WorldWideScience

Sample records for adc x-ray binary

  1. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  2. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  3. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    X-ray Measurements of Black Hole X-ray Binary Source GRS. 1915+105 and the Evolution of Hard X-ray Spectrum. R. K. Manchanda, Tata Institute of Fundamental Research, Mumbai 400 005, India,. Received 1999 December 28; accepted 2000 February 9. Abstract. We report the spectral measurement of GRS 1915+105 ...

  4. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X- ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary sys- tems (XBPs). First, I will discuss soft ...

  5. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    Biswajit Paul

    2017-09-07

    Sep 7, 2017 ... Abstract. Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary ...

  6. Linking Jet Emission, X-Ray States, and Hard X-Ray Tails in the Neutron Star X-Ray Binary GX 17+2

    NARCIS (Netherlands)

    Migliari, S.; Miller-Jones, J.C.A.; Fender, R.P.; Homan, J.; di Salvo, T.; Rothschild, R.E.; Rupen, M.P.; Tomsick, J.A.; Wijnands, R.; van der Klis, M.

    2007-01-01

    We present the results of simultaneous radio (VLA) and X-ray (RXTE) observations of the Z-type neutron star X-ray binary GX 17+2. The aim is to assess the coupling between X-ray and radio properties throughout its three rapidly variable X-ray states and during the time-resolved transitions. These

  7. Mass transfer in binary X-ray systems

    Science.gov (United States)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  8. Exploring subluminous X-ray binaries

    NARCIS (Netherlands)

    Degenaar, N.D.

    2010-01-01

    Halfway the twentieth century, technological developments made it possible to carry detection instruments outside the absorbing layers of the Earth’s atmosphere onboard rockets and satellites. This opened up the opportunity to detect the emission from celestial objects at X-ray wavelengths, thereby

  9. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  10. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  11. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  12. The evolution of ultracompact X-ray binaries

    OpenAIRE

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Wood, M. A.; Kuijpers, J.

    2011-01-01

    Context. Ultracompact X-ray binaries (UCXBs) typically consist of a white dwarf donor and a neutron star or black hole accretor. The evolution of UCXBs and very low mass ratio binaries in general is poorly understood. Aims. We investigate the evolution of UCXBs in order to learn for which mass ratios and accretor types these systems can exist, and if they do, what are their orbital and neutron star spin periods, mass transfer rates and evolutionary timescales. Methods. For different assumptio...

  13. Ginga observations of dipping low mass X ray binaries

    Science.gov (United States)

    Smale, Alan P.; Mukai, Koji; Williams, O. Rees; Jones, Mark H.; Parmar, Arvind N.; Corbet, Robin H. D.

    1989-01-01

    Ginga observations of several low mass X ray binaries displaying pronounced dips of variable depth and duration in their X ray light curves are analyzed. The periodic occultation of the central X ray source by azimuthal accretion disk structure is considered. A series of spectra selected by intensity from the dip data from XB1916-053, are presented. The effects of a rapidly changing column density upon the spectral fitting results are modeled. EXO0748-676 was observed in March 1989 for three days. The source was found to be in a bright state with a 1 to 20 keV flux of 8.8 x 10 (exp -10) erg/sqcms. The data include two eclipses, observed with high time resolution.

  14. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  15. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition)

    NARCIS (Netherlands)

    Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J.

    2006-01-01

    We present a new edition of the catalogue of high-mass X-ray binaries in the Galaxy. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 114 high-mass X-ray binaries,

  16. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Mark J.; Raychaudhury, Somak [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Kraft, Ralph P.; Forman, William R.; Jones, Christine; Murray, Stephen S.; Birkinshaw, Mark; Evans, Daniel A.; Jordan, Andres [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Maccarone, Thomas J.; Croston, Judith H. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Brassington, Nicola J.; Hardcastle, Martin J.; Goodger, Joanna L. [School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kainulainen, Jouni [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Woodley, Kristin A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1 (Canada); Sivakoff, Gregory R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Gilfanov, Marat [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Sarazin, Craig L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Voss, Rasmus, E-mail: mburke@star.sr.bham.ac.uk [Department of Astrophysics/IMAPP, Radboud, University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); and others

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.

  17. Accretion in supergiant High Mass X-ray Binaries

    Directory of Open Access Journals (Sweden)

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  18. Suzaku observation of the eclipsing high mass X-ray binary pulsar ...

    Indian Academy of Sciences (India)

    Jincy Devasia

    2018-02-09

    Feb 9, 2018 ... The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments. Keywords. X-ray: neutron stars—X-ray binaries: individual (XTE J1855-026). 1. Introduction.

  19. Orbitally-Modulated X-rays From Millisecond Pulsar Binaries

    Science.gov (United States)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus; Baring, Matthew G.

    2017-06-01

    A large number of new Black Widow (BW) and Redback (RB) rotation-powered millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy synchrotron emission component from particles accelerated to several TeV in intrabinary shocks in two known BW and RB systems, and its predicted modulation at the binary orbital period. Constructing a geometric model of the shock, we use radio eclipse data in conjunction with optical constraints on the binary inclination angle to constrain the shock stagnation point distance from either the pulsar or companion star. We next model the X-ray synchrotron orbital light curves and compare them to those observed from the PSR B1957+20, where the shock surrounds the companion, and PSR J1023+0038, where the shock surrounds the pulsar, to constrain the bulk Lorentz factor of the wind flow as well as further constrain the inclination angle.

  20. GALACTIC ULTRACOMPACT X-RAY BINARIES: DISK STABILITY AND EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, C. O.; Ivanova, N.; Engel, M. C.; Pavlovskii, K.; Sivakoff, G. R.; Gladstone, J. C. [Physics Department, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Cartwright, T. F., E-mail: heinke@ualberta.ca [International Space University, 1 rue Jean-Dominique Cassini, 67400 Illkirch-Graffenstaden (France)

    2013-05-10

    We study the mass-transfer rates and disk stability conditions of ultracompact X-ray binaries (UCXBs) using empirical time-averaged X-ray luminosities from Paper I and compiled information from the literature. The majority of UCXBs are consistent with evolutionary tracks for white dwarf donors. Three UCXBs with orbital periods longer than 40 minutes have mass-transfer rates above 10{sup -10} M{sub Sun} yr{sup -1}, inconsistent with white dwarf donor tracks. We show that if helium star donors can retain their initial high entropy, they can explain the observed mass-transfer rates of these UCXBs. Several UCXBs show persistent luminosities apparently below the disk instability limit for irradiated He accretion disks. We point out that a predominantly C and/or O disk (as observed in the optical spectra of several) lowers the disk instability limit, explaining this disagreement. The orbital period and low time-averaged mass-transfer rate of 2S 0918-549 provide evidence that the donor star is a low-entropy C/O white dwarf, consistent with optical spectra. We combine existing information to constrain the masses of the donors in 4U 1916-053 (0.064 {+-} 0.010 M{sub Sun }) and 4U 1626-67 (<0.036 M{sub Sun} for a 1.4 M{sub Sun} neutron star). We show that 4U 1626-67 is indeed persistent, and not undergoing a transient outburst, leaving He star models as the best explanation for the donor.

  1. Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT

    OpenAIRE

    Orlandini, M.; Doroshenko, V.; Zampieri, L.; Bozzo, E.; Baykal, A.; Blay, P.; Chernyakova, M.; Corbet, R.; D'Aì, A.; Enoto, T.; Ferrigno, C.; Finger, M.; Klochkov, D.; Kreykenbohm, I.; Inam, S. C.

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.

  2. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    . The donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...

  3. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    63

    stellar wind, and any intervenning interstellar material. Reprocessed X-rays are very useful to investigate the environments of neutron stars in various ways. .... and smearing of the optical emission with respect to the X-rays from the central source carries information about the light travel time from the neutron star to the.

  4. Using High-Mass X-ray Binaries to Probe Massive Binary Evolution

    Science.gov (United States)

    Garofali, Kristen; Williams, Ben

    2018-01-01

    High-mass X-ray binaries (HMXBs) provide an exciting window into the underlying processes of both binary as well as massive star evolution. Because HMXBs are systems containing a compact object accreting from a high-mass star at close orbital separations they are also likely progenitors of gamma-ray bursts and gravitational wave sources. I will present work on the classification and age measurements of HMXBs in M33 using a combination of deep Chandra X-ray imaging, and archival Hubble Space Telescope data. I am able to constrain the ages of the HMXB candidates by fitting the color-magnitude diagrams of the surrounding stars, which yield the star formation histories of the surrounding region. Unlike the age distributions measured for HMXB populations in the Magellenic Clouds, the age distribution for the HMXB population in M33 contains a number of extremely young (properties on the observed HMXB population.

  5. Spectral and timing properties of neutron-star low-mass X-ray binaries

    NARCIS (Netherlands)

    Lyu, Ming

    2016-01-01

    In this thesis I analyzed the neutron-star low-mass X-ray binaries using data from several X-ray telescopes. I found that the relations of fluxes of different radiation components in 4U 1636-53 is more complicated than what the simple reflction model predicts. This may be due to either changes in

  6. Recognition of binary x-ray systems utilizing the doppler effect

    Science.gov (United States)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  7. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    Science.gov (United States)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  8. A very rare triple-peaked type-I X-ray burst in the low-mass X-ray binary 4U 1636-53

    NARCIS (Netherlands)

    Zhang, Guobao; Mendez, Mariano; Altamirano, Diego; Belloni, Tomaso M.; Homan, Jeroen

    2009-01-01

    We have discovered a triple-peaked X-ray burst from the low-mass X-ray binary (LMXB) 4U 1636-53 with the Rossi X-ray Timing Explorer (RXTE). This is the first triple-peaked burst reported from any LMXB using RXTE, and it is only the second burst of this kind observed from any source. (The previous

  9. Discovery of type I X-ray bursts from the low-mass X-ray binary 4U 1708-40

    NARCIS (Netherlands)

    Migliari, S.; Di Salvo, T.; Belloni, T.; van der Klis, M.; Fender, R. P.; Campana, S.; Kouveliotou, C.; Méndez, M.; Lewin, W. H. G.

    2003-01-01

    We report the discovery of type I X-ray bursts from the low-mass X-ray binary 4U 1708 - 40 during the 100-ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~3 to 9 × 10-10 erg cm-2 s-1. A

  10. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  11. The photon-index-time-lag correlation in black hole X-ray binaries

    Science.gov (United States)

    Reig, Pablo; Kylafis, Nikolaos D.; Papadakis, Iossif E.; Costado, María Teresa

    2018-02-01

    We have performed a timing and spectral analysis of a set of black hole binaries to study the correlation between the photon index and the time lag of the hard photons with respect to the soft ones. We provide further evidence that the timing and spectral properties in black hole X-ray binaries are coupled. In particular, we find that the average time lag increases as the X-ray emission becomes softer. Although a correlation between the hardness of the X-ray spectrum and the time (or phase) lag has been reported in the past for a handful of systems, our study confirms that this correlated behaviour is a global property of black hole X-ray binaries. We also demonstrate that the photon-index-time-lag correlation can be explained as a result of inverse Comptonization in a jet.

  12. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  13. The ultracompact nature of the black hole candidate X-ray binary 47 Tuc X9

    Science.gov (United States)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, Jay; Garcia, Javier A.; Kallman, Timothy

    2017-05-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio/X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18 ± 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a C/O white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an ˜6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swiftand ROSAT data. The simultaneous radio/X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  14. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    Science.gov (United States)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  15. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  16. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  17. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    Science.gov (United States)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  18. Tidal tearing of circumstellar disks in Be/X-ray and gamma-ray binaries

    Science.gov (United States)

    Okazaki, Atsuo T.

    2017-11-01

    About one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (L X~1036-37 erg s-1) and occasional giant X-ray outbursts (L X > 1037 erg s-1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (P orb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1) As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism. 2) At some point, the disk is tidally torn off near the base and starts precession. 3) Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1). 4) The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.

  19. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    Science.gov (United States)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  20. The super-orbital modulation of supergiant high-mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Lobel, A.; Hamann, W.-R.

    2017-10-01

    The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries.

  1. Be/X-Ray Binaries with Black Holes in the Galaxy and in the Magellanic Clouds

    Directory of Open Access Journals (Sweden)

    Janusz Ziolkowski

    2014-12-01

    Full Text Available I will start with the statistics indicating that the objects named in the title of my talk are either non-existing or very elusive to detect (not a single such object is known against 119 known Be/neutron star X-ray binaries. After brief reviewing of the properties of Be/X-ray binaries I discuss several objects that were proposed as the long sought for candidates for Be/black hole X-ray binaries. After three unsuccessful candidates (LS I +61° 303, LS 5039 and MAXI J1836-194, a successful candidate (AGL J2241+4454/MWC 656 was finally, very recently, announced.

  2. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R. [Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Altamirano, D. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Kennea, J. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haggard, D. [CIERA, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ponti, G., E-mail: degenaar@umich.edu [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany)

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  3. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  4. Measurement of Neutron Star Radii with X-ray Binaries and Recycled Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-03-01

    Detailed modeling of the observed surface X-ray radiation from neutron stars can in principle reveal their interior structure, thereby constraining the state of matter at the most extreme densities. This talk will provide a summary of on-going observational efforts with the Chandra X-ray Observatory and XMM-Newton towards this end, with a focus on two particular varieties of neutron stars - thermally-emitting quiescent low-mass X-ray binaries and ``recycled'' millisecond pulsars. An overview of future prospects for measuring the elusive neutron star equation of state using forthcoming X-ray missions such as the Neutron Star Interior Composition ExploreR (NICER) and Athena+ will also be presented.

  5. Radiation Hydrodynamic simulations of Coronae and Disk winds in X-ray Binaries

    Science.gov (United States)

    Higginbottom, N.; Proga, D.

    2017-10-01

    X-ray spectra of several Low Mass X-ray binaries show evidence of disk-winds in the high/soft state. A promising driving mechanism for these outflows is the thermal expansion of X-ray heated material in the outer disk atmosphere. First, we demonstrate through hydrodynamical simulations that the properties of thermally-driven winds depend critically on the shape of the thermal equilibrium curve, which determines the thermal stability of the irradiated material. For a given SED, the thermal equilibrium curve depends on the balance between the heating and cooling mechanisms at work. Then, we use the photoionization code Cloudy to generate heating and cooling rates based on current atomic data, which we use in a 2.5D hydrodynamic model to simulate thermal winds in a typical black-hole X-ray binary. The resulting flow, calculated in the optically thin limit, has a significant mass-loss rate, likely at the level where the wind could affect the inner disk and cause state change. Finally, we discuss a more complete simulation of a disk wind in a low mass X-ray binary, dropping the assumption that the wind is everywhere optically thin, using our Monte-Carlo radiative transfer code to calculate the radiation field within the wind and to update the heating rates.

  6. Using SKA to observe relativistic jets from X-ray binary systems

    NARCIS (Netherlands)

    Fender, R.P.

    2004-01-01

    I briefly outline our current observational understanding of the relativistic jets observed from X-ray binary systems, and how their study may shed light on analogous phenomena in active galactic nuclei and gamma ray bursts. How SKA may impact on this field is sketched, including the routine

  7. The nature of very faint X-ray binaries: hints from light curves

    NARCIS (Netherlands)

    Heinke, C.O.; Bahramian, A.; Degenaar, N.; Wijnands, R.

    2015-01-01

    Very faint X-ray binaries (VFXBs), defined as having peak luminosities LX of 1034-1036 erg s−1, have been uncovered in significant numbers, but remain poorly understood. We analyse three published outburst light curves of two transient VFXBs using the exponential and linear decay formalism of King &

  8. Towards a unified model for black hole X-ray binary jets

    NARCIS (Netherlands)

    Fender, R.P.; Belloni, T.; Gallo, E.

    2004-01-01

    We present a unified semiquantitative model for the disc-jet coupling in black hole X-ray binary systems. In the process we have compiled observational aspects from the existing literature, as well as performing new analyses. We argue that during the rising phase of a black hole transient outburst

  9. Extreme jet ejections from the black hole X-ray binary V404 Cygni

    NARCIS (Netherlands)

    Tetarenko, A.J.; Sivakoff, G.R.; Miller-Jones, J. C. A.; Rosolowsky, E. W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Rupen, M.P.; Rushton, Anthony P.; Russell, D. M.; Russell, T. D.; Sarazin, C.L.

    2017-01-01

    We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope

  10. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    Science.gov (United States)

    González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.

    2017-02-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  11. No evidence for black hole spin powering of jets in X-ray binaries

    NARCIS (Netherlands)

    Fender, R.P.; Gallo, E.; Russell, D.

    2010-01-01

    In this paper, we consider the reported measurements of black hole spin for black hole X-ray binaries and compare them against the measurements of jet power and speed across all accretion states in these systems. We find no evidence for any correlation between the properties of the jets and the

  12. A Fully Integrated 0.055% INL X-ray CCD Readout ASIC with Incremental Delta Sigma {text{ADC}}

    Science.gov (United States)

    Wang, Yanchao; Cao, Xiaofei; Yu, Qian; Yi, Ting; Lu, Bo; Chen, Yong; Hong, Zhiliang

    2016-06-01

    A fully integrated 100 kHz X-ray charge coupled device (CCD) readout application specific integrated circuit (ASIC) employing delta sigma (ΔΣ) digitization is presented. To achieve high linearity with small chip size and low power consumption, the correlated double sampling (CDS) is realized by the ΣΔ ADC instead of the analog front end (AFE) as in conventional CCD readout circuits. Besides, the proposed decimation filter features simple structure and eases the integration. The chip is fabricated in 0.35 μm CMOS technology and the measured integral nonlinearity (INL) throughout the input dynamic range of ASIC is 0.055% with 35.1 ±; 0.3 μV input referred noise. A CCD detection system is built and tested with the sensitivity of CCD being 4 μVe-. The integration test results show that the readout noise is 11.8 e- at 100 kHz readout pixel rate and the achieved energy spectrum resolution is 168 eV ±; 4.7 eV (Full Width at Half Maximum: FWHM) at 5.9 keV.

  13. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  14. Optical observations of low-mass X-ray binaries and millisecond pulsars

    Science.gov (United States)

    Callanan, Paul J.

    1992-01-01

    We review recent results from optical observations of low-mass X-ray binaries (LMXBs) and millisecond pulsars. We discuss the optical and X-ray properties of those LMXBs which have been suspected of harboring black holes, reviewing in particular recent work on GX 339-4. We also present preliminary results from new optical observations of the ablating millisecond pulsar system PSR 1957 + 20. The orbital modulation is smooth and symmetrical, and is at least four magnitudes deep in R. However, the overall shape of the light curve can be reproduced by a simple model assuming blackbody reradiation from the secondary.

  15. The X-Ray Binary KS 1731{260: Possible Analogy with Her X-1

    Directory of Open Access Journals (Sweden)

    Vojtěch Šimon

    2014-12-01

    Full Text Available The X-ray binary with the neutron star (NS, KS 1731-260, displays superorbital cycle similar to that in Her X-1. The accretion disk had the memory of the cycle-length even when this modulation sometimes disappeared in the main outburst of KS 1731-260, and during anomalous low state in Her X-1. The disk still existed during such seasons. Although irradiation of the disk by X-rays is a viable explanation for the disk precession and warping (see model of Foulkes et al., the mechanisms which give rise to the observed X-ray modulation are quite dierent for each of these systems. Variable absorption can explain this cycle only in Her X-1. We propose a variable mass accretion rate onto the NS in KS 1731-260 due to a highly variable impact of the inflowing mass stream with the changing phase of the cycle.

  16. The peculiar high-mass X-ray binary 1ES 1210-646

    Science.gov (United States)

    Masetti, N.; Landi, R.; Sguera, V.; Capitanio, F.; Bassani, L.; Bazzano, A.; Bird, A. J.; Malizia, A.; Palazzi, E.

