (United States)

    Heaphy, Christopher M; Asch-Kendrick, Rebecca; Argani, Pedram; Meeker, Alan K; Cimino-Mathews, Ashley

    2015-08-01

    Telomeres are nucleoprotein complexes located at the extreme ends of eukaryotic chromosomes and protect chromosomal ends from degradation and recombination. Dysfunctional telomeres contribute to genomic instability, promote tumorigenesis, and, in breast cancer, have been associated with increased cancer risk and poor prognosis. Short telomere lengths have been previously associated with triple-negative and human epidermal growth factor receptor (Her2)--positive ductal carcinomas. However, these investigations have not specifically assessed invasive lobular carcinomas (ILCs), which accounts for 5% to 15% of all invasive breast cancers. Here, we evaluate telomere lengths within 48 primary ILCs with complete characterization of estrogen receptor (ER), progesterone receptor (PR), and Her2 status, including 32 luminal/Her2- (ER+/PR+/Her2-), 8 luminal/Her2+ (ER+/PR+/Her2+), 3 Her2+ (ER-/PR-/Her2+), and 5 triple-negative (ER-/PR-/Her2-) carcinomas. A telomere-specific fluorescence in situ hybridization assay, which provides single-cell telomere length resolution, was used to evaluate telomere lengths and compare with standard clinicopathological markers. In contrast to breast ductal carcinoma, in which more than 85% of cases display abnormally short telomeres, approximately half (52%) of the ILCs displayed either normal or long telomeres. Short telomere length was associated with older patient age. Interestingly, 3 cases (6%) displayed a unique telomere pattern consisting of 1 or 2 bright telomere spots among the normal telomere signals within each individual cancer cell, a phenotype that has not been previously described. Additional studies are needed to further evaluate the significance of the unique bright telomere spot phenotype and the potential utility of telomere length as a prognostic marker in ILC.

  6. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination

    OpenAIRE

    Benetti, Roberta; Gonzalo, Susana; Jaco, Isabel; Schotta, Gunnar; Klatt, Peter; Jenuwein, Thomas; Blasco, María A.

    2007-01-01

    Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-2...

  7. Inviting Calm Within: ADD, Neurology, and Mindfulness

    Science.gov (United States)

    Riner, Phillip S.; Tanase, Madalina

    2014-01-01

    The fourth edition of the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM IV") describes ADD as behaviorally observed impairments in attention, impulsivity, and hyperactivity. Officially known as AD/HD, we use ADD here because we are dealing primarily with attention, organizational, and impulsivity issues. A more…

  8. 75 FR 45164 - ``Add Us In'' Program

    Science.gov (United States)

    2010-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Office of the Assistant Secretary for Office of Disability Employment Policy ``Add Us In'' Program AGENCY... from $500,000 to $625,000. The objectives of this new initiative, Add Us In, are: (1) To increase...

  9. Telomerase and telomere length in pulmonary fibrosis.

    Science.gov (United States)

    Liu, Tianju; Ullenbruch, Matthew; Young Choi, Yoon; Yu, Hongfeng; Ding, Lin; Xaubet, Antoni; Pereda, Javier; Feghali-Bostwick, Carol A; Bitterman, Peter B; Henke, Craig A; Pardo, Annie; Selman, Moises; Phan, Sem H

    2013-08-01

    In addition to its expression in stem cells and many cancers, telomerase activity is transiently induced in murine bleomycin (BLM)-induced pulmonary fibrosis with increased levels of telomerase transcriptase (TERT) expression, which is essential for fibrosis. To extend these observations to human chronic fibrotic lung disease, we investigated the expression of telomerase activity in lung fibroblasts from patients with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). The results showed that telomerase activity was induced in more than 66% of IPF lung fibroblast samples, in comparison with less than 29% from control samples, some of which were obtained from lung cancer resections. Less than 4% of the human IPF lung fibroblast samples exhibited shortened telomeres, whereas less than 6% of peripheral blood leukocyte samples from patients with IPF or hypersensitivity pneumonitis demonstrated shortened telomeres. Moreover, shortened telomeres in late-generation telomerase RNA component knockout mice did not exert a significant effect on BLM-induced pulmonary fibrosis. In contrast, TERT knockout mice exhibited deficient fibrosis that was independent of telomere length. Finally, TERT expression was up-regulated by a histone deacetylase inhibitor, while the induction of TERT in lung fibroblasts was associated with the binding of acetylated histone H3K9 to the TERT promoter region. These findings indicate that significant telomerase induction was evident in fibroblasts from fibrotic murine lungs and a majority of IPF lung samples, whereas telomere shortening was not a common finding in the human blood and lung fibroblast samples. Notably, the animal studies indicated that the pathogenesis of pulmonary fibrosis was independent of telomere length.

  10. Addition of Bases to the 5'-end of Human Telomeric DNA: Influences on Thermal Stability and Energetics of Unfolding

    Directory of Open Access Journals (Sweden)

    Katherine L. Hayden

    2014-02-01

    Full Text Available Telomeric DNA has been intensely investigated for its role in chromosome protection, aging, cell death, and disease. In humans the telomeric tandem repeat (TTAGGGn is found at the ends of chromosomes and provides a novel target for the development of new drugs in the treatment of age related diseases such as cancer. These telomeric sequences show slight sequence variations from species to species; however, each contains repeats of 3 to 4 guanines allowing the G-rich strands to fold into compact and stable nuclease resistant conformations referred to as G-quadruplexes. The focus of this manuscript is to examine the effects of 5'-nucleotides flanking the human telomeric core sequence 5'-AGGG(TTAGGG 3-3' (h-Tel22. Our studies reveal that the addition of the 5'-flanking nucleotides (5'-T, and 5'-TT results in significant changes to the thermodynamic stability of the G-quadruplex structure. Our data indicate that the observed changes in stability are associated with changes in the number of bound waters resulting from the addition of 5'-flanking nucleotides to the h-Tel22 sequence as well as possible intermolecular interactions of the 5' overhang with the core structure.

  11. Actions of human telomerase beyond telomeres

    Institute of Scientific and Technical Information of China (English)

    Yusheng Cong; Jerry W Shay

    2008-01-01

    Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stem cell function, and in the regulation of gene expression.

  12. The role of telomere dynamics in aging and cancer

    Science.gov (United States)

    Blagoev, Krastan; Goodwin, Edwin

    2006-03-01

    Telomere length changes are far more dynamic than previously thought. In addition to a gradual loss of ˜100 base pairs per telomere in each cell division, losses as well as gains may occur within a single cell cycle. We are investigating how telomere exchange, extension, and deletion affect the proliferative potential of telomerase-negative somatic cells. Experimental techniques are being devised to detect dynamic telomere processes and quantify both the frequency and length changes of each. In parallel, a ``dynamic telomere model'' is being used that incorporates telomere dynamics to study how the telomere size distribution evolves with time. This is an essential step towards understanding the role that telomere dynamics play in the normal aging of tissues and organisms. The model casts light on relationships not otherwise easily explained by a deterministic ``mitotic clock,'' or to what extent the shortest initial telomere determines the onset of senescence. We also expect to identify biomarkers that will correlate with aging better than average telomere length and to shed light on the transition to unlimited growth found in telomerase-negative tumor cells having the ALT (alternative lengthening of telomeres) phenotype, and to evaluate strategies to suppress the growth of these tumors.

  13. Determination of Arabidopsis thaliana telomere length by PCR.

    Science.gov (United States)

    Vaquero-Sedas, María I; Vega-Palas, Miguel A

    2014-07-02

    In humans, telomere length studies have acquired great relevance because the length of telomeres has been related to natural processes like disease, aging and cancer. However, very little is known about the influence of telomere length on the biology of wild type plants. The length of plant telomeres has been usually studied by Terminal Restriction Fragment (TRF) analyses. This technique requires high amounts of tissue, including multiple cell types, which might be the reason why very little is known about the influence of telomere length on plant natural processes. In contrast, many of the human telomere length studies have focused on homogenous cell populations. Most of these studies have been performed by PCR, using telomeric degenerated primers, which allow the determination of telomere length from small amounts of human cells. Here, we have adapted the human PCR procedure to analyze the length of Arabidopsis thaliana telomeres. This PCR approach will facilitate the analysis of telomere length from low amounts of tissue. We have used it to determine that CG and non CG DNA methylation positively regulates Arabidopsis telomere length.

  14. Does Reproductive Investment Decrease Telomere Length in Menidia menidia?

    Directory of Open Access Journals (Sweden)

    Jin Gao

    Full Text Available Given finite resources, intense investment in one life history trait is expected to reduce investment in others. Although telomere length appears to be strongly tied to age in many taxa, telomere maintenance requires energy. We therefore hypothesize that telomere maintenance may trade off against other life history characters. We used natural variation in laboratory populations of Atlantic silversides (Menidia menidia to study the relationship between growth, fecundity, life expectancy, and relative telomere length. In keeping with several other studies on fishes, we found no clear dependence of telomere length on age. However, we did find that more fecund fish tended to have both reduced life expectancy and shorter telomeres. This result is consistent with the hypothesis that there is a trade-off between telomere maintenance and reproductive output.

  15. Identification of Neuroblastoma Subgroups Based on Three-Dimensional Telomere Organization.

    Science.gov (United States)

    Kuzyk, Alexandra; Gartner, John; Mai, Sabine

    2016-08-01

    Using 3D telomere quantitative fluorescence in situ hybridization, we determined the 3D telomere organization of 74 neuroblastoma tissue samples. Hierarchical cluster analysis of the measured telomere parameters identified three subgroups from our patient cohort. These subgroups have unique telomere profiles based on telomere length and nuclear architecture. Subgroups with higher levels of telomere dysfunction were comprised of tumors with greater numbers of telomeres, telomeric aggregates, and short telomeres (Pcell lines with constitutively low MYCN expression induced changes in their telomere profile that were consistent with increased telomere dysfunction; this illustrates a functional relationship between MYCN and 3D telomere organization. This study demonstrates the ability to classify neuroblastomas based on the level of telomere dysfunction, which is a novel approach for this cancer. PMID:27567959

  16. Genetic variants in telomere-maintenance genes and bladder cancer risk

    Institute of Scientific and Technical Information of China (English)

    Chengyuan Gu; Yao Zhu; Dingwei Ye

    2013-01-01

    Telomere maintenance genes play an important role in maintaining the integrity of the telomere structure that protects chromosome ends, and telomere dysfunction may lead to tumorigenesis. Genetic variation in telomere maintenance genes has been confirmed. Cumulative evidence shows that the dif erence of telomere length and stability among the indi-vidual depends on the genetic variants of telomere maintenance genes. Genetic variants in telomere maintenance genes may af ect telomere length and stability, thus the increased cancer risk. This review intends to summarize the association of genetic variants in telomere maintenance genes with bladder cancer risk.

  17. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis

    Directory of Open Access Journals (Sweden)

    LeBel Catherine

    2011-10-01

    Full Text Available Abstract Background The first telomerase-associated protein (Est1 was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD, telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively, the molecular determinants of these interactions have not been elaborated fully. Results To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat, was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122 did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. Conclusions These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.

  18. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  19. Quantitative dynamics of telomere bouquet formation.

    Directory of Open Access Journals (Sweden)

    David M Richards

    Full Text Available The mechanism by which homologous chromosomes pair during meiosis, as a prelude to recombination, has long been mysterious. At meiosis, the telomeres in many organisms attach to the nuclear envelope and move together to form the telomere bouquet, perhaps to facilitate the homologous search. It is believed that diffusion alone is not sufficient to account for the formation of the bouquet, and that some directed movement is also required. Here we consider the formation of the telomere bouquet in a wheat-rye hybrid both experimentally and using mathematical modelling. The large size of the wheat nucleus and wheat's commercial importance make chromosomal pairing in wheat a particularly interesting and important process, which may well shed light on pairing in other organisms. We show that, prior to bouquet formation, sister chromatid telomeres are always attached to a hemisphere of the nuclear membrane and tend to associate in pairs. We study a mutant lacking the Ph1 locus, a locus ensuring correct homologous chromosome pairing, and discover that bouquet formation is delayed in the wild type compared to the mutant. Further, we develop a mathematical model of bouquet formation involving diffusion and directed movement, where we show that directed movement alone is sufficient to explain bouquet formation dynamics.

  20. A loopy view of telomere evolution

    Directory of Open Access Journals (Sweden)

    Titia eDe Lange

    2015-10-01

    Full Text Available About a decade ago, I proposed that t-loops, the lariat structures adopted by many eukaryotic telomeres, could explain how the transition from circular to linear chromosomes was successfully negotiated by early eukaryotes. Here I reconsider this loopy hypothesis in the context of the idea that eukaryotes evolved through a period of genome invasion by Group II introns.

  1. ADD psychosis as a separate entity.

    Science.gov (United States)

    Bellak, L

    1985-01-01

    "Attention deficit disorder (ADD) psychosis" merits delineation as a separate entity. It constitutes the end result of the effects of a certain particular neurological deficit (ADD) on personality organization. It is my belief that about 10 percent of psychoses currently diagnosed most often schizophrenic and sometimes affective psychosis must best be considered a separate organic psychosis, i.e., an ADD psychosis. This ADD psychosis, then, is not merely a subgroup of schizophrenia, as I once thought. It merits a separate designation because its etiology, pathogenesis, and life history are different from those of the schizophrenic syndrome. The family histories are also different, as are the psychological findings. The treatment response is so different that it merits urgent consideration. Prognosis, both short range and long range, also seems different from those of the other psychoses. PMID:4081648

  2. Southeast Economic Add-on 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To collect data on an angler's last trip for revealed preference models and economic valuation purposes. Typically done as an add-on to the MRIP intercept survey...

  3. Southeast Economic Add-on 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To collect data on an angler's last trip for revealed preference models and economic valuation purposes. Typically done as an add-on to the MRIP intercept survey...

  4. Southeast Economic Add-on 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To collect data on an angler's last trip for revealed preference models and economic valuation purposes. Typically done as an add-on to the MRIP intercept survey...

  5. Southeast Economic Add-on 1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To collect data on an angler's last trip for revealed preference models and economic valuation purposes. Typically done as an add-on to the MRIP intercept survey...

  6. Add Audio and Video to Your Site

    CERN Document Server

    MacDonald, Matthew

    2010-01-01

    Nothing spices up websites like cool sound effects (think ker-thunk as visitors press a button) or embedded videos. Think you need a programmer to add sizzle to your site? Think again. This hands-on guide gives you the techniques you need to add video, music, animated GIFs, and sound effects to your site. This Mini Missing Manual is excerpted from Creating a Web Site: The Missing Manual.

  7. Functional characterization of the TERRA transcriptome at damaged telomeres.

    Science.gov (United States)

    Porro, Antonio; Feuerhahn, Sascha; Delafontaine, Julien; Riethman, Harold; Rougemont, Jacques; Lingner, Joachim

    2014-01-01

    Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.

  8. Telomere maintenance and the etiology of adult glioma.

    Science.gov (United States)

    Walsh, Kyle M; Wiencke, John K; Lachance, Daniel H; Wiemels, Joseph L; Molinaro, Annette M; Eckel-Passow, Jeanette E; Jenkins, Robert B; Wrensch, Margaret R

    2015-11-01

    A growing body of epidemiologic and tumor genomic research has identified an important role for telomere maintenance in glioma susceptibility, initiation, and prognosis. Telomere length has long been investigated in relation to cancer, but whether longer or shorter telomere length might be associated with glioma risk has remained elusive. Recent data address this question and are reviewed here. Common inherited variants near the telomerase-component genes TERC and TERT are associated both with longer telomere length and increased risk of glioma. Exome sequencing of glioma patients from families with multiple affected members has identified rare inherited mutations in POT1 (protection of telomeres protein 1) as high-penetrance glioma risk factors. These heritable POT1 mutations are also associated with increased telomere length in leukocytes. Tumor sequencing studies further indicate that acquired somatic mutations of TERT and ATRX are among the most frequent alterations found in adult gliomas. These mutations facilitate telomere lengthening, thus bypassing a critical mechanism of apoptosis. Although future research is needed, mounting evidence suggests that glioma is, at least in part, a disease of telomere dysregulation. Specifically, several inherited and acquired variants underlying gliomagenesis affect telomere pathways and are also associated with increased telomere length. PMID:26014050

  9. Telomeres, age and reproduction in a long-lived reptile.

    Directory of Open Access Journals (Sweden)

    Virginie Plot

    Full Text Available A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fast-growing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs. This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate

  10. The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres.

    Science.gov (United States)

    Williams, Jaime M; Ouenzar, Faissal; Lemon, Laramie D; Chartrand, Pascal; Bertuch, Alison A

    2014-08-01

    Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku-TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku's ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku-TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku-TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme.

  11. The Pif1 Helicase, a Negative Regulator of Telomerase, Acts Preferentially at Long Telomeres

    OpenAIRE

    Jane A Phillips; Angela Chan; Katrin Paeschke; Zakian, Virginia A.

    2015-01-01

    Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determ...

  12. PML is required for telomere stability in non-neoplastic human cells

    OpenAIRE

    Marchesini, M.; Matocci, R; Tasselli, L; Cambiaghi, V; Orleth, A; Furia, L; Marinelli, C.; Lombardi, S.; Sammarelli, G; Aversa, F.; Minucci, S; Faretta, M; Pelicci, P.G.; Grignani, F

    2015-01-01

    Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that ...

  13. Distinct Roles of TRF1 in the Regulation of Telomere Structure and Lengthening*S⃞

    OpenAIRE

    Okamoto, Keiji; Iwano, Tomohiko; Tachibana, Makoto; Shinkai, Yoichi

    2008-01-01

    The telomere is a functional chromatin structure that consists of G-rich repetitive sequences and various associated proteins. Telomeres protect chromosomal ends from degradation, provide escape from the DNA damage response, and regulate telomere lengthening by telomerase. Multiple proteins that localize at telomeres form a complex called shelterin/telosome. One component, TRF1, is a double-stranded telomeric DNA binding protein. Inactivation of TRF1 disrupts telomeric...

  14. Inter-telomeric recombination is present in telomerase-positive human cells

    OpenAIRE

    Dlaska, Margit; Schöffski, Patrick; Bechter, Oliver E.

    2013-01-01

    Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombinat...

  15. Telomere maintenance through recruitment of internal genomic regions.

    Science.gov (United States)

    Seo, Beomseok; Kim, Chuna; Hills, Mark; Sung, Sanghyun; Kim, Hyesook; Kim, Eunkyeong; Lim, Daisy S; Oh, Hyun-Seok; Choi, Rachael Mi Jung; Chun, Jongsik; Shim, Jaegal; Lee, Junho

    2015-01-01

    Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromosome ends, across the telomeres of all chromosomes. These 'Template for ALT' (TALT) regions consist of a block of genomic DNA flanked by telomere-like sequences, and are different between two genetic background. We establish a model that an ancestral duplication of a donor TALT region to a proximal telomere region forms a genomic reservoir ready to be incorporated into telomeres on ALT activation. PMID:26382656

  16. Insights into Cdc13 Dependent Telomere Length Regulation

    Energy Technology Data Exchange (ETDEWEB)

    M Mason; E Skordalakes

    2011-12-31

    Cdc13 is a single stranded telomere binding protein that specifically localizes to the telomere ends of budding yeasts and is essential for cell viability. It caps the ends of chromosomes thus preventing chromosome end-to-end fusions and exonucleolytic degradation, events that could lead to genomic instability and senescence, the hallmark of aging. Cdc13 is also involved in telomere length regulation by recruiting or preventing access of telomerase to the telomeric overhang. Recruitment of telomerase to the telomeres for G-strand extension is required for continuous cell division, while preventing its access to the telomeres through capping the chromosome ends prevents mitotic events that could lead to cell immortality, the hall mark of carcinogenesis. Cdc13 and its putative homologues human CTC1 and POT1 are therefore key to many biological processes directly associated with life extension and cancer prevention and can be viewed as an ideal target for cancer and age related therapies.

  17. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Directory of Open Access Journals (Sweden)

    Caterina Musetti

    Full Text Available The physiological role(s played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders.

  18. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Science.gov (United States)

    Musetti, Caterina; Krapcho, A Paul; Palumbo, Manlio; Sissi, Claudia

    2013-01-01

    The physiological role(s) played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II) bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders. PMID:23516498

  19. Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing.

    Science.gov (United States)

    Vembar, Shruthi Sridhar; Seetin, Matthew; Lambert, Christine; Nattestad, Maria; Schatz, Michael C; Baybayan, Primo; Scherf, Artur; Smith, Melissa Laird

    2016-08-01

    The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [∼80.6% (A + T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12 kb, with 50% of the reads between 15.5 and 50 kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo and successfully compiled all 14 nuclear chromosomes telomere-to-telomere. We also accurately resolved centromeres [∼90-99% (A + T)] and subtelomeric regions and identified large insertions and duplications that add extra var and rifin genes to the genome, along with smaller structural variants such as homopolymer tract expansions. Overall, we show that amplification-free, long-read sequencing combined with de novo assembly overcomes major challenges inherent to studying the P. falciparum genome. Indeed, this technology may not only identify the polymorphic and repetitive subtelomeric sequences of parasite populations from endemic areas but may also evaluate structural variation linked to virulence, drug resistance and disease transmission. PMID:27345719

  20. Longer telomeres associated with higher survival in birds

    OpenAIRE

    Haussmann, Mark F.; Winkler, David W.; Vleck, Carol M

    2005-01-01

    Differences in individual quality and survival within species are a major focus in evolutionary ecology, but we know very little about the underlying physiological mechanisms that determine these differences. Telomere shortening associated with cellular senescence and ageing may be one such mechanism. To date, however, there is little evidence linking telomere length and survival. Here, we show that tree swallows (Tachycineta bicolor) with relatively short telomeres at the age of 1 year have ...

  1. Extracting Extra-Telomeric Phenotypes from Telomerase Mouse Models

    OpenAIRE

    Sung, Young Hoon; Ali, Muhammad; Lee, Han-Woong

    2013-01-01

    Telomerase reverse transcriptase (TERT) is the protein component of telomerase and combined with an RNA molecule, telomerase RNA component, forms the telomerase enzyme responsible for telomere elongation. Telomerase is essential for maintaining telomere length from replicative attrition and thus contributes to the preservation of genome integrity. Although diverse mouse models have been developed and studied to prove the physiological roles of telomerase as a telomere-elongating enzyme, recen...

  2. The many facets of homologous recombination at telomeres

    OpenAIRE

    Clémence Claussin; Michael Chang

    2015-01-01

    The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, wh...

  3. Does Reproductive Investment Decrease Telomere Length in Menidia menidia?

    OpenAIRE

    Jin Gao; Munch, Stephan B.

    2015-01-01

    Given finite resources, intense investment in one life history trait is expected to reduce investment in others. Although telomere length appears to be strongly tied to age in many taxa, telomere maintenance requires energy. We therefore hypothesize that telomere maintenance may trade off against other life history characters. We used natural variation in laboratory populations of Atlantic silversides (Menidia menidia) to study the relationship between growth, fecundity, life expectancy, and ...

  4. Air Pollution Stress and the Aging Phenotype: The Telomere Connection.

    Science.gov (United States)

    Martens, Dries S; Nawrot, Tim S

    2016-09-01

    Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies. PMID:27357566

  5. Telomere loss: mitotic clock or genetic time bomb?

    Science.gov (United States)

    Harley, C B

    1991-01-01

    The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.

  6. Air Pollution Stress and the Aging Phenotype: The Telomere Connection.

    Science.gov (United States)

    Martens, Dries S; Nawrot, Tim S

    2016-09-01

    Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.

  7. SMARCAL1 maintains telomere integrity during DNA replication.

    Science.gov (United States)

    Poole, Lisa A; Zhao, Runxiang; Glick, Gloria G; Lovejoy, Courtney A; Eischen, Christine M; Cortez, David

    2015-12-01

    The SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) DNA translocase is one of several related enzymes, including ZRANB3 (zinc finger, RAN-binding domain containing 3) and HLTF (helicase-like transcription factor), that are recruited to stalled replication forks to promote repair and restart replication. These enzymes can perform similar biochemical reactions such as fork reversal; however, genetic studies indicate they must have unique cellular activities. Here, we present data showing that SMARCAL1 has an important function at telomeres, which present an endogenous source of replication stress. SMARCAL1-deficient cells accumulate telomere-associated DNA damage and have greatly elevated levels of extrachromosomal telomere DNA (C-circles). Although these telomere phenotypes are often found in tumor cells using the alternative lengthening of telomeres (ALT) pathway for telomere elongation, SMARCAL1 deficiency does not yield other ALT phenotypes such as elevated telomere recombination. The activity of SMARCAL1 at telomeres can be separated from its genome-maintenance activity in bulk chromosomal replication because it does not require interaction with replication protein A. Finally, this telomere-maintenance function is not shared by ZRANB3 or HLTF. Our results provide the first identification, to our knowledge, of an endogenous source of replication stress that requires SMARCAL1 for resolution and define differences between members of this class of replication fork-repair enzymes. PMID:26578802

  8. Telomere Q-PNA-FISH--reliable results from stochastic signals.

    Directory of Open Access Journals (Sweden)

    Andrea Cukusic Kalajzic

    Full Text Available Structural and functional analysis of telomeres is very important for understanding basic biological functions such as genome stability, cell growth control, senescence and aging. Recently, serious concerns have been raised regarding the reliability of current telomere measurement methods such as Southern blot and quantitative polymerase chain reaction. Since telomere length is associated with age related pathologies, including cardiovascular disease and cancer, both at the individual and population level, accurate interpretation of measured results is a necessity. The telomere Q-PNA-FISH technique has been widely used in these studies as well as in commercial analysis for the general population. A hallmark of telomere Q-PNA-FISH is the wide variation among telomere signals which has a major impact on obtained results. In the present study we introduce a specific mathematical and statistical analysis of sister telomere signals during cell culture senescence which enabled us to identify high regularity in their variations. This phenomenon explains the reproducibility of results observed in numerous telomere studies when the Q-PNA-FISH technique is used. In addition, we discuss the molecular mechanisms which probably underlie the observed telomere behavior.

  9. Uncoupling of Longevity and Telomere Length in C. elegans.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.

  10. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  11. Altered telomere homeostasis and resistance to skin carcinogenesis in Suv39h1 transgenic mice

    OpenAIRE

    Petti, Eleonora; Jordi, Fabian; Buemi, Valentina; Dinami, Roberto; Benetti, Roberta; Blasco, Maria A.; Schoeftner, Stefan

    2015-01-01

    The Suv39h1 and Suv39h2 H3K9 histone methyltransferases (HMTs) have a conserved role in the formation of constitutive heterochromatin and gene silencing. Using a transgenic mouse model system we demonstrate that elevated expression of Suv39h1 increases global H3K9me3 levels in vivo. More specifically, Suv39h1 overexpression enhances the imposition of H3K9me3 levels at constitutive heterochromatin at telomeric and major satellite repeats in primary mouse embryonic fibroblasts. Chromatin compac...

  12. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  13. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.

    Science.gov (United States)

    Phillips, Jane A; Chan, Angela; Paeschke, Katrin; Zakian, Virginia A

    2015-04-01

    Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres. PMID:25906395

  14. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.

    Directory of Open Access Journals (Sweden)

    Jane A Phillips

    2015-04-01

    Full Text Available Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB. Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX, which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80 -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.

  15. Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres

    OpenAIRE

    Grudic, Amra; Jul-Larsen, Åsne; Haring, SJ; Wold, MS; Lønning, Per Eystein; Bjerkvig, Rolf; Bøe, Stig Ove

    2007-01-01

    The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cel...

  16. The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells

    OpenAIRE

    Feng, Xuyang; Luo, Zhenhua; Jiang, Shuai; Li, Feng; Han, Xin; Hu, Yang; Wang, Dan; Zhao, Yong; Ma, Wenbin; Liu, Dan; Huang, Junjiu; Songyang, Zhou

    2013-01-01

    The majority of cancer cells rely on elevated telomerase expression and activity for rapid growth and proliferation. Telomerase-negative cancer cells, by contrast, often employ the alternative lengthening of telomeres (ALT) pathway to maintain telomeres. ALT cells are characterized by long and dynamic telomeres and the presence of ALT-associated promyelocytic leukemia (PML) bodies (APBs). Previous work has shown the importance of APBs to the ALT pathway, but their formation and precise role r...

  17. The Pif1 family helicase Pfh1 facilitates telomere replication and has an RPA-dependent role during telomere lengthening

    OpenAIRE

    McDonald, Karin R.; Sabouri, Nasim; Webb, Christopher J.; Zakian, Virginia A.

    2014-01-01

    Pif1 family helicases are evolutionary conserved 5′ to 3′ DNA helicases. Pfh1, the sole S. pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpres...

  18. Telomere regulation in pluripotent stem cells

    OpenAIRE

    Huang, Yan; Liang, Puping; Liu, Dan; Huang, Junjiu; Songyang, Zhou

    2014-01-01

    Pluripotent stem cells (PSCs) have the potential to produce any types of cells from all three basic germ layers and the capacity to self-renew and proliferate indefinitely in vitro. The two main types of PSCs, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), share common features such as colony morphology, high expression of Oct4 and Nanog, and strong alkaline phosphatase activity. In recent years, increasing evidences suggest that telomere length represents another imp...

  19. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    Science.gov (United States)

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  20. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    Science.gov (United States)

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.

  1. Telomere length homeostasis and telomere position effect on a linear human artificial chromosome are dictated by the genetic background.

    Science.gov (United States)

    Weuts, An; Voet, Thierry; Verbeeck, Jelle; Lambrechts, Nathalie; Wirix, Evelyne; Schoonjans, Luc; Danloy, Sophie; Marynen, Peter; Froyen, Guy

    2012-12-01

    Telomere position effect (TPE) is the influence of telomeres on subtelomeric epigenetic marks and gene expression. Previous studies suggested that TPE depends on genetic background. As these analyses were performed on different chromosomes, cell types and species, it remains unclear whether TPE represents a chromosome-rather than genetic background-specific regulation. We describe the development of a Linear Human Artificial Chromosome (L-HAC) as a new tool for telomere studies. The L-HAC was generated through the Cre-loxP-mediated addition of telomere ends to an existing circular HAC (C-HAC). As it can be transferred to genetically distinct cell lines and animal models the L-HAC enables the study of TPE in an unprecedented manner. The HAC was relocated to four telomerase-positive cell lines via microcell-mediated chromosome transfer and subsequently to mice via blastocyst injection of L-HAC(+)-ES-cells. We could show consistent genetic background-dependent adaptation of telomere length and telomere-associated de novo subtelomeric DNA methylation in mouse ES-R1 cells as well as in mice. Expression of the subtelomeric neomycin gene was inversely correlated with telomere length and subtelomeric methylation. We thus provide a new tool for functional telomere studies and provide strong evidence that telomere length, subtelomeric chromatin marks and expression of subtelomeric genes are genetic background dependent.

  2. Mammalian 5’ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance

    OpenAIRE

    Oganesian, Liana; Karlseder, Jan

    2011-01-01

    Recent evidence for 5’ cytosine (C)-rich overhangs at the telomeres of the nematode C. elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, Single Telomere Length Analysis (STELA) and strand-specific exonuclease assays revealed the presence of a 5’ C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they ...

  3. ATRX represses alternative lengthening of telomeres.

    Science.gov (United States)

    Napier, Christine E; Huschtscha, Lily I; Harvey, Adam; Bower, Kylie; Noble, Jane R; Hendrickson, Eric A; Reddel, Roger R

    2015-06-30

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that knockout or knockdown of ATRX in mortal cells or immortal telomerase-positive cells is insufficient to activate ALT. Notably, however, in SV40-transformed mortal fibroblasts ATRX loss results in either a significant increase in the proportion of cell lines activating ALT (instead of telomerase) or in a significant decrease in the time prior to ALT activation. These data indicate that loss of ATRX function cooperates with one or more as-yet unidentified genetic or epigenetic alterations to activate ALT. Moreover, transient ATRX expression in ALT-positive/ATRX-negative cells represses ALT activity. These data provide the first direct, functional evidence that ATRX represses ALT. PMID:26001292

  4. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm.

    Directory of Open Access Journals (Sweden)

    Masayuki Kimura

    2008-02-01

    Full Text Available Leukocyte telomere length (LTL is a complex genetic trait. It shortens with age and is associated with a host of aging-related disorders. Recent studies have observed that offspring of older fathers have longer LTLs. We explored the relation between paternal age and offspring's LTLs in 4 different cohorts. Moreover, we examined the potential cause of the paternal age on offspring's LTL by delineating telomere parameters in sperm donors. We measured LTL by Southern blots in Caucasian men and women (n=3365, aged 18-94 years, from the Offspring of the Framingham Heart Study (Framingham Offspring, the NHLBI Family Heart Study (NHLBI-Heart, the Longitudinal Study of Aging Danish Twins (Danish Twins, and the UK Adult Twin Registry (UK Twins. Using Southern blots, Q-FISH, and flow-FISH, we also measured telomere parameters in sperm from 46 young (50 years donors. Paternal age had an independent effect, expressed by a longer LTL in males of the Framingham Offspring and Danish Twins, males and females of the NHLBI-Heart, and females of UK Twins. For every additional year of paternal age, LTL in offspring increased at a magnitude ranging from half to more than twice of the annual attrition in LTL with age. Moreover, sperm telomere length analyses were compatible with the emergence in older men of a subset of sperm with elongated telomeres. Paternal age exerts a considerable effect on the offspring's LTL, a phenomenon which might relate to telomere elongation in sperm from older men. The implications of this effect deserve detailed study.

  5. Telomere length and variation in telomere biology genes in individuals with osteosarcoma.

    Science.gov (United States)

    Mirabello, Lisa; Richards, Elliott G; Duong, Linh M; Yu, Kai; Wang, Zhaoming; Cawthon, Richard; Berndt, Sonja I; Burdett, Laurie; Chowdhury, Salma; Teshome, Kedest; Douglass, Chester; Savage, Sharon A

    2011-01-01

    Osteosarcoma, the most common primary bone tumor, occurs most frequently in adolescents. Chromosomal aneuploidy is common in osteosarcoma cells, suggesting underlying chromosomal instability. Telomeres, located at chromosome ends, are essential for genomic stability; several studies have suggested that germline telomere length (TL) is associated with cancer risk. We hypothesized that TL and/or common genetic variation in telomere biology genes may be associated with risk of osteosarcoma. We investigated TL in peripheral blood DNA and 713 single nucleotide polymorphisms (SNPs) from 39 telomere biology genes in 98 osteosarcoma cases and 69 orthopedic controls. For the genotyping component, we added 1363 controls from the Prostate, Lung, Colorectal, and Ovarian Cancer ScreeningTrial. Short TL was not associated with osteosarcoma risk overall (OR 1.39, P=0.67), although there was a statistically significant association in females (OR 4.35, 95% Cl 1.20-15.74, P=0.03). Genotype analyses identified seven SNPs in TERF1 significantly associated with osteosarcoma risk after Bonferroni correction by gene. These SNPs were highly linked and associated with a reduced risk of osteosarcoma (OR 0.48-0.53, P=0.0001-0.0006). We also investigated associations between TL and telomere gene SNPs in osteosarcoma cases and orthopedic controls. Several SNPs were associated with TL prior to Bonferroni correction; one SNP in NOLA2 and one in MEN1 were marginally non-significant after correction (P(adj)=0.057 and 0.066, respectively). This pilot-study suggests that females with short telomeres may be at increased risk of osteosarcoma, and that SNPs in TERF1 are inversely associated with osteosarcoma risk.

  6. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  7. 76 FR 49508 - ``Add Us In'' Initiative

    Science.gov (United States)

    2011-08-10

    ... Federal Register on August 4, 2011 at 76 FR 150. Specifically, we are correcting the Funding Opportunity... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Office of Disability Employment Program ``Add Us In'' Initiative AGENCY: Office of Disability...

  8. Genetic association study of selected candidate genes (ApoB, LPL, Leptin and telomere length in obese and hypertensive individuals

    Directory of Open Access Journals (Sweden)

    Saini Divyalakshmi

    2009-09-01

    Full Text Available Abstract Background A genetic study was carried out among obese and hypertensive individuals from India to assess allelic association, if any, at three candidate loci: Apolipoprotein B (ApoB minisatellite and two tetranucleotide repeat loci; LPL (Lipoprotein lipase and Leptin. Attempt has also been made to find out whether telomere length attrition is associated with hypertension and obese individuals. Methods Venous blood samples were collected from 37 normal, 35 obese and 47 hypertensive individuals. Genomic DNA was extracted from peripheral blood mononuclear cells (PBMC and PCR amplifications were achieved using locus specific primers. Genotyping of ApoB minisatellite was performed using 4% polyacrylamide gel electrophoresis (PAGE followed by silver staining, whereas LPL and Leptin loci were genotyped using ALF Express™ DNA sequencer. Telomere length was determined using a recently developed real time based quantitative PCR, where the relative telomere length was determined by calculating the relative ratio of telomere (T and single copy gene (S PCR products which is expressed as T/S ratio. Results All the three loci are highly polymorphic, display high heterozygosity and conform to Hardy-Weinberg's equilibrium expectations. ApoB minisatellite displayed 14 alleles, whereas LPL and Leptin tetranucleotide loci were having 9 and 17 alleles, respectively. Interestingly two new alleles (9 and 11 repeats were detected at ApoB locus for the first time. The alleles at Leptin locus were classified as Class I (lower alleles: 149-200 bp and Class II alleles (higher alleles: >217 bp. Higher alleles at ApoB (>39 repeats, predominant allele 9 at LPL and alleles 164 bp and 224 bp at Leptin loci have shown allelic association with hypertensive individuals. After adjusting the influence of age and gender, the analysis of co-variance (ANCOVA revealed the relative telomere length (T/S ratio in hypertensive individuals to be (1.01 ± 0.021, which was

  9. Genomic instability and telomere fusion of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine osteosarcoma (OSA is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.

  10. Heregulin, a new regulator of telomere length in human cells.

    Science.gov (United States)

    Menendez, Javier A; Rubio, Miguel A; Campisi, Judith; Lupu, Ruth

    2015-11-24

    The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter the chemotherapeutic profile of transformed cells, we hypothesized that an unanticipated nuclear function of HRG might be to regulate telomere length. Engineered overexpression of the HRGβ2 isoform in non-aggressive, HRG-negative MCF-7 BC cells resulted in a significant shortening of telomeres (up to 1.3 kb) as measured by Southern blotting of telomere terminal restriction fragments. Conversely, antisense-mediated suppression of HRGβ2 in highly aggressive, HRG-overexpressing MDA-MB-231 and Hs578T cells increased telomere length up to 3.0 kb. HRGβ2 overexpression promoted a marked upregulation of telomere-binding protein 2 (TRF2) protein expression, whereas its knockdown profoundly decreased TRF2 expression. Double staining of endogenous HRGβ2 with telomere-specific peptide nucleic acid probe/fluorescence in situ hybridization (PNA/FISH) revealed the partial localization of HRG at the chromosome ends. Moreover, a predominantly nucleoplasmic staining pattern of endogenous HRGβ2 appeared to co-localize with TRF2 and, concomitantly with RAP1, a telomere regulator that specifically interacts with TRF2. Small interfering RNA-mediated knockdown of HRG decreased the expression of TRF2 and RAP1, decreased their presence at chromosome ends, and coincidentally resulted in the formation of longer telomeres. This study uncovers a new function for HRGβ2 in controlling telomere length, in part due to its ability to regulate and interact with the telomere-associated proteins TRF2 and RAP1.