    2010-02-01

    Using data collected with the BeppoSAX, INTEGRAL and Swift satellites, we report and discuss the results of a study on the X-ray emission properties of the X-ray source 1ES 1210-646, recently classified as a high-mass X-ray binary through optical spectroscopy. This is the first in-depth analysis of the X-ray spectral characteristics of this source. We found that the flux of 1ES 1210-646 varies by a factor of ~3 on a timescale of hundreds of seconds and by a factor of at least 10 among observations acquired over a time span of several months. The X-ray spectrum of 1ES 1210-646 is described using a simple powerlaw shape or, in the case of INTEGRAL data, with a blackbody plus powerlaw model. Spectral variability is found in connection with different flux levels of the source. A strong and transient iron emission line with an energy of ~6.7 keV and an equivalent width of ~1.6 keV is detected when the source is found at an intermediate flux level. The line strength seems to be tied to the orbital motion of the accreting object, as this feature is only apparent at the periastron. Although the X-ray spectral description we find for the 1ES 1210-646 emission is quite atypical for a high-mass X-ray binary, the multiwavelegth information available for this object leads us to confirm this classification. The results presented here allow us instead to definitely rule out the possibility that 1ES 1210-646 is a (magnetic) cataclysmic variable as proposed previously and, in a broader sense, a white dwarf nature for the accretor is disfavoured. X-ray spectroscopic data actually suggest a neutron star with a low magnetic field as the accreting object in this system. Partly based on X-ray observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  17. Multiwavength Observations of the Black Hole X-Ray Binary A0620-00 in Quiescence

    Science.gov (United States)

    Dinçer, Tolga; Bailyn, Charles D.; Miller-Jones, James C. A.; Buxton, Michelle; MacDonald, Rachel K. D.

    2018-01-01

    We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 since 2005, and by a factor of 7 since 2000. The spectrum has not changed significantly over this time, being consistent with a power law of {{Γ }}=2.07+/- 0.13 and a hydrogen column of {N}H=(3.0+/- 0.5)× {10}21 {{cm}}-2. Very Large Array observations of A0620-00 at three frequencies, over the interval of 5.25–22.0 GHz, have provided us with the first broadband radio spectrum of a quiescent stellar mass black hole system at X-ray luminosities as low as 10‑8 times the Eddington luminosity. Compared to previous observations, the source has moved to lower radio and higher X-ray luminosity, shifting it perpendicular to the standard track of the radio/X-ray correlation for X-ray binaries. The radio spectrum is inverted with a spectral index α =0.74+/- 0.19 ({S}ν \\propto {ν }α ). This suggests that the peak of the spectral energy distribution is likely to be between 1012 and 1014 Hz, and that the near-IR and optical flux contain significant contributions from the star, the accretion flow, and from the outflow. Decomposing these components may be difficult, but holds the promise of revealing the interplay between accretion and jet in low luminosity systems.

  18. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    De Marco, B.; Ponti, G.; Nandra, K. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Muñoz-Darias, T., E-mail: bdemarco@mpe.mpg.de [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.

  19. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  20. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  1. AN X-RAY AND OPTICAL LIGHT CURVE MODEL OF THE ECLIPSING SYMBIOTIC BINARY SMC3

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Mariko [Department of Astronomy, Keio University, Hiyoshi, Yokohama 223-8521 (Japan); Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Mikolajewska, Joanna, E-mail: mariko@educ.cc.keio.ac.jp [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warszawa (Poland)

    2013-01-20

    Some binary evolution scenarios for Type Ia supernovae (SNe Ia) include long-period binaries that evolve to symbiotic supersoft X-ray sources in their late stage of evolution. However, symbiotic stars with steady hydrogen burning on the white dwarf's (WD) surface are very rare, and the X-ray characteristics are not well known. SMC3 is one such rare example and a key object for understanding the evolution of symbiotic stars to SNe Ia. SMC3 is an eclipsing symbiotic binary, consisting of a massive WD and red giant (RG), with an orbital period of 4.5 years in the Small Magellanic Cloud. The long-term V light curve variations are reproduced as orbital variations in the irradiated RG, whose atmosphere fills its Roche lobe, thus supporting the idea that the RG supplies matter to the WD at rates high enough to maintain steady hydrogen burning on the WD. We also present an eclipse model in which an X-ray-emitting region around the WD is almost totally occulted by the RG swelling over the Roche lobe on the trailing side, although it is always partly obscured by a long spiral tail of neutral hydrogen surrounding the binary in the orbital plane.

  2. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. I. OVERVIEW OF THE X-RAY SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, M. F.; Hamaguchi, K. [CRESST and X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nichols, J. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 34, Cambridge, MA 02138 (United States); Pablo, H.; Moffat, A. F. J.; Richardson, N. D. [Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada); Shenar, T.; Oskinova, L.; Hamann, W.-R. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam (Germany); Pollock, A. M. T. [European Space Agency, XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, E-28691 Villanueva de la Cañada (Spain); Waldron, W. L. [Eureka Scientific, Inc., 2452 Delmer St., Oakland, CA 94602 (United States); Russell, C. M. P. [NASA-GSFC, Code 662, Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Nazé, Y. [Groupe d’Astrophysique des Hautes Energies, Institut d’Astrophysique et de Géophysique, Université de Liége, 17, Allée du 6 Août, B5c, B-4000 Sart Tilman (Belgium); Ignace, R. [Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); and others

    2015-08-20

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.

  3. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    Science.gov (United States)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  4. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  5. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    Science.gov (United States)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  6. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    Science.gov (United States)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  7. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  8. Long-term variability of low-mass X-ray binaries

    Directory of Open Access Journals (Sweden)

    Filippova E.

    2014-01-01

    Full Text Available We consider modulations of mass captured by the compact object from the companion star’s stellar wind in Low Mass X-ray Binaries with late type giants. Based on 3D simulations with two different hydrodynamic codes used Lagrangian and Eulerian approaches – the SPH code GADGET and the Eulerian code PLUTO, we conclude that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. Observational appearances of this wind might be similar to that of an accretion disc corona/wind.

  9. X-Ray and γ-Ray Studies of the Millisecond Pulsar and Possible X-Ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    Science.gov (United States)

    Bogdanov, Slavko; Esposito, Paolo; Crawford, Fronefield, III; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-01

    We present X-ray observations of the "redback" eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is lsim5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  10. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  11. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.; Nandez, Jose L. A., E-mail: nata.ivanova@ualberta.ca [Department of Physics, University of Alberta, Edmonton, AB T6G 2E7 (Canada)

    2017-07-10

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  12. Are Spectral and Timing Correlations Similar in Different Spectral States in Black Hole X-Ray Binaries?

    NARCIS (Netherlands)

    Kalamkar, M.; Reynolds, M.T.; van der Klis, M.; Altamirano, D.; Miller, J.M.

    2015-01-01

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a

  13. A Possible X-Ray Detection of the Binary Millisecond Pulsar J1012+5307

    Science.gov (United States)

    Halpern, Jules P.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A possible X-ray detection of the newly discovered binary millisecond radio pulsar PSR J1012+5307 was obtained from an archival ROSAT observation. The 80 +/- 24 photons detected correspond to a 0.1 - 2.4 keV luminosity of approx. = 2.5 x 10(exp 30) erg/s at the nominal dispersion-measure distance of 520 pc. This luminosity is a factor of 2 less than that of PSR J0437-4715, a near twin of PSR J1012+5307 in its spin parameters and energetics, and the only millisecond pulsar from which pulsed X-rays have definitely been detected. PSR J1012+5307 is also within 6 deg of the "HI hole" in Ursa Major, providing a new estimate of the electron column density through this region which confirms that the ionized column density is also low. The small neutral column density to PSR J1012+5307, N(sub H) less than 7.5 x 10(exp 19)/sq cm, will facilitate future soft X-ray study, which will help to discriminate between thermal and nonthermal origins of the X-ray emission in millisecond pulsars.

  14. X-ray spectra and the rotation-activity connection of RS Canum Venaticorum binaries

    Science.gov (United States)

    Majer, P.; Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1986-01-01

    Results are presented from a survey of RS CVn binaries which were observed with the imaging proportional counter (IPC) on board the Einstein Observatory. Spectral analyses of the IPC pulse height spectra show that the coronae of RS CVn binaries always contain hot gas with temperatures in excess of 10 to the 7th K, similar to active late-type main-sequence stars, and that at least two temperature components are necessary to account for the higher quality IPC spectra (when absorption is unimportant). It is argued that these bimodal temperature distributions found by the IPC are indicative of true distributions of emission measure versus temperature that are continuous (just as is the case of magnetically confined coronal plasma loops observed on the sun). It is further shown that none of the derivable X-ray characteristics of RS CVn binaries depend on rotation period, implying that previous claims of period-activity relationships in RS CVn binaries were unfounded.

  15. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  16. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  17. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  18. NICER and MAXI Observations of Two Large X-ray Flares from RS CVn Binaries

    Science.gov (United States)

    Drake, Stephen A.; Hamaguchi, Kenji; Corcoran, Michael Francis; Iwakiri, Wataru; Sasaki, Ryo; Kawai, Hiroki; Tsuboi, Yohko; Enoto, Teruaki; NICER Science Team

    2018-01-01

    NICER has observed two giant X-ray flares on the active binary systems, GT Mus and UX Ari, in response to their detections by the MAXI all-sky X-ray monitor onboard the ISS, with a delay of about a day in each case. The large effective area of the NICER X-ray optics means that high signal-to-noise spectra with more than 200,000 counts were obtained in relatively short exposures totaling less than an hour in each set of observations.MAXI detected a transient of 5.5 x 10^-10 erg/s/cm2 at the position of the active RS CVn binary GT Mus (G5/8 III + ?) early on 2017 July 19. NICER started its observations about 1 day later, and intermittently monitored the decay for the next 2.5 days, accumulating about 1,600 seconds exposure. The NICER light curve shows a smooth, gradual flux decline by a factor of two for the first 2 days, followed by an apparent flattening in the last half day. The dominant plasma temperature remained at ~40 million K during this period, suggesting an ongoing continuous heating during the decay phase.NICER also followed up another MAXI-detected flare in October 2017, this one from the nearby active system, UX Ari. NICER's X-ray spectrum shows clear neon and oxygen lines, while the emissionfrom iron ions is not as prominent as it is in most flares, implying an abundance of only ~10% solar which is significantly lower than previous inferred coronal Fe abundances for this star, although this result is dependent on the NICER gain correction.

  19. Insights into the High-Mass X-ray Binary Population of the Magellanic Clouds

    Science.gov (United States)

    Antoniou, V.; Zezas, A.; Hatzidimitriou, D.; Kalogera, V.

    2013-09-01

    In contrast to the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC), our nearest starforming galaxy with metallicity between the Galaxy and the SMC, has received little attention in X-rays so far. With the aim to compare the accreting X-ray binary (XRB) populations in two of our nearest star-forming galaxies, we recently compiled the most complete census of high-mass X-ray binaries (HMXBs) in the LMC. We found 43 members of which 13 are XRB pulsars, while we also identified their most likely optical counterpart (previously, half of these sources lacked an identification). Using this census, we investigated the link between the young accreting XRBs and their parent stellar populations. It was known that HMXBs can be used as star-formation (SF) rate indicators, but these first studies have been focused only on bright systems (Galaxy: >1038 erg s-1, Magellanic Clouds: >1036 erg s-1) and SF values for the whole galaxy. By including Magellanic Cloud sources with X-ray luminosities at least two order of magnitudes fainter than the above limits and by utilizing the detailed, spatially resolved, SF history maps of these galaxies, we were able to provide observational constraints on ill-understood parameters related to their formation and evolution (such as the kick velocities imparted into the neutron star during the supernova explosion) and to derive their formation efficiency. This work was mainly supported by the National Aeronautics and Space Administration under Grant No. NNX10AH47G issued through the Astrophysics Data Analysis Program.

  20. X-Ray Binaries in Local Analogs to the First Galaxies

    Science.gov (United States)

    Brorby, Matthew G.

    2017-02-01

    The focus of this dissertation is to investigate the effect of metallicity on high-mass X-ray binary (HMXB) formation and evolution as a means to understand the evolution of the early Universe (z > 6). Understanding the population and X-ray output of HMXBs are vital to modelling the heating and ionization morphology of the intergalactic medium during the epoch of reionization. Current X-ray instruments are unable to directly detect very high redshift HMXBs, making it impossible to constrain population sizes in this way. Instead certain local galaxies may be used as analogs to infer the properties of galaxies in the early Universe. These local analogs should have properties consistent with those expected for the first galaxies, such as low-metallicity, compact morphology, and intense recent star formation. I present an X-ray population study of 25 blue compact dwarf galaxies (BCD), using multiwavelength data and Bayesian analysis techniques. We find a significant enhancement of the HMXB population in low-metallicity environments and suggest the same may be true in the early Universe. I continue the investigation of HMXB populations in a sample of 10 moderate metallicity (Z ≥ 0.3, Z solar masses), local star-forming galaxies known as Lyman Break Analogs (LBAs). I find evidence of a LX-SFR-metallicity plane in the combined sample of BCDs, LBAs, and regular star-forming galaxies. Then I study a third type of local analog to early Universe galaxies, the Green Pea galaxies. These are a subclass of luminous compact galaxies (LCGs) which show strong [OIII]lambda5007A emission indicative of extreme, recent star-formation. This pilot study was carried out to look, for the first time in X-rays, at this recently established class of galaxies and use them to test the LX-SFR-metallicity plane. Determining the spectral properties of bright HMXBs in low-metallicity environments also has important implications for models of X-ray heating leading up to the Epoch of Reionization. I

  1. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    Science.gov (United States)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  2. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  3. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    Science.gov (United States)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  4. Multiwavelength observations of black hole and neutron star X-ray binaries

    Science.gov (United States)

    Jain, Raj Kumar

    X-ray novae (XNe) are binary systems in which matter is transferred from the companion star onto the compact object through an accretion flow. Besides providing the most compelling evidence for the existence of black holes, XNe present rare opportunities to test general relativity in the strong field limit. Multiwavelength observations, and in particular the correlated features of the multiwavelength light curves, lead to unique information about the accretion geometry, underlying radiative mechanisms, and relevant physical time-scales. The goal of this thesis is to provide extensive multiwavelength observations of XNe, covering entire outburst cycles, which present quantitative challenges to existing theories. By using instruments designed to conduct long term monitoring of XNe, namely the Rossi X ray Timing Explorer (RXTE) satellite and the Yale 1-m telescope (operated by the YALO consortium), we closely studied a black hole XN XTE J1550-564 and a neutron star XN Aquila X-1 in the optical/IR and X-ray wavelengths. We discovered the optical counterpart of XTE J1550 564, measured a preliminary value for its orbital period, detected several correlations and delays between features in the optical and X-ray light, and obtained the first extensive IR light curve from a black hole XN covering an entire outburst cycle. Similarly, we found delays and correlations in the light curves of Aquila X-1. Periodic signatures were found throughout the outburst. Contrary to prior knowledge, we find a ˜2% shorter period during the outburst rise, compared to the value during full outburst. We have also succeeded, for the first time, in triggering pointed RXTE observations of an XN based on the detection of the optical outburst, which typically precedes the X-ray outburst by a week or so. We proposed qualitative explanations for these observations, which, in the absence of detailed theoretical models, serves as a starting point for further theoretical endeavors. The outburst optical

  5. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    Science.gov (United States)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  6. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    Science.gov (United States)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  7. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    NARCIS (Netherlands)

    Nelemans, G.A.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the

  8. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    Directory of Open Access Journals (Sweden)

    Ferrigno C.

    2014-01-01

    Full Text Available The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL. We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s−1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  9. High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption

    Science.gov (United States)

    Das, Arpan; Mesinger, Andrei; Pallottini, Andrea; Ferrara, Andrea; Wise, John H.

    2017-07-01

    By heating the intergalactic medium (IGM) before reionization, X-rays are expected to play a prominent role in the early Universe. The cosmic 21-cm signal from this 'epoch of heating' (EoH) could serve as a clean probe of high-energy processes inside the first galaxies. Here, we improve on prior estimates of this signal by using high-resolution hydrodynamic simulations to calculate the X-ray absorption due to the interstellar medium (ISM) of the host galaxy, typically residing in haloes with mass 107.5-8.5 M⊙ at z ˜ 8-15. X-rays absorbed inside the host galaxy are unable to escape into the IGM and contribute to the EoH. We find that the X-ray opacity through these galaxies can be approximated by a metal-free ISM with a typical column density of log [N_{H I}/cm^{-2}] = 21.4^{+0.40}_{-0.65}. We compute the resulting 21-cm signal by combining these ISM opacities with public spectra of high-mass X-ray binaries (thought to be important X-ray sources in the early Universe). Our results support 'standard scenarios' in which the X-ray heating of the IGM is inhomogeneous, and occurs before the bulk of reionization. The large-scale (k ˜ 0.1 Mpc-1) 21-cm power reaches a peak of ≈100 mK2 at z ˜ 10-15, with the redshift depending on the cosmic star formation history. Our main results can be reproduced by approximating the X-ray emission from high-mass X-ray binaries by a power law with energy index α ≈ 1, truncated at energies below 0.5 keV.

  10. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  11. First light - II. Emission line extinction, population III stars, and X-ray binaries

    Science.gov (United States)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  12. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Dolphin, Andrew, E-mail: ben@astro.washington.edu, E-mail: bbinder@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: mce@astro.psu.edu, E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  13. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  14. Polarization Modulation from Lense-Thirring Precession in X-Ray Binaries

    Science.gov (United States)

    Ingram, Adam; Maccarone, Thomas J.; Poutanen, Juri; Krawczynski, Henric

    2015-07-01

    It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense-Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about the Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur).

  15. Low-energy Galactic centre gamma-rays from low-mass X-ray binaries

    Science.gov (United States)

    Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.

    1988-01-01

    Nonthermal processes in low-mass X-ray binaries concentrated in the Galactic bulge are proposed as the direct source of the three continuum components of the emission from the Galactic center region (GCR) and also, possibly, as the indirect source of the 511-keV electron-positron annihilation line. It is suggested that the softer power-law component of the GCR continuum arises from synchrotron emission of relativistic electrons in the strongly nonuniform magnetic field of the neutron star and, more tentatively, that the MeV bump is the result of interaction of harder gamma rays with power-law photons. The hardest power law may be due to Compton scattering of relativistic electrons or photons.

  16. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    Science.gov (United States)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}ppower spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  17. A fast search strategy for gravitational waves from low-mass X-ray binaries

    CERN Document Server

    Messenger, C

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems based on the incoherent sum of frequency modulated binary signal sidebands. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required apriori. For the final stage we propose a fully coherent Markov chain monte carlo based follow up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass X-ray binaries, for which orbital period and sky position are typically well known a...

  18. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  19. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  20. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  1. Athena's Constraints on the Dense Matter Equation of State from Quiescent Low Mass X-ray Binaries

    Science.gov (United States)

    Guillot, S.

    2017-10-01

    Athena's observatory science goal R-SCIOBJ-331 states that Athena shall constrain the equation of state of neutron stars by obtaining X-ray spectra of 7 quiescent low mass X-ray binaries with a good distance estimate. Indeed, the study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to understand the interior structure of neutron stars and to place constrains on the dense matter equation of state. I will briefly review this method, its strengths and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit obtaining unprecedentedly high signal-to-noise spectra from these sources. I will present and discuss the expected constraints on the dense matter equation of state that will be obtained from observations of multiple qLMXBs with the Athena X-ray Observatory.

  2. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  3. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    Science.gov (United States)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  4. Very hard states in neutron star low-mass X-ray binaries

    Science.gov (United States)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.

    2017-07-01

    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (i.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.