  11. Increased brood size leads to persistent eroded telomeres

    Directory of Open Access Journals (Sweden)

    Sophie eReichert

    2014-04-01

    Full Text Available Costs of reproduction can be divided in mandatory costs coming from physiological, metabolic and anatomical changes required to sustain reproduction itself, and in investment-dependent costs that are likely to become apparent when reproductive efforts are exceeding what organisms were prepared to sustain. Interestingly, recent data showed that entering reproduction enhanced breeders’ telomere loss, but no data explored so far the impact of reproductive investment. Telomeres protect the ends of eukaryote chromosomes. Shortened telomeres were associated with shorter lifespan, telomere erosion being then proposed to powerfully quantify life’s insults. Here, we experimentally manipulated brood size in order to modify reproductive investment of adult zebra finches (Taeniopygia guttata below or beyond their (optimal starting investment and tested the consequences of our treatment on parents’ telomere dynamics. We show that an increased brood size led to a reduction in telomere lengths in both parents compared to control and to parents raising a reduced brood. This greater telomere erosion was detected in parents immediately after the reproductive event and the telomere length difference persisted up to one year later. However, we did not detect any effects of brood size manipulation on annual survival of parents kept under laboratory conditions. In addition, telomere lengths at the end of reproduction were not associated with annual survival. Altogether, although our findings highlight that fast telomere erosion can come as a cost of brood size manipulation, they provide mixed correlative support to the emerging hypothesis that telomere erosion could account for the links between high reproductive investment and longevity.

  12. Estimation of the amount of telomere molecules in different human age groups and the telomere increasing effect of acupuncture and shiatsu on St.36, using synthesized basic units of the human telomere molecules as reference control substances for the bi-digital O-ring test resonance phenomenon.

    Science.gov (United States)

    Omura, Y; Shimotsura, Y; Ooki, M; Noguchi, T

    1998-01-01

    It is well established that the telomeres at the ends of chromosomes are composed of long arrays of (TTAGGG)n x (CCCTAA)n that form a nucleoprotein complex required for the replication and protection of chromosome ends. Throughout the cell cycle, telomeres also contain a protein component related to the proto-oncogene Myb that is known as TRF1 (telomere TTAGGG repeat binding factor 1) that binds to the duplex array of TTAGGG repeats in the telomere. Previous studies have shown that TRF1 appears to play a role in controlling the length of telomeres by acting as an inhibitor of telomerase. The amount of each of the TRF1(C-19) & TRF1(N-19) was identical to the amount of telomere of the same organ of the same apparently normal individual. Using synthesized basic unit of TTAGGG, as well as CCCTAA, as separate reference control substances for the Bi-Digital O-Ring Test of Resonance Phenomenon between 2 identical substances, we were able to non-invasively measure the approximate amount of TTAGGG and CCCTAA units, in both normal and cancerous human cells. We examined about 30 apparently normal subjects (both Asian and Caucasian in both sex). The subjects' ages ranged from infancy to 76 years. Each subject was first examined using TTAGGG as a control substance and then examined using CCCTAA as a control substance. The amount of telomere in various cancer tissues are almost always higher than that of normal tissue of the same organ. The measured amounts of both TTAGGG and CCCTAA were found to be in an average of 1500-1600 ng for human fetus or infancy and decreased with the advance of age in both sex with the exception of the heart, brain, eyes (retina), testes, and ovaries, which usually remain at the level of the infant, or reduced very little. Individuals in the same age group had a similar range of amounts of both TTAGGG and CCCTAA in the same organ of the same individual, (except for those with unusually low telomeres often had chronic degenerative diseases, and those

  13. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in

    Institute of Scientific and Technical Information of China (English)

    Chenhui Huang; Xueyu Dai; Weihang Chai

    2012-01-01

    Telomere maintenance is critical for genome stability.The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance,though its precise role is unclear.We report here that depletion of hStn1 induces catastrophic telomere shortening,DNA damage response,and early senescence in human somatic cells.These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA.Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres,increases telomere fragility,hinders telomere DNA synthesis,as well as delays and compromises telomeric C-strand synthesis.We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α(polα)to telomeres,suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres.Additionally,our data suggest that hStn1 is unlikely to be part of the telomere capping complex.We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA,therefore preventing rapid telomere loss.

  14. Assessment of Telomere Length, Phenotype, and DNA Content

    Science.gov (United States)

    Kelesidis, Theodoros; Schmid, Ingrid

    2016-01-01

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:18770803

  15. DNA-PKcs is critical for telomere capping

    Energy Technology Data Exchange (ETDEWEB)

    Gilley, David; Tanaka, Hiromi; Hande, M. Prakash; Kurimasa,Akihiro; Li, Gloria C.; Chen, David J.

    2001-04-10

    The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is critical for DNA repair via the non-homologous end joining (NHEJ) pathway. Previously, it was reported that bone marrow cells and spontaneously transformed fibroblasts from SCID (severe combined immunodeficiency) mice have defects in telomere maintenance. The genetically defective SCID mouse arose spontaneously from its parental strain CB17. One known genomic alteration in SCID mice is a truncation of the extreme carboxyl-terminus of DNA-PKcs, but other as yet unidentified alterations may also exist. We have used a defined system, the DNA-PKcs knockout mouse, to investigate specifically the role DNA-PKcs specifically plays in telomere maintenance. We report that primary mouse embryonic fibroblasts (MEFs) and primary cultured kidney cells from 6-8 month old DNA-PKcs deficient mice accumulate a large number of telomere fusions, yet still retain wildtype telomere length. Thus, the phenotype of this defect separates the two-telomere related phenotypes, capping and length maintenance. DNA-PKcs deficient MEFs also exhibit elevated levels of chromosome fragments and breaks, which correlate with increased telomere fusions. Based on the high levels of telomere fusions observed in DNA-PKcs deficient cells, we conclude that DNA-PKcs plays an important capping role at the mammalian telomere.

  16. Gender and telomere length : Systematic review and meta-analysis

    NARCIS (Netherlands)

    Gardner, Michael; Bann, David; Wiley, Laura; Cooper, Rachel; Hardy, Rebecca; Nitsch, Dorothea; Martin-Ruiz, Carmen; Shiels, Paul; Sayer, Avan Aihie; Barbieri, Michelangela; Bekaert, Sofie; Bischoff, Claus; Brooks-Wilson, Angela; Chen, Wei; Cooper, Cyrus; Christensen, Kaare; De Meyer, Tim; Deary, Ian; Der, Geoff; Roux, Ana Diez; Fitzpatrick, Annette; Hajat, Anjum; Halaschek-Wiener, Julius; Harris, Sarah; Hunt, Steven C.; Jagger, Carol; Jeon, Hyo-Sung; Kaplan, Robert; Kimura, Masayuki; Lansdorp, Peter; Li, Changyong; Maeda, Toyoki; Mangino, Massimo; Nawrot, Tim S.; Nilsson, Peter; Nordfjall, Katarina; Paolisso, Giuseppe; Ren, Fu; Riabowol, Karl; Robertson, Tony; Roos, Goran; Staessen, Jan A.; Spector, Tim; Tang, Nelson; Unryn, Brad; van der Harst, Pim; Woo, Jean; Xing, Chao; Yadegarfar, Mohammad E.; Park, Jae Yong; Young, Neal; Kuh, Diana; von Zglinicki, Thomas; Ben-Shlomo, Yoav

    2014-01-01

    Background: It is widely believed that females have longer telomeres than males, although results from studies have been contradictory. Methods: We carried out a systematic review and meta-analyses to test the hypothesis that in humans, females have longer telomeres than males and that this associat

  17. The many facets of homologous recombination at telomeres

    NARCIS (Netherlands)

    Claussin, Clémence; Chang, Michael

    2015-01-01

    The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have e

  18. Telomerase-null survivor screening identifies novel telomere recombination regulators.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    Full Text Available Telomeres are protein-DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These "survivor" cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics.

  19. The many facets of homologous recombination at telomeres

    Directory of Open Access Journals (Sweden)

    Clémence Claussin

    2015-07-01

    Full Text Available The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB, which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR. HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.

  20. Socioecological variables predict telomere length in wild spotted hyenas.

    Science.gov (United States)

    Lewin, Nora; Treidel, Lisa A; Holekamp, Kay E; Place, Ned J; Haussmann, Mark F

    2015-02-01

    Telomeres are regarded as important biomarkers of ageing and serve as useful tools in revealing how stress acts at the cellular level. However, the effects of social and ecological factors on telomere length remain poorly understood, particularly in free-ranging mammals. Here, we investigated the influences of within-group dominance rank and group membership on telomere length in wild adult spotted hyenas (Crocuta crocuta). We found large effects of both factors; high-ranking hyenas exhibited significantly greater mean telomere length than did subordinate animals, and group membership significantly predicted mean telomere length within high-ranking females. We further inquired whether prey availability mediates the observed effect of group membership on telomere length, but this hypothesis was not supported. Interestingly, adult telomere length was not predicted by age. Our work shows for the first time, to the best of our knowledge, the effects of social rank on telomere length in a wild mammal and enhances our understanding of how social and ecological variables may contribute to organismal senescence.

  1. Longitudinal Changes in Leukocyte Telomere Length and Mortality in Humans

    DEFF Research Database (Denmark)

    Bendix, Laila; Thinggaard, Mikael; Fenger, Mogens;

    2013-01-01

    Leukocyte telomere length (LTL) ostensibly shortens with age and has been moderately associated with mortality. In humans, these findings have come almost solely from cross-sectional studies. Only recently has LTL shortening within individuals been analyzed in longitudinal studies. Such studies...... are relevant to establish LTL dynamics as biomarkers of mortality as well as to disentangle the causality of telomeres on aging....

  2. Common variants near TERC are associated with mean telomere length

    NARCIS (Netherlands)

    Codd, Veryan; Mangino, Massimo; van der Harst, Pim; Braund, Peter S.; Kaiser, Michael; Beveridge, Alan J.; Rafelt, Suzanne; Moore, Jasbir; Nelson, Chris; Soranzo, Nicole; Zhai, Guangju; Valdes, Ana M.; Blackburn, Hannah; Mateo Leach, Irene; de Boer, Rudolf A.; Goodall, Alison H.; Ouwehand, Willem; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Navis, Gerjan; Burton, Paul R.; Tobin, Martin D.; Hall, Alistair S.; Thompson, John R.; Spector, Tim; Samani, Nilesh J.

    2010-01-01

    We conducted genome-wide association analyses of mean leukocyte telomere length in 2,917 individuals, with follow-up replication in 9,492 individuals. We identified an association with telomere length on 3q26 (rs12696304, combined P = 3.72 x 10(-14)) at a locus that includes TERC, which encodes the

  3. Telomerase RNA Template Mutations Reveal Sequence-Specific Requirements for the Activation and Repression of Telomerase Action at Telomeres

    OpenAIRE

    Prescott, John C.; Blackburn, Elizabeth H.

    2000-01-01

    Telomeric DNA is maintained within a length range characteristic of an organism or cell type. Significant deviations outside this range are associated with altered telomere function. The yeast telomere-binding protein Rap1p negatively regulates telomere length. Telomere elongation is responsive to both the number of Rap1p molecules bound to a telomere and the Rap1p-centered DNA-protein complex at the extreme telomeric end. Previously, we showed that a specific trinucleotide substitution in th...

  4. Keeping It in the Family: ATRX Loss Promotes Persistent Sister Telomere Cohesion in ALT Cancer Cells.

    Science.gov (United States)

    Roake, Caitlin M; Artandi, Steven E

    2015-09-14

    In this issue of Cancer Cell, Ramamoorthy and Smith report that cancer cells that maintain their chromosome ends through alternative lengthening of telomeres (ALT) display persistent sister telomere cohesion. This delayed resolution of sister telomere cohesion depends upon the loss of ATRX and its histone-sequestering function and is associated with increased recombination between sister telomeres. PMID:26373274

  5. QTL mapping and candidate gene analysis of telomere length control factors in maize (Zea mays L.)

    Science.gov (United States)

    Telomere length is under genetic control and important for essential telomere functions. Failure to regulate telomere length homeostasis contributes to cancers and aging-related diseases in animals, but the effects of telomere length defects in plants remains poorly understood. To learn more about t...

  6. Assembly of telomeric chromatin to create ALTernative endings.

    Science.gov (United States)

    O'Sullivan, Roderick J; Almouzni, Genevieve

    2014-11-01

    Circumvention of the telomere length-dependent mechanisms that control the upper boundaries of cellular proliferation is necessary for the unlimited growth of cancer. Most cancer cells achieve cellular immortality by up-regulating the expression of telomerase to extend and maintain their telomere length. However, a small but significant number of cancers do so via the exchange of telomeric DNA between chromosomes in a pathway termed alternative lengthening of telomeres, or ALT. Although it remains to be clarified why a cell chooses the ALT pathway and how ALT is initiated, recently identified mutations in factors that shape the chromatin and epigenetic landscape of ALT telomeres are shedding light on these mechanisms. In this review, we examine these recent findings and integrate them into the current models of the ALT mechanism. PMID:25172551

  7. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis.

    Science.gov (United States)

    Pinzaru, Alexandra M; Hom, Robert A; Beal, Angela; Phillips, Aaron F; Ni, Eric; Cardozo, Timothy; Nair, Nidhi; Choi, Jaehyuk; Wuttke, Deborah S; Sfeir, Agnel; Denchi, Eros Lazzerini

    2016-06-01

    Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL) patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1) function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  8. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Alexandra M. Pinzaru

    2016-06-01

    Full Text Available Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1 function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  9. TELOMERE SHORTENING IN MONOCYTES OF THE PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    V. I. Borisov

    2006-01-01

    Full Text Available Abstract. Present study deals with size measurements of telomeric DNA from the human peripheral mononuclear immune cells in rheumatoid arthritis (RA. A method for measuring the relative telomere length by in situ hybridization followed by flow cytometric analysis (flow-FISH was used. Relative telomere length (RTL in monocytes was estimated as mean fluorescence intensity (MFI of test cells divided by MFI values of internal control cells. Hybridization conditions for analysis of telomere length in monocytes have been optimized in advance. It has been shown that RTL of monocytes was significantly lower in RA patients compared to donors. Significant differences in telomere length of monocytes between RA patients and donors were revealed for the young persons under 30 years old. The findings obtained may be considered as an additional argument confirming the hypothesis on genetic defects of hematopoietic stem cells determining RA development.

  10. Telomere Length – a New Biomarker in Medicine

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2015-12-01

    Full Text Available A number of xenobiotics in the environment and workplace influences on our health and life. Biomarkers are tools for measuring such exposures and their effects in the organism. Nowadays, telomere length, epigenetic changes, mutations and changes in gene expression pattern have become new molecular biomarkers. Telomeres play the role of molecular clock, which influences on expectancy of cell life and thus aging, the formation of damages, development diseases and carcinogenesis. The telomere length depends on mechanisms of replication and the activity of telomerase. Telomere length is currently used as a biomarker of susceptibility and/or exposure. This paper describes the role of telomere length as a biomarker of aging cells, oxidative stress, a marker of many diseases including cancer, and as a marker of environmental and occupational exposure.

  11. Offspring's Leukocyte Telomere Length, Paternal Age, and Telomere Elongation in Sperm

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Cherkas, Lynn F; Kato, Bernet S;

    2008-01-01

    Leukocyte telomere length (LTL) is a complex genetic trait. It shortens with age and is associated with a host of aging-related disorders. Recent studies have observed that offspring of older fathers have longer LTLs. We explored the relation between paternal age and offspring's LTLs in 4 differe...

  12. Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Mulder, Ellis; Salomons, H. Martijn; Dijkstra, Cornelis; Verhulst, Simon

    2014-01-01

    Developmental stressors often have long-term fitness consequences, but linking offspring traits to fitness prospects has remained a challenge. Telomere length predicts mortality in adult birds, and may provide a link between developmental conditions and fitness prospects. Here, we examine the effect

  13. Integration of Telomere Length Dynamics into Systems Biology Framework: A Review.

    Science.gov (United States)

    Nersisyan, Lilit

    2016-01-01

    Telomere length dynamics plays a crucial role in regulation of cellular processes and cell fate. In contrast to epidemiological studies revealing the association of telomere length with age, age-related diseases, and cancers, the role of telomeres in regulation of transcriptome and epigenome and the role of genomic variations in telomere lengthening are not extensively analyzed. This is explained by the fact that experimental assays for telomere length measurement are resource consuming, and there are very few studies where high-throughput genomics, transcriptomics, and/or epigenomics experiments have been coupled with telomere length measurements. Recent development of computational approaches for assessment of telomere length from whole genome sequencing data pave a new perspective on integration of telomeres into high-throughput systems biology analysis framework. Herein, we review existing methodologies for telomere length measurement and compare them to computational approaches, as well as discuss their applications in large-scale studies on telomere length dynamics. PMID:27346946

  14. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells

    International Nuclear Information System (INIS)

    The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process

  15. Emotions and family interactions in childhood: Associations with leukocyte telomere length emotions, family interactions, and telomere length.

    Science.gov (United States)

    Robles, Theodore F; Carroll, Judith E; Bai, Sunhye; Reynolds, Bridget M; Esquivel, Stephanie; Repetti, Rena L

    2016-01-01

    Conceptualizations of links between stress and cellular aging in childhood suggest that accumulating stress predicts shorter leukocyte telomere length (LTL). At the same time, several models suggest that emotional reactivity to stressors may play a key role in predicting cellular aging. Using intensive repeated measures, we tested whether exposure or emotional "reactivity" to conflict and warmth in the family were related to LTL. Children (N=39; 30 target children and 9 siblings) between 8 and 13 years of age completed daily diary questionnaires for 56 consecutive days assessing daily warmth and conflict in the marital and the parent-child dyad, and daily positive and negative mood. To assess exposure to conflict and warmth, diary scale scores were averaged over the 56 days. Mood "reactivity" was operationalized by using multilevel modeling to generate estimates of the slope of warmth or conflict scores (marital and parent-child, separately) predicting same-day mood for each individual child. After diary collection, a blood sample was collected to determine LTL. Among children aged 8-13 years, a stronger association between negative mood and marital conflict, suggesting greater negative mood reactivity to marital conflict, was related to shorter LTL (B=-1.51, ptelomere length.

  16. Dynamic changes of telomeric restriction fragment (TRF) lengths in cells during the developmental process from embryos to seedlings and a comparison with the embryonal calli in Ginkgo biloba L.

    Institute of Scientific and Technical Information of China (English)

    Liu Di; Zhang Xiao-mei; Hua Xin; Qiao Nan; Song Han; Lu Hai; Guo Hui-hong; Li Feng-lan

    2007-01-01

    Telomeres are the structures that locate at the terminals of linear eukaryotic chromosomes. They can play essential roles in many cellular processes. The terminal location of Arabidopsis-type TTTAGGG tandem repeats were thought to be highly conserved.The terminal location of Ginkgo biloba L. consisting of TTTAGGG tandem repeats, were confirmed by Bal31 exonuclease degradation and Southern blotting. By comparing telomeric restriction fragment (TRF) lengths at different developmental stages from embryos to seedlings, a fluctuant tendency towards variation was found in these samples. The TRF length of embryos was also compared with that of embryonal calli and an upward trend was discovered in callus culture. The results suggest that there should be a telomerase mechanism or/and ALT mechanism for the maintenance of telomere length.

  17. 跟我学“加”法——add…to,add to,add up,add up to辨析

    Institute of Scientific and Technical Information of China (English)

    余阳

    2009-01-01

    add…to,add to,add up和add up to都有"加"的意思,它们有什么区别吗?请看:1.add…to意思是"把……加到……上去"。如:Please add my name to your mailing list.请把我的名字加入你们的邮件名单中。

  18. A role for monoubiquitinated FANCD2 at telomeres in ALT cells

    OpenAIRE

    Fan, Qiang; Zhang, Fan; Barrett, Briana; Ren, Keqin; Andreassen, Paul R.

    2009-01-01

    Both Fanconi anemia (FA) and telomere dysfunction are associated with chromosome instability and an increased risk of cancer. Because of these similarities, we have investigated whether there is a relationship between the FA protein, FANCD2 and telomeres. We find that FANCD2 nuclear foci colocalize with telomeres and PML bodies in immortalized telomerase-negative cells. These cells maintain telomeres by alternative lengthening of telomeres (ALT). In contrast, FANCD2 does not colocalize with t...