  5. Discovery of the third transient X-ray binary in the galactic globular cluster Terzan 5

    Energy Technology Data Exchange (ETDEWEB)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Altamirano, Diego; Wijnands, Rudy [Astronomical Institute " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Degenaar, Nathalie, E-mail: bahramia@ualberta.ca [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-01-10

    We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to the hard state, thanks to our early coverage (starting at L{sub X} ∼ 4 × 10{sup 34} erg s{sup –1}) of the outburst. This hardening appears to be due to the decline in relative strength of a soft thermal component from the surface of the neutron star (NS) during the rise. We identify a Type I X-ray burst in Swift/XRT data with a long (16 s) decay time, indicative of hydrogen burning on the surface of the NS. We use Swift/BAT, MAXI/GSC, Chandra/ACIS, and Swift/XRT data to study the spectral changes during the outburst, identifying a clear hard-to-soft state transition. We use a Chandra/ACIS observation during outburst to identify the transient's position. Seven archival Chandra/ACIS observations show evidence for variations in Terzan 5 X-3's nonthermal component but not the thermal component during quiescence. The inferred long-term time-averaged mass accretion rate, from the quiescent thermal luminosity, suggests that if this outburst is typical and only slow cooling processes are active in the NS core, such outbursts should recur every ∼10 yr.

  6. How Massive are the Heaviest Black Holes in X-ray Binaries? Exploring IC 10 X-1 and its Kind.

    Science.gov (United States)

    Laycock, Silas; Maccarone, Tom; Steiner, James F.; Christodoulou, Dimitris; Yang, Jun; Binder, Breanna A.; Cappallo, Rigel

    2016-01-01

    Black hole X-ray binaries represent a unique probe of stellar evolution and the most extreme physical conditions found in nature. The X-ray binary IC 10 X-1 occupies an important niche as a link between BH-XRBs and Ultra Luminous X-ray Sources (ULX) due to its intermediate luminosity (10^38 erg/s), and role as a central exemplar of the association of between low metallicity galaxies and maximum BH mass.The most secure and direct dynamical evidence for any BH mass comes from the radial velocity (RV) curve coupled with eclipse timing measurements. We phase-connected X-ray timing data accumulated over a decade with Chandra/XMM, with the optical RV curve, revealing a surprizing simultenaity of mid X-ray eclipse and the maximum blueshift velocity of He II emission lines. Our interpretation is that the optical emission lines originate in a shadowed sector of the WR star's stellar wind which escapes X-ray ionization by the compact object. The RV shifts are therefore a projection effect of the stellar wind, and unrelated to the system's mass function which becomes completely unknown. Chandra, XMM and NuStar datasets present a complex picture of radiative transfer through a photo-ionized wind. A search for the orbital period derivative (P-dot) by X-ray timing offers additonal insights, and we present a simulation for the feasibility of constraining P-dot via optical means.This is a substantial change to our understanding of IC 10 X-1, and with similar results reported for its "near twin" NGC 300 X-1, adds new a dimension to the facinating question of the maximum mass for stellar BHs.

  7. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

    Science.gov (United States)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Toonen, S.; Portegies Zwart, S. F.; Yungelson, L. R.; van der Sluys, M. V.

    2013-04-01

    Aims: We model the present-day number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic bulge. The main objective is to compare the results to the known UCXB population as well as to data from the Galactic Bulge Survey, in order to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods: The binary population synthesis code SeBa and detailed stellar evolutionary tracks have been used to model the UCXB population in the Bulge. The luminosity behavior of UCXBs has been predicted using long-term X-ray observations of the known UCXBs as well as the thermal-viscous disk instability model. Results: In our model, the majority of UCXBs initially have a helium burning star donor. Of the white dwarf donors, most have helium composition. In the absence of a mechanism that destroys old UCXBs, we predict (0.2-1.9) × 105 UCXBs in the Galactic bulge, depending on assumptions, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5-50 UCXBs should be brighter than 1035 ergs-1, mostly persistent sources with orbital periods shorter than about 30 min and with degenerate helium and carbon-oxygen donors. This is about one order of magnitude more than the observed number of (probably) three. Conclusions: This overprediction of short-period UCXBs by roughly one order of magnitude implies that fewer systems are formed, or that a super-Eddington mass transfer rate is more difficult to survive than we assumed. The very small number of observed long-period UCXBs with respect to short-period UCXBs, the surprisingly high luminosity of the observed UCXBs with orbital periods around 50 min, and the properties of the PSR J1719-1438 system all point to much faster UCXB evolution than expected from angular momentum loss via gravitational wave radiation alone. Old UCXBs, if they still exist, probably have orbital

  8. Magnetization of Stellar Wind in the High-Mass X-Ray Binary OAO 1657-415

    Science.gov (United States)

    Kim, V. Yu.; Ikhsanov, N. R.

    2017-06-01

    Spin evolution of the X-ray pulsar OAO 1657-415 in a wind-fed High Mass X-ray Binary (HMXB) is discussed. We suggest that its regular spin-up behaviour superposed with the spin-up/down episodes can be explained in terms of the Magnetic Levitation Accretion scenario (MLA scenario). This implies that the neutron star captures matter from a magnetized stellar wind of its massive companion. The magnetic field of the wind at a distance of the orbital separation within this scenario can be limited within the range of 20-70 mG.

  9. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  10. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  11. HST spectrum and timing of the ultra-compact X-ray binary candidate 47 Tuc X9

    Science.gov (United States)

    Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zureks, D. R.

    2018-02-01

    To confirm the nature of the donor star in the ultra-compact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3,000-10,000Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths -EW_{H α } ≲ 14 Å and -EW_{He II} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L2-10 keV ≈ 1033 - 1034 erg s-1 is typically -EW_{H α } ˜ 50 Å). This supports our previous suggestion (by Bahramian et al.) of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V and I-band data to search for periodicities. In the optical bands we recover the seven-day superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole / He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

  12. Electron transport with re-acceleration and radiation in the jets of X-ray binaries

    Science.gov (United States)

    Zhang, Jian-Fu; Li, Zhi-Ren; Xiang, Fu-Yuan; Lu, Ju-Fu

    2018-01-01

    This paper studies the acceleration processes of background thermal electrons in X-ray binary jets via turbulent stochastic interactions and shock collisions. By considering turbulent magnetized jets mixed with fluctuating magnetic fields and an ordered large-scale magnetic field, and numerically solving the transport equation along the jet axis, we explore the influence on acceleration efficiency of magnetic turbulence, electron injection, the location of the acceleration region and various cooling mechanisms. The results show the following: (1) Dominant turbulent magnetic fields in the jets are necessary to accelerate background thermal electrons to relativistic energies. (2) The acceleration of electrons depends on the type of magnetohydrodynamic turbulence and turbulence with a hard slope can accelerate electrons more effectively. (3) The effective acceleration region is located at a distance >103Rg away from the central black hole (Rg being the gravitational radius). As a result of acceleration mechanisms competing with various cooling mechanisms, background thermal electrons gain energy and their spectra are broadened beyond the initial distribution to form a thermal-like distribution. (4) The acceleration mechanisms explored in this work can reasonably provide the maximum electron energy required for interpreting high-energy γ-ray observations from microquasars; however, some extreme parameter values are needed for the possible very high-energy γ-ray signals.

  13. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  14. Low-mass X-ray binaries and globular clusters streamers and arcs in NGC 4278

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Fabbiano, G. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Brassington, N. J. [Center for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertordshire, AL10 9AB (United Kingdom)

    2014-03-01

    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50'' in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D {sub 25} isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.

  15. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar ...

    Indian Academy of Sciences (India)

    1997-02-10

    Feb 10, 1997 ... these spectral characteristics as observed with ASCA with those of other satellites. We also compare ... periodicity has been observed in the X-ray light curves of 4U 0114 + 65 from the analysis of archival ... The X-ray spectrum emanating from the pulsar is nicely fitted with a generic model applicable in the ...

  16. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    Science.gov (United States)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio ( 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  17. Around 200 new X-ray binary IDs from 13 YR of Chandra observations of the M31 center

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M. R.; Primini, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Li, Z. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Baganoff, F. K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Murray, S. S. [Johns Hopkins University, Baltimore, MD (United States)

    2014-01-01

    We have created 0.3-10 keV, 13 yr, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ∼1 month intervals due to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5-4.5 keV structure functions (SFs) for each source for comparison with the ensemble SF of active galactic nuclei (AGN). We find 220 X-ray sources with luminosities ≳10{sup 35} erg s{sup –1} that have SFs with significantly more variability than the ensemble AGN SF, and which are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ∼200 new identifications. This result represents great progress over the ∼50 XBs and ∼40 XB candidates previously identified out of the ∼2000 X-ray sources within the D {sub 25} region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify a new transient black hole candidate, associated with the M31 globular cluster B128.

  18. Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658-298

    Science.gov (United States)

    Jain, Chetana; Paul, Biswajit; Sharma, Rahul; Jaleel, Abdul; Dutta, Anjan

    2017-06-01

    We present an X-ray timing analysis of the transient X-ray binary MXB 1658-298, using data obtained from the RXTE and XMM-Newton observatories. We have made 27 new mid-eclipse time measurements from observations made during the two outbursts of the source. These new measurements have been combined with the previously known values to study long-term changes in orbital period of the binary system. We have found that the mid-eclipse timing record of MXB 1658-298 is quite unusual. The long-term evolution of mid-eclipse times indicates an overall orbital period decay with a time-scale of -6.5(7) × 107 yr. Over and above this orbital period decay, the O-C residual curve also shows a periodic residual on shorter time-scales. This sinusoidal variation has an amplitude of ˜9 lt-s and a period of ˜760 d. This is indicative of the presence of a third body around the compact X-ray binary. The mass and orbital radius of the third body are estimated to lie in the ranges 20.5-26.9 Jupiter mass and 750-860 lt-s, respectively. If true, then it will be the most massive circumbinary planet and also the smallest period binary known to host a planet.

  19. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  20. Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

    Directory of Open Access Journals (Sweden)

    Stan Owocki

    2012-03-01

    Full Text Available A few high-mass X-ray binaries–consisting of an OB star plus compact companion– have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS to be sources of very high energy (VHE; up to 30 TeV γ-rays. This paper focuses on the prominent γ-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical (e ≈ 0.24 orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole. Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of γ-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of γ-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the γ-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE γ-ray emission in massive-star binaries.

  1. The binary black hole merger rate from ultraluminous X-ray source progenitors

    Science.gov (United States)

    Finke, Justin D.; Razzaque, Soebur

    2017-12-01

    Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for a $\\approx 10M_\\odot$ black hole. The recent detection of black hole mergers by the gravitational wave detector ALIGO indicates that black holes with masses $> 10 M_\\odot$ do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. With simplified assumptions, our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, GW 151226, and GW 170104 by ALIGO if the peak accretion rate of ULXs is a factor $\\approx$1 --- 300 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution, and redshift evolution can be tested by ALIGO in the near future, which in turn can be used to explore connections between the ULX formation and BBH merger rates over cosmic time.

  2. BROADBAND ESO/VISIR-SPITZER INFRARED SPECTROSCOPY OF THE OBSCURED SUPERGIANT X-RAY BINARY IGR J16318-4848

    Energy Technology Data Exchange (ETDEWEB)

    Chaty, S.; Rahoui, F., E-mail: sylvain.chaty@cea.fr, E-mail: frahoui@cfa.harvard.edu [AIM (UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, FR-91191 Gif-sur-Yvette Cedex (France)

    2012-06-01

    A new class of X-ray binaries has recently been discovered by the high-energy observatory INTEGRAL. It is composed of intrinsically obscured supergiant high-mass X-ray binaries, unveiled by means of multi-wavelength X-ray, optical, near- and mid-infrared observations, in particular, photometric and spectroscopic observations using ESO facilities. However, the fundamental questions about these intriguing sources, namely, their formation, evolution, and the nature of their environment, are still unsolved. Among them, IGR J16318-4848, a compact object orbiting around a supergiant B[e] star, seems to be one of the most extraordinary celestial sources of our Galaxy. We present here new ESO/Very Large Telescope (VLT) VISIR mid-infrared (MIR) spectroscopic observations of this source. First, line diagnostics allow us to confirm the presence of absorbing material (dust and cold gas) enshrouding the whole binary system, and to characterize the nature of this material. Second, by fitting broadband near- to mid-infrared spectral energy distribution, including ESO NTT/SofI, VLT/VISIR, and Spitzer data, with a phenomenological model for sgB[e] stars, we show that the star is surrounded by an irradiated rim heated to a temperature of {approx}3800-5500 K, along with a viscous disk component at an inner temperature of {approx}750 K. VISIR data allow us to exclude the spherical geometry for the dust component. This detailed study will allow us in the future to get better constraints on the formation and evolution of such rare and short-living high-mass X-ray binary systems in our Galaxy.

  3. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    Science.gov (United States)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  4. Faint X-Ray Binaries and Their Optical Counterparts in M31

    Science.gov (United States)

    Vulic, Neven; Gallagher, Sarah; Barmby, Pauline

    2014-08-01

    To investigate the XRB population in M31, we utilized all 121 publicly available observations of M31 totalling over 1 Ms from the Chandra X-Ray Observatory's ACIS instrument. Of 83 star clusters in the bulge identified in the year 1 star cluster catalog from the Panchromatic Hubble Andromeda Treasury Survey, we found 15 unique star clusters that matched to 17 X-ray point sources within 1″ (3.8 pc). This population is composed predominantly of globular cluster low-mass XRBs, with one previously unidentified star cluster X-ray source. Logistic regression showed that the F475W magnitude was the most important predictor of the probability a cluster hosted an X-ray source, followed by the effective radius, while color (F475W-F814W) was not a statistically significant predictor of whether a cluster hosted an X-ray source. The lack of dependence on color is likely due to our sample being restricted to metal-rich bulge star clusters. We also matched X-ray sources to 1566 H II regions in the disk and found 10 unique matches to 9 X-ray point sources within 3″ (11 pc). Logistic regression showed that neither the radius nor Hα luminosity were significant predictors of an H II region hosting an X-ray source. Four matches have no previous classification and thus are high-mass XRB candidates. A stacking analysis of both star clusters and H II regions resulted in non-detections, giving typical upper limits of ≈1032 erg s-1, which probes the quiescent XRB regime. We are now using the Chandra ACIS observations to compile a new X-ray point source catalog. In some regions of M31 the exposure time reaches ~500 ks, ~2.5 times deeper than any previous work. This allows us to reach limiting luminosities of ~1033 erg s-1. We report preliminary results (e.g. source characteristics, X-ray luminosity functions) from this work.

  5. ATCA radio detection of MAXI J1535-571 indicates it is a strong black hole X-ray binary candidate

    Science.gov (United States)

    Russell, T. D.; Miller-Jones, J. C. A.; Sivakoff, G. R.; Tetarenko, A. J.; Jacpot Xrb Collaboration

    2017-09-01

    MAXI J1535-571 is a newly discovered Galactic hard X-ray transient (GCN #21788, ATels #10699, 10700). Following its identification as a potential hard-state low-mass X-ray binary (ATel #10702) and a potential black hole system (ATel #10708), we conducted target of opportunity observations of this source with the Australia Telescope Compact Array (ATCA).

  6. Energy dependence of normal branch quasi-periodic intensity oscillations in low-mass X-ray binaries

    Science.gov (United States)

    Miller, Guy S.; Lamb, Frederick K.

    1992-01-01

    The properties of the approximately 6 Hz quasi-periodic X-ray intensity oscillations observed in the low-mass X-ray binary Cyg X-2 when it is on the normal spectral branch are shown to be consistent with a model in which photons from a central source with a fixed spectrum are Comptonized by an oscillating radial inflow. As the electron scattering optical depth of the flow varies, the spectrum of the escaping X-rays appears to rotate about a pivot energy that depends mainly on the electron temperature in the flow. The temperature derived from the observed energy dependence of the Cyg X-2 normal branch oscillations is approximately 1 keV, in good agreement with the estimated Compton temperature of its X-ray spectrum. The mean optical depth tau of the Comptonizing flow is inferred to be about 10, while the change in tau over an oscillation is estimated to be about 1; both values are in good agreement with radiation hydrodcode simulations of the radial flow.

  7. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  8. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

    Directory of Open Access Journals (Sweden)

    Klus H.

    2014-01-01

    Full Text Available We report on the long term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use this data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 seconds, have magnetic fields over the quantum critical level of 4.4×1013 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, on the order of 106-1010 G, comparable to the fields of neutron stars in low mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  9. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    Science.gov (United States)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  10. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually 'merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  11. A RADIO-SELECTED BLACK HOLE X-RAY BINARY CANDIDATE IN THE MILKY WAY GLOBULAR CLUSTER M62

    Energy Technology Data Exchange (ETDEWEB)

    Chomiuk, Laura; Ransom, Scott [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Maccarone, Thomas J. [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Miller-Jones, James C. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Heinke, Craig [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Noyola, Eva [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (UNAM), A. P. 70-264, 04510 (Mexico); Seth, Anil C., E-mail: chomiuk@pa.msu.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States)

    2013-11-01

    We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we call M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source with a flux density of 18.7 ± 1.9 μJy at 6.2 GHz and a flat radio spectrum (α = –0.24 ± 0.42, for S{sub ν} = ν{sup α}). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio-X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue excess, Hα emission, and optical variability. The radio, X-ray, and optical properties of M62-VLA1 are very similar to those for V404 Cyg, one of the best-studied quiescent stellar-mass black holes. We cannot yet rule out alternative scenarios for the radio source, such as a flaring neutron star or background galaxy; future observations are necessary to determine whether M62-VLA1 is indeed an accreting stellar-mass black hole.

  12. Intermediate long X-ray bursts from the ultra-compact binary candidate SLX1737-282

    DEFF Research Database (Denmark)

    Falanga, M.; Chenevez, Jérôme; Cumming, A.

    2008-01-01

    Aims. The low persistent flux X-ray burster source SLX 1737-282 is classified as an ultra-compact binary candidate. We compare the data on SLX 1737-282 with the other similar objects and attempt to derive constraints on the physical processes responsible for the formation of intermediate long...... bursts. Methods: Up to now only four bursts, all with duration between ≃15{-}30 min, have been recorded for SLX 1737-282. The properties of three of these intermediate long X-ray bursts observed by INTEGRAL are investigated and compared to other burster sources. The broadband spectrum of the persistent...... emission in the 3-100 keV energy band is studied with the INTEGRAL data. Results: The persistent emission is measured to be 0.5% Eddington luminosity. From the photospheric radius expansion observed during at least one burst we derive the source distance at 7.3 kpc assuming a pure helium atmosphere...

  13. Accretion turnoff and rapid evaporation of very light secondaries in low-mass X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Shaham, J.; Tavani, M.

    1989-01-01

    The illumination of companion stars in very low mass X-ray binaries by various kinds of radiation from the neighborhood of the neutron star after accretion has terminated or during accretion is considered. If a neutron star's spun-up period approaches 0.001 s, pulsar kHz radiation can quench accretion by pushing surrounding plasma away from the neutron star, and may leave the companion to be evaporated by the high-energy radiation component expected from an isolated millisecond radiopulsar. Expected accretion-powered MeV gamma-rays and e(+ or -) winds may also be effective in evaporating dwarf companions. Neutron star spin-down energy release may sustain the power in these radiation mechanisms even while accretion falls. Accretion-powered soft X-rays may speed the mass loss of highly evolved dwarf companions, particularly those with a large fraction of carbon and oxygen. 30 references.

  14. JEM-X observations of the Be/X-ray binary EXO 2030+375

    DEFF Research Database (Denmark)

    Nunez, S.M.; Reig, P.; Blay, P.

    2003-01-01

    %. The profile of the energy spectrum did not change appreciably throughout the X-ray outburst, although the source shows a slightly softer spectrum during periastron passage in the energy range 9-25 keV. The 5-25 keV X-ray luminosity changed by a factor of 2 throughout the observations, reaching a maximum value...... of 3x10(36) erg s(-1). These observations allowed us to verify the in-flight instrumental properties of the JEM-X Monitor....

  15. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Science.gov (United States)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.

    1989-01-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.

  16. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D. (Columbia Univ., New York, NY (USA); Maryland Univ., College Park (USA); Negev Univ., Beersheba (Israel))

    1989-08-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well. 59 refs.

  17. First superburst from a classical low-mass X-ray binary transient

    NARCIS (Netherlands)

    Keek, L.; in 't Zand, J.J.M.; Kuulkers, E.; Cumming, A.; Brown, E.F.; Suzuki, M.