  19. Alternative lengthening of telomeres (ALT) in cancer stem cells in vivo

    OpenAIRE

    Bojovic, Bojana; Booth, Ryan E.; Jin, Yi; Zhou, Xiaofeng; Crowe, David L.

    2014-01-01

    Chromosome ends are protected by telomeres which prevent DNA damage response and degradation. Telomerase expression extends telomeres and inhibits DNA damage response. Telomeres are also maintained by the recombination based alternative lengthening pathway. Telomerase is believed to be the sole mechanism for telomere maintenance in epidermis. We show that basal cells in epidermis maintain telomeres both by telomerase and ALT mechanisms in vivo. ALT was detected in epidermal stem cells in Terc...

  20. Correlation of chromosomal instability, telomere length and telomere maintenance in microsatellite stable rectal cancer: a molecular subclass of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Lisa A Boardman

    Full Text Available INTRODUCTION: Colorectal cancer (CRC tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS and is historically considered to be chromosomally unstable (CIN+. However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-. MSS CIN- tumors have not been assessed for telomere attrition. EXPERIMENTAL DESIGN: MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]. Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH. RESULTS: Tumors were classified as chromosomally stable (CIN- and chromosomally instable (CIN+ by degree of DNA copy number changes. CIN- tumors (35%; n=6 had fewer copy number changes (<17% of their clones with DNA copy number changes than CIN+ tumors (65%; n=13 which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066 and in those in which telomerase was not activated (p=0.004. Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040; and tended to be CIN+ (p=0.0949. CONCLUSIONS: MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.

  1. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast.

    Directory of Open Access Journals (Sweden)

    Tonibelle Gatbonton

    2006-03-01

    Full Text Available Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%-35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease.

  2. Telomere Length and the Cancer–Atherosclerosis Trade-Off

    Science.gov (United States)

    Stone, Rivka C.; Horvath, Kent; Kark, Jeremy D.; Susser, Ezra; Tishkoff, Sarah A.; Aviv, Abraham

    2016-01-01

    Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan. PMID:27386863

  3. Telomere Length and the Cancer-Atherosclerosis Trade-Off.

    Science.gov (United States)

    Stone, Rivka C; Horvath, Kent; Kark, Jeremy D; Susser, Ezra; Tishkoff, Sarah A; Aviv, Abraham

    2016-07-01

    Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan. PMID:27386863

  4. Telomere length and cortisol reactivity in children of depressed mothers.

    Science.gov (United States)

    Gotlib, I H; LeMoult, J; Colich, N L; Foland-Ross, L C; Hallmayer, J; Joormann, J; Lin, J; Wolkowitz, O M

    2015-05-01

    A growing body of research demonstrates that individuals diagnosed with major depressive disorder (MDD) are characterized by shortened telomere length, which has been posited to underlie the association between depression and increased instances of medical illness. The temporal nature of the relation between MDD and shortened telomere length, however, is not clear. Importantly, both MDD and telomere length have been associated independently with high levels of stress, implicating dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and anomalous levels of cortisol secretion in this relation. Despite these associations, no study has assessed telomere length or its relation with HPA-axis activity in individuals at risk for depression, before the onset of disorder. In the present study, we assessed cortisol levels in response to a laboratory stressor and telomere length in 97 healthy young daughters of mothers either with recurrent episodes of depression (i.e., daughters at familial risk for depression) or with no history of psychopathology. We found that daughters of depressed mothers had shorter telomeres than did daughters of never-depressed mothers and, further, that shorter telomeres were associated with greater cortisol reactivity to stress. This study is the first to demonstrate that children at familial risk of developing MDD are characterized by accelerated biological aging, operationalized as shortened telomere length, before they had experienced an onset of depression; this may predispose them to develop not only MDD but also other age-related medical illnesses. It is critical, therefore, that we attempt to identify and distinguish genetic and environmental mechanisms that contribute to telomere shortening.

  5. Tandem isomerization/telomerization of long chain dienes

    Directory of Open Access Journals (Sweden)

    Laura eTorrente Murciano

    2014-06-01

    Full Text Available The first example of a tandem reaction involving double-bond migration in combination with telomerization is reported. Homogeneous and heterogeneous Ru catalysts were employed as isomerisation catalysts, and telomerization was realized using a homogeneous Pd(0 precursor complex with a N-heterocyclic carbene (IMes ligand. Overall conversions approaching 60 % were achieved with the best selectivity to telomerization products of 91% attained at 11 % conversion. Conversion was markedly higher in the presence of longer-chain alcohol (1-butanol as the nucleophile (telogen.

  6. Old Fathers and Long-Telomered Offspring: Elongation of Telomeres in the Testes of Older Men Versus Transgenerational Erosion of Germline Telomeres

    OpenAIRE

    Reinhard Stindl

    2011-01-01

    There have been several reports of a significant positive correlation between paternal age and chromosome telomere length in offspring. Moreover, the telomeres in sperm cells of older men tend to be longer than in young men, and it has been concluded that telomeres lengthen in the testes during adulthood. This would be the first evidence of an increasing biological advantage with age, and therefore contradicts current models in which telomere shortening is a biomarker of aging. Instead, an al...

  7. Study on the mechanism of cytotoxic effects of radiation and chemicals and development of risk assessment method. Changes in telomere and telomerase in mutated animals

    International Nuclear Information System (INIS)

    It has been known that the carcinogenic risk for radiation, chemical agents, etc. of Mus musulus molossinus MUG (MUG) maintained in laboratory is comparatively low compared with laboratory strains of mouse although the cause is not unclear. Here, aiming to develop a new assessment system for general risk including biological effects of radiation, chemical agents, etc., an investigation was made on the length of telomere and the telomerase activity. Three strains of laboratory mouse, C57BL/6, C3H and DBA, and molossinus were used as the subjects. Whole DNA was extracted from various organs; brain, lung, thymus, spleen, liver, kidney and testis, and the length of telomere was determined by Southern blotting method using a probe to recognize the telomere sequence. The telomere length of MUG was about 40 Kb for any DNA from the organs examined. This length (40 Kb) was much longer than the length in human cord blood lymphocyte. However, there was no difference in the telomere length between the three laboratory strains and MUG. The activity of telomerase was carried out by fluorescence telomeric repeat amplification protocol method, which is a slightly modified method of the conventional one. Highly accurate determination of telomerase activity was possible by the use of fluorescent sequencer. As to the liver, telomerase activity was lower (50%) in MUG than the laboratory strains, but there was no difference in the activities in other organs among those strains. Thus, it was suggested that the difference in telomerase activity in the liver might be related to the low carcinogenic risk of MUG. (M.N.)

  8. Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers.

    Science.gov (United States)

    Marzec, Paulina; Armenise, Claudia; Pérot, Gaëlle; Roumelioti, Fani-Marlen; Basyuk, Eugenia; Gagos, Sarantis; Chibon, Frédéric; Déjardin, Jérôme

    2015-02-26

    The breakage-fusion-bridge cycle is a classical mechanism of telomere-driven genome instability in which dysfunctional telomeres are fused to other chromosomal extremities, creating dicentric chromosomes that eventually break at mitosis. Here, we uncover a distinct pathway of telomere-driven genome instability, specifically occurring in cells that maintain telomeres with the alternative lengthening of telomeres mechanism. We show that, in these cells, telomeric DNA is added to multiple discrete sites throughout the genome, corresponding to regions regulated by NR2C/F transcription factors. These proteins drive local telomere DNA addition by recruiting telomeric chromatin. This mechanism, which we name targeted telomere insertion (TTI), generates potential common fragile sites that destabilize the genome. We propose that TTI driven by NR2C/F proteins contributes to the formation of complex karyotypes in ALT tumors. PMID:25723166

  9. Accelerated leukocyte telomere erosion in schizophrenia: Evidence from the present study and a meta-analysis.

    Science.gov (United States)

    Rao, Shuquan; Kota, Lakshmi Narayanan; Li, Zongchang; Yao, Yao; Tang, Jinsong; Mao, Canquan; Jain, Sanjeev; Xu, Yong; Xu, Qi

    2016-08-01

    Human telomeres consist of tandem nucleotide repeats (TTAGGG) and associated proteins, and telomere length (TL) is reduced progressively with cell division over the lifespan. Telomere erosion might be accelerated or prevented to varying degrees when exposure to serious medical illnesses. In previous studies, an association between TL decrease and schizophrenia has been extensively reported; however, the results remain largely controversial. To further investigate TL in schizophrenia patients and reconcile this controversy, we first measured leucocyte TL (LTL) in our samples (52 paranoid schizophrenia, 89 non-paranoid patients and 120 controls), and then conducted a comprehensive meta-analysis of the existing results of LTL in patients of schizophrenia compared to healthy subjects. Totally, 11 studies encompassing 1243 patients of schizophrenia and 1274 controls were included in the final meta-analysis model. In our samples, significant reduction of LTL in paranoid schizophrenia was observed compared to controls (F = 50.88, P meta-analysis, random-effects model showed significant LTL decrease in patients of schizophrenia when compared to controls (Z = 2.07, P = 0.039, SMD = -0.48, 95% CI = -0.94 to -0.03). Moreover, a marginal decrease in LTL was observed in medicated patients (Z = 1.92, P = 0.055, SMD = -0.58, 95% CI = -1.18-0.01) and those patients with poor response to antipsychotics (Z = 1.76, P = 0.078, SMD = -0.60, 95% CI = -1.27-0.07). In conclusion, we observed significant reduction of LTL in individuals with schizophrenia compared with controls. However, all the studies included in the meta-analysis were cross-sectional, and better controlled long-term studies are needed to replicate this result. PMID:27174400

  10. Telomere end processing: unexpected complexity at the end game

    OpenAIRE

    Lundblad, Victoria

    2012-01-01

    Lundblad provides perspective on the recent work by Wright and colleagues (this issue) that reveals a tightly choreographed sequence of events that occur during telomere replication and end processing.

  11. How do Innovation Intermediaries add Value?

    DEFF Research Database (Denmark)

    Tran, Yen; Hsuan, Juliana; Mahnke, Volker

    2011-01-01

    Innovation intermediaries are increasingly being used in practice, but there is little concrete theoretical guidance on when and how they add value to client's new product development (NPD) processes. This paper develops propositions on innovation intermediaries value-added based on a detailed case...... study of an innovation intermediary's relations to three major clients in the European apparel fashion industry. We identify key contingencies to an innovation intermediary's value added (e.g. NDP speed and complexity of involvement). We also suggest a framework that specifies when a combination of four...... types of specific intermediary capabilities (best-cost capabilities, timing-capabilities, market-response capabilities, and product solution capabilities) increases value added in clients' NDP processes....

  12. Using Joint Interviews to Add Analytic Value.

    Science.gov (United States)

    Polak, Louisa; Green, Judith

    2016-10-01

    Joint interviewing has been frequently used in health research, and is the subject of a growing methodological literature. We review this literature, and build on it by drawing on a case study of how people make decisions about taking statins. This highlights two ways in which a dyadic approach to joint interviewing can add analytic value compared with individual interviewing. First, the analysis of interaction within joint interviews can help to explicate tacit knowledge and to illuminate the range of often hard-to-access resources that are drawn upon in making decisions. Second, joint interviews mitigate some of the weaknesses of interviewing as a method for studying practices; we offer a cautious defense of the often-tacit assumption that the "naturalness" of joint interviews strengthens their credibility as the basis for analytic inferences. We suggest that joint interviews are a particularly appropriate method for studying complex shared practices such as making health decisions. PMID:25850721

  13. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres.

    Directory of Open Access Journals (Sweden)

    Angela Chan

    2008-10-01

    Full Text Available The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1 and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1A, tlc1-SD, and tlc1-BD, Est2p telomere binding was normal in G1/early S phase but reduced to about 40-50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2A, Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.

  14. Early Telomerase Inactivation Accelerates Aging Independently of Telomere Length

    OpenAIRE

    Xie, Zhengwei; Jay, Kyle A.; Smith, Dana L.; Zhang, Yi; Liu, Zairan; Zheng, Jiashun; Tian, Ruilin; Li, Hao; Blackburn, Elizabeth

    2015-01-01

    Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even Early after Telomerase Inactivation (ETI), yeast mother cells show transient DNA Damage Response (DDR) episodes, stochastically altered cell cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI occ...

  15. Photosensitized damage to telomere overhang and telomerase RNA by riboflavin

    Institute of Scientific and Technical Information of China (English)

    Yuxia Liu; Fuqiang Du; Weizhen Lin; Tiecheng Tu; Wenxin Li; Nianyun Lin

    2008-01-01

    By ESR spin elimination and photodeavage assay, the mechanisms of one-electron oxidation damage of oligonucleotides by excited triplet state of riboflavin (Rb) have been elucidated. The results demonstrate that Rb, an endogenous photosensitizer, is capable of cleaving single-stranded telomeric overhang and the template region of telomerase RNA under UVA irradiation, resulting in blocking of reverse transcription of telomeric DNA which leads to the apoptosis of cancer cells ultimately.

  16. Telomere dynamics and homeostasis in a transmissible cancer.

    Directory of Open Access Journals (Sweden)

    Beata Ujvari

    Full Text Available BACKGROUND: Devil Facial Tumour Disease (DFTD is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". METHODOLOGY/PRINCIPAL FINDINGS: In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN, and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2 provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. CONCLUSIONS/SIGNIFICANCE: DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might

  17. Telomere maintenance through recruitment of internal genomic regions

    OpenAIRE

    Seo, Beomseok; Kim, Chuna; Hills, Mark; Sung, Sanghyun; Kim, Hyesook; Kim, Eunkyeong; Lim, Daisy S.; Oh, Hyun-Seok; Choi, Rachael Mi Jung; Chun, Jongsik; Shim, Jaegal; Lee, Junho

    2015-01-01

    Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromoso...

  18. Mathematical model of alternative mechanism of telomere length maintenance

    OpenAIRE

    Kollár, Richard; Bodova, Katarina; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative...

  19. Genetics of Leukocyte Telomere Length and its Role in Atherosclerosis

    OpenAIRE

    Aviv, Abraham

    2011-01-01

    Humans display a large inter-individual variation in leukocyte telomere length (LTL), which is influenced by heredity, sex, race/ethnicity, paternal age at conception and environmental exposures. LTL dynamics (birth LTL and its age-dependent attrition thereafter) mirror telomere dynamics in hematopoietic stem cells (HSCs). LTL at birth is evidently a major determinant of LTL throughout the human lifespan, such that individuals endowed with short (or long) LTL at birth probably have short (or ...

  20. Blood cell telomere length is a dynamic feature.

    Directory of Open Access Journals (Sweden)

    Ulrika Svenson

    Full Text Available There is a considerable heterogeneity in blood cell telomere length (TL for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g. life style and/or environmental factors can affect TL during life. Collectively, these studies imply that blood cell TL might fluctuate during a life time and that the actual TL at a defined time point is the result of potential regulatory mechanism(s and environmental factors. We analyzed relative TL (RTL in subsequent blood samples taken six months apart from 50 individuals and found significant associations between RTL changes and RTL at baseline. Individual RTL changes per month were more pronounced than the changes recorded in a previously studied population analyzed after 10 years' follow up. The data argues for an oscillating TL pattern which levels out at longer follow up times. In a separate group of five blood donors, a marked telomere loss was demonstrated within a six month period for one donor where after TL was stabilized. PCR determined RTL changes were verified by Southern blotting and STELA (single telomere elongation length analysis. The STELA demonstrated that for the donor with a marked telomere loss, the heterogeneity of the telomere distribution decreased considerably, with a noteworthy loss of the largest telomeres. In summary, the collected data support the concept that individual blood cell telomere length is a dynamic feature and this will be important to recognize in future studies of human telomere biology.

  1. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres.

    Science.gov (United States)

    Pickett, Hilda A; Reddel, Roger R

    2015-11-01

    Alternative lengthening of telomeres (ALT) involves homology-directed telomere synthesis. This multistep process is facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture, including altered DNA sequence and decreased TRF2 saturation. Induction of telomere-specific DNA damage triggers homology-directed searches, and NuRD-ZNF827 protein-protein interactions provide a platform for the telomeric recruitment of homologous recombination (HR) proteins. Telomere lengthening proceeds by strand exchange and template-driven DNA synthesis, which culminates in dissolution of HR intermediates. PMID:26581522

  2. Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies.

    Science.gov (United States)

    Islam, Mohammad K; Jackson, Paul Jm; Rahman, Khondaker M; Thurston, David E

    2016-07-01

    Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade. PMID:27442231

  3. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  4. Stressful life events and leucocyte telomere length

    DEFF Research Database (Denmark)

    Osler, Merete; Bendix, Laila; Rask, Lene;

    2016-01-01

    Exposure to psychosocial stress is associated with increased risk of a number of somatic and mental disorders with relation to immune system functioning. We aimed to explore whether stressful events in early and recent life was associated with leucocyte telomere length (TL), which is assumed...... to reflect the accumulated burden of inflammation and oxidative stress occurring during the life course. We specifically aimed to address whether childhood constitutes a sensitive period and how much of the relation between stressful life events and TL is mediated through somatic and mental health, lifestyle...... life events and TL was analysed using structural equation modelling, which also provided an estimate of the proportion of the total effect mediated by somatic and mental health (cardiovascular disease, body mass and depressive mood), lifestyle factors, and low grade inflammation (C-reactive protein...

  5. Dyskeratosis congenita as a disorder of telomere maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Nya D. [Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children' s Hospital, 1102 Bates, FC 1200, Houston, TX 77030 (United States); Bertuch, Alison A., E-mail: abertuch@bcm.edu [Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children' s Hospital, 1102 Bates, FC 1200, Houston, TX 77030 (United States); Department of Pediatrics, Baylor College of Medicine, Texas Children' s Hospital, 1102 Bates, FC 1200, Houston, TX 77030 (United States)

    2012-02-01

    Since 1998, there have been great advances in our understanding of the pathogenesis of dyskeratosis congenita (DC), a rare inherited bone marrow failure and cancer predisposition syndrome with prominent mucocutaneous abnormalities and features of premature aging. DC is now characterized molecularly by the presence of short age-adjusted telomeres. Mutations in seven genes have been unequivocally associated with DC, each with a role in telomere length maintenance. These observations, combined with knowledge that progressive telomere shortening can impose a proliferative barrier on dividing cells and contribute to chromosome instability, have led to the understanding that extreme telomere shortening drives the clinical features of DC. However, some of the genes implicated in DC encode proteins that are also components of H/ACA-ribonucleoprotein enzymes, which are responsible for the post-translational modification of ribosomal and spliceosomal RNAs, raising the question whether alterations in these activities play a role in the pathogenesis of DC. In addition, recent reports suggest that some cases of DC may not be characterized by short age-adjusted telomeres. This review will highlight our current knowledge of the telomere length defects in DC and the factors involved in its development.

  6. Repeat-until-success quantum repeaters

    Science.gov (United States)

    Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut

    2014-09-01

    We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.

  7. The heritability of leucocyte telomere length dynamics

    Science.gov (United States)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Soren; Steenstrup, Troels; Kimura, Masayuki; Christensen, Kaare; Kyvik, Kirsten O; Aviv, Abraham

    2015-01-01

    Background Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL variation among adults. A number of studies have estimated the heritability of LTL, but none has assessed the heritability of age-dependent LTL attrition. Methods We examined the heritability of LTL dynamics based on a longitudinal evaluation (an average follow-up of 12 years) in 355 monozygotic and 297 dizygotic same-sex twins (aged 19–64 years at baseline). Results Heritability of LTL at baseline was estimated at 64% (95% CI 39% to 83%) with 22% (95% CI 6% to 49%) of shared environmental effects. Heritability of age-dependent LTL attrition rate was estimated at 28% (95% CI 16% to 44%). Individually unique environmental factors, estimated at 72% (95% CI 56% to 84%) affected LTL attrition rate with no indication of shared environmental effects. Conclusions This is the first study that estimated heritability of LTL and also its age-dependent attrition. As LTL attrition is much slower in adults than in children and given that having a long or a short LTL is largely determined before adulthood, our findings suggest that heritability and early life environment are the main determinants of LTL throughout the human life course. Thus, insights into factors that influence LTL at birth and its dynamics during childhood are crucial for understanding the role of telomere genetics in human ageing and longevity. PMID:25770094

  8. hTERT cancer risk genotypes are associated with telomere length.

    Science.gov (United States)

    Melin, Beatrice S; Nordfjäll, Katarina; Andersson, Ulrika; Roos, Göran

    2012-05-01

    Telomere biology is associated with cancer initiation and prognosis. Collected data suggest that blood cell telomere length (TL) can change over time, which may be related to development of common disorders, such as cardiovascular diseases and cancer. Recently, single nucleotide polymorphisms in the region of the human telomerase reverse transcriptase (hTERT) gene were associated with various malignancies, including glioma, lung and urinary bladder cancer, and telomerase RNA gene hTERC genotypes were recently linked to TL. In the present study a hypothetical association between identified genotypes in hTERT and hTERC genes and TL were investigated. We analyzed 21 polymorphisms, covering 90% of the genetic variance, in the hTERT gene, two genetic variants in hTERC, and relative TL(RTL) at average age 50 and 60 in 959 individuals with repeated blood samples. Mean RTL at age 60 was associated with four genetic variants of the hTERT gene (rs2736100, rs2853672, rs2853677, and rs2853676), two of which reported to be associated with cancer risk. Two alleles (rs12696304, rs16847897) near the hTERC gene were confirmed as also being associated with RTL at age 60. Our data suggest that hTERT and hTERC genotypes have an impact on TL of potential relevance and detectable first at higher ages, which gives us further insight to the complex regulation of TL.

  9. Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells

    OpenAIRE

    Lei Yang; Wenbo Wang; Liu Hu; Xiaoxi Yang; Juan Zhong; Zheng Li; Hui Yang; Han Lei; Haijun Yu; ZhengKai Liao; Fuxiang Zhou; Conghua Xie; Yunfeng Zhou

    2013-01-01

    BACKGROUND: Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS: In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telo...

  10. Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres.

    Directory of Open Access Journals (Sweden)

    Thibaut Josse

    Full Text Available BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE, a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS" has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.

  11. PML is required for telomere stability in non-neoplastic human cells.

    Science.gov (United States)

    Marchesini, M; Matocci, R; Tasselli, L; Cambiaghi, V; Orleth, A; Furia, L; Marinelli, C; Lombardi, S; Sammarelli, G; Aversa, F; Minucci, S; Faretta, M; Pelicci, P G; Grignani, F

    2016-04-01

    Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis. PMID:26119943

  12. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast.

    Directory of Open Access Journals (Sweden)

    Gianni Liti

    2009-09-01

    Full Text Available In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (400 bp. Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE. Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80 resulting in very short telomeres.

  13. Telomere-binding protein TPP1 modulates telomere homeostasis and confers radioresistance to human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Lei Yang

    Full Text Available BACKGROUND: Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS: In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation. CONCLUSIONS: We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer.

  14. Depleting components of the THO complex causes increased telomere length by reducing the expression of the telomere-associated protein Rif1p.

    Directory of Open Access Journals (Sweden)

    Tai-Yuan Yu

    Full Text Available Telomere length is regulated mostly by proteins directly associated with telomeres. However, genome-wide analysis of Saccharomyces cerevisiae mutants has revealed that deletion of Hpr1p, a component of the THO complex, also affects telomere length. The THO complex comprises four protein subunits, namely, Tho2p, Hpr1p, Mft1p, and Thp2p. These subunits interplay between transcription elongation and co-transcriptional assembly of export-competent mRNPs. Here we found that the deletion of tho2 or hpr1 caused telomere lengthening by ∼50-100 bps, whereas that of mft1 or thp2 did not affect telomere length. Since the THO complex functions in transcription elongation, we analyzed the expression of telomere-associated proteins in mutants depleted of complex components. We found that both the mRNA and protein levels of RIF1 were decreased in tho2 and hpr1 cells. RIF1 encodes a 1917-amino acid polypeptide that is involved in regulating telomere length and the formation of telomeric heterochromatin. Hpr1p and Tho2p appeared to affect telomeres through Rif1p, as increased Rif1p levels suppressed the telomere lengthening in tho2 and hpr1 cells. Moreover, yeast cells carrying rif1 tho2 or rif1 hpr1 double mutations showed telomere lengths and telomere silencing effects similar to those observed in the rif1 mutant. Thus, we conclude that mutations of components of the THO complex affect telomere functions by reducing the expression of a telomere-associated protein, Rif1p.

  15. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus.

    Directory of Open Access Journals (Sweden)

    Denise Aydinonat

    Full Text Available Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus. Our study population consisted of single-housed (n = 26 and pair-housed (n = 19 captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (p<0.001, and socially isolated parrots had significantly shorter telomeres compared to pair-housed birds (p<0.001 - even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.

  16. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus).

    Science.gov (United States)

    Aydinonat, Denise; Penn, Dustin J; Smith, Steve; Moodley, Yoshan; Hoelzl, Franz; Knauer, Felix; Schwarzenberger, Franz

    2014-01-01

    Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus). Our study population consisted of single-housed (n = 26) and pair-housed (n = 19) captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (pparrots had significantly shorter telomeres compared to pair-housed birds (p<0.001) - even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.

  17. Telomere length homeostasis responds to changes in intracellular dNTP pools

    NARCIS (Netherlands)

    Gupta, Amitabha; Sharma, Sushma; Reichenbach, Patrick; Marjavaara, Lisette; Nilsson, Anna Karin; Lingner, Joachim; Chabes, Andrei; Rothstein, Rodney; Chang, Michael

    2013-01-01

    Telomeres, the ends of linear eukaryotic chromosomes, shorten due to incomplete DNA replication and nucleolytic degradation. Cells counteract this shortening by employing a specialized reverse transcriptase called telomerase, which uses deoxyribonucleoside triphosphates (dNTPs) to extend telomeres.

  18. Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells.

    Science.gov (United States)

    Ramamoorthy, Mahesh; Smith, Susan

    2015-09-14

    The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving cohesion. The resulting persistent telomere cohesion promotes recombination between sister telomeres, while it suppresses inappropriate recombination between non-sisters. Forced resolution of sister telomere cohesion induces excessive recombination between non-homologs, genomic instability, and impaired cell growth, indicating the ATRX-macroH2A1.1-tankyrase axis as a potential therapeutic target in ALT tumors. PMID:26373281

  19. Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress

    DEFF Research Database (Denmark)

    Harbo, M.; Koelvraa, S.; Serakinci, N.;

    2012-01-01

    A gradual shortening of telomeres due to replication can be measured using the standard telomere restriction fragments (TRF) assay and other methods by measuring the mean length of all the telomeres in a cell. In contrast, stress-induced telomere shortening, which is believed to be just...... due to the advantages of the newly developed Universal single telomere length assay (STELA), and we therefore believe that this method should be considered the method of choice when measuring the length of telomeres after exposure to oxidative stress. In order to test our hypothesis, cultured human...... estimated by senescence-associated beta-galactosidase staining. The exposure to acute oxidative stress resulted in an increased number of ultra-short telomeres, which correlated strongly with the percentage of senescent cells, whereas a correlation between mean telomere length and the percentage...

  20. The distribution pattern of critically short telomeres in human osteoarthritic knees

    DEFF Research Database (Denmark)

    Harbo, Maria; Bendix, Laila; Bay-Jensen, Anne Christine;

    2012-01-01

    ABSTRACT: INTRODUCTION: Telomere shortening is associated with a number of common age-related diseases. A role of telomere shortening in osteoarthritis (OA) has been suggested, mainly based on the assessment of mean telomere length in ex vivo expanded chondrocytes. We addressed this role directly...... site. Each sample was split into three: one was used for quantification of ultra-short single telomeres through the Universal single telomere length assay (STELA), one for histological Mankin grading of OA, and one for mean telomere length measurement through quantitative fluorescence in situ...... hybridization (Q-FISH) as well as for assessment of senescence through quantification of senescence-associated heterochromatin foci (SAHF). RESULTS: The load of ultra-short telomeres as well as mean telomere length was significantly associated with proximity to lesions, OA severity, and senescence level...

  1. The heritability of telomere length among the elderly and oldest-old

    DEFF Research Database (Denmark)

    Bischoff, Claus; Graakjaer, Jesper; Petersen, Hans Christian;

    2005-01-01

    A tight link exists between telomere length and both population doublings of a cell culture and age of a given organism. The more population doublings of the cell culture or the higher the age of the organism, the shorter the telomeres. The proposed model for telomere shortening, called the end...... replication problem, explains why the telomere erodes at each cellular turnover. Telomere length is regulated by a number of associated proteins through a number of different signaling pathways. The determinants of telomere length were studied using whole blood samples from 287 twin pairs aged 73 to 95 years....... Structural equation models revealed that a model including additive genetic effects and non-shared environment was the best fitting model and that telomere length was moderately heritable, with an estimate that was sensitive to the telomere length standardization procedure. Sex-specific analyses showed lower...

  2. Cytogenetic telomere and telomerase studies in lumbo-sacral chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, H.S.; Dahir, G.A.; Miller, L.K. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1994-09-01

    Lumbo-sacral chordomas are rare skeletal sarcomas that originate from the remnant notochord. There are approximately 35 lumbo-sacral chordomas reported annually in the U.S.A. The understanding of this rare human cancer is limited to observations of its clinical behavior and embryonic link. We performed chromosome and molecular analyses from five surgically harvested chordomas in an effort to document genetic abnormalities and to further understand its tumor biology. Cytogenetically, four of five patients had entirely normal chromosomes. One patient had several abnormalities seen in one of 100 cells including a translocation with breakpoints at bands 5q13 and 7q22, loss of one X chromosome and an extra chromosome 14. There was no evidence of monosomy X or trisomy 14 seen with interphase in situ hybridization using biotin-labeled alpha satellite chromosome specific probes for chromosome 14/22 and X. Telomere integrity is required to protect termini from illegitimate recombination. Typically telomeric reduction occurs in senescent fibroblasts in vivo aging and several human solid tumors. A telomeric probe (TTAGGG){sub 50} was hybridized to genomic DNA isolated from chordoma cells and digested with Hinf I which allows the telomeric DNA to remain intact. The tumor DNA was paired with leukocyte DNA from age-matched controls and revealed telomere elongation in all four patients studied with molecular genetic techniques. Telomerase activity is required to maintain telomere integrity and is not present in normal somatic cells. It is determined by visualizing the sizes of the electrophoresis gel-separated radioactive telomeric fragments assembled during incubation of cytoplasmic extracts containing telomerase. Telomerase activity was detected when compared with HeLa cells, a positive control. In addition, no telomerase activity was detected from the chordoma patient`s fibroblasts.

  3. Telomeres and telomerase: Pharmacological targets for new anticancer strategies?

    Science.gov (United States)

    Pendino, F; Tarkanyi, I; Dudognon, C; Hillion, J; Lanotte, M; Aradi, J; Ségal-Bendirdjian, E

    2006-03-01

    Telomeres are located at the ends of eukaryotic chromosomes. Human telomerase, a cellular reverse transcriptase, is a ribonucleoprotein enzyme that catalyzes the synthesis and extension of telomeric DNA. It is composed of at least, a template RNA component (hTR; human Telomerase RNA) and a catalytic subunit, the telomerase reverse transcriptase (hTERT). The absence of telomerase is associated with telomere shortening and aging of somatic cells, while high telomerase activity is observed in over 85% of human cancer cells, strongly indicating its key role during tumorigenesis. Several details regarding telomere structure and telomerase regulation have already been elucidated, providing new targets for therapeutic exploitation. Further support for anti-telomerase approaches comes from recent studies indicating that telomerase is endowed of additional functions in the control of growth and survival of tumor cells that do not depend only on the ability of this enzyme to maintain telomere length. This observation suggests that inhibiting telomerase or its synthesis may have additional anti-proliferative and apoptosis inducing effect, independently of the reduction of telomere length during cell divisions. This article reviews the basic information about the biology of telomeres and telomerase and attempts to present various approaches that are currently under investigation to inhibit its expression and its activity. We summarize herein distinct anti-telomerase approaches like antisense strategies, reverse transcriptase inhibitors, and G-quadruplex interacting agents, and also review molecules targeting hTERT expression, such as retinoids and evaluate them for their therapeutic potential. "They conceive a certain theory, and everything has to fit into that theory. If one little fact will not fit it, they throw it aside. But it is always the facts that will not fit in that are significant". "Death on the Nile". Agatha Christie.

  4. Genome-wide association study of relative telomere length.

    Science.gov (United States)

    Prescott, Jennifer; Kraft, Peter; Chasman, Daniel I; Savage, Sharon A; Mirabello, Lisa; Berndt, Sonja I; Weissfeld, Joel L; Han, Jiali; Hayes, Richard B; Chanock, Stephen J; Hunter, David J; De Vivo, Immaculata

    2011-05-10

    Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003) identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  5. Genome-wide association study of relative telomere length.

    Directory of Open Access Journals (Sweden)

    Jennifer Prescott

    Full Text Available Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003 identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  6. Telomere shortening may be associated with human keloids

    Directory of Open Access Journals (Sweden)

    Wilson Robert R

    2009-10-01

    Full Text Available Abstract Background Keloids are benign skin tumors that are the effect of a dysregulated wound-healing process in genetically predisposed patients. They are inherited with an autosomal dominant mode with incomplete clinical penetrance and variable expression. Keloids are characterized by formation of excess scar tissue beyond the boundaries of the wound. The exact etiology is still unknown and there is currently no appropriate treatment for keloid disease. Methods We analyzed sample tissues were obtained from 20 patients with keloid skin lesions and normal skin was obtained from 20 healthy donors. The telomeres were measured by Terminal Restriction Fragment (TRF analysis and Real-Time PCR assay. Quantitative Real-Time RT-PCR analysis of hTERT gene expression was performed and intracellular ROS generation was measured. Results In this study, we determined whether telomeric shortening and the expression of human telomerase reverse transcriptase (hTERT occurs in keloid patients. Using Terminal Restriction Fragment (TRF analysis and Real-Time PCR assay, we detected a significant telomere shortening of 30% in keloid specimens compared to normal skin. Using quantitative Real-Time RT-PCR, telomerase activity was found absent in the keloid tissues. Moreover, an increase in ROS generation was detected in fibroblasts cell cultures from keloid specimens as more time elapsed compared to fibroblasts from normal skin. Conclusion Telomere shortening has been reported in several metabolic and cardiovascular diseases. We found that telomere shortening can also be associated with human keloids. Chronic oxidative stress plays a major role in the pathophysiology of several chronic inflammatory diseases. Here we found increased ROS generation in fibroblasts from keloid fibroblasts cell cultures when compared to normal skin fibroblasts. Hence we conclude that oxidative stress might be an important modulator of telomere loss in keloid because of the absence of active

  7. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  8. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Elisa Coluzzi

    Full Text Available One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5 in vitro with hydrogen peroxide (100 and 200 µM for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs, we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.

  9. The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres

    OpenAIRE

    Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E.; Gravani, Athanasia; Jeyapalan, Jennie N.; Royle, Nicola J.

    2012-01-01

    Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN– ALT+ cell line lacks the class of complex...

  10. Telomere Length in Human Adults and High Level Natural Background Radiation

    OpenAIRE

    Birajalaxmi Das; Divyalakshmi Saini; Seshadri, M

    2009-01-01

    BACKGROUND: Telomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length. METHODOLOGY/PRINCIPAL FINDINGS: The present investigation is an attempt to determine the telomere length among human adults residing in high level na...

  11. Telomere length abnormalities and telomerase RNA component expression in gastroenteropancreatic neuroendocrine tumors.

    Science.gov (United States)

    Kim, Hee Sung; Lee, Hye Seung; Nam, Kyung Han; Choi, Jiwoon; Kim, Woo Ho

    2015-06-01

    Telomere lengths in normal human cells are tightly regulated within a narrow range. Telomere length abnormalities are prevalent genetic alterations in malignant transformation. We studied telomere length abnormalities, telomerase RNA component (TERC) expression, alpha-thalassemia X-linked mental retardation (ATRX) expression, and death domain-associated protein (DAXX) expression in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). We used tissue microarrays to perform telomere fluorescent in situ hybridization (FISH) and TERC in situ hybridization in 327 formalin-fixed paraffin-embedded tissues of GEP-NETs. Telomere length abnormalities were detected in 35% of 253 informative cases by using telomere FISH. Ten cases had altered lengthening of telomeres (ALT), an ALT-positive phenotype (4%), and 79 cases had telomere shortening (31%). The ALT-positive phenotype was significantly associated with tumors of pancreatic origin (7/10) and loss of ATRX or DAXX protein (8/10). Telomere shortening was significantly associated with low TERC expression. In the survival analysis, loss of ATRX or DAXX protein was associated with a decreased overall survival. Multivariate regression analysis showed that lymph node metastasis and high TERC expression were independent prognostic factors of reduced overall survival (OS) for patients with GEP-NETs. Our results showed that telomere lengthening (the ALT-positive phenotype) and telomere shortening accompanied by low TERC levels are two types of clinically significant telomere abnormalities in GEP-NETs. PMID:26026117

  12. Dynamic Length Changes of Telomeres and Their Nuclear Organization in Chronic Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Samassekou, Oumar [Manitoba Institute of Cell Biology, Cancer Care Manitoba, Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0V9 (Canada)

    2013-08-22

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the t(9;22) translocation. As in most cancers, short telomeres are one of the features of CML cells, and telomere shortening accentuates as the disease progresses from the chronic phase to the blastic phase. Although most individual telomeres are short, some of them are lengthened, and long individual telomeres occur non-randomly and might be associated with clonal selection. Telomerase is the main mechanism used to maintain telomere lengths, and its activity increases when CML evolves toward advanced stages. ALT might be another mechanism employed by CML cells to sustain the homeostasis of their telomere lengths and this mechanism seems predominant at the early stage of leukemogenesis. Also, telomerase and ALT might jointly act to maintain telomere lengths at the chronic phase, and as CML progresses, telomerase becomes the major mechanism. Finally, CML cells display an altered nuclear organization of their telomeres which is characterized by the presence of high number of telomeric aggregates, a feature of genomic instability, and differential positioning of telomeres. CML represents a good model to study mechanisms responsible for dynamic changes of individual telomere lengths and the remodeling of telomeric nuclear organization throughout cancer progression.

  13. Telomere length predicts all-cause mortality in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Astrup, A S; Tarnow, L; Jorsal, Anders;

    2010-01-01

    Type 1 diabetic patients with diabetic nephropathy have increased mortality and morbidity compared with normoalbuminuric patients. Telomere length in proliferative cells is inversely related to the total number of cell divisions, and therefore to biological age. We aimed to evaluate differences...... in telomere length in patients with type 1 diabetes with or without diabetic nephropathy; we also evaluated the prognostic value of telomere length....

  14. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    NARCIS (Netherlands)

    Cook, D.C.; Zdraljevic, S.; Tanny, R.E.; Seo, B.; Riccardi, D.D.; Noble, L.M.; Rockman, M.V.; Alkema, M.J.; Braendle, C.; Kammenga, J.E.; Wang, J.; Kruglyak, L.; Felix, M.A.; Lee, J.; Andersen, E.C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organis

  15. Association of telomere length with authentic pluripotency of ES/iPS cells

    Institute of Scientific and Technical Information of China (English)

    Junjiu Huang; William W Ge; John CM Tsibris; David L Keefe; Lin Liu; Fang Wang; Maja Okuka; Na Liu; Guangzhen Ji; Xiaoying Ye; Bingfeng Zuo; Minshu Li; Ping Liang

    2011-01-01

    Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells(iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells(ESCs)or iPSCs, however, has not been directly addressed.We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated(r>0.8)with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics,down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.