    2008-01-01

    We report the analysis of the first superburst from a transiently accreting neutron star system with the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer. The superburst occurred 55 days after the onset of an accretion outburst in 4U 1608-522. During that time interval, the accretion rate

  18. Energy dependent delay measurements of quasi-periodic oscillations in low-mass X-ray binaries

    Science.gov (United States)

    Wijers, R. A. M. J.; Van Paradijs, J.; Lewin, W. H. G.

    1987-01-01

    Results of Monte Carlo simulations of the Comptonization of photons in a finite spherical Comptonizing cloud are presented. The energy dependence of the arrival times of the Comptonized photons is very different for different input photon spectra. If the delays observed in the high-frequency QPO of Cyg X-2 and GX5-1 are the result of Comptonization, multichannel time-delay measurements may constrain the energy of the input photons and thus provide important information on the accretion process in low-mass X-ray binaries.

  19. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    Science.gov (United States)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  20. Optical Spectroscopy of the High-mass X-ray Binary A0535+26 after the periastron

    Science.gov (United States)

    Stoyanov, K. A.; Zamanov, R.

    2016-02-01

    We present optical spectroscopy of the & nbsp; High-mass X-ray Binary A0535+26 (HDE 245770, V725 Tau) after the periastron passage (Giovannelli, Bisnovatyi-Kogan & amp; Klepnev, 2013, A & amp;A, 560, 1). The observations are performed with the ESpeRo spectrograph on the 2m RCC telescope at Rozhen NAO (Bulgaria) on the nights of 2015 Dec 24 (JD2457381.4285) and 2016 Jan 30 (JD2457418.2045). & nbsp; The equivalent widths of H-alpha emission line are -(11.5 & plusmn;1.5) Angstrom and -(9.3 & plusmn;1.0) Angstrom respectively.

  1. A disk-corona model for low/hard state of black hole X-ray binaries

    OpenAIRE

    Wang, Jiu-Zhou; Wang, Ding-Xiong; Huang, Chang-Yin

    2013-01-01

    A disk-corona model for fitting low/hard (LH) state of associated steady jet of black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration of the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the...

  2. BROADBAND X-RAY PROPERTIES OF THE GAMMA-RAY BINARY 1FGL J1018.6–5856

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305-4060 (United States); Bellm, Eric; Fuerst, Felix; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bhalerao, Varun [Inter University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Natalucci, Lorenzo [Istituto Nazionale di Astrofisica, INAFIAPS, via del Fosso del Cavaliere, I-00133 Roma (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-06-20

    We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6–5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray study of An et al. using ∼400 days of Swift data, but is consistent with a new gamma-ray solution reported in 2014. The light curve folded on the new period is qualitatively similar to that reported previously, having a spike at phase 0 and broad sinusoidal modulation. The X-ray flux enhancement at phase 0 occurs more regularly in time than was previously suggested. A spiky structure at this phase seems to be a persistent feature, although there is some variability. Furthermore, we find that the source flux clearly correlates with the spectral hardness throughout all orbital phases, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered.

  3. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  4. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    Science.gov (United States)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  5. On the Spatially Resolved Star Formation History in M51. II. X-Ray Binary Population Evolution

    Science.gov (United States)

    Lehmer, B. D.; Eufrasio, R. T.; Markwardt, L.; Zezas, A.; Basu-Zych, A.; Fragos, T.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.

    2017-12-01

    We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star formation event. We first utilize detailed stellar population synthesis modeling of far-UV-to-far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star formation histories (SFHs) on subgalactic (≈400 pc) scales. Next, we use the ≈850 ks cumulative Chandra exposure of M51 to identify and isolate 2–7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star formation rate (SFR) per stellar mass ({M}\\star ) and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age Our best-fit model indicates that the XRB XLF per unit stellar mass declines in normalization, by ∼3–3.5 dex, and steepens in slope from ≈10 Myr to ≈10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how XRB XLFs evolve with age.

  6. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    Science.gov (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  7. Broadband x-ray properties of the gamma-ray binary 1FGL J1018.6-5856

    DEFF Research Database (Denmark)

    An, Hongjun; Bellm, Eric; Bhalerao, Varun

    2015-01-01

    We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray ......, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered.......We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X...

  8. Differential non-linearity compensation in ADCs employing charge redistribution in an array of binary weighted capacitors

    CERN Document Server

    Sushkov, V V

    2000-01-01

    Differential non-linearity (DNL) compensation in an analog-to-digital converter (ADC) is discussed. The successive approximation ADC under study employs charge redistribution in an array of binary weighted capacitors. The method of DNL compensation is supposed to be implemented in the ADC destined for the tracker readout of the CMS detector at LHC. The parameters of the DNL compensation technique are treated with the constructed simulator built in the Mathematica programming environment. (4 refs).

  9. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    Science.gov (United States)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  10. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray

  11. Spinning-Up: the Case of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Fuerst, F.; Marcu, D. M.; Pottschmidt, K.; Grinberg, V.; Wilms, J.; CadolleBel, M.

    2011-01-01

    We present a timing and spectral analysis of the variable X-ray source 3A 1954+319. Our analysis is mainly based on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in 2008 fall and on the Swift/BAT longterm light curve. Previous observations, though sparse, have identified the source to be one of only nine known symbiotic X-ray binaries, i.e., systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-giant companion. The spectrum of3A 1954+319 above > 20 keV can be best described by a broken power law model. The extremely long pulse period of approx.5.3 hours is clearly visible in the INTEGRAL/ISGRI light curve and confirmed through an epoch folding period search. Furthermore, the light curve allows us to determine a very strong spin up of -2 x 10(exp -4) h/h during the outburst. This spin up is confirmed by the pulse period evolution calculated from Swift/BAT data. The Swift/BAT data also show a long spin-down trend prior to the 2008 outburst, which is confirmed in archival INTEGRAL/ISGRI data. We discuss possible accretion models and geometries allowing for the transfer of such large amounts of angular momentum and investigate the harder spectrum of this outburst compared to previously published results.

  12. ARE SPECTRAL AND TIMING CORRELATIONS SIMILAR IN DIFFERENT SPECTRAL STATES IN BLACK HOLE X-RAY BINARIES?

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Klis, M. van der [Astronomical Institute, “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Altamirano, D., E-mail: maithili@oa-roma.inaf.it [School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2015-03-20

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a correlated spectral and variability study, with variability from both components of the accretion flow. We present for the first time a combined study of the evolution of spectral parameters (disk temperature and radius) and timing parameters (frequency and strength) of all power spectral components in different spectral states. Comparison of the correlations in different spectral states shows that the frequency and strength of the power spectral components exhibit dependencies on the disk temperature that are different in the (low-)hard and the hard-intermediate states (HIMSs); most of these correlations that are clearly observed in the HIMS (in MAXI J1659-152 and GX 339-4) are not seen in the (low-)hard state (in GX 339-4 and SWIFT J1753.5-0127). Also, the responses of the individual frequency components to changes in the disk temperature are markedly different from one component to the next. Hence, the spectral-timing evolution cannot be explained by a single correlation that spans both these spectral states. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  13. Vaporizing neutron stars in low-mass x-ray binaries and the statistics of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (California Univ., Livermore, CA (United States). Inst. of Geophysics and Planetary Physics)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and msec pulsars (MSPs) pose a challenge to evolutionary which neglect the effects of disk and companion irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, irradiation from the accreting compact star LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn of occurs. The main characteristics of the RD-evolution are: (1) the lifetime of RD-LMXB's is of order 10{sup 7} years or less: (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degenerate companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) the recycled msec pulsar can continue to vaporize the low-mass companion star even after the accretion turn-off produced by a strong pulsar wind; (5) the RD-evolutionary model resolves the apparent statistical discrepancy between the number of MSP's and their LMXB progenitors. 14 refs., 1 fig., 1 tab.

  14. Radiation-driven evolution of low-mass x-ray binaries and the formation of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (Lawrence Livermore National Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Astronomy)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and millisecond pulsars (MSPs) pose a challenge to evolutionary theories which neglect the effects of disk and comparison irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, radiation from the accreting compact star in LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn off occurs. The main characteristics of the RD-evolution are: (1) lifetime of RD-LMXB's is of order 10{sup 7} years or less; (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degeneration companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) a class of recycled MSPs can continue to vaporize the low-mass companions by a strong pulsar wind even after the accretion turn-off; (5) the RD-evolutionary model resolves the apparent statistical descrepancy between the number of MSPs and their LMXB progenitors in the Galaxy. We discuss the implications of the discovery of single MSPs in low-density globular clusters and the recent measurements of short orbital timescales of four LMXBs. 34 refs., 3 figs., 2 tabs.

  15. Radiation dynamics in X-ray binaries. I - Type 1 bursts. II - Type 2 bursts. III - Extremely compact objects

    Science.gov (United States)

    Walker, Mark A.

    1992-01-01

    Equations describing the evolution of a thin, axisymmetric, viscous, relativistic, irradiated accretion disk are presented, as well as numerical solutions of these equations in the case where irradiation results from a thermonuclear flash on the surface of the accreting neutron star. These calculations verify the notion that the radiation torque induces a substantial increase in the accretion rate, during a type 1 X-ray burst, and provide insight into the factors which influence the dynamical response of the disk. A new model for the source XBT 1730-335, the rapid burster, is presented. Temporal and spectral properties are calculated. The rapid burster is found to be a nonmagnetic, 'critically compact', slowly rotating neutron star in a highly eccentric binary system with a period of 6 mo. The spectral modifications which arise from the scattering of photons by accretion disks around nonmagnetic neutron stars are calculated. The 'black hole candidates' are interpreted as extremely compact stars.

  16. ORBITAL DECAY AND EVIDENCE OF DISK FORMATION IN THE X-RAY BINARY PULSAR OAO 1657-415

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [MSFC/NPP, Huntsville, AL 35812 (United States); Finger, M. H. [Universities Space Research Association, Huntsville, AL 35806 (United States); Wilson-Hodge, C. A. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Camero-Arranz, A. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell, E-08193, Barcelona (Spain)

    2012-11-10

    OAO 1657-415 is an eclipsing X-ray binary wind-fed pulsar that has exhibited smooth spin-up/spin-down episodes and has undergone several torque reversals throughout its long history of observation. We present a frequency history spanning nearly 19 years of observations from the Burst and Transient Source Experiment and from the Gamma-Ray Burst Monitor (Fermi/GBM). Our analysis suggests two modes of accretion: one resulting in steady spin-up correlated with flux during which we believe a stable accretion disk is present and one in which the neutron star is spinning down at a lesser rate which is uncorrelated with flux. Orbital elements of the pulsar system are determined at several intervals throughout this history. With these ephemerides, statistically significant orbital decay with a P-dot {sub orb}=(-9.74{+-}0.78) Multiplication-Sign 10{sup -8} is established.

  17. A disk-corona model for the low/hard state of black hole X-ray binaries

    Science.gov (United States)

    Wang, Jiu-Zhou; Wang, Ding-Xiong; Huang, Chang-Yin

    2013-10-01

    A disk-corona model for fitting the low/hard (LH) state of the associated steady jet in black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration that arises from the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes, where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the consistency of the jet launching from the accretion disk. The relative importance of the BZ and BP processes in powering jets from black hole accretion disks is discussed, and the LH state of several BHXBs is fitted based on our model. In addition, we suggest that magnetic field configuration can be regarded as the second parameter for governing the state transition of BHXBs.

  18. Probing the electronic environment of binary and ternary ionic liquid mixtures by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Men, Shuang; Licence, Peter

    2017-10-01

    X-ray photoelectron spectroscopy is used to probe the electronic environment of cations and anions for three binary and one ternary chlorostannate ionic liquid mixtures. The impact of the weighting of Cl- on the electronic environment of the cation-based nitrogen atom is revealed in detail. With the increasing of the concentration of Cl-, the N 1s binding energy is decreased. The electronic environment of the anion-based component is also compared based upon Sn 3d5/2 and Cl 2p3/2 binding energies. It is found that with the increasing of the weighting of Cl-, binding energies of Sn 3d5/2 and Cl 2p3/2 both decrease.

  19. The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

    Science.gov (United States)

    Repetto, Serena; Igoshev, Andrei P.; Nelemans, Gijs

    2017-05-01

    The aim of this work is to study the imprints that different models for black hole (BH) and neutron star (NS) formation have on the Galactic distribution of X-ray binaries (XRBs) that contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation scenarios, and that binary evolution following the BH/NS formation does not significantly affect the Galactic distributions of the binaries. We find that a population model in which at least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For the NS case, we find that a high natal kick distribution, consistent with the one derived from the measurement of pulsar proper motion, is the most preferable. We also analyse the simple method we previously used to estimate the minimal peculiar velocity of an individual BH-XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for certain models of the Galactic potential, but that our estimate is excellent for most of the BH-XRBs.

  20. Deep X-ray Observations of Four Eclipsing Binary Millisecond Pulsars

    Science.gov (United States)

    Mclaughlin, Maura

    2013-10-01

    We request deep XMM-Newton observations of four eclipsing binary millisecond pulsars (MSPs). All four MSPs have been detected with Chandra and show orbital modulation consistent with intrabinary shock emission. The requested observations will enable us to model this variability over more than two full orbits and derive constraints on the binary geometry and pulsar wind density and magnetization. We will also be able to fit multi-component spectra to determine the contributions from the MSPs themselves and from the intrabinary shock. These studies will lead to a better understanding of the growing population of these exotic objects. They will also provide important constraints on the ablation and recycling processes so critical to MSP evolution scenarios.

  1. Puzzling thermonuclear burst behaviour from the transient low-mass X-ray binary IGR J17473-2721

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Altamirano, Diego; Galloway, Duncan

    2010-01-01

    We investigate the thermonuclear bursting behaviour of IGR J17473−2721, an X-ray transient that in 2008 underwent a 6-month long outburst, starting (unusually) with an X-ray burst. We detected a total of 57 thermonuclear bursts throughout the outburst with AGILE, Swift, Rossi X-ray Timing Explore...

  2. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  3. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  4. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    Science.gov (United States)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  5. GRB060602B = Swift J1749.4−2807: an unusual transiently accreting neutron-star X-ray binary

    NARCIS (Netherlands)

    Wijnands, R.; Rol, E.; Cackett, E.; Starling, R.L.C.; Remillard, R.A.

    2009-01-01

    We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I

  6. Spitzer Reveals Infrared Optically Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.A.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  7. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Science.gov (United States)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to ~ 4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected ~ 103 LMXBs from within a 10o radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  8. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to $\\sim$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $\\sim$$10^3$ LMXBs from within a $10^{\\circ}$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  9. Local atomic structure in iron copper binary alloys: An extended X-ray absorption fine structure study

    Energy Technology Data Exchange (ETDEWEB)

    Kuri, G. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)]. E-mail: goutam.kuri@psi.ch; Degueldre, C. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Bertsch, J. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rothe, J. [INE, Forschungszentrum Karlsruhe, 76344 Karlsruhe (Germany)

    2007-05-31

    Understanding the clustering process and the evolution of the precipitate structure of copper in Fe-Cu system is an important step in the description of material hardening and the embrittlement process normally observed under irradiation conditions. In this work, an extended X-ray absorption fine structure (EXAFS) spectroscopy characterization of Fe-0.3 wt%Cu and Fe-1.0 wt%Cu binary model alloys has been performed in order to investigate the local structure around Cu and Fe atoms in the matrix. The effect of thermal ageing was studied on one Fe-Cu specimen containing 1.0 wt% Cu annealed at 775 K for a duration of 1 h. The near-neighbour environment of Cu and Fe was examined by determining the best-fit structural parameters after curve fitting to the first-few-shells EXAFS functions. The results provide an indication of the formation of sub-nanometer-size Cu clusters in Fe matrix for the specimens examined. The average structural parameters estimated from the EXAFS data are presented and discussed.

  10. Optical Studies of 13 Hard X-Ray Selected Cataclysmic Binaries from the Swift-BAT Survey

    Science.gov (United States)

    Halpern, Jules P.; Thorstensen, John R.

    2015-12-01

    From a set of 13 cataclysmic binaries that were discovered in the Swift Burst Alert Telescope (BAT) survey, we conducted time-resolved optical spectroscopy and/or time-series photometry of 11, with the goal of measuring their orbital periods and searching for spin periods. Seven of the objects in this study are new optical identifications. Orbital periods are found for seven targets, ranging from 81 minutes to 20.4 hr. PBC J0706.7+0327 is an AM Herculis star (polar) based on its emission-line variations and large amplitude photometric modulation on the same period. Swift J2341.0+7645 may be a polar, although the evidence here is less secure. Coherent pulsations are detected from two objects, Swift J0503.7-2819 (975 s) and Swift J0614.0+1709 (1412 s and 1530 s, spin and beat periods, respectively), indicating that they are probable intermediate polars (DQ Herculis stars). For two other stars, longer spin periods are tentatively suggested. We also present the discovery of a 2.00 hr X-ray modulation from RX J2015.6+3711, possibly a contributor to Swift J2015.9+3715, and likely a polar. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan.

  11. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel, E-mail: gmontes@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  12. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    Science.gov (United States)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  13. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  14. The Spectral Analysis of X-Ray Binaries from the XMM-Newton Space Craft Data using SAS Software

    Science.gov (United States)

    Baki, P.; Mito, C. O.

    2009-10-01

    A spectral data analysis on a luminous object of sky-coordinates 12h52m24.28s-29d115'02.3'12.6arcsec using Science Analysis Software (SAS) is presented. The analysis, based on data acquired by the Reflection Grating Spectrometer (RGS) camera aboard the XMM-Newton Space satellite, shows that the primary constituents of the X-ray source are Fe (Iron) and O (oxygen). This suggests that the source may be a magnetized plasma in a binary system and as this magnetic field accelerates the cooling of a star, one may speculate that this may be a compact star in its last stages of a thermonuclear fusion process. Nous présentons une analyse du spectre d'une source a rayons X située -- en coordonnées sidérales - à 12h52m24.28s - 29d115'02.312.6 arcsec. Science Analysis Software (SAS) est le programme informatique utilisé pour l'analyse des données. Cette analyse est basée sur les données provenant du spectromètre à haute résolution (RGS) à bord du satellite spatiale XMM-Newton. Nous montrons que ladite source est principalement constituée de Fer (Fe) et d'oxygene (O). Ce résultat suggère que la source pourrait être un plasma magnétisé au sein d'un système binaire. Et du fait que ce champ magnétique accélère le refroidissement de l'étoile, nous supposons que cette étoile pourrait ètre un objet compact en phase terminale d'un processus de fusion thermonucléaire.

  15. Milky Way globular cluster metallicity and low-mass X-ray binaries: the red giant influence

    Science.gov (United States)

    Vulic, N.; Barmby, P.; Gallagher, S. C.

    2018-02-01

    Galactic and extragalactic studies have shown that metal-rich globular clusters (GCs) are approximately three times more likely to host bright low-mass X-ray binaries (LMXBs) than metal-poor GCs. There is no satisfactory explanation for this metallicity effect. We tested the hypothesis that the number density of red giant branch (RGB) stars is larger in metal-rich GCs, and thus potentially the cause of the metallicity effect. Using Hubble Space Telescope photometry for 109 unique Milky Way GCs, we investigated whether RGB star density was correlated with GC metallicity. Isochrone fitting was used to calculate the number of RGB stars, which were normalized by the GC mass and fraction of observed GC luminosity, and determined density using the volume at the half-light radius (rh). The RGB star number density was weakly correlated with metallicity [Fe/H], giving Spearman and Kendall Rank test p-values of 0.000 16 and 0.000 21 and coefficients rs = 0.35 and τ = 0.24, respectively. This correlation may be biased by a possible dependence of rh on [Fe/H], although studies have shown that rh is correlated with Galactocentric distance and independent of [Fe/H]. The dynamical origin of the rh-metallicity correlation (tidal stripping) suggests that metal-rich GCs may have had more active dynamical histories, which would promote LMXB formation. No correlation between the RGB star number density and metallicity was found when using only the GCs that hosted quiescent LMXBs. A complete census of quiescent LMXBs in our Galaxy is needed to further probe the metallicity effect, which will be possible with the upcoming launch of eROSITA.

  16. Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low Mass X-Ray Binary 4U 0614+091

    Science.gov (United States)

    Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.

  17. Increased optical activity of Be/X binary system SAX 2103.5+4545 suggests a new outburst in X-rays

    Science.gov (United States)

    Kiziloglu, U.; Kiziloglu, N.; Baykal, A.; Inam, S. C.

    2010-10-01

    We report on the recent optical activity of the high-mass X-ray binary system SAX 2103.5+4545. The source was monitored by ROTSEIIId telescope (Akerlof et al., 2003, PASP, 115, 132) on Bakirlitepe, TUBITAK National Observatory, Turkey. After about 3 years of its optical quiescence, the system shows an increase in the optical brightness starting from August 2010, from its quiescence value of R ~13.2 in ROTSE R-band.

  18. Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J., E-mail: gernot.maier@desy.de, E-mail: afalcone@astro.psu.edu, E-mail: pol.bordas@uni-tuebingen.de [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Collaboration: VERITAS Collaboration; H.E.S.S. Collaboration; and others

    2014-01-10

    HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315{sub −4}{sup +6} days is derived from the X-ray data set, which is compatible with previous results, P = (321 ± 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (>6.5σ) detection at orbital phases 0.6-0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.

  19. ON THE FORMATION OF THE PECULIAR LOW-MASS X-RAY BINARY IGR J17480-2446 IN TERZAN 5

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Long; Li Xiangdong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2013-07-20

    IGR J17480-2446 is an accreting X-ray pulsar in a low-mass X-ray binary harbored in the Galactic globular cluster Terzan 5. Compared with other accreting millisecond pulsars, IGR J17480-2446 is peculiar for its low spin frequency (11 Hz), which suggests that it might be a mildly recycled neutron star at the very early phase of mass transfer. However, this model seems to be in contrast with the low field strength deduced from the kilo-Hertz quasi-periodic oscillations observed in IGR J17480-2446. Here, we suggest an alternative interpretation, assuming that the current binary system was formed during an exchange encounter either between a binary (which contains a recycled neutron star) and the current donor, or between a binary and an isolated, recycled neutron star. In the resulting binary, the spin axis of the neutron star could be parallel or anti-parallel with the orbital axis. In the latter case, the abnormally low frequency of IGR J17480-2446 may result from the spin-down to spin-up evolution of the neutron star. We also briefly discuss the possible observational implications of the pulsar in this scenario.

  20. SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M. R.; Murray, S. S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-03-01

    The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescope luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.

  1. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    Science.gov (United States)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages ( 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  2. Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity

    Science.gov (United States)

    Marchant, Pablo; Langer, Norbert; Podsiadlowski, Philipp; Tauris, Thomas M.; de Mink, Selma; Mandel, Ilya; Moriya, Takashi J.

    2017-08-01

    The detection of gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs of masses >30 M⊙ can reach luminosities >4 × 1039 erg s-1 without exceeding their Eddington luminosities. It is then important to study variations of evolutionary channels for merging BHs, which might instead form accreting BHs and become ULXs. It was recently shown that very massive binaries with mass ratios close to unity and tight orbits can undergo efficient rotational mixing and evolve chemically homogeneously, resulting in a compact BH binary. We study similar systems by computing 120 000 detailed binary models with the MESA code covering a wide range of masses, orbital periods, mass ratios, and metallicities. For initial mass ratios q ≡ M2/M1 ≃ 0.1-0.4, primaries with masses above 40 M⊙ can evolve chemically homogeneously, remaining compact and forming a BH without experiencing Roche-lobe overflow. The secondary then expands and transfers mass to the BH, initiating a ULX phase. At a given metallicity this channel is expected to produce the most massive accreting stellar BHs and the brightest ULXs. We predict that 1 out of 104 massive stars evolves this way, and that in the local universe 0.13 ULXs per M⊙ yr-1 of star formation rate are observable, with a strong preference for low metallicities. An additional channel is still required to explain the less luminous ULXs and the full population of high-mass X-ray binaries. At metallicities log Z> -3, BH masses in ULXs are limited to 60 M⊙, due to the occurrence of pair-instability supernovae which leave no remnant, resulting in an X-ray luminosity cut-off for accreting BHs. At lower metallicities, very massive stars can avoid exploding as pair-instability supernovae and instead form BHs with masses above 130 M⊙, producing a gap in the ULX luminosity distribution. After the ULX phase, neutron star BH binaries that merge in less than a

  3. NuSTAR view of the Z-type neutron star low-mass X-ray binary Cygnus X-2

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Raychaudhuri, B.

    2018-02-01

    We report on the NuSTAR observation of the Z-type neutron star low-mass X-ray binary Cygnus X-2 performed on 2015 January 7. During this observation, the source exhibited a sudden decrease in count rate (dips) and stronger variability in 3-79 keV X-ray light curve. The hardness-intensity diagram shows that the source remained in the so-called normal branch of the Z-track, although an extended `flaring branch' is observed during the dips. The source was in a soft spectral state with the 3-45 keV luminosity of L ≃ (0.5-1.1) × 1038 erg s-1, assuming a distance of 8 kpc. Both the non-dip and dip X-ray spectra are well represented by models in which the soft band is dominated by the emission from the disc, while the hard X-ray band is dominated by the Comptonized emission from the boundary layer/corona and its reflected emission from the disc. The X-ray spectrum also revealed a broad Fe K α emission line which is nearly symmetric at the higher flux and asymmetric when the flux is reduced by a factor of ˜2. The relativistic reflection model predicts the inner radius of the accretion disc as Rin ≃ 2.5-6.0 RISCO (≃30-73 km) for the non-dip state and Rin ≃ 2.0-2.6 RISCO (≃24-32 km) for the dip state. If the inner disc is truncated due to the pressure arising from a magnetic field, this implies an upper limit of the magnetic field strength of ≤7.6 × 109 G at the magnetic poles which is consistent with other estimates.

  4. Bright end of the luminosity function of high-mass X-ray binaries: contributions of hard, soft and supersoft sources

    Science.gov (United States)

    Sazonov, S.; Khabibullin, I.

    2017-04-01

    Using a spectral analysis of bright Chandra X-ray sources located in 27 nearby galaxies and maps of star-formation rate (SFR) and interstellar medium surface densities for these galaxies, we constructed the intrinsic X-ray luminosity function (XLF) of luminous high-mass X-ray binaries (HMXBs), taking into account absorption effects and the diversity of HMXB spectra. The XLF per unit SFR can be described by a power-law dN/dlog LX,unabs ≈ 2.0(LX,unabs/1039 erg s-1)-0.6 (M⊙ yr-1)-1 from LX,unabs = 1038 to 1040.5 erg s-1, where LX,unabs is the unabsorbed luminosity at 0.25-8 keV. The intrinsic number of luminous HMXBs per unit SFR is a factor of ˜2.3 larger than the observed number reported before. The intrinsic XLF is composed of hard, soft and supersoft sources (defined here as those with the 0.25-2 keV to 0.25-8 keV flux ratio of 0.95, respectively) in ˜ 2:1:1 proportion. We also constructed the intrinsic HMXB XLF in the soft X-ray band (0.25-2 keV). Here, the numbers of hard, soft and supersoft sources prove to be nearly equal. The cumulative present-day 0.25-2 keV emissivity of HMXBs with luminosities between 1038 and 1040.5 erg s-1 is ˜5 × 1039 erg s-1(M⊙ yr-1)-1, which may be relevant for studying the X-ray preheating of the early Universe.

  5. A NuSTAR observation of the reflection spectrum of the low-mass X-ray binary 4U 1728-34

    DEFF Research Database (Denmark)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with k......T = 1.5 keV and a cutoff power law with Γ = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe Kα line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of Rin≤2RISCO...

  6. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    Science.gov (United States)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  7. INTEGRAL detection of the multi-peaked emission from the Be/X-ray binary pulsar GRO J1008-57

    DEFF Research Database (Denmark)

    Fiocchi, M.; Sguera, A.; Chenevez, Jérôme

    2014-01-01

    /4 of the outbursts in Be/XRBs (e.g. Kretschmar et al., 2013, arXiv.1302.3434). We will continue to monitor the source activity with INTEGRAL through the GPS programme until December 20th. Light curves and images can be found on the GPS webpages: http://gpsiasf.iasf-roma.inaf.it/......Recent observations from the on-going INTEGRAL Galactic Plane Scanning programme (PI: A. Bazzano) have detected increasing X-ray flux from the Be/X-ray binary pulsar GRO J1008-57, confirming the re-brightening detected by MAXI/GSC (ATel #6819). The source was in the field of view of the IBIS...... and JEM-X instruments on-board INTEGRAL during revolutions 1483 (start time 2014-12-05T09:55 UTC) and 1485 (start time 2014-12-11T09:15). The hard X-ray fluxes, as detected by IBIS, have increased over the last week: in revolution 1483, GRO 1008-57 was detected with a flux of (21.6+/-1.7) mCrab in the 18...

  8. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832–093

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.

    2017-01-01

    −093, is detected up to ~30 keV and is well-described by an absorbed power-law model with a best-fit photon index . A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245−0921539 is (90% C.L.), much less than previously reported. A search for a pulsar spin...

  9. Diverse Long-Term Variability of Five Candidate High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-01-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope (SWIFT-BAT). IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 seconds. For AX J1700.2-4220, 54 second-pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090,which was previously proposed to be a Be star system with an orbital period of approximately 30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although theymight be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be starmass donors.

  10. The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic Centre

    Science.gov (United States)

    Armas Padilla, M.; Ponti, G.; De Marco, B.; Muñoz-Darias, T.; Haberl, F.

    2018-01-01

    We report on a detailed study of the spectral and temporal properties of the neutron star low-mass X-ray binary SLX 1737-282, which is located only ∼1° away from Sgr A*. The system is expected to have a short orbital period, even within the ultracompact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 yr apart. We infer (0.5-10 keV) X-ray luminosities in the range of 3-6 × 1035ergs-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) blackbody component plus a Comptonized emission component with Γ ∼ 1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ∼20 per cent fractional root-mean-square amplitude of the fast variability (0.1-7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is ≳7 keV for the Suzaku observation, but it is measured to be as low as ∼2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001-7 Hz). Finally, we investigated the origin of the low-frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to ≲65° unless the orbital period is longer than 11 h (i.e. the length of the XMM-Newton observation).

  11. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  12. Truncation of the Accretion Disk at One-third of the Eddington Limit in the Neutron Star Low-mass X-Ray Binary Aquila X-1

    Science.gov (United States)

    Ludlam, R. M.; Miller, J. M.; Degenaar, N.; Sanna, A.; Cackett, E. M.; Altamirano, D.; King, A. L.

    2017-10-01

    We perform a reflection study on a new observation of the neutron star (NS) low-mass X-ray binary Aquila X-1 taken with NuSTAR during the 2016 August outburst and compare with the 2014 July outburst. The source was captured at ˜32% L Edd, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated {R}{in,2016}={11}-1+2 {R}g (where R g = GM/c 2) and {R}{in,2014}=14+/- 2 {R}g (errors quoted at the 90% confidence level). Fiducial NS parameters (M NS = 1.4 M ⊙, R NS = 10 km) give a stellar radius of R NS = 4.85 R g ; our measurements rule out a disk extending to that radius at more than the 6σ level of confidence. We are able to place an upper limit on the magnetic field strength of B ≤ 3.0-4.5 × 109 G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the NS surface, we estimate a boundary layer with a maximum extent of {R}{BL,2016}˜ 10 {R}g and {R}{BL,2014}˜ 6 {R}g. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other NS low-mass X-ray binaries to known accreting millisecond X-ray pulsars.

  13. QUARK-NOVAE IN LOW-MASS X-RAY BINARIES. II. APPLICATION TO G87-7 AND TO GRB 110328A

    Energy Technology Data Exchange (ETDEWEB)

    Ouyed, Rachid [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada); Staff, Jan [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Jaikumar, Prashanth [Department of Physics and Astronomy, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840 (United States)

    2011-12-20

    We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs (WDs) which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3+57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard gamma-ray burst models. We argue that both these observations may have an explanation within the unified framework of a quark-nova (QN) occurring in a low-mass X-ray binary (LMXB; neutron star (NS)-WD). For LMXBs, where the binary separation is sufficiently tight, ejecta from the exploding NS triggers nuclear burning in the WD on impact, possibly leading to Fe-rich composition compact WDs with mass 0.43 M{sub Sun} < M{sub WD} < 0.72 M{sub Sun }, reminiscent of G87-7. Our results rely on the assumption, which ultimately needs to be tested by hydrodynamic and nucleosynthesis simulations, that under certain circumstances the WD can avoid the thermonuclear runaway. For heavier WDs (i.e., M{sub WD} > 0.72 M{sub Sun }) experiencing the QN shock, degeneracy will not be lifted when carbon burning begins, and a sub-Chandrasekhar Type Ia supernova may result in our model. Under slightly different conditions and for pure He WDs (i.e., M{sub WD} < 0.43 M{sub Sun }), the WD is ablated and its ashes raining down on the quark star (QS) leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 110328A. We predict additional flaring activity toward the end of the accretion phase if the QS turns into a black hole.

  14. NuSTAR and Swift joint view of neutron star X-ray binary 4U 1728-34: disc reflection in the island and lower banana states

    Science.gov (United States)

    Mondal, Aditya S.; Pahari, Mayukh; Dewangan, G. C.; Misra, R.; Raychaudhuri, B.

    2017-04-01

    We analyse two simultaneous NuSTAR and Swift data of the Atoll-type neutron star (NS) X-ray binary 4U 1728-34 observed on 2013 October 1 and 3. We infer that the first and the second observations belong to the island state and the lower banana state, respectively. During island state, four type-I X-ray bursts are observed within 60 ks exposure. From the time-resolved spectral analysis of each burst with NuSTAR, the blackbody temperature kTbb are found to vary between 1.3 and 3.0 keV, while the blackbody normalizations (km/10 kpc)2 vary in the range 20-200, which translates to blackbody radii of 3.5-7.4 km for an assumed distance of 5 kpc. The persistent, joint energy spectra from Swift and NuSTAR for both observations in the energy band 1-79 keV are well described with thermal emission from the NS surface (kTbb ≃ 1-2.5 keV), Comptonized emission of thermal seed photons from the hot boundary layer/corona and the strong reflection component from the accretion disc. We detect a broad iron line in the 5-8 keV band and reflection hump in the 15-30 keV band modelled by the relxill reflection model. Joint spectral fitting constrains the inclination angle of the binary system and inner disc radius to be 22°-40° and (2.0-4.3) × RISCO, respectively. We estimate the magnetic field to be (1.8-6.5) × 108 G. The X-ray luminosity of the source during the island and lower banana states are found to be LX = 1.1 and 1.6 × 1037 erg s-1, respectively, which correspond to ˜6 per cent and ˜9 per cent of the Eddington luminosity.

  15. VERY LARGE TELESCOPE/X-SHOOTER SPECTROSCOPY OF THE CANDIDATE BLACK HOLE X-RAY BINARY MAXI J1659-152 IN OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Ramanpreet; Kaper, Lex; Ellerbroek, Lucas E.; Russell, David M.; Altamirano, Diego; Wijnands, Rudy; Yang Yijung; Van der Horst, Alexander; Van der Klis, Michiel [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); D' Avanzo, Paolo [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (Italy); De Ugarte Postigo, Antonio; Fynbo, Johan P. U. [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen 2100 (Denmark); Flores, Hector [GEPI, Paris Observatory, CNRS, University of Paris-Diderot, 5 Place Jules Janssen, 92195 Meudon (France); Goldoni, Paolo [Laboratoire Astroparticule et Cosmologie, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13 (France); Thoene, Christina C. [IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Kuulkers, Erik, E-mail: r.kaur@uva.nl [European Space Agency, European Space Astronomy Centre, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain)

    2012-02-20

    We present the optical to near-infrared spectrum of MAXI J1659-152 during the onset of its 2010 X-ray outburst. The spectrum was obtained with X-shooter on the ESO Very Large Telescope early in the outburst simultaneous with high-quality observations at both shorter and longer wavelengths. At the time of the observations, the source was in the low-hard state. The X-shooter spectrum includes many broad ({approx}2000 km s{sup -1}), double-peaked emission profiles of H, He I, and He II, characteristic signatures of a low-mass X-ray binary during outburst. We detect no spectral signatures of the low-mass companion star. The strength of the diffuse interstellar bands results in a lower limit to the total interstellar extinction of A{sub V} {approx_equal} 0.4 mag. Using the neutral hydrogen column density obtained from the X-ray spectrum we estimate A{sub V} {approx_equal} 1 mag. The radial velocity structure of the interstellar Na I D and Ca II H and K lines results in a lower limit to the distance of {approx}4 {+-} 1 kpc, consistent with previous estimates. With this distance and A{sub V} , the dereddened spectral energy distribution represents a flat disk spectrum. The two 10 minute X-shooter spectra show significant variability in the red wing of the emission-line profiles, indicating a global change in the density structure of the disk, though on a timescale much shorter than the typical viscous timescale of the disk.

  16. SWIFT X-RAY TELESCOPE TIMING OBSERVATIONS OF THE BLACK HOLE BINARY SWIFT J1753.5-0127: DISK-DILUTED FLUCTUATIONS IN THE OUTBURST PEAK

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Van der Klis, M.; Uttley, P.; Altamirano, Diego; Wijnands, Rudy, E-mail: m.n.kalamkar@uva.nl [Astronomical Institute, ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands)

    2013-04-01

    After a careful analysis of the instrumental effects on the Poisson noise to demonstrate the feasibility of detailed stochastic variability studies with the Swift X-Ray Telescope (XRT), we analyze the variability of the black hole X-ray binary SWIFT J1753.5-0127 in all XRT observations during 2005-2010. We present the evolution of the power spectral components along the outburst in two energy bands: soft (0.5-2 keV) and hard (2-10 keV), and in the hard band we find results consistent with those from the Rossi X-Ray Timing Explorer (RXTE). The advantage of the XRT is that we can also explore the soft band not covered by RXTE. The source has previously been suggested to host an accretion disk extending down to close to the black hole in the low hard state, and to show low-frequency variability in the soft-band intrinsic to this disk. Our results are consistent with this, with stronger low-frequency variability at low intensities in the soft than in the hard band. From our analysis, we are able to present the first measurements of the soft-band variability in the peak of the outburst. We find the soft band to be less variable than the hard band, especially at high frequencies, opposite to what is seen at low intensity. Both results can be explained within the framework of a simple two emission-region model where the hot flow is more variable in the peak of the outburst and the disk is more variable at low intensities.

  17. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D. M. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); O' Brien, K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sivakoff, G. R. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada); Lewis, F. [Faulkes Telescope Project, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); Markoff, S.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Rupen, M. P.; Dhawan, V. [NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Belloni, T. M. [INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Cadolle Bel, M. [European Space Agency, European Space Astronomy Centre, ISOC, Villanueva de la Canada, Madrid (Spain); Casella, P. [INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Corbel, S. [Laboratoire AIM, UMR 7158, CEA/DSM, CNRS, Universite Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Fender, R. P. [School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom); Gallo, E., E-mail: russell@iac.es [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  18. An Evolving Compact Jet in the Black Hole X-Ray Binary Maxi J1836-194

    Science.gov (United States)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; hide

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from approx 10(exp 11) to approx 4 × 10(exp 13) Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  19. X-rays as a probe of the Universe

    Indian Academy of Sciences (India)

    Table of contents. X-rays as a probe of the Universe · Probing the Universe ….. Flux = sT4 umax = 1011 T (in Kelvin) · History of x-ray astronomy · X-ray Production · X-ray spectra · Celestial sphere as seen by UHURU (1970) · Slide 8 · X-rays from accreting binary systems · Slide 10 · Neutron stars: Black Hole: · Primary X-ray ...