  16. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women.

    Science.gov (United States)

    el Bouazzaoui, F; Henneman, P; Thijssen, P; Visser, A; Koning, F; Lips, M A; Janssen, I; Pijl, H; Willems van Dijk, K; van Harmelen, V

    2014-05-01

    Telomere length can be considered as a biological marker for cell proliferation and aging. Obesity is associated with adipocyte hypertrophy and proliferation as well as with shorter telomeres in adipose tissue. As adipose tissue is a mixture of different cell types and the cellular composition of adipose tissue changes with obesity, it is unclear what determines telomere length of whole adipose tissue. We aimed to investigate telomere length in whole adipose tissue and isolated adipocytes in relation to adiposity, adipocyte hypertrophy and adipose tissue inflammation and fibrosis. Telomere length was measured by real-time PCR in visceral adipose tissue, and isolated adipocytes of 21 obese women with a waist ranging from 110 to 147 cm and age from 31 to 61 years. Telomere length in adipocytes was shorter than in whole adipose tissue. Telomere length of adipocytes but not whole adipose tissue correlated negatively with waist and adipocyte size, which was still significant after correction for age. Telomere length of whole adipose tissue associated negatively with fibrosis as determined by collagen content. Thus, in extremely obese individuals, adipocyte telomere length is a marker of adiposity, whereas whole adipose tissue telomere length reflects the extent of fibrosis and may indicate adipose tissue dysfunction.

  17. Old Fathers and Long-Telomered Offspring: Elongation of Telomeres in the Testes of Older Men Versus Transgenerational Erosion of Germline Telomeres

    Directory of Open Access Journals (Sweden)

    Reinhard Stindl

    2011-01-01

    Full Text Available There have been several reports of a significant positive correlation between paternal age and chromosome telomere length in offspring. Moreover, the telomeres in sperm cells of older men tend to be longer than in young men, and it has been concluded that telomeres lengthen in the testes during adulthood. This would be the first evidence of an increasing biological advantage with age, and therefore contradicts current models in which telomere shortening is a biomarker of aging. Instead, an alternative model of telomere erosion between human generations is discussed in which longer germ cell telomeres in old men result from their being members of a previous generation. Based on the well-known correlation between maternal age and the incidence of aneuploid pregnancies, it is hypothesized that telomere erosion predominantly operates in the female germline, leading to a carry-over effect for both sexes into the next generation. This theory fits well with experimental results that maternal age does not correlate with longer telomeres in offspring. An experimental design is presented to distinguish be-tween the two possible scenarios leading to old fathers with long-telomered offspring - namely lifetime lengthening in the testis versus transgenerational germline erosion. Consideration of net loss of telomeric DNA between human generations is supported by recent findings of a large difference in blood telomere length between different Euro-pean populations of the same age, and is likely to have profound consequences for species evolution.

  18. Telomere shortening in the colonial coral Acropora digitifera during development.

    Science.gov (United States)

    Tsuta, Hiroki; Shinzato, Chuya; Satoh, Nori; Hidaka, Michio

    2014-03-01

    To test whether telomere length can be used in estimating the age of colonial corals, we used terminal restriction fragment (TRF) length analysis to compare the telomere lengths of the coral Acropora digitifera at three developmental stages: sperm, planula larvae, and polyps of adult colonies. We also compared the mean TRF lengths between branches at the center and periphery of tabular colonies of A. digitifera. A significant difference was observed in the mean TRF lengths in sperm, planulae, and polyps. The mean TRF length was longest in sperm and shortest in polyps from adult colonies. These results suggest that telomere length decreases during coral development and may be useful for estimating coral age. However, the mean TRF length of branches at the center of a table-form colony tended to be longer than that of peripheral branches, although this difference was not statistically significant. This suggests that both the chronological age of polyps and cell proliferation rate influence telomere length in polyps, and that estimating coral age based on telomere length is not a simple endeavor. PMID:24601774

  19. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourronc, Francoise A. [Department of Microbiology, University of Iowa (United States); Klingelhutz, Aloysius J., E-mail: al-klingelhutz@uiowa.edu [Department of Microbiology, University of Iowa (United States)

    2012-02-01

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  20. Internal genomic regions mobilized for telomere maintenance in C. elegans.

    Science.gov (United States)

    Kim, Chuna; Sung, Sanghyun; Lee, Junho

    2016-01-01

    Because DNA polymerase cannot replicate telomeric DNA at linear chromosomal ends, eukaryotes have developed specific telomere maintenance mechanisms (TMMs). A major TMM involves specialized reverse transcriptase, telomerase. However, there also exist various telomerase-independent TMMs (TI-TMMs), which can arise both in pathological conditions (such as cancers) and during evolution. The TI-TMM in cancer cells is called alternative lengthening of telomeres (ALT), whose mechanism is not fully understood. We generated stably maintained telomerase-independent survivors from C. elegans telomerase mutants and found that, unlike previously described survivors in worms, these survivors "mobilize" specific internal sequence blocks for telomere lengthening, which we named TALTs (templates for ALT). The cis-duplication of internal genomic TALTs produces "reservoirs" of TALTs, whose trans-duplication occurs at all chromosome ends in the ALT survivors. Our discovery that different TALTs are utilized in different wild isolates provides insight into the molecular events leading to telomere evolution. PMID:27073737

  1. Tired telomeres: Poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women.

    Science.gov (United States)

    Prather, Aric A; Gurfein, Blake; Moran, Patricia; Daubenmier, Jennifer; Acree, Michael; Bacchetti, Peter; Sinclair, Elizabeth; Lin, Jue; Blackburn, Elizabeth; Hecht, Frederick M; Epel, Elissa S

    2015-07-01

    Poor sleep quality and short sleep duration are associated with increased incidence and progression of a number of chronic health conditions observed at greater frequency among the obese and those experiencing high levels of stress. Accelerated cellular aging, as indexed by telomere attrition in immune cells, is a plausible pathway linking sleep and disease risk. Prior studies linking sleep and telomere length are mixed. One factor may be reliance on leukocytes, which are composed of varied immune cell types, as the sole measure of telomere length. To better clarify these associations, we investigated the relationships of global sleep quality, measured by the Pittsburgh Sleep Quality Index (PSQI), and diary-reported sleep duration with telomere length in different immune cell subsets, including granulocytes, peripheral blood mononuclear cells (PBMCs), CD8+ and CD4+ T lymphocytes, and B lymphocytes in a sample of 87 obese men and women (BMI mean=35.4, SD=3.6; 81.6% women; 62.8% Caucasian). Multiple linear regression analyses were performed adjusting for age, gender, race, education, BMI, sleep apnea risk, and perceived stress. Poorer PSQI global sleep quality was associated with statistically significantly shorter telomere length in lymphocytes but not granulocytes and in particular CD8+ T cells (b=-56.8 base pairs per one point increase in PSQI, SE=20.4, p=0.007) and CD4+ T cells (b=-37.2, SE=15.9, p=0.022). Among separate aspects of global sleep quality, low perceived sleep quality and decrements in daytime function were most related to shorter telomeres. In addition, perceived stress moderated the sleep-CD8+ telomere association. Poorer global sleep quality predicted shorter telomere length in CD8+ T cells among those with high perceived stress but not in low stress participants. These findings provide preliminary evidence that poorer global sleep quality is related to telomere length in several immune cell types, which may serve as a pathway linking sleep and

  2. Alternative lengthening of telomeres and loss of ATRX are frequent events in pleomorphic and dedifferentiated liposarcomas.

    Science.gov (United States)

    Lee, Jen-Chieh; Jeng, Yung-Ming; Liau, Jau-Yu; Tsai, Jia-Huei; Hsu, Hung-Han; Yang, Ching-Yao

    2015-08-01

    Telomerase activation and alternative lengthening of telomeres are two major mechanisms of telomere length maintenance. Soft tissue sarcomas appear to use the alternative lengthening of telomeres more frequently. Loss of α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated protein 6 (DAXX) expression has been implicated in the pathogenesis of alternative telomere lengthening in pancreatic endocrine neoplasm and glioma. The mechanism leading to the alternative lengthening of telomeres in liposarcoma remains unknown. Whereas alternative telomere lengthening was determined to be an indicator of poor prognosis in liposarcomas as a whole, its prognostic power has not been verified in any subtype of liposarcoma. In this study, we characterized the status of alternative telomere lengthening and expression of ATRX and DAXX in 111 liposarcomas (28 well-differentiated, 52 dedifferentiated, 20 myxoid or round cell, and 11 pleomorphic liposarcomas) by telomere fluorescence in situ hybridization and immunohistochemistry, respectively. Alternative lengthening of telomere was observed in 0% (0/16) of well-differentiated, 30% (14/46) of dedifferentiated, 5% (1/19) of myxoid or round cell, and 80% (8/10) of pleomorphic liposarcomas. Eighteen (16%) and one (1%) tumors were negative for ATRX and DAXX immunostaining, respectively. Remarkably, all cases with loss of either ATRX or DAXX expression had alternative lengthening of telomeres, and 83% (19/23) of tumors that had alternative lengthening of telomeres showed loss of either protein. The correlation between loss of either ATRX or DAXX and alternative telomere lengthening was 100% in dedifferentiated liposarcoma. The presence of alternative telomere lengthening in dedifferentiated liposarcoma suggested poor overall survival (hazard ratio=1.954, P=0.077) and was the most significant indicator of short progression-free survival (hazard ratio=3.119, P=0.003). In conclusion, we found that ATRX loss was

  3. Comprehensive screening of alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas.

    Science.gov (United States)

    Liau, Jau-Yu; Lee, Jen-Chieh; Tsai, Jia-Huei; Yang, Ching-Yao; Liu, Tsung-Lin; Ke, Zhi-Long; Hsu, Hung-Han; Jeng, Yung-Ming

    2015-12-01

    According to cytogenetic aberrations, sarcomas can be categorized as complex or simple karyotype tumors. Alternative lengthening of telomeres is a telomere-maintenance mechanism common in sarcomas. Recently, this mechanism was found to be associated with loss of either α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated (DAXX) protein. We previously reported that alternative lengthening of telomeres and loss of ATRX expression were common in leiomyosarcoma, angiosarcoma, pleomorphic liposarcoma, and dedifferentiated liposarcoma. In the present study, we screened an additional 245 sarcomas of other types to determine the prevalence of alternative lengthening of telomeres, loss of ATRX/DAXX expression, and their relationship. Undifferentiated pleomorphic sarcomas were frequently alternative lengthening of telomeres positive (65%) and loss of ATRX was seen in approximately half of the alternative lengthening of telomeres-positive tumors. Nineteen of 25 myxofibrosarcomas were alternative lengthening of telomeres-positive, but only one was ATRX deficient. Three of 15 radiation-associated sarcomas were alternative lengthening of telomeres positive, but none of them was ATRX deficient. Alternative lengthening of telomeres and/or loss of ATRX were uncommon in malignant peripheral nerve sheath tumors, gastrointestinal stromal tumors, and embryonal rhabdomyosarcomas. By contrast, none of the 71 gene fusion-associated sarcomas was ATRX deficient or alternative lengthening of telomeres positive. All tumors exhibited preserved DAXX expression. Combining our previous studies and this study, a total of 384 sarcomas with complex karyotypes were examined, 83 of which were ATRX deficient (22%). By telomere-specific fluorescence in situ hybridization, 45% (138/308) were alternative lengthening of telomeres positive, 55% (76/138) of which were ATRX deficient. Loss of ATRX was highly associated with alternative lengthening of telomeres (Plengthening of

  4. Religious Involvement and Telomere Length in Women Family Caregivers.

    Science.gov (United States)

    Koenig, Harold G; Nelson, Bruce; Shaw, Sally F; Saxena, Salil; Cohen, Harvey Jay

    2016-01-01

    Telomere length (TL) is an indicator of cellular aging associated with longevity and psychosocial stress. We examine here the relationship between religious involvement and TL in 251 stressed female family caregivers recruited into a 2-site study. Religious involvement, perceived stress, caregiver burden, depressive symptoms, and social support were measured and correlated with TL in whole blood leukocytes. Results indicated a U-shaped relationship between religiosity and TL. Those scoring in the lowest 10% on religiosity tended to have the longest telomeres (5743 bp ± 367 vs. 5595 ± 383, p = 0.069). However, among the 90% of caregivers who were at least somewhat religious, religiosity was significantly and positively related to TL after controlling for covariates (B = 1.74, SE = 0.82, p = 0.034). Whereas nonreligious caregivers have relatively long telomeres, we found a positive relationship between religiosity and TL among those who are at least somewhat religious.

  5. Mathematical model of alternative mechanism of telomere length maintenance

    CERN Document Server

    Kollár, Richard; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady state approximation. The detailed treatment of kinetic rates yields explicit formulae f...

  6. Telomere length of anterior crucial ligament after rupture

    DEFF Research Database (Denmark)

    Ponsot, Elodie; Langberg, Henning; Krogsgaard, Michael R;

    2011-01-01

    The regeneration of ligaments following injury is a slow process compared to the healing of many other tissues and the underlying mechanisms remain unknown. The purpose of the study was to evaluate the proliferative potential of ligaments by assessing telomere length within three distinct parts...... of human anterior cruciate ligament (ACL) obtained during ACL reconstruction: the macroscopically injured proximal part and macroscopically noninjured mid- and distal portions in eight subjects (age 28 ± 8 years). The mean telomere length in ACL was within normal range of values usually reported for other......) and there was no relationship between mean telomere length in ACL and the healing duration after rupture. This implies that despite the occurrence of ligament repair including a phase of intense cell proliferation the proliferative potential of ruptured ACL is not impaired. This knowledge is important for scientists...

  7. Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer's disease patients.

    Science.gov (United States)

    Mathur, Shubha; Glogowska, Aleksandra; McAvoy, Elizabeth; Righolt, Christiaan; Rutherford, Jaclyn; Willing, Cornelia; Banik, Upama; Ruthirakuhan, Myuri; Mai, Sabine; Garcia, Angeles

    2014-01-01

    Using three-dimensional (3D) telomeric analysis of buccal cells of 82 Alzheimer's disease (AD) patients and cognitively normal age and gender-matched controls, we have for the first time examined changes in the 3D nuclear telomeric architecture of buccal cells among levels of AD severity based on five 3D parameters: i) telomere length, ii) telomere number, iii) telomere aggregation, iv) nuclear volume, and v) a/c ratio, a measure of spatial telomere distribution. Our data indicate that matched controls have significantly different 3D telomere profiles compared to mild, moderate, and severe AD patients (p stages of the disease (p < 0.0001).

  8. Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication

    OpenAIRE

    CHOE, WONCHAE; Budd, Martin; Imamura, Osamu; Hoopes, Laura; Campbell, Judith L.

    2002-01-01

    We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G1 phase, when there is no t...

  9. Regulating telomere length from the inside out: the replication fork model

    Science.gov (United States)

    2016-01-01

    Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease; thus, it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein-counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length. PMID:27401551

  10. Longer leukocyte telomere length in Costa Rica's Nicoya Peninsula: a population-based study.

    Science.gov (United States)

    Rehkopf, David H; Dow, William H; Rosero-Bixby, Luis; Lin, Jue; Epel, Elissa S; Blackburn, Elizabeth H

    2013-11-01

    Studies in humans suggest that leukocyte telomere length may act as a marker of biological aging. We investigated whether individuals in the Nicoya region of Costa Rica, known for exceptional longevity, had longer telomere length than those in other parts of the country. After controlling for age, age squared, rurality, rainy season and gender, the mean leukocyte telomere length in Nicoya was substantially longer (81 base pairs, ptelomere length that characterizes this unique region does not appear to be explainable by traditional behavioral and biological risk factors. More detailed examination of mean leukocyte telomere length by age shows that the regional telomere length difference declines at older ages.

  11. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression.

  12. Dimensions of religious involvement and leukocyte telomere length.

    Science.gov (United States)

    Hill, Terrence D; Ellison, Christopher G; Burdette, Amy M; Taylor, John; Friedman, Katherine L

    2016-08-01

    Although numerous studies suggest that religious involvement is associated with a wide range of favorable health outcomes, it is unclear whether this general pattern extends to cellular aging. In this paper, we tested whether leukocyte telomere length varies according to several dimensions of religious involvement. We used cross-sectional data from the Nashville Stress and Health Study (2011-2014), a large probability sample of 1252 black and white adults aged 22 to 69 living in Davidson County, TN, USA. Leukocyte telomere length was measured using the monochrome multiplex quantitative polymerase chain reaction method with albumin as the single-copy reference sequence. Dimensions of religious involvement included religiosity, religious support, and religious coping. Our multivariate analyses showed that religiosity (an index of religious attendance, prayer frequency, and religious identity) was positively associated with leukocyte telomere length, even with adjustments for religious support, religious coping, age, gender, race, education, employment status, income, financial strain, stressful life events, marital status, family support, friend support, depressive symptoms, smoking, heavy drinking, and allostatic load. Unlike religiosity, religious support and religious coping were unrelated to leukocyte telomere length across models. Depressive symptoms, smoking, heavy drinking, and allostatic load failed to explain any of the association between religiosity and telomere length. To our knowledge, this is the first population-based study to link religious involvement and cellular aging. Although our data suggest that adults who frequently attend religious services, pray with regularity, and consider themselves to be religious tend to exhibit longer telomeres than those who attend and pray less frequently and do not consider themselves to be religious, additional research is needed to establish the mechanisms underlying this association.

  13. Dimensions of religious involvement and leukocyte telomere length.

    Science.gov (United States)

    Hill, Terrence D; Ellison, Christopher G; Burdette, Amy M; Taylor, John; Friedman, Katherine L

    2016-08-01

    Although numerous studies suggest that religious involvement is associated with a wide range of favorable health outcomes, it is unclear whether this general pattern extends to cellular aging. In this paper, we tested whether leukocyte telomere length varies according to several dimensions of religious involvement. We used cross-sectional data from the Nashville Stress and Health Study (2011-2014), a large probability sample of 1252 black and white adults aged 22 to 69 living in Davidson County, TN, USA. Leukocyte telomere length was measured using the monochrome multiplex quantitative polymerase chain reaction method with albumin as the single-copy reference sequence. Dimensions of religious involvement included religiosity, religious support, and religious coping. Our multivariate analyses showed that religiosity (an index of religious attendance, prayer frequency, and religious identity) was positively associated with leukocyte telomere length, even with adjustments for religious support, religious coping, age, gender, race, education, employment status, income, financial strain, stressful life events, marital status, family support, friend support, depressive symptoms, smoking, heavy drinking, and allostatic load. Unlike religiosity, religious support and religious coping were unrelated to leukocyte telomere length across models. Depressive symptoms, smoking, heavy drinking, and allostatic load failed to explain any of the association between religiosity and telomere length. To our knowledge, this is the first population-based study to link religious involvement and cellular aging. Although our data suggest that adults who frequently attend religious services, pray with regularity, and consider themselves to be religious tend to exhibit longer telomeres than those who attend and pray less frequently and do not consider themselves to be religious, additional research is needed to establish the mechanisms underlying this association. PMID:27174242

  14. New prospects for targeting telomerase beyond the telomere.

    Science.gov (United States)

    Arndt, Greg M; MacKenzie, Karen L

    2016-08-01

    Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase. PMID:27339602

  15. Association of Telomere Length with Breast Cancer Prognostic Factors

    Science.gov (United States)

    Têtu, Bernard; Maunsell, Elizabeth; Poirier, Brigitte; Montoni, Alicia; Rochette, Patrick J.; Diorio, Caroline

    2016-01-01

    Introduction Telomere length, a marker of cell aging, seems to be affected by the same factors thought to be associated with breast cancer prognosis. Objective To examine associations of peripheral blood cell-measured telomere length with traditional and potential prognostic factors in breast cancer patients. Methods We conducted a cross-sectional analysis of data collected before surgery from 162 breast cancer patients recruited consecutively between 01/2011 and 05/2012, at a breast cancer reference center. Data on the main lifestyle factors (smoking, alcohol consumption, physical activity) were collected using standardized questionnaires. Anthropometric factors were measured. Tumor biological characteristics were extracted from pathology reports. Telomere length was measured using a highly reproducible quantitative PCR method in peripheral white blood cells. Spearman partial rank-order correlations and multivariate general linear models were used to evaluate relationships between telomere length and prognostic factors. Results Telomere length was positively associated with total physical activity (rs = 0.17, P = 0.033; Ptrend = 0.069), occupational physical activity (rs = 0.15, P = 0.054; Ptrend = 0.054) and transportation-related physical activity (rs = 0.19, P = 0.019; P = 0.005). Among post-menopausal women, telomere length remained positively associated with total physical activity (rs = 0.27, P = 0.016; Ptrend = 0.054) and occupational physical activity (rs = 0.26, P = 0.021; Ptrend = 0.056) and was only associated with transportation-related physical activity among pre-menopausal women (rs = 0.27, P = 0.015; P = 0.004). No association was observed between telomere length and recreational or household activities, other lifestyle factors or traditional prognostic factors. Conclusions Telomeres are longer in more active breast cancer patients. Since white blood cells are involved in anticancer immune responses, these findings suggest that even regular low

  16. A Mutation in the STN1 Gene Triggers an Alternative Lengthening of Telomere-Like Runaway Recombinational Telomere Elongation and Rapid Deletion in Yeast

    OpenAIRE

    Iyer, Shilpa; Chadha, Ashley D.; McEachern, Michael J.

    2005-01-01

    Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an a...

  17. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation. PMID:25488978

  18. Telomere length, genetic variants and gastric cancer risk in a Chinese population.

    Science.gov (United States)

    Du, Jiangbo; Zhu, Xun; Xie, Cuiwei; Dai, Ningbin; Gu, Yayun; Zhu, Meng; Wang, Cheng; Gao, Yong; Pan, Feng; Ren, Chuanli; Ji, Yong; Dai, Juncheng; Ma, Hongxia; Jiang, Yue; Chen, Jiaping; Yi, Honggang; Zhao, Yang; Hu, Zhibin; Shen, Hongbing; Jin, Guangfu

    2015-09-01

    Telomeres maintain chromosomal stability and integrity and are crucial in carcinogenesis. Telomere length is implicated in multiple cancer risk, but the results are conflicting. Genome-wide association studies have identified several genetic loci associated with telomere length in Caucasians. However, the roles of telomere length and related variants on gastric cancer development are largely unknown. We conducted a case-control study including 1136 gastric cancer cases and 1012 controls to evaluate the associations between telomere length, eight telomere length-related variants identified in Caucasians and gastric cancer risk in Chinese population. We observed an obvious U-shaped association between telomere length and gastric cancer risk (P telomere length (P telomeres (P = 0.047). However, we did not observe significant associations between these genetic variants and gastric cancer risk for both single-variant and WGS analyses. These findings suggest that either short or extreme long telomeres may be risk factor for gastric cancer. Genetic variants identified in Caucasians may also contribute to the variation of telomere length in Chinese but seems not to gastric cancer susceptibility.

  19. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

  20. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma.

    Science.gov (United States)

    Plentz, Ruben R; Caselitz, Martin; Bleck, Joerg S; Gebel, Michael; Flemming, Peer; Kubicka, Stefan; Manns, Michael P; Rudolph, K Lenhard

    2004-07-01

    The telomere hypothesis of cancer initiation indicates that telomere shortening initiates cancer by induction of chromosomal instability. To test whether this hypothesis applies to human hepatocellular carcinoma (HCC), we analyzed the telomere length of hepatocytes in cytological smears of fine-needle biopsies of liver tumors from patients with cirrhosis (n = 39). The tumors consisted of 24 HCC and 15 regenerative nodules as diagnosed by combined histological and cytological diagnostics. In addition, we analyzed the telomere length of hepatocytes in HCC and surrounding noncancerous liver tissue within individual patients in another cohort of 10 patients with cirrhosis. Telomere length analysis of hepatocytes was correlated with tumor pathology and ploidy grade of the tumors, which was analyzed by cytophotometry. Telomeres were significantly shortened in hepatocytes of HCC compared to hepatocytes in regenerative nodules or surrounding noncancerous liver tissue. Hepatocyte telomere shortening in HCC was independent of the patient's age. There was no overlap in mean telomere lengths of individual samples when comparing HCC with regenerative nodules or noncancerous surrounding liver. Within the HCC group, telomeres were significantly shorter in hepatocytes of aneuploid tumors compared to diploid tumors. In conclusion, our data suggest that the telomere hypothesis of cancer initiation applies to human HCC and that cell type-specific telomere length analysis might indicate the risk of HCC development. PMID:15239089

  1. Suppression of Alternative Lengthening of Telomeres by Sp100-Mediated Sequestration of the MRE11/RAD50/NBS1 Complex

    OpenAIRE

    Jiang, Wei-Qin; Zhong, Ze-Huai; Henson, Jeremy D.; Neumann, Axel A.; Chang, Andy C.-M.; Reddel, Roger R

    2005-01-01

    Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in...

  2. Parental responsiveness moderates the association between early-life stress and reduced telomere length.

    Science.gov (United States)

    Asok, A; Bernard, K; Roth, T L; Rosen, J B; Dozier, M

    2013-08-01

    Early-life stress, such as maltreatment, institutionalization, and exposure to violence, is associated with accelerated telomere shortening. Telomere shortening may thus represent a biomarker of early adversity. Previous studies have suggested that responsive parenting may protect children from the negative biological and behavioral consequences of early adversity. This study examined the role of parental responsiveness in buffering children from telomere shortening following experiences of early-life stress. We found that high-risk children had significantly shorter telomeres than low-risk children, controlling for household income, birth weight, gender, and minority status. Further, parental responsiveness moderated the association between risk and telomere length, with more responsive parenting associated with longer telomeres only among high-risk children. These findings suggest that responsive parenting may have protective benefits on telomere shortening for young children exposed to early-life stress. Therefore, this study has important implications for early parenting interventions. PMID:23527512

  3. Getting it done at the ends: Pif1 family DNA helicases and telomeres.

    Science.gov (United States)

    Geronimo, Carly L; Zakian, Virginia A

    2016-08-01

    It is widely appreciated that the ends of linear DNA molecules cannot be fully replicated by the conventional replication apparatus. Less well known is that semi-conservative replication of telomeric DNA also presents problems for DNA replication. These problems likely arise from the atypical chromatin structure of telomeres, the GC-richness of telomeric DNA that makes it prone to forming DNA secondary structures, and from RNA-DNA hybrids, formed by transcripts of one or both DNA strands. Given the different aspects of telomeres that complicate their replication, it is not surprising that multiple DNA helicases promote replication of telomeric DNA. This review focuses on one such class of DNA helicases, the Pif1 family of 5'-3' DNA helicases. In budding and fission yeasts, Pif1 family helicases impact both telomerase-mediated and semi-conservative replication of telomeric DNA as well as recombination-mediated telomere lengthening. PMID:27233114

  4. The effects of regular strength training on telomere length in human skeletal muscle

    DEFF Research Database (Denmark)

    Kadi, Fawzi; Ponsot, Elodie; Piehl-Aulin, Karin;

    2008-01-01

    PURPOSE: The length of DNA telomeres is an important parameter of the proliferative potential of tissues. A recent study has reported abnormally short telomeres in skeletal muscle of athletes with exercise-associated fatigue. This important report raises the question of whether long-term practice...... of sports might have deleterious effects on muscle telomeres. Therefore, we aimed to compare telomere length of a group of power lifters (PL; N = 7) who trained for 8 +/- 3 yr against that of a group of healthy, active subjects (C; N = 7) with no history of strength training. METHODS: Muscle biopsies were...... taken from the vastus lateralis, and the mean and minimum telomeric restriction fragments (TRF) (telomere length) were determined, using the Southern blot protocol previously used for the analysis of skeletal muscle. RESULTS: There was no abnormal shortening of telomeres in PL. On the contrary, the mean...

  5. A two-step model for senescence triggered by a single critically short telomere

    DEFF Research Database (Denmark)

    Abdallah, Pauline; Luciano, Pierre; Runge, Kurt W;

    2009-01-01

    telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide......Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short...... for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very...

  6. Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci.

    Science.gov (United States)

    Buxton, Jessica L; Suderman, Matthew; Pappas, Jane J; Borghol, Nada; McArdle, Wendy; Blakemore, Alexandra I F; Hertzman, Clyde; Power, Christine; Szyf, Moshe; Pembrey, Marcus

    2014-05-14

    In humans, leukocyte telomere length (LTL) is positively correlated with lifespan, and shorter LTL is associated with increased risk of age-related disease. In this study we tested for association between telomere length and methylated cytosine levels. Measurements of mean telomere length and DNA methylation at >450,000 CpG sites were obtained for both blood (N = 24) and EBV-transformed cell-line (N = 36) DNA samples from men aged 44-45 years. We identified 65 gene promoters enriched for CpG sites at which methylation levels are associated with leukocyte telomere length, and 36 gene promoters enriched for CpG sites at which methylation levels are associated with telomere length in DNA from EBV-transformed cell-lines. We observed significant enrichment of positively associated methylated CpG sites in subtelomeric loci (within 4 Mb of the telomere) (P telomere length, DNA methylation and gene expression in health and disease.

  7. Telomere shortening correlates to dysplasia but not to DNA aneuploidy in longstanding ulcerative colitis

    DEFF Research Database (Denmark)

    Friis-Ottessen, Mariann; Bendix, Laila; Kølvraa, Steen;

    2014-01-01

    Ulcerative colitis (UC) is a chronic, inflammatory bowel disease which may lead to dysplasia and adenocarcinoma in patients when long-lasting. Short telomeres have been reported in mucosal cells of UC patients. Telomeres are repetitive base sequences capping the ends of linear chromosomes, and pr...... shortening of one or more telomeres to a critical length, rather than bulk shortening of telomeres, seems to be associated with chromosomal instability.......Ulcerative colitis (UC) is a chronic, inflammatory bowel disease which may lead to dysplasia and adenocarcinoma in patients when long-lasting. Short telomeres have been reported in mucosal cells of UC patients. Telomeres are repetitive base sequences capping the ends of linear chromosomes......, and protect them from erosion and subsequent wrongful recombination and end-to-end joining during cell division. Short telomeres are associated with the development of chromosomal instability and aneuploidy, the latter being risk factors for development of dysplasia and cancer. Specifically, the abrupt...

  8. Hela细胞端粒DNA断裂损伤%Strand breaks in telomeres in Hela cells

    Institute of Scientific and Technical Information of China (English)

    阳芳; 杨洁萍; 李清焕; 邵兰; 谭铮

    2003-01-01

    Telomeres are the repetitive G-rich DNA sequences at the end of chromosomes and shorten at each round of cell division.Besides the incomplete DNA synthesis,single and double DNA strand breaks,if not repaired, also contribute to the telomere shortening.To assess the frequency of strand breaks in proliferating Hela cells,telomere fragments were released by alkaline denaturing and electrophoresis from cells embedded in agarose,blotted onto membrane,and detected by probe specific to telomere sequence.The quantity of telomere fragments released was estimated to be less than 0.4% of the total telomere content,which corresponded to less than one break per cell.Since the mean length of the terminal restriction fragments of the cells was about 7 kbp,the fragments detected would lead to less than 19 bp in mean telomere shortening [Acta Zoologica Sinica 49(6):873-877,2003].

  9. Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation

    Institute of Scientific and Technical Information of China (English)

    Wei Qian; Jianyong Wang; Na-Na Jin; Xiao-Hong Fu; Yi-Chien Lin; Jing-Jer Lin; Jin-Qiu Zhou

    2009-01-01

    In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stnlp and Tenlp genetically and physically, and is required for telomere end protection and te-Iomere length control. The molecular mechanism by which Ten1 participates in telomere length regulation and chro-mosome end protection remains elusive. In this work, we observed a weak interaction of Cdc13p and Tenlp in a gel-filtration analysis using purified recombinant Cdc13p and Ten lp. Ten 1p itself exhibits a weak DNA-binding activity, but enhances the telomeric TG1-3 DNA-binding ability of Cdc13p. Cdc13p is co-immunoprecipitated with Ten1p. In the mutant ten1-55 or ten1-66 cells, the impaired interaction between Ten1p and Cdc13p results in much longer telomeres, as well as a decreased association of Cdc13p with telomeric DNA. Consistently, the Ten1-55 and Ten1-66 mutant proteins fail to stimulate the telomeric DNA-binding activity of Cdc13p in vitro. These results suggest that Ten1p enhances the telomeric DNA-binding activity of Cdc13p to negatively regulate telomere length.

  10. The paradox of longer sperm telomeres in older men's testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline.

    Science.gov (United States)

    Stindl, Reinhard

    2016-01-01

    Longer telomeres in the somatic cells of an individual have been regarded as a marker of youth and biological fitness within a population. Yet, several research groups have reported the surprising findings of longer telomeres in the germ cells of older men, which translated into longer leukocyte telomere length in their offspring. Although all these studies were purely cross-sectional, a longitudinal trend in the aging testes of individual males was taken for granted. Recently, a high-profile study reported a negative birth-cohort effect on leukocyte mean telomere length in human populations, namely the progressive loss of telomeric sequence between healthy human generations. This is what I based my theory of telomere-driven macroevolution on, 12 years ago. On the basis of published data on telomere length inheritance, I identified the source of human intergenerational telomere erosion in the female germline. Accordingly, because of the resulting birth-cohort effect, there is no need for any paradoxical telomere lengthening in older men's gonads to interpret the old-father-long-telomered-offspring data. PMID:26858775

  11. Discovering Focus: Helping Students with ADD (Attention Deficit Disorder)

    Science.gov (United States)

    Valkenburg, Jim

    2012-01-01

    Attention Deficit Disorder (ADD) is a neurological disorder which effects learning and that has a confusing set of diagnostic symptoms and an even more confusing set of remedies ranging from medication to meditation to nothing at all. Current neurological research suggests, however, that there are strategies that the individual with ADD can use to…

  12. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  13. Dynamics of telomere length in different age groups in a Latvian population.

    Science.gov (United States)

    Zole, Egija; Pliss, Liana; Ranka, Renate; Krumina, Astrida; Baumanis, Viesturs

    2013-12-01

    The shortening of telomeres with ageing is a well-documented observation; however, the reported number of nucleotides in telomeres varies between different laboratories and studies. Such variability is likely caused by ethnic differences between the populations studied. Until now, there were no studies that investigated the variability of telomere length in a senescent Latvian population of the most common mitochondrial haplogroups, defined as H (45%), U (25%), Y chromosomal N1c (40%) and R1a1 (40%). Telomere length was determined in 121 individuals in different age groups, including a control group containing individuals of 20-40 years old and groups of individuals between 60-70 years old, 71-80 years old, 81-90 years old, and above 90 years old. Telomere length was determined using the Southern blot telomeric restriction fragment assay (TRF). Decreased telomere length with ageing was confirmed, but a comparison of centenarians and individuals between 60-90 years of age did not demonstrate a significant difference in telomere length. However, significant variability in telomere length was observed in the control group, indicating probable rapid telomere shortening in some individuals that could lead up to development of health status decline appearing with ageing. Telomere length measured in mononuclear blood cells (MNC) was compared with the telomere length measured in whole peripheral white blood cells (WBC) using TRF. Telomere length in MNC was longer than in WBC for the control group with individuals 20 to 40 years old; in contrast, for the group of individuals aged 65 to 85 years old, measured telomere length was shorter in MNC when compared to WBC.

  14. Genetic variants within telomere-associated genes, leukocyte telomere length and the risk of acute coronary syndrome in Czech women.

    Science.gov (United States)

    Dlouha, Dana; Pitha, Jan; Mesanyova, Jana; Mrazkova, Jolana; Fellnerova, Adela; Stanek, Vladimir; Lanska, Vera; Hubacek, Jaroslav A

    2016-02-15

    The association between leukocyte telomere length (LTL) and cardiovascular disease (CVD) has been published in many reports, although almost exclusively in men. In our study we analysed the association between LTL and five selected variants within three candidate genes (TERC rs12696304; TERF2IP rs3784929 and rs8053257; UCP2 rs659366 and rs622064), which are not only involved in telomere-length maintenance but also potentially associated with higher risk of acute coronary syndrome (ACS) in Czech women (505 cases and 642 controls). We detected significantly shorter LTL in women with ACS (Ptelomere length or ACS risk in Czech females.

  15. Secure quantum network coding for controlled repeater networks

    Science.gov (United States)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  16. Telomere shortening reduces Alzheimer's disease amyloid pathology in mice

    NARCIS (Netherlands)

    Rolyan, Harshvardhan; Scheffold, Annika; Heinrich, Annette; Begus-Nahrmann, Yvonne; Langkopf, Britta Heike; Hoelter, Sabine M.; Vogt-Weisenhorn, Daniela M.; Liss, Birgit; Wurst, Wolfgang; Lie, Dieter Chichung; Thal, Dietmar Rudolf; Biber, Knut; Rudolph, Karl Lenhard

    2011-01-01

    Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells. Studie

  17. Drug addiction is associated with leukocyte telomere length

    Science.gov (United States)

    Yang, Zhaoyang; Ye, Junyi; Li, Candong; Zhou, Daizhan; Shen, Qin; Wu, Ji; Cao, Lan; Wang, Ting; Cui, Daxiang; He, Shigang; Qi, Guoyang; He, Lin; Liu, Yun

    2013-01-01

    Telomeres are protective chromosomal structures that play a key role in preserving genomic stability. Telomere length is known to be associated with ageing and age-related diseases. To study the impairment of telomeres induced by drug abuse, we conducted an association study in the Chinese Han population. Multivariate linear regression analyses were performed to evaluate the correlation of leukocyte telomere length (LTL) with addiction control status adjusted for age and gender. The results showed that drug abusers exhibited significantly shorter LTLs than controls (P = 1.32e−06). The time before relapse also presented an inverse correlation with LTL (P = 0.02). Drug abusers who had used heroin and diazepam displayed a shorter LTL than those taking other drugs (P = 0.018 and P = 0.009, respectively). Drug abusers who had ingested drugs via snuff exhibited longer LTLs than those using other methods (P = 0.02). These observations may offer a partial explanation for the effects of drug addiction on health. PMID:23528991

  18. Leukocyte telomere length and late-life depression

    NARCIS (Netherlands)

    Schaakxs, R.; Verhoeven, J.E.; Oude Voshaar, R.C.; Comijs, H.C.; Penninx, B.W.

    2015-01-01

    OBJECTIVE: Depressive disorders have been associated with increased risk for aging-related diseases, possibly as a consequence of accelerated cellular aging. Cellular aging, indexed by telomere length (TL) shortening, has been linked to depression in adults younger than 60 years; however, it remains

  19. Leukocyte Telomere Length and Late-Life Depression

    NARCIS (Netherlands)

    Schaakxs, Roxanne; Verhoeven, Josine E.; Oude Voshaar, Richard; Comijs, Hannie C.; Penninx, Brenda W. J. H.

    2015-01-01

    OBJECTIVE: Depressive disorders have been associated with increased risk for aging-related diseases, possibly as a consequence of accelerated cellular aging. Cellular aging, indexed by telomere length (TL) shortening, has been linked to depression in adults younger than 60 years; however, it remains

  20. Leukocyte telomere length dynamics in women and men

    DEFF Research Database (Denmark)

    Dalgård, Christine; Benetos, Athanase; Verhulst, Simon;

    2015-01-01

    BACKGROUND: A longer leukocyte telomere length (LTL) in women than men has been attributed to a slow rate of LTL attrition in women, perhaps due to high estrogen exposure during the premenopausal period. METHODS: To test this premise we performed a longitudinal study (an average follow-up of 12...