  20. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, Maureen; Fridriksson, Joel K. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel, E-mail: M.C.vandenBerg@uva.nl [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, La Laguna, E-38205, S/C de Tenerife (Spain)

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.

  1. On the Evolution of the Inner Disk Radius with Flux in the Neutron Star Low-mass X-Ray Binary Serpens X-1

    Science.gov (United States)

    Chiang, Chia - Ying; Morgan, Robert A.; Cackett, Edward M.; Miller, Jon M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of approx. 8 R(sub G), which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L(sub Edd) approx. 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  2. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fischer, P. J. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California Santa Cruz, Santa Cruz, California 94056 (United States); Conley, R. [Advance Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); McKinney, W. R. [Diablo Valley College, 321 Golf Club Road, Pleasant Hill, California 94523 (United States); Artemiev, N. A. [KLA-Tencor Corp., 1 Technology Drive, Milpitas, California 95035 (United States); Bouet, N. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Calafiore, G.; Peroz, C.; Babin, S. [aBeam Technologies, Inc., Hayward, California 94541 (United States)

    2015-12-15

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  3. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J. M.; Lemmich, Jesper; Richter, F.

    2000-01-01

    hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X-cer the pretransition temperature T-P first increases, whereafter at X-cer > 0.06 it can......Ceramide has recently been established as a central messenger in the signaling cascades controlling cell behavior. Physicochemical studies have revealed a strong tendency of this lipid toward phase separation in mixtures with phosphatidylcholines. The thermal phase behavior and structure of fully...... hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X-cer = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong...

  4. Extending the `energetic scaling of relativistic jets from black hole systems' to include γ-ray-loud X-ray binaries

    Science.gov (United States)

    Lamb, Gavin P.; Kobayashi, Shiho; Pian, Elena

    2017-11-01

    We show that the jet power Pj and geometrically corrected γ-ray luminosity Lγ for the X-ray binaries (XRBs) Cygnus X-1, Cygnus X-3, and V404 Cygni, and γ-ray upper limits for GRS 1915+105 and GX339-4, follow the universal scaling for the energetics of relativistic jets from black hole (BH) systems found by Nemmen et al. for blazars and GRBs. The observed peak γ-ray luminosity for XRBs is geometrically corrected, and the minimum jet power is estimated from the peak flux density of radio flares and the flare rise time. The Lγ-Pj correlation holds across ∼17 orders of magnitude. The correlation suggests a jet origin for the high-energy emission from XRBs, and indicates a common mechanism or efficiency for the high-energy emission 0.1-100 GeV from all relativistic BH systems.

  5. Optical Precursors to Black Hole X-Ray Binary Outbursts: An Evolving Synchrotron Jet Spectrum in Swift J1357.2–0933

    Science.gov (United States)

    Russell, David M.; Qasim, Ahlam Al; Bernardini, Federico; Plotkin, Richard M.; Lewis, Fraser; Koljonen, Karri I. I.; Yang, Yi-Jung

    2018-01-01

    We present six years of optical monitoring of the black hole (BH) candidate X-ray binary Swift J1357.2–0933, during and since its discovery outburst in 2011. On these long timescales, the quiescent light curve is dominated by high amplitude, short-term (seconds–days) variability spanning ∼2 mag, with an increasing trend of the mean flux from 2012 to 2017 that is steeper than in any other X-ray binary found to date (0.17 mag yr‑1). We detected the initial optical rise of the 2017 outburst of Swift J1357.2–0933, and we report that the outburst began between 2017 April 1 and 6. Such a steep optical flux rise preceding an outburst is expected according to disk instability models, but the high amplitude variability in quiescence is not. Previous studies have shown that the quiescent spectral, polarimetric, and rapid variability properties of Swift J1357.2–0933 are consistent with synchrotron emission from a weak compact jet. We find that a variable optical/infrared spectrum is responsible for the brightening: a steep, red spectrum before and soon after the 2011 outburst evolves to a brighter, flatter spectrum since 2013. The evolving spectrum appears to be due to the jet spectral break shifting from the infrared in 2012 to the optical in 2013, then back to the infrared by 2016–2017 while the optical remains relatively bright. Swift J1357.2–0933 is a valuable source to study BH jet physics at very low accretion rates and is possibly the only quiescent source in which the optical jet properties can be regularly monitored.

  6. The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations

    Science.gov (United States)

    Rodriguez, J.; Tomsick, J. A.; Bodaghee, A.; Zurita Heras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-12-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+1816. The Swift/XRT data allow us to refine the position of the source to {RA}J2000 = 19h 29m 55.9s {Dec}J2000 = +18° 18 arcmin38.4 arcsec (±3.5 arcsec), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Γ 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsation at 12.43781 (±0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+1816 being an HMXB with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short ( 2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implications of IGR J19294+1816 being an SFXT.

  7. X-ray Observations of "Recycled" Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-11-01

    The Chandra X-ray Observatory has been instrumental in establishing the X-ray properties of the Galactic population of rotation-powered ("recycled") millisecond pulsars. In this talk I will provide a summary of deep X-ray studies of globular cluster millisecond pulsars, as well as several nearby field millisecond pulsars. These include thermally-emitting recycled pulsars that may provide stringent constraints on the elusive neutron star equation of state, and so-called "redback" binary pulsars, which seem to sporadically revert to an X-ray binary-like state.

  8. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  9. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  10. Parallel Tracks as Quasi-steady States for the Magnetic Boundary Layers in Neutron-star Low-mass X-Ray Binaries

    Science.gov (United States)

    Erkut, M. Hakan; Çatmabacak, Onur

    2017-11-01

    The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere–disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at the innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608–52, 4U 1636–53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.

  11. Using Local Radiation MHD Simulations to Attempt to Understand the Very High/Steep Power Law State of Black Hole X-ray Binaries

    Science.gov (United States)

    Blaes, Omer

    Stellar mass black holes in certain types of binary systems accrete matter from their companion stars through rotating, turbulent flows known as accretion disks. These disks are observed by space X-ray missions to have a number of distinct spectral/variability states, the most mysterious one being the very high/steep power law state that generally occurs at very high luminosities. This state is particularly interesting as it exhibits unique quasi-periodic oscillations observed in the X-rays that, if understood, might help us directly measure the properties of the black hole spacetime. Radiation pressure is an important physical process at such high luminosities, and modifies the character of the accretion disk in a number of unique ways. One of the ways that it does this is that it enables turbulent speeds in the disk to exceed thermal speeds of electrons, thereby introducing a completely new radiation process - turbulent Comptonization. This radiation process is promising for explaining the unique spectral characteristics of the very high/steep power law state. We will test this hypothesis by making detailed calculations of the emergent radiation spectrum from numerical simulation data of the turbulence in local patches of the disk at high levels of radiation pressure. These will be the first detailed theoretical calculations of turbulent Comptonization, which should be an important process for modeling NASA data from high luminosity black hole accretion. We hope that this will shed light on the nature of the mysterious very high/steep power law state. The research will form the basis of the PhD thesis of a graduate student, in line with NASA's educational and training objectives.

  12. Spectral-timing Analysis of the Lower kHz QPO in the Low-mass X-Ray Binary Aquila X-1

    Science.gov (United States)

    Troyer, Jon S.; Cackett, Edward M.

    2017-01-01

    Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer. We find characteristics similar to those of previously studied systems, including soft lags of ˜30 μs between the 3.0-8.0 keV and 8.0-20.0 keV energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4-σ confidence, which may raise questions about the role of reverberation in the production of lags.

  13. Effects of high-energy neutrino production and interactions on stars in close X-ray binaries

    Science.gov (United States)

    Gaisser, T. K.; Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1986-01-01

    Limits are discussed that may be placed on binary systems in which a compact partner is a strong source of high-energy particles that produce photons, neutrinos, and other secondary particles in the companion star. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to affect its structure or lead to its ultimate disruption. This neutrino heating is evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over a time scale of 10,000-100,000 yr. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially.

  14. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  15. Connection between orbital modulation of Hα and gamma-rays in the Be/X-ray binary LS I+61°303

    Science.gov (United States)

    Zamanov, R.; Martí, J.; Stoyanov, K.; Borissova, A.; Tomov, N. A.

    2014-01-01

    We studied the average orbital modulation of various parameters (γ-ray flux, Hα emission line, optical V band brightness) of the radio- and γ-ray emitting Be/X-ray binary LS I + 61°303. Using the Spearman rank correlation test, we found highly significant correlations between the orbital variability of the equivalent width of the blue hump of the Hα and Fermi-LAT flux with a Spearman p-value ~2 × 10-5, and the equivalent widths ratio EWB/EWR and Fermi-LAT flux with p-value ~9 × 10-5. We also found a significant anti-correlation between Fermi-LAT flux and V band magnitude with a p-value ~7 × 10-4. All these correlations refer to the average orbital variability, and we conclude that the Hα and γ-ray emission processes in LS I + 61°303 are connected. The possible physical scenario is briefly discussed.

  16. Absence of Reflection Features in NuSTAR  Spectra of the Luminous Neutron Star X-Ray Binary GX 5–1

    Science.gov (United States)

    Homan, Jeroen; Steiner, James F.; Lin, Dacheng; Fridriksson, Joel K.; Remillard, Ronald A.; Miller, Jon M.; Ludlam, Renee M.

    2018-02-01

    We present NuSTAR observations of the luminous neutron star low-mass X-ray binary (NS LMXB) and Z source GX 5‑1. During our three observations made with separations of roughly two days, the source traced out an almost complete Z track. We extract spectra from the various branches and fit them with a continuum model that has been successfully applied to other Z sources. Surprisingly, and unlike most of the (luminous) NS-LMXBs observed with NuSTAR, we do not find evidence for reflection features in any of the spectra of GX 5‑1. We discuss several possible explanations for the absence of reflection features. Based on a comparison with other accreting neutron star systems, and given the high luminosity of GX 5‑1 (∼1.6–2.3 times the Eddington luminosity, for a distance of 9 kpc), we consider a highly ionized disk the most likely explanation for the absence of reflection features in GX 5‑1.

  17. The formation of low-mass helium white dwarfs orbiting pulsars . Evolution of low-mass X-ray binaries below the bifurcation period

    Science.gov (United States)

    Istrate, A. G.; Tauris, T. M.; Langer, N.

    2014-11-01

    Context. Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) that have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). This scenario has been strongly supported by various pieces of observational evidence. However, many details of this recycling scenario remain to be understood. Aims: Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods Porb ≃ 2-9h. In particular, we examine i) if the observed systems can be reproduced by theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (MWD, Porb) is valid for systems with Porb< 2 days. Methods: Numerical calculations with a detailed stellar evolution code were used to trace the mass-transfer phase in ~400 close LMXB systems with different initial values of donor star mass, NS mass, orbital period, and the so-called γ-index of magnetic braking. Subsequently, we followed the orbital and the interior evolution of the detached low-mass (proto) He WDs, including stages with residual shell hydrogen burning. Results: We find that severe fine-tuning is necessary to reproduce the observed MSPs in tight binaries with He WD companions of mass <0.20 M⊙, which suggests that something needs to be modified or is missing in the standard input physics of LMXB modelling. Results from previous independent studies support this conclusion. We demonstrate that the theoretically calculated (MWD, Porb)-relation is in general also valid for systems with Porb< 2 days, although with a large scatter in He WD masses between 0.15-0.20 M⊙. The results of the thermal

  18. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    Science.gov (United States)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki

    2017-10-01

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference, we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.

  19. Unraveling the formation history of the black hole X-ray binary LMC X-3 from the zero age main sequence to the present

    Science.gov (United States)

    Sørensen, Mads; Fragos, Tassos; Steiner, James F.; Antoniou, Vallia; Meynet, Georges; Dosopoulou, Fani

    2017-01-01

    Aims: We have endeavoured to understand the formation and evolution of the black hole (BH) X-ray binary LMC X-3. We estimated the properties of the system at four evolutionary stages: (1) at the zero-age main-sequence (ZAMS); (2) immediately before the supernova (SN) explosion of the primary; (3) immediately after the SN; and (4) at the moment when Roche-lobe overflow began. Methods: We used a hybrid approach that combined detailed calculations of the stellar structure and binary evolution with approximate population synthesis models. This allowed us to estimate potential natal kicks and the evolution of the BH spin. We incorporated as model constraints the most up-to-date observational information throughout, which include the binary orbital properties, the companion star mass, effective temperature, surface gravity and radius, and the BH mass and spin. Results: We find at 5% and 95% confidence, respectively, that LMC X-3 began as a ZAMS system with the mass of the primary star in the range M1,ZAMS = 22-31 M⊙ and a secondary star of M2,ZAMS = 5.0-8.3 M⊙, in a wide (PZAMS ≳ 2.000 days) and eccentric (eZAMS ≳ 0.18) orbit. Immediately before the SN, the primary had a mass of M1,preSN = 11.1-18.0 M⊙, but the secondary star was largely unaffected. The orbital period decreased to 0.6-1.7 days and is still eccentric 0 ≤ epreSN ≤ 0.44. We find that a symmetric SN explosion with no or small natal kicks (a few tens of km s-1) imparted on the BH cannot be formally excluded, but large natal kicks in excess of ≳120 km s-1 increase the estimated formation rate by an order of magnitude. Following the SN, the system has a BH MBH,postSN = 6.4-8.2 M⊙ and is set on an eccentric orbit. At the onset of the Roche-lobe overflow, the orbit is circular and has a period of PRLO = 0.8-1.4 days. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A12

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  1. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  2. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  3. Globular cluster X-ray sources

    Science.gov (United States)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  4. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  5. ``Soft X-ray transient'' outbursts which are not soft

    NARCIS (Netherlands)

    Brocksopp, C.; Bandyopadhyay, R.M.; Fender, R.P.

    2004-01-01

    We have accumulated multiwavelength (X-ray, optical, radio) lightcurves for the eight black hole X-ray binaries which have been observed to enter a supposed `soft X-ray transient' outburst, but remained in the low/hard state throughout the outburst. Comparison of the lightcurve morphologies,

  6. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  9. X-Ray Point-source Populations Constituting the Galactic Ridge X-Ray Emission

    Science.gov (United States)

    Morihana, Kumiko; Tsujimoto, Masahiro; Yoshida, Tessei; Ebisawa, Ken

    2013-03-01

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above ≈10-14 erg cm-2 s-1, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe Kα emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  10. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  11. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  14. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  1. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  5. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  16. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  17. X-ray polarimetry an upcoming 'new' tool in Astronomy

    Science.gov (United States)

    Soffitta, P.

    2017-10-01

    Sensitive X-ray polarimetry promises to solve many different issues in X-ray Astronomy: from disentangling physics from geometry removing degeneracies in models of magnetars and X-ray binaries hosting neutron stars, to mapping ordered magnetic fields in Supernova Remnants and Pulsar Wind Nebulae. It constrains emission mechanisms in blazars and solves the mistery of X-ray emission from cold molecular clouds in the galactic center. Moreover it can answer to questions of fundamental physics. XIPE the X-ray Imaging Polarimetry Explorer accomplished phase A as an ESA M4 candidate and IXPE the Imaging X-ray Polarimetry explorer was selected as next SMEX mission by NASA for a flight in late 2020. In this talk I will describe both missions and their ability to make energy, time and angle resolved polarimetry thanks to a detector developed at this aim and to X-ray optics with a large effective area.

  18. X-ray Studies of Planetary Nebulae

    Science.gov (United States)

    Montez, Rodolfo

    2017-10-01

    X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked ``hot bubble'' plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  20. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  1. Classification of X-ray point sources in external galaxies

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Islam, Nazma; Kim, Dong-Woo; McCollough, Michael

    2017-08-01

    The exquisite spatial resolution of the Chandra X-ray satellite allows us to resolve individual X-ray point sources in external galaxies. We have extracted data on extragalactic X-ray binary candidates from 150 external galaxies including a selection of elliptical, spiral, and starburst galaxies with a range of metallicities. By using X-ray binaries containing neutron stars or black holes from our own Galaxy that were multiply observed by Chandra as a training set we classify the accretion type of each object individually identified in the external galaxies. We find systematic differences in the binary populations of different classes of galaxy. Our study provides information on populations of X-ray sources in different galaxy types which has implications for the evolution of galaxies, as well as clues about how the different classes of XRBs are related to each other.

  2. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  3. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  4. Time series analysis of bright galactic X-ray sources

    DEFF Research Database (Denmark)

    Priedhorsky, W. C.; Brandt, Søren; Lund, Niels

    1995-01-01

    We analyze 70 to 110 day data sets from eight bright galactic X-ray binaries observed by WATCH/Eureca, in search of periodic variations. We obtain new epochs for the orbital variation of Cyg X-3 and 4U 1700-37, and confirmation of a dip in Cyg X-1 at superior conjunction of the X-ray star. No evi...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  7. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  9. X-Ray Polarization Measurements with the EXIST Hard X-Ray Survey Telescope

    Science.gov (United States)

    Krawczynski, Henric; Garson, A., III; Hong, J.; Grindlay, J. E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed NASA mission for scanning the entire sky in intermediate and hard X-rays. The EXIST mission includes a wide field of view High Energy Telescope (HET) covering the 5-600 keV energy range, and an infrared telescope. The HET has the capability to measure the energy dependent X-ray polarization properties of moderately bright and bright X-ray sources. Here we report on a study of the polarization sensitivity of EXIST as a function of the integration time. Broadband X-ray polarization measurements with EXIST have the potential to make important contributions to our understanding of a number of astrophysical source types including binary black holes, accreting neutron stars, magnetars, pulsar wind nebulae, active galactic nuclei and gamma-ray bursts. EXIST observations of the X-rays from binary black holes can be used to constrain the spins of black holes. Last but not least, EXIST observations of active galactic nuclei and gamma-ray bursts can be used for extremely sensitive Lorentz Invariance tests.

  10. INTEGRAL finds renewed X-ray activity of the Neutron star X-ray transient SAX J1750.8-2900

    DEFF Research Database (Denmark)

    Sanchez-Fernandez, Celia; Chenevez, Jérôme; Kuulkers, Erik

    2015-01-01

    INTEGRAL Galactic bulge monitoring observations (ATel #438) on UT 13 September 2015 18:50-22:32 reveal renewed X-ray activity from the low-mass X-ray binary transient and Type I X-ray burster SAX J1750.8-2900 (IAU Circ. #6597). The last outburst from this source was reported in 2011 (ATels #3170,...

  11. X-rays from the eclipsing pulsar 1957+20

    Science.gov (United States)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  12. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  13. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  18. Coherent x-ray optics

    CERN Document Server

    Paganin, David M

    2006-01-01

    'Coherent X-Ray Optics' gives a thorough treatment of the rapidly expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissues around or in bones. top of page How should I prepare? Most bone x-rays require ... is placed beneath the patient. top of page How does the procedure work? X-rays are a ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ... and procedures may vary by geographic region. Discuss the fees associated with your prescribed ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used ... placed beneath the patient. top of page How does the procedure work? X-rays are a form ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  14. X-Ray Exam: Forearm

    Science.gov (United States)

    ... recorded on a computer or special X-ray film. This image shows the soft tissues and bones of the forearm. The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the ...

  15. The era of synoptic galactic archeology: using HST and Chandra observations to constrain the evolution of elliptical galaxies through the spatial distribution of globular clusters and X-ray binaries.

    Science.gov (United States)

    D'Abrusco, Raffaele; Fabbiano, Giuseppina; Zezas, Andreas

    2017-01-01

    Most of the stellar mass observed today in early-type galaxies is thought to be due to merging and accretion of smaller companions, but the details of these processes are still poorly constrained. Globular clusters, visible from the center to the halo of galaxies, reflect the evolution of their host galaxy in their kinematic, photometric and spatial distributions. By characterizing the spatial distribution of the population of globular clusters extracted from archival HST data of some of the most massive elliptical galaxies in the local Universe with a novel statistical approach, we recently discovered that two-dimensional spatial structures at small radii are common (D’Abrusco et al. 2014a; 2014b; 2015). Such structures, not detectable from ground-based data, can be linked to events in the evolution of the host galaxy. Moreover, we devised an interpretative framework that, based on the form, area and number of globular clusters of such structures, infers the frequency of major mergers and the mass spectrum of the accreted companions.For some of the galaxies investigated, X-ray data from Chandra joint observing programs were also available. Our method, applied to the distribution of X-ray binaries, has revealed, at least in the case of two galaxies (D’Abrusco et al. 2014a; D’Abrusco et al.23014c) the existence of overdensities that are not associated to globular cluster structures. These findings provide complementary hints about the evolution of the stellar component of these galaxies that can be used to further refine the sequence of events that determined their growth.In this contribution, we will summarize our main results and highlight the novelty of our approach. Furthermore, we will advocate the fundamental importance of joint observations of galaxies by HST and Chandra as a way to provide unique, complementary views of such systems and unlock the mysteries of their evolution.

  16. Jovian X-ray emissions

    Science.gov (United States)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  17. Crystallization and preliminary X-ray crystallographic analysis of the functional form of BinB binary toxin from Bacillus sphaericus.

    Science.gov (United States)

    Srisucharitpanit, Kanokporn; Yao, Min; Chimnaronk, Sarin; Promdonkoy, Boonhiang; Tanaka, Isao; Boonserm, Panadda

    2013-02-01

    The binary toxin from Bacillus sphaericus consists of two proteins, BinA and BinB, which work together to exert toxicity against mosquito larvae. BinB is proposed to be a receptor-binding domain and internalizes BinA into the midgut cells, resulting in toxicity via an unknown mechanism. The functional form of BinB has been successfully crystallized. The crystals of BinB diffracted to a resolution of 1.75 Å and belong to space group P6(2)22, with unit-cell parameters a = b = 95.2, c = 154.9 Å. Selenomethionine-substituted BinB (SeMetBinB) was prepared and crystallized for experimental phasing. The SeMetBinB crystal data were collected at a wavelength of 0.979 Å and diffracted to a resolution of 1.85 Å.

  18. Einstein X-ray observations of M101

    Science.gov (United States)

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  19. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  20. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  1. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  2. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. X-Ray Emissions from Accreting White Dwarfs: A Review

    Science.gov (United States)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  4. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence...... of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...

  5. Measuring Quasar Spin via X-ray Continuum Fitting

    Science.gov (United States)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  10. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... GENERAL I ARTICLE. Chandra's X-ray Vision. K P Singh. Chandra X-ray Observatory (CXO) is a scientific satellite (moon/ chandra), named after the Indian-born Nobel laureate. Subrahmanyan Chandrasekhar - one of the foremost astro- physicists of the twentieth century and popularly known as. Chandra.

  11. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ...

  13. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  14. Testing the relativistic precession model using low-frequency and kHz quasi-periodic oscillations in neutron star low-mass X-ray binaries with known spin

    Science.gov (United States)

    van Doesburgh, Marieke; van der Klis, Michiel

    2017-03-01

    We analyse all available RXTE data on a sample of 13 low-mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency νLT of a test-particle orbit whose orbital frequency is the upper kHz QPO frequency νu. Contrary to the most prominent previous studies, we find two different oscillations in the range predicted for νLT that are simultaneously present over a wide range of νu. Additionally, one of the low-frequency noise components evolves into a (third) QPO in the νLT range when νu exceeds 600 Hz. The frequencies of these QPOs all correlate to νu following power laws with indices between 0.4 and 3.3, significantly exceeding the predicted value of 2.0 in 80 per cent of the cases (at 3 to >20σ). Also, there is no evidence that the neutron star spin frequency affects any of these three QPO frequencies, as would be expected for frame dragging. Finally, the observed QPO frequencies tend to be higher than the νLT predicted for reasonable neutron star specific moment of inertia. In the light of recent successes of precession models in black holes, we briefly discuss ways in which such precession can occur in neutron stars at frequencies different from test-particle values and consistent with those observed. A precessing torus geometry and other torques than frame dragging may allow precession to produce the observed frequency correlations, but can only explain one of the three QPOs in the νLT range.

  15. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  16. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  17. X-Ray Optics Research

    Science.gov (United States)

    1990-09-20

    OF FUNDING NUMBERS Building 410 PORM POET TS OKUI Bolig FBDC2032648ELEMENT NO. NO. NO ACCESiON NO 11. TITLE (include Security Classification) X - Ray Optics Research...by block number) This report describes work conducted during the period I October 1987 through 30 April 1990, under Contract AFOSR-88-00l0, " X - Ray Optics Research...growth and structure of multilayer interfaces. This capability is central to the development of future materials for multilayer x - ray optics , because

  18. FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter

    Science.gov (United States)

    Gregory, Kyle; Hill, Joanne; Black, Kevin; Baumgartner, Wayne

    2013-01-01

    This technology enables detection and measurement of x-rays in an x-ray polarimeter using a field-programmable gate array (FPGA). The technology was developed for the Gravitational and Extreme Magnetism Small Explorer (GEMS) mission. It performs precision energy and timing measurements, as well as rejection of non-x-ray events. It enables the GEMS polarimeter to detect precisely when an event has taken place so that additional measurements can be made. The technology also enables this function to be performed in an FPGA using limited resources so that mass and power can be minimized while reliability for a space application is maximized and precise real-time operation is achieved. This design requires a low-noise, charge-sensitive preamplifier; a highspeed analog to digital converter (ADC); and an x-ray detector with a cathode terminal. It functions by computing a sum of differences for time-samples whose difference exceeds a programmable threshold. A state machine advances through states as a programmable number of consecutive samples exceeds or fails to exceed this threshold. The pulse height is recorded as the accumulated sum. The track length is also measured based on the time from the start to the end of accumulation. For track lengths longer than a certain length, the algorithm estimates the barycenter of charge deposit by comparing the accumulator value at the midpoint to the final accumulator value. The design also employs a number of techniques for rejecting background events. This innovation enables the function to be performed in space where it can operate autonomously with a rapid response time. This implementation combines advantages of computing system-based approaches with those of pure analog approaches. The result is an implementation that is highly reliable, performs in real-time, rejects background events, and consumes minimal power.

  19. Optical Counterparts of X-ray Sources in the Whirlpool Galaxy

    Science.gov (United States)

    Bichon, Luis

    2018-01-01

    We present preliminary results of our analysis of the optical counterparts of X-ray sources in the Whirlpool Galaxy (M51). We perform a multi-wavelength analysis of the X-ray sources in the Whirlpool Galaxy (M51) with the Hubble Space Telescope and the Chandra X-ray Observatory. We attempt to determine the nature of the X-ray binaries in M51, by estimating the age of the stellar counterparts. Here we present preliminary results of our analysis of the X-ray sources and their optical counterparts.

  20. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle...

  1. Can isolated single black holes produce X-ray novae?

    Science.gov (United States)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  3. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in evaluating the hips of children with congenital problems. top of page This page was reviewed on ... Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... white on the x-ray, soft tissue shows up in shades of gray and air appears black. ... who will discuss the results with you. Follow-up examinations may be necessary. Your doctor will explain ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media Arthritis X-ray, Interventional Radiology and ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very small dose of ionizing radiation to produce pictures of any bone in the body. It is ... a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page What are some common uses ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest ... is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... radiation dose for this procedure varies. See the Safety page for more information about radiation dose. Women ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a form of radiation like light or radio waves. X-rays pass through most objects, including the ... individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing radiation to create diagnostic images, ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... x-ray tube is connected to a flexible arm that is extended over the patient while an ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pass through them. As a result, bones appear white on the x-ray, soft tissue shows up ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... abnormal bone growths and bony changes seen in metabolic conditions. assist in the detection and diagnosis of ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... may also be asked to remove jewelry, removable dental appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. Women should always inform their physician and ...

  3. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  4. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    -rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number...... of the known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...

  5. Intense soft X-ray flux from Her-1

    Science.gov (United States)

    Catura, R. C.; Acton, L. W.

    1976-01-01

    An intense flux of soft X-rays extending up to at least 1 keV has been observed from Her X-1. If the soft X-ray intensity is corrected for interstellar absorption the luminosity between 0.16 and 1 keV is comparable to that from 2-10 keV. The soft X-rays are modulated with the 1.24 sec period observed at higher energies but are approximately 180 deg out of phase with the high energy flux. These results extend the detection of this flux to higher energy, a different binary phase, and to a time 19 periods (of the 35 day cycle) later. These observations suggest that this soft emission is a stable feature in the spectrum of this source during its X-ray on state and that this emission is local to Her X-1.

  6. Enhanced X-ray Emission from Early Universe Analog Galaxies

    Science.gov (United States)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  7. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  8. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  9. Intermittent millisecond X-ray pulsations from the neutron star X-ray transient SAX J1748.9-2021 in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Casella, P.; Patruno, A.; Wijnands, R.; van der Klis, M.

    2008-01-01

    We report on intermittent X-ray pulsations with a frequency of 442.36 Hz from the neutron star X-ray binary SAX J1748.9-2021 in the globular cluster NGC 6440. The pulsations were seen during both 2001 and 2005 outbursts of the source, but only intermittently, appearing and disappearing on timescales

  10. Why Do I Need X-Rays?

    Science.gov (United States)

    ... Child at Risk for Early Childhood Tooth Decay? Pacifiers Have Negative and Positive Effects The History of ... Sets the Record Straight on Dental X-Rays Types of X-Rays X-Rays Help Predict Permanent ...

  11. Nanometer x-ray lithography

    Science.gov (United States)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  12. X-Ray Probes of Cosmic Star Formation History

    Science.gov (United States)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.

  13. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify...... persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...... indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Gamma = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high...

  14. Measurement of the masses of the neutron star, Her X-1, and its binary companion, HZ Her, as derived from the study of 1. 24-second optical pulsations from the Hz Her - Her X-1 binary system and the x ray-to-optical reprocessing reflection and transmission mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Middleditch, J.

    1975-10-01

    Intermittent optical pulsations at the 0.1--0.3 percent level have been detected from this binary system in over 500 hours of optical observations. These pulsations are present only for well defined values of the 1.7-day (binary) and 35-day phases. Positions of the pulsation-emitting regions, projected onto the orbital plane, have been measured and three distinct regions have been resolved. A simple model is put forth which accounts for the observed binary behavior, which gives a direct determination of the mass ratio, M/sub HZ Her//M/sub Her X-1/ = 1.69 +- 0.05, and which establishes that the spin of the pulsar is prograde. Additionally it is shown that HZ Her fills its critical Roche lobe. Using the above, the known x ray eclipse duration, and the mass function, the orbital inclination is calculated to be i = 85/sup 0/ +- 5/sup 0/ and the masses to be M/sub Her X-1/ = 1.28 +- 0.08 M/sub solar/ and M/sub HZ Her/ = 2.16 +- 0.07 M/sub solar/. Constraints on the physical parameters of the accretion stream and disk are derived from the data. The nature of the 35-day modulation of the data is discussed in relation to various models.

  15. Center for X-Ray Optics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  16. Early X-Ray Flares in GRBs

    Science.gov (United States)

    Ruffini, R.; Wang, Y.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Chen, Y. C.; Karlica, M.; Kovacevic, M.; Li, L.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Shakeri, S.; Vereshchagin, G. V.; Xue, S.-S.

    2018-01-01

    We analyze the early X-ray flares in the GRB “flare–plateau–afterglow” (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon–oxygen core and a neutron star (NS) binary companion as progenitors. The hypercritical accretion of the supernova (SN) ejecta onto the NS can lead to the gravitational collapse of the NS into a black hole. Consequently, one can observe a GRB emission with isotropic energy {E}{iso}≳ {10}52 erg, as well as the associated GeV emission and the FPA phase. Previous work had shown that gamma-ray spikes in the prompt emission occur at ∼ {10}15{--}{10}17 cm with Lorentz Gamma factors {{Γ }}∼ {10}2{--}{10}3. Using a novel data analysis, we show that the time of occurrence, duration, luminosity, and total energy of the X-ray flares correlate with E iso. A crucial feature is the observation of thermal emission in the X-ray flares that we show occurs at radii ∼1012 cm with {{Γ }}≲ 4. These model-independent observations cannot be explained by the “fireball” model, which postulates synchrotron and inverse-Compton radiation from a single ultrarelativistic jetted emission extending from the prompt to the late afterglow and GeV emission phases. We show that in BdHNe a collision between the GRB and the SN ejecta occurs at ≃1010 cm, reaching transparency at ∼1012 cm with {{Γ }}≲ 4. The agreement between the thermal emission observations and these theoretically derived values validates our model and opens the possibility of testing each BdHN episode with the corresponding Lorentz Gamma factor.

  17. X-ray emission from hot subdwarfs with compact companions

    Directory of Open Access Journals (Sweden)

    Esposito P.

    2013-03-01

    Full Text Available We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD + 37° 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s and massive (1.28  M⊙ white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD + 37° 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  18. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  19. Soft x-ray excitonics

    Science.gov (United States)

    Moulet, A.; Bertrand, J. B.; Klostermann, T.; Guggenmos, A.; Karpowicz, N.; Goulielmakis, E.

    2017-09-01

    The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons’ quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.

  20. X-ray tensor tomography

    Science.gov (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  1. HXMT satellite for space hard X-ray observation

    Science.gov (United States)

    Wu, Y.; Ren, D.; You, Z.

    Space hard X-ray in the energy band from 10Kev to 250KeV is very important to the research of high energy astrophysical processes, especially some of the fundamental problems in astrophysics. Due to imaging difficulty in the hard X-ray band, Observations made over this band is comparatively less than other bands such as soft X-ray and gamma -ray. Up to now, there has been no hard X ray all sky- survey of high sensitivity. Based on the Direct Demodulation imaging method recently developed, the Hard X- ray Modulation Telescope(HXMT) mission is proposed under the Major State Basic Research Development Program of China. The scientific objective of HXMT mission is to realize the first hard X-ray all sky survey of high sensitivy and angular resolution in the world, and to present the first detailed sky map of hard X r a y - distribution. In this article, the physical basis, the imaging principle and the basic structure of HXMT are briefly introduced. The expected angular resolution of observation and position accuracy of radiant source are 2' and 0.2' respectively. Based on the analysis of the mission requirement of HXMT, the mission design of HXMT satellite is presented in which the concept of integrative design approach is presented and implemented. The design of spacecraft subsystems such as strcuture,C&DH and energy are also introduced. To meet the high precision demand of the attitude determination of HXMT, a new Attitude Determination &Control Subsystem(ADCS) scheme is presented in which the Microminiature Inertial Measurement Unit(MIMU) is employed as one of the key attitude sensors. Combined with star tracker, the expected attitude measurement accuracy is 0.01° in the normal mission mode. Based on all these thoughts, the ADCS is analyzed and its general design is presented in the paper. As the first chinese space hard X-ray observatory, the design approach of HXMT satellite is also helpful for other space exploration missions such as solar activity inspection

  2. SIXE: An X-ray experiment for a minisatellite

    Science.gov (United States)

    Isern, Jordi; Bravo, Eduardo; Gómez-Gomar, Jordi; Hernanz, Margarida; García-Berro, Enrique; Giovannelli, Franco; La Padula, Cesare D.; Sabau, Lola; Gutiérrez, Jordi; José, Jordi; García-Senz, Domingo; Bausells, Joan; Cabestany, Joan; Madrenas, Jordi; Angulo, Manuel; Fernández-Valbuena, Manuel; Herrera, Erardo; Reina, Manuel; Talavera, Antonio

    1999-12-01

    SIXE (Spanish Italian X-ray Experiment) is an X-ray detector with geometric area of 2300 cm2, formed by four identical gas-filled Multicell Proportional Counters, and devoted to study the long term spectroscopy of selected X-ray sources in the energy range 3-50 keV. The main characteristics of SIXE are: time accuracy of 1 microsecond, spectral resolution of 5% for E>35 keV and 46/E% for ESpanish MINISAT-02 satellite, in a 3 years long mission starting about 2002-2004. The main scientific goal is the study of the short and long term variability of a selected set of X-ray sources, such as quasars, Seyfert galaxies, high and low mass X-ray binaries, etc. The philosophy of the mission will provide the unique opportunity for the study of X-ray sources with a temporal accuracy of 1 microsecond all through the time range 10-5:107 s.

  3. X-ray monitoring for astrophysical applications on Cubesat

    Science.gov (United States)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  4. The very soft X-ray emission of X-ray-faint early-type galaxies

    Science.gov (United States)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.

  5. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8-2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    Science.gov (United States)

    Halpern, Jules P.; Bogdanov, Slavko; Thorstensen, John R.

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8-2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1-282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ-ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1-282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appears to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ-ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38-282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38-282756.8 as the MSP counterpart of 3FGL J0838.8-2829.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dislocations. In elderly or patients with osteoporosis, a hip fracture may be clearly seen on a CT scan, while it may be barely seen, if at all, on a hip x-ray. For suspected spine injury or other ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... This ensures that those parts of a patient's body not being imaged receive minimal radiation ... x-ray images are among the clearest, most detailed views of ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... may be placed over your pelvic area or breasts when feasible to protect from ... chance of cancer from excessive exposure to radiation. However, the benefit ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest way for your doctor ... shin), ankle or foot. top of page What are some common uses of the ... bones or joint dislocation. demonstrate proper alignment and stabilization of bony ...

  12. X-rays and magnetism.

    Science.gov (United States)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... bear denotes child-specific content. Related Articles and Media ... Images related to X-ray (Radiography) - Bone Sponsored by ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluated). MRI can also detect subtle or occult fractures or bone bruises (also called bone contusions or microfractures) not visible on x-ray images. CT is being used widely to assess trauma patients in ... fractures, subtle fractures or dislocations. In elderly or patients ...

  16. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... pelvis and an image is recorded on special film or a computer. This image shows the bones of the pelvis, which include the two hip bones, plus the sacrum and the coccyx (tailbone). The X-ray image is black and white. Dense body parts that block the passage of the X- ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... any possibility that they are pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. A Word About Minimizing ... imaging tests and treatments have special pediatric considerations. The teddy ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... way for your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little ... way for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it ...

  20. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  1. X-Ray Probes of Cosmic Star-Formation History

    Science.gov (United States)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  2. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  3. A simple X-ray emitter.

    Science.gov (United States)

    Murakami, Hiroaki; Ono, Ryoichi; Hirai, Atsuhiko; Hosokawa, Yoshinori; Kawai, Jun

    2005-07-01

    A compact X-ray emission instrument is made, and the X-ray spectra are measured by changing the applied electric potential. Strong soft X-rays are observed when evacuating roughly and applying a high voltage to an insulator settled in this device. The X-ray intensity is higher as the applied voltage is increased. A light-emitting phenomenon is observed when this device emits X-rays. The present X-ray emitter is made of a small cylinder with a radius of 20 mm and a height of 50 mm. This X-ray generator has a potential to be used as an X-ray source in an X-ray fluorescence spectrometer.

  4. Identification of a Population of X-Ray-Emitting Massive Stars in the Galactic Plane

    Science.gov (United States)

    2011-02-01

    gravitational accretion onto a compact object such as a neutron star (NS) or black hole (BH). The two main classes of HMXBs are the Be X-ray binary systems...The Advanced Satellite for Cosmology and Astrophysics (ASCA) surveyed the inner region of the Galactic plane, detecting 163 X-ray sources with...star, X-rays produced through gravitation accretion in an HMXB or X-rays from shock-heated gas in a CWB. We now discuss each possibility in detail

  5. Lensless x-ray imaging in reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.

    2011-02-03

    Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

  6. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R., E-mail: mgherase@csufresno.edu; Vargas, Andres Felipe

    2017-03-15

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  7. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  8. News on the X-ray emission from hot subdwarf stars

    Science.gov (United States)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  9. X-ray reverberation around accreting black holes

    Science.gov (United States)

    Uttley, P.; Cackett, E. M.; Fabian, A. C.; Kara, E.; Wilkins, D. R.

    2014-08-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy dependence of the high-frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.