  1. Single-molecule TPM studies on the conversion of human telomeric DNA.

    Science.gov (United States)

    Chu, Jen-Fei; Chang, Ta-Chau; Li, Hung-Wen

    2010-04-21

    Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

  2. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Ricardo Pariona-Llanos

    Full Text Available Glyceraldehyde 3-phosphate dehydrogenase (GAPDH is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH. We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  3. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Woo, Seon Rang [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Jung-Kee [Department of Life Science and Genetic Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Kim, Hae Kwon [Department of Biotechnology, Seoul Woman' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-74-2 (Korea, Republic of); Park, Gil Hong [Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  4. High-resolution telomere fluorescence in situ hybridization reveals intriguing anomalies in germ cell tumors.

    Science.gov (United States)

    Shekhani, Mohammed Talha; Barber, John R; Bezerra, Stephania M; Heaphy, Christopher M; Gonzalez Roibon, Nilda Diana; Taheri, Diana; Reis, Leonardo O; Guner, Gunes; Joshu, Corinne E; Netto, George J; Meeker, Alan K

    2016-08-01

    Testicular germ cell tumor (TGCT) is the most common malignancy of young men. Most patients are completely cured, which distinguishes these from most other malignancies. Orchiectomy specimens (n=76) were evaluated using high-resolution (single-cell discriminative) telomere-specific fluorescence in situ hybridization (FISH) with simultaneous Oct4 immunofluorescence to describe telomere length phenotype in TGCT neoplastic cells. For the first time, the TGCT precursor lesion, germ cell neoplasia in situ (GCNIS) is also evaluated in depth. The intensity of the signals from cancerous cells was compared to the same patient's reference cells-namely, healthy germ cells (defined as "medium" length) and interstitial/somatic cells (defined as "short" telomere length). We observed short telomeres in most GCNIS and pure seminomas (P=.006 and P=.0005, respectively). In contrast, nonseminomas displayed longer telomeres. Lesion-specific telomere lengths were documented in mixed tumor cases. Embryonal carcinoma (EC) demonstrated the longest telomeres. A fraction of EC displays the telomerase-independent alternative lengthening of telomeres (ALT) phenotype (24% of cases). Loss of ATRX or DAXX nuclear expression was strongly associated with ALT; however, nuclear expression of both proteins was retained in half of ALT-positive ECs. The particular distribution of telomere lengths among TGCT and GCNIS precursors implicate telomeres anomalies in pathogenesis. These results may advise management decisions as well. PMID:27085557

  5. Variations in telomere maintenance and the role of telomerase inhibition in gastrointestinal cancer

    Directory of Open Access Journals (Sweden)

    Heeg S

    2015-12-01

    Full Text Available Steffen Heeg Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center – University of Freiburg, Freiburg, Germany Abstract: Immortalization is an important step toward the malignant transformation of human cells and is critically dependent upon telomere maintenance. There are two known mechanisms to maintain human telomeres. The process of telomere maintenance is either mediated through activation of the enzyme telomerase or through an alternative mechanism of telomere lengthening called ALT. While 85% of all human tumors show reactivation of telomerase, the remaining 15% are able to maintain telomeres via ALT. The therapeutic potential of telomerase inhibitors is currently investigated in a variety of human cancers. Gastrointestinal tumors are highly dependent on telomerase as a mechanism of telomere maintenance, rendering telomeres as well as telomerase potential targets for cancer therapy. This article focuses on the molecular mechanisms of telomere biology and telomerase activation in gastrointestinal cancers and reviews strategies of telomerase inhibition and their potential therapeutic use in these tumor entities. Keywords: telomere based therapy, gastrointestinal cancer, telomere maintenance, telomerase inhibition

  6. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies.

    Science.gov (United States)

    Jafri, Mohammad A; Ansari, Shakeel A; Alqahtani, Mohammed H; Shay, Jerry W

    2016-01-01

    Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized. PMID:27323951

  7. Longer telomere length in COPD patients with α1-antitrypsin deficiency independent of lung function.

    Directory of Open Access Journals (Sweden)

    Aabida Saferali

    Full Text Available Oxidative stress is involved in the pathogenesis of airway obstruction in α1-antitrypsin deficient patients. This may result in a shortening of telomere length, resulting in cellular senescence. To test whether telomere length differs in α1-antitrypsin deficient patients compared with controls, we measured telomere length in DNA from peripheral blood cells of 217 α1-antitrypsin deficient patients and 217 control COPD patients. We also tested for differences in telomere length between DNA from blood and DNA from lung tissue in a subset of 51 controls. We found that telomere length in the blood was significantly longer in α1-antitrypsin deficient COPD patients compared with control COPD patients (p = 1×10(-29. Telomere length was not related to lung function in α1-antitrypsin deficient patients (p = 0.3122 or in COPD controls (p = 0.1430. Although mean telomere length was significantly shorter in the blood when compared with the lungs (p = 0.0078, telomere length was correlated between the two tissue types (p = 0.0122. Our results indicate that telomere length is better preserved in α1-antitrypsin deficient COPD patients than in non-deficient patients. In addition, measurement of telomere length in the blood may be a suitable surrogate for measurement in the lung.

  8. Longer telomere length in COPD patients with α1-antitrypsin deficiency independent of lung function.

    Science.gov (United States)

    Saferali, Aabida; Lee, Jee; Sin, Don D; Rouhani, Farshid N; Brantly, Mark L; Sandford, Andrew J

    2014-01-01

    Oxidative stress is involved in the pathogenesis of airway obstruction in α1-antitrypsin deficient patients. This may result in a shortening of telomere length, resulting in cellular senescence. To test whether telomere length differs in α1-antitrypsin deficient patients compared with controls, we measured telomere length in DNA from peripheral blood cells of 217 α1-antitrypsin deficient patients and 217 control COPD patients. We also tested for differences in telomere length between DNA from blood and DNA from lung tissue in a subset of 51 controls. We found that telomere length in the blood was significantly longer in α1-antitrypsin deficient COPD patients compared with control COPD patients (p = 1×10(-29)). Telomere length was not related to lung function in α1-antitrypsin deficient patients (p = 0.3122) or in COPD controls (p = 0.1430). Although mean telomere length was significantly shorter in the blood when compared with the lungs (p = 0.0078), telomere length was correlated between the two tissue types (p = 0.0122). Our results indicate that telomere length is better preserved in α1-antitrypsin deficient COPD patients than in non-deficient patients. In addition, measurement of telomere length in the blood may be a suitable surrogate for measurement in the lung.

  9. The relationship between telomere length and mortality in chronic obstructive pulmonary disease (COPD.

    Directory of Open Access Journals (Sweden)

    Jee Lee

    Full Text Available Some have suggested that chronic obstructive pulmonary disease (COPD is a disease of accelerated aging. Aging is characterized by shortening of telomeres. The relationship of telomere length to important clinical outcomes such as mortality, disease progression and cancer in COPD is unknown. Using quantitative polymerase chain reaction (qPCR, we measured telomere length of peripheral leukocytes in 4,271 subjects with mild to moderate COPD who participated in the Lung Health Study (LHS. The subjects were followed for approximately 7.5 years during which time their vital status, FEV(1 and smoking status were ascertained. Using multiple regression methods, we determined the relationship of telomere length to cancer and total mortality in these subjects. We also measured telomere length in healthy "mid-life" volunteers and patients with more severe COPD. The LHS subjects had significantly shorter telomeres than those of healthy "mid-life" volunteers (p<.001. Compared to individuals in the 4(th quartile of relative telomere length (i.e. longest telomere group, the remaining participants had significantly higher risk of cancer mortality (Hazard ratio, HR, 1.48; p = 0.0324 and total mortality (HR, 1.29; p = 0.0425. Smoking status did not make a significant difference in peripheral blood cells telomere length. In conclusion, COPD patients have short leukocyte telomeres, which are in turn associated increased risk of total and cancer mortality. Accelerated aging is of particular relevance to cancer mortality in COPD.

  10. Breast cancer survival is associated with telomere length in peripheral blood cells.

    Science.gov (United States)

    Svenson, Ulrika; Nordfjäll, Katarina; Stegmayr, Birgitta; Manjer, Jonas; Nilsson, Peter; Tavelin, Björn; Henriksson, Roger; Lenner, Per; Roos, Göran

    2008-05-15

    Telomeres are essential for maintaining chromosomal stability. Previous studies have indicated that individuals with shorter blood telomeres may be at higher risk of developing various types of cancer, such as in lung, bladder, and kidney. We have analyzed relative telomere length (RTL) of peripheral blood cells in relation to breast cancer incidence and prognosis. The study included 265 newly diagnosed breast cancer patients and 446 female controls. RTL was measured by real-time PCR, and our results show that the patient group displayed significantly longer telomeres compared with controls (P cancer risk increased with increasing telomere length, with a maximal OR of 5.17 [95% confidence interval (95% CI), 3.09-8.64] for the quartile with the longest telomeres. Furthermore, RTL carried prognostic information for patients with advanced disease. Node positive (N+) patients with short telomeres (telomeres (P = 0.001). For patients with ages 16 mm (median tumor diameter), short telomeres were associated with a significantly better outcome than longer telomeres (P = 0.006). Cox regression analysis showed that long RTL was a significant independent negative prognostic factor (hazards ratio, 2.92; 95% CI, 1.33-6.39; P = 0.007). Our results indicate that blood RTL may serve as a prognostic indicator in breast cancer patients with advanced disease.

  11. Telomere length in hepatocellular carcinoma and paired adjacent non-tumor tissues by quantitative PCR.

    Science.gov (United States)

    Zhang, Yujing; Shen, Jing; Ming-Whei; Lee, Yu Po-Huang; Santella, Regina M

    2007-12-01

    Telomere shortening limits the proliferative capacity of human cells, restrains the regenerative capacity of organ systems during chronic diseases and aging and also induces chromosomal instability as well as initiation of cancer. Previous studies demonstrated that telomeres are often significantly shorter in tumor tissue, including hepatocellular carcinoma (HCC), compared to the surrounding tissue, but telomere length in HCC tissues was not correlated with several clinical parameters, such as age, sex, HBV or HCV infections and tumor size. In the present study, the telomere length ratio of 36 paired HCC, and their adjacent non-tumor tissues was measured by quantitative PCR (Q-PCR). The mean telomere lengths (SD) for HCC and adjacent non-tumor tissues were 0.26 (0.10) and 0.47 (0.20) respectively (t = 6.22, P telomere length in tumor and adjacent non-tumor tissues. The number of tumors with telomere length shorter than 0.50 was much higher than that of adjacent non-tumor tissues; more than 90% of the tissues with telomere length > or = 0.50 were adjacent non-tumor tissues. The correlations between telomere length and aflatoxin B1- and polycyclic aromatic hydrocarbon-DNA adducts level, p53 mutations and p16 hypermethylation status were also tested, but no significant associations were found. The relationship between telomere length shortening, chemical carcinogen exposure, and genetic and epigenetic changes in hepatocarcinogenesis needs further investigation. PMID:18058461

  12. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures

    International Nuclear Information System (INIS)

    Mammalian genomes contain several types of repetitive sequences. Some of these sequences are implicated in various specific cellular events, including meiotic recombination, chromosomal breaks and transcriptional regulation, and also in several human disorders. In this review, we document the formation of DNA secondary structures by the G-rich repetitive sequences that have been found in several minisatellites, telomeres and in various triplet repeats, and report their effects on in vitro DNA synthesis. d(GGCAG) repeats in the mouse minisatellite Pc-1 were demonstrated to form an intra-molecular folded-back quadruplex structure (also called a G4' structure) by NMR and CD spectrum analyses. d(TTAGGG) telomere repeats and d(CGG) triplet repeats were also shown to form G4' and other unspecified higher order structures, respectively. In vitro DNA synthesis was substantially arrested within the repeats, and this could be responsible for the preferential mutability of the G-rich repetitive sequences. Electrophoretic mobility shift assays using NIH3T3 cell extracts revealed heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A3, which were tightly and specifically bound to d(GGCAG) and d(TTAGGG) repeats with K d values in the order of nM. HnRNP A1 unfolded the G4' structure formed in the d(GGCAG) n and d(TTAGGG) n repeat regions, and also resolved the higher order structure formed by d(CGG) triplet repeats. Furthermore, DNA synthesis arrest at the secondary structures of d(GGCAG) repeats, telomeres and d(CGG) triplet repeats was efficiently repressed by the addition of hnRNP A1. High expression of hnRNPs may contribute to the maintenance of G-rich repetitive sequences, including telomere repeats, and may also participate in ensuring the stability of the genome in cells with enhanced proliferation. Transcriptional regulation of genes, such as c-myc and insulin, by G4 sequences found in the promoter regions could be an intriguing field of research and help further

  13. Genomic Organization of the Drosophila Telomere RetrotransposableElements

    Energy Technology Data Exchange (ETDEWEB)

    George, J.A.; DeBaryshe, P.G.; Traverse, K.L.; Celniker, S. E.; Pardue, M-L.

    2006-10-16

    The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that of other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.

  14. Telomeric position effect--a third silencing mechanism in eukaryotes.

    Directory of Open Access Journals (Sweden)

    J Greg Doheny

    Full Text Available Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE. Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(vars, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members. We tested a large number of each group for their ability to suppress TPE [Su(TPE]. Our results showed that only three Su(vars and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPEs, we conducted a candidate screen for Su(TPE in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPEs and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPEs confirm they act directly on the gene inserted into the telomere. Since the Su(TPEs do not overlap significantly with either PcGs or Su(vars, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE represent a third, widely used, silencing

  15. The relationship between telomere length and clinicopathologic characteristics in colorectal cancers among Tunisian patients.

    Science.gov (United States)

    Mzahma, Raja; Kharrat, Maher; Fetiriche, Fadhel; Bouasker; Ben Moussa, Mounir; Ben Safta, Zoubeir; Dziri, Chadli; Zaouche, AbdelJelil; Chaabouni-Bouhamed, Habiba

    2015-11-01

    Alterations in telomere dynamics have emerged as having a causative role in carcinogenesis. Both the telomere attrition contribute to tumor initiation via increasing chromosomal instability and that the telomere elongation induces cell immortalization and leads to tumor progression. The objectives of this study are to investigate the dynamics of telomere length in colorectal cancer (CRC) and the clinicopathological parameters implicated. We measured the relative telomere length (RTL) in cancerous tissues and in corresponding peripheral blood leukocytes (PBL) using quantitative PCR (Q-PCR) from 94 patients with CRC. Telomere length correlated significantly in cancer tissues and corresponding PBL (r = 0.705). Overall, cancer tissue had shorter telomeres than PBL (p = 0.033). In both cancer tissue and PBL, the RTL was significantly correlated with age groups (p = 0.008 and p = 0.012, respectively). The RTL in cancer tissue was significantly longer in rectal tumors (p = 0.04) and in the late stage of tumors (p = 0.01). In PBL, the RTL was significantly correlated with the macroscopic aspect of tumors (p = 0.02). In addition, the telomere-length ratio of cancer to corresponding PBL increased significantly with late-stage groups. Shortening of the telomere was detected in 44.7%, elongation in 36.2%, and telomeres were unchanged in 19.1% of 94 tumors. Telomere shortening occurred more frequently in the early stage of tumors (p = 0.01). This study suggests that the telomere length in PBL is affected by the macroscopic aspect of tumors and that telomere length in cancer tissues is a marker for progression of CRC and depends on tumor-origin site.

  16. Internalizing Disorders and Leukocyte Telomere Erosion: A Prospective Study of Depression, Generalized Anxiety Disorder and Post-Traumatic Stress Disorder

    Science.gov (United States)

    Shalev, Idan; Moffitt, Terrie E.; Braithwaite, Antony W.; Danese, Andrea; Fleming, Nicholas I.; Goldman-Mellor, Sidra; Harrington, HonaLee; Houts, Renate M.; Israel, Salomon; Poulton, Richie; Robertson, Stephen P.; Sugden, Karen; Williams, Benjamin; Caspi, Avshalom

    2013-01-01

    There is evidence that persistent psychiatric disorders lead to age-related disease and premature mortality. Telomere length has emerged as a promising biomarker in studies that test the hypothesis that internalizing psychiatric disorders are associated with accumulating cellular damage. We tested the association between the persistence of internalizing disorders (depression, generalized anxiety disorder and post-traumatic stress disorder) and leukocyte telomere length (LTL) in the prospective-longitudinal Dunedin Study (N=1037). Analyses showed that the persistence of internalizing disorders across repeated assessments from ages 11 to 38 years predicted shorter LTL at age 38 years in a dose-response manner, specifically in men (β= −.137, 95% CI: −.232, −.042, p=.005). This association was not accounted for by alternative explanatory factors, including childhood maltreatment, tobacco smoking, substance dependence, psychiatric medication use, poor physical health, or low socioeconomic status. Additional analyses using DNA from blood collected at two time points (ages 26 and 38 years) showed that LTL erosion was accelerated among men who were diagnosed with internalizing disorder in the interim (β= −.111, 95% CI: −.184, −.037, p=.003). No significant associations were found among women in any analysis, highlighting potential sex differences in internalizing-related telomere biology. These findings point to a potential mechanism linking internalizing disorders to accelerated biological aging in the first half of the life course, particularly in men. Because internalizing disorders are treatable, the findings suggest the hypothesis that treating psychiatric disorders in the first half of the life course may reduce the population burden of age-related disease, and extend health expectancy. PMID:24419039

  17. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Weiguang [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou (China); Wu, Qinqin [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Department of Radiation Oncology, Changzhou Tumor Hospital, Soochow University, Changzhou (China); Zhou, Fuxiang; Xie, Conghua [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Wu, Changping, E-mail: wcpzlk@163.com [Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou (China); Zhou, Yunfeng, E-mail: yfzhouwhu@163.com [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China)

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  18. Top 5 Ways to Help Students with ADD/ADHD

    Science.gov (United States)

    Johnson, Kathy

    2011-01-01

    This article suggests five ways to help students with ADD/ADHD. These are: (1) Integrate the primitive reflexes; (2) Diet; (3) Visual attention; (4) Help for auditory attention; and (5) Cognitive training.

  19. Selected Telomere Length Changes and Aberrant Three-dimensional Nuclear Telomere Organization during Fast-Onset Mouse Plasmacytomas

    Directory of Open Access Journals (Sweden)

    Alexandra Kuzyk

    2012-04-01

    Full Text Available Mouse plasmacytoma (PCT can develop within 45 days when induced by a v-abl/myc replication-deficient retrovirus. This fast-onset PCT development is always associated with trisomy of cytoband E2 of mouse chromosome 11 (11E2. Trisomy of 11E2 was identified as the sole aberration in all fast-onset mouse PCTs in [T38HxBALB/c]N congenic mice, with a reciprocal translocation between chromosome X and 11 (rcpT(X;11 (Genes Cancer 2010;1:847–858. Using this mouse model, we have now examined the overall and individual telomere lengths in fast-onset PCTs compared with normal B cells using two-dimensional and three-dimensional quantitative fluorescent in situ hybridization of telomeres. We found fast-onset PCTs to have a significantly different three-dimensional telomere profile, compared with primary B cells of wild-type littermates with and without rcpT(X;11 (P < .0001 and P = .006, respectively. Our data also indicate for primary PCT cells, from the above mouse strain, that the translocation chromosome carrying 11E2 is the only chromosome with telomere lengthening (P = 4 x 10-16. This trend is not seen for T(X;11 in primary B cells of control [T38HxBALB/c]N mice with the rcpT(X;11. This finding supports the concept of individual telomere lengthening of chromosomes that are functionally important for the tumorigenic process.

  20. Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis

    OpenAIRE

    Riha, Karel; Dorothy E Shippen

    2003-01-01

    Telomere dysfunction arising from mutations in telomerase or in telomere capping proteins leads to end-to-end chromosome fusions. Paradoxically, the Ku70/80 heterodimer, essential for nonhomologous end-joining double-strand break repair, is also found at telomeres, and in mammals it is required to prevent telomere fusion. Previously, we showed that inactivation of Ku70 in Arabidopsis results in telomere lengthening. Here, we have demonstrated that this telomere elongation is telomerase depend...