  10. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  11. A Deep X-ray Study of the Globular Cluster M4

    Science.gov (United States)

    Pooley, David

    2015-08-01

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries.We have also learned that not all X-ray sources in a globular cluster are dynamically formed. Chandra X-ray Observatory observations of low-density clusters have shown that the magnetically active main-sequence binaries in those clusters are largely primordial, but few clusters have been observed deeply enough in X-rays to uncover a substantial fraction of these binaries.We report on the results of deep Chandra observations of M4 that were motivated, in part, to uncover a nearly complete census of its active binaries. These observations reach X-ray luminosities below 1029 erg/s, a sensitivity that should detect ~90% of the active main-sequence binary population. We detect ~100 X-ray sources within the half-light radius of M4 and characterize their nature by investigating their optical counterparts (or lack thereof) in deep Hubble Space Telescope observations. We compare the populations of X-ray sources in M4 to other well-studied clusters.

  12. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  13. Center for X-ray Optics, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  14. X-Ray Exam: Scoliosis (For Parents)

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Scoliosis KidsHealth / For Parents / X-Ray Exam: Scoliosis What's in this article? What It Is Why ... You Have Questions Print What It Is A scoliosis X-ray is a relatively safe and painless ...

  15. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    ray telescopes in space, leading to a veritable revolution. Stich telescopes require distortion free focusing of X-rays and the use of position sensitive X- ray detectors. In this article I shall describe the importance of X-ray imaging, the optical ...

  16. X-Ray Observations of Black Widow Pulsars

    NARCIS (Netherlands)

    Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2014-01-01

    We describe the first X-ray observations of five short orbital period (PB < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024—are "black-widow" pulsars, with degenerate companions of mass Lt0.1 M ☉, three of which exhibit

  17. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  18. A compressed sensing X-ray camera with a multilayer architecture

    Science.gov (United States)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  19. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  20. X-ray Spectroscopy of Cooling Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  1. Toward active x-ray telescopes II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-10-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the observation time required to achieve a given sensitivity has decreased by eight orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope, culminating with the exquisite subarcsecond imaging performance of the Chandra X-ray Observatory. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (technologically challenging—requiring precision fabrication, alignment, and assembly of large areas (x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes current progress toward active x-ray telescopes.

  2. On stellar X-ray emission

    Science.gov (United States)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  3. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    OpenAIRE

    Sun, Tianxi; MacDonald, C.A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  4. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  5. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  6. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  7. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  8. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  9. Location of the Norma transient with the HEAO 1 scanning modulation collimator. [X ray source in Norma Constellation

    Science.gov (United States)

    Fabbiano, G.; Gursky, H.; Schwartz, D. A.; Schwarz, J.; Bradt, H. V.; Doxsey, R. E.

    1978-01-01

    A precise position has been obtained for an X-ray transient source in Norma. The location uncertainty includes a variable star previously suggested to be the optical counterpart. This transient is associated with the steady X-ray source MX 1608-52 and probably with an X-ray burst source. A binary system containing a low-mass primary and a neutron-star or black-hole secondary of a few solar masses is consistent with the observations.

  10. X-ray observations of black widow pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, P. A.; McLaughlin, M. A. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Kerr, M. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.

  11. The stellar composition of X-ray surveys from the Einstein Observatory

    Science.gov (United States)

    Favata, F.; Sciortino, S.; Rosner, R.; Vaiana, G. S.

    1988-01-01

    A new class of X-ray-luminous 'yellow' stellar objects which contributes significantly to the stellar log N-log S distribution, but which cannot be reconciled with normal G and K main-sequence stars. This identification results from a new analysis of the stellar content of three samples of X-ray-selected X-ray sources observed with the Einstein Observatory, namely the 'Medium Sensitivity Survey', the 'High Sensitivity Survey', and the 'Hyades Region Survey'. In this paper, both X-ray and optical properties of the stellar samples in these surveys are reported. The actual stellar content of the surveys is compared with predictions based on current knowledge of stellar X-ray luminosity functions and the stellar composition and spatial distribution in the Galaxy. It is shown that a plausible identification for the excess population of 'yellow' stars is with the active, RS CVn-like binaries.

  12. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    Science.gov (United States)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3Break Galaxies (LBGs). The 2-10 kev X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  13. The X-ray corona of Procyon

    Science.gov (United States)

    Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Rosner, R.; Peres, G.; Serio, S.

    1985-01-01

    X-ray emission from the nearby system Procyon A/B (F5 IV + DF) was detected, using the IPC (Imaging Proportional Counter) on board the Einstein Observatory. Analysis of the X-ray pulse height spectrum suggests that the observed X-ray emission originates in Procyon A rather than in the white dwarf companion Procyon B, since the derived X-ray temperature, log T = 6.2, agrees well with temperatures found for quiescent solar X-ray emission. Modeling Procyon's corona with loops characterized by some apex temperature Tmax and emission length scale L, it is found that Tmax is well constrained, but L, and consequently the filling factor of the X-ray emitting gas, are essentially unconstrained even when EUV emission from the transition region is included in the analysis.

  14. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  15. X-ray microdiffraction of biominerals.

    Science.gov (United States)

    Tamura, Nobumichi; Gilbert, Pupa U P A

    2013-01-01

    Biominerals have complex and heterogeneous architectures, hence diffraction experiments with spatial resolutions between 500 nm and 10 μm are extremely useful to characterize them. X-ray beams in this size range are now routinely produced at many synchrotrons. This chapter provides a review of the different hard X-ray diffraction and scattering techniques, used in conjunction with efficient, state-of-the-art X-ray focusing optics. These include monochromatic X-ray microdiffraction, polychromatic (Laue) X-ray microdiffraction, and microbeam small-angle X-ray scattering. We present some of the most relevant discoveries made in the field of biomineralization using these approaches. © 2013 Elsevier Inc. All rights reserved.

  16. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  17. The observed spin distributions of millisecond radio and X-ray pulsars

    NARCIS (Netherlands)

    Hessels, J.W.T.

    2008-01-01

    We consider the currently observed spin distributions of various types of neutron stars, including isolated and binary radio millisecond pulsars in the Galactic plane and globular cluster system as well as neutron stars in low-mass X-ray binary systems where the spin rate is known either through

  18. Handbook of X-ray Astronomy

    Science.gov (United States)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta; Ellis, Richard; Huchra, John; Kahn, Steve; Rieke, George; Stetson, Peter B.

    2011-11-01

    Practical guide to X-ray astronomy for graduate students, professional astronomers and researchers. Presenting X-ray optics, basic detector physics and data analysis. It introduces the reduction and calibration of X-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The appendices provide reference material often required during data analysis. The handbook web page contains figures and tables: http://xrayastronomyhandbook.com/

  19. Sandia Mark II X-Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, L.W.

    1979-11-01

    The Sandia Mark II X-Ray System was designed and developed to provide an intense source of mononergetic, ultra-soft x rays with energies between 0.282 and 1.486 keV. The x-ray tube design is similar to one developed by B.L. Henke and incorporates modifications made by Tom Ellsberry. An operations manual section is incorporated to help the experimenter/operator.

  20. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  1. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  2. X-ray Observations at Gaisberg Tower

    Directory of Open Access Journals (Sweden)

    Pasan Hettiarachchi

    2018-01-01

    Full Text Available We report the occurrence of X-rays at ground level due to cloud-to-ground flashes of upward-initiated lightning from Gaisberg Tower, in Austria, which is located at an altitude of 1300 m. This is the first observation of X-ray emissions from upward lightning from a tower top located at high altitude. Measurements were carried out using scintillation detectors installed close to the tower top in two phases from 2011 to 2015. X-rays were recorded in three subsequent strokes of three flashes out of the total of 108 flashes recorded in the system during both phases. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs before the subsequent return stroke. This shows that X-rays were emitted when the dart leader was in the vicinity of the tower top, hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket-triggered lightning. In addition to the above 108 flashes, an interesting observation of X-rays produced by a nearby downward flash is also presented. The shorter length of dart-leader channels in Gaisberg is suggested as a possible cause of this apparently weaker X-ray production.

  3. X-ray laser microscope apparatus

    Science.gov (United States)

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  4. Detector development for x-ray imaging

    Science.gov (United States)

    Mentzer, M. A.; Herr, D. A.; Brewer, K. J.; Ojason, N.; Tarpine, H. A.

    2010-02-01

    X-ray imaging requires unique optical detector system configuration for optimization of image quality, resolution, and contrast ratio. A system is described whereby x-ray photons from multiple anode sources create a series of repetitive images on fast-decay scintillator screens, from which an intensified image is transferred to a fast phosphor on a GEN II image intensifier and collected as a cineradiographic video with high speed digital imagery. The work addresses scintillator material formulation, flash x-ray implementation, image intensification, and high speed video processing and display. Novel determination of optimal scintillator absorption, x-ray energy and dose relationships, contrast ratio determination, and test results are presented.

  5. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector.

    Science.gov (United States)

    Ding, X; Xie, J; He, Y; Pan, Q; Yan, Y

    2000-10-02

    Polycapillary X-ray optics (capillary X-ray lens) are now popular in X-ray fluorescence (XRF) analysis. Such an X-ray lens can collect X-rays emitted from an X-ray source in a large solid angle and form a very intense X-ray microbeam which is very convenient for microbeam X-ray fluorescence (MXRF) analysis giving low minimum detection limits (MDLs) in energy dispersive X-ray fluorescence (EDXRF). A new method called position sensitive X-ray spectrometry (PSXS) which combines an X-ray lens used to form an intense XRF source and a position sensitive detector (PSD) used for wavelength dispersive spectrometry (WDS) measurement was developed recently in the X-ray Optics Laboratory of Institute of Low Energy Nuclear Physics (ILENP) at Beijing Normal University. Such a method can give high energy and spacial resolution and high detection efficiency simultaneously. A short view of development of both the EDXRF using a capillary X-ray lens and the new PSXS is given in this paper.

  6. General relativistic x ray (UV) polarization rotations as a quantitative test for black holes

    Science.gov (United States)

    Stark, Richard F.

    1989-01-01

    It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.

  7. X-rays as a new tool to study the winds of hot subdwarf stars

    Science.gov (United States)

    Mereghetti, S.; La Palombara, N.

    2017-10-01

    In recent years, thanks to XMM-Newton and Chandra, it has been possible to detect X-ray emission from several hot subdwarf stars or place interesting upper limits. X-rays are observed from subdwarfs in binary systems, where they result from wind accretion onto a white dwarf or neutron star companion, as well as from single hot subdwarfs, in which X-rays are probably due to shock instabilities in the wind. In both cases, X-ray data provide useful information for our understanding of the weak radiation-driven winds of these low mass stars, which are difficult to study with the techniques and observations typically used for massive hot stars. After reviewing the properties of the X-ray emission from hot subdwarfs, we will report on the most recent results on the three X-ray brightest sdOs (HD 49798, BD +37 442, and BD +37 1977), discuss the implications of the non-detections of sdB+WD binaries, and present the prospects for future X-ray observations of hot subdwarfs.

  8. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    Science.gov (United States)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  9. Superorbital Period Variations in the X-ray Pulsar LMC X-4

    Indian Academy of Sciences (India)

    We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system ( ∼ 30.3 day, P ˙ ∼ -2 × 10-5 s s-1). Along with this result, a comparison of the superorbital intensity ...

  10. Superorbital Period Variations in the X-ray Pulsar LMC X-4 B. Paul ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Department of Physics, Rikkyo University, Nishii-Ikebukuro, 3-34-1, Toshima-ku, Tokyo,. 171-8501, Japan. Abstract. We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third ...

  11. Coordinated X-ray and optical observations of Scorpius X-1

    Science.gov (United States)

    Augusteijn, T.; Karatasos, K.; Papadakis, M.; Paterakis, G.; Kikuchi, S.; Brosch, N.; Leibowitz, E.; Hertz, P.; Mitsuda, K.; Dotani, T.

    1992-01-01

    We present the results of coordinated, partly simultaneous, optical and X-ray (Ginga) observations of the low-mass X-ray binary Sco X-1. We find that the division between the optically bright and faint state, at a blue magnitude B = 12.8, corresponds to the change from the normal to the flaring branch in the X-ray color-color diagram as proposed by Priedhorsky et al. (1986). From archival Walraven data we find that in both optical states the orbital light curve is approximately sinusoidal, and have a similar amplitudes.

  12. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    DEFF Research Database (Denmark)

    Singh, K; Stewart, G.; Westergaard, Niels Jørgen Stenfeldt

    2017-01-01

    medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei...... and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its...

  13. XMM-Newton view of X-ray overdensities from nearby galaxy clusters: the environmental dependencies

    Science.gov (United States)

    Caglar, Turgay; Hudaverdi, Murat

    2017-11-01

    In this work, we studied 10 nearby (z ≤ 0.038) galaxy clusters to understand possible interactions between hot plasma and member galaxies. A multi-band source detection was applied to detect point-like structures within the intra-cluster medium. We examined the spectral properties of a total of 391 X-ray point sources within each cluster's potential well. log N versus log S was studied in the energy range 2-10 keV to measure X-ray overdensities. Optical overdensities were also calculated to solve suppression/triggering phenomena for nearby galaxy clusters. X-ray and optical flux/luminosity properties (X/O, LX/LB and LX/LK) were investigated for optically identified member galaxies. The X-ray luminosities of our point sources were found to be faint [40.08 ≤ log (LX) ≤ 42.39 erg s-1]. The luminosity range of point sources reveals possible contributions to X-ray emission from low-luminosity active galactic nuclei, X-ray binaries and star formation. We estimated ˜2 times higher X-ray overdensities from galaxies within galaxy clusters compared to fields. Our results demonstrate that optical overdensities are much higher than X-ray overdensities at a cluster's centre, whereas X-ray overdensities increase through the outskirts of clusters. We conclude that high pressure from a cluster's centre affects the balance of galaxies and they lose a significant amount of their fuel. As a result, the clustering process quenches the X-ray emission of the member galaxies. We also find evidence that the existence of X-ray bright sources within a cluster environment can be explained by two main phenomena: contributions from off-nuclear sources and/or active galactic nucleus (AGN) triggering caused by galaxy interactions rather than AGN fuelling.

  14. X-ray flares from postmerger millisecond pulsars.

    Science.gov (United States)

    Dai, Z G; Wang, X Y; Wu, X F; Zhang, B

    2006-02-24

    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.

  15. A deeper look at the X-ray point source population of NGC 4472

    Science.gov (United States)

    Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.

    2017-10-01

    In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.

  16. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  17. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors ...

  18. Low Energy X-Ray Diagnostics - 1981.

    Science.gov (United States)

    1981-01-01

    ray Analysis, 18, 26 (1975). practicA !ity of thermal recording of intense x-rays. 2. R.P. Godwin, Adv. in X-rays Analysis, 19, 533 Many optical...the 15. T. W. Barbee Jr., in "National Science Foundation behavior of LSM dispersion elements. - Twenty Sixth Annual Report for Fiscal Year Extension

  19. Instrumental technique in X-ray astronomy

    Science.gov (United States)

    Peterson, L. E.

    1975-01-01

    A detailed review of the development of instruments for X-ray astronomy is given with major emphasis on nonfocusing high-sensitivity counter techniques used to detect cosmic photons in the energy range between 0.20 and 300 keV. The present status of X-ray astronomy is summarized together with significant results of the Uhuru observations, and photon interactions of importance for the detection of X-rays in space are noted. The three principal devices used in X-ray astronomy (proportional, scintillation, and solid-state counters) are described in detail, data-processing systems for these devices are briefly discussed, and the statistics of nuclear counting as applied to X-ray astronomy is outlined analytically. Effects of the near-earth X-ray environment and atmospheric gamma-ray production on X-ray detection by low-orbit satellites are considered. Several contemporary instruments are described (proportional-counter systems, scintillation-counter telescopes, modulation collimators), and X-ray astronomical satellite missions are tabulated.

  20. X-ray Galaxy Clusters & Cosmology

    Science.gov (United States)

    Ettori, Stefano

    2011-09-01

    I present a summary of the four lectures given on these topics: (i) Galaxy Clusters in a cosmological context: an introduction; (ii) Galaxy Clusters in X-ray: how and what we observe, limits and prospects; (iii) X-ray Galaxy Clusters and Cosmology: total mass, gas mass & systematics; (iv) Properties of the ICM: scaling laws and metallicity.

  1. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  2. The Beginnings of X-ray Crystallography

    Indian Academy of Sciences (India)

    IAS Admin

    Those were the days when Science was hovering around the wave–particle duality. William. Henry Bragg was toying with the idea that X-rays are particles and the observation made by Max von Laue that X-rays are diffracted by crystals could indeed lead to the understanding of crystal structures. On the other hand, his son, ...

  3. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  4. Hybrid scintillators for x-ray imaging

    Science.gov (United States)

    Bueno, Clifford; Rairden, Richard L.; Betz, Robert A.

    1996-04-01

    The objective of this effort is to improve x-ray absorption and light production while maintaining high spatial resolution in x-ray imaging phosphor screens. Our current target is to improve screen absorption efficiency and screen brightness by factors of 2 or greater over existing screens that have 10-1p/mm resolution. In this program, commercial phosphor screens are combined with highly absorbing, high-resolution scintillating fiber-optic (SFO) face plates to provide a hybrid sensor that exhibits superior spatial resolution, x-ray absorption, and brightness values over the phosphor material alone. These characteristics of hybrid scintillators can be adjusted to meet specific x-ray imaging requirements over a wide range of x-ray energy. This paper discusses the design, fabrication, and testing of a new series of hybrid scintillators.

  5. X-ray modeling for SMILE

    Science.gov (United States)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  6. Rotation powered pulsars in the x-rays

    Science.gov (United States)

    Arumugasamy, Prakash

    non-recycled X-ray pulsars, PSR J0108-3430 tauc = 166 Myr and E = 5.8 x 1030 erg s -1. The pulsar's spectrum likely consists of a thermal component, emitted from a hot polar cap, and a non-thermal component, emitted from its magnetosphere. The X-ray pulse profile shows a single, asymmetric peak which could be explained by an axially-asymmetric temperature distribution at the pole or by the non-thermal emission from the outer gap. The three pulsars represent important stages in the evolutionary path that a hypothetical single young pulsar like J2022+3842 might take, as it passes through stages close to gamma-ray emission turn-off (like J1836+5925) and X-ray turn-off (similar to J0108-3430). Pulsars in binaries can follow an alternative path. By accreting matter from their companions they can be 'recycled' to short millisecond periods and emit X-rays and gamma-rays for billions of years. I also present a special class of such recycled pulsars which are believed to be in the process of fatally ablating their companions. I present the X-ray analysis of PSR J1446-4701, an E = 3.6 x 1034 erg s-1 pulsar in a 6.7 hr binary orbit, and PSR J1311-3430, an E = 4.9 x 1034 erg s-1 pulsar in an extreme 1.6 hr binary orbit. PSR J1446-4701 turned out to be a non-eclipser with possibly low (face-on) orbital inclination, with emission from both the pulsar and the intra-binary shock observable throughout the binary orbit. PSR J1311-3430 is a known eclipser, in which hints of spectral variability have been found, between pulsar superior and inferior conjunction phases. I also present a comprehensive comparison of the sample of such extremely low-mass binary pulsars. We reveal the true nature of pulsars, slowly and steadily, usually one target at a time, but eventually we expect useful patterns to emerge that improves our understanding of the population of rotation powered pulsars.

  7. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  8. Multiple beam x-ray diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, C.M.; Davis, J.R.; Coyle, R.A. [Monash University, Clayton, VIC (Australia). Department of Physics

    1999-12-01

    Full text: X-ray diffraction computed tomography (XDT) is an imaging modality that utilises scattered x-rays to reconstruct an image. Since its inception in 1985, various detection scenarios and imaging techniques have been developed to demonstrate the accuracy and applicability of XDT. Many of the previous methods for measuring the scattered x-rays from an object utilise detectors that accept x-rays scattered from the entire length of the raypath through the object. The detector apertures must therefore have dimensions similar to the largest width of the scanned object. This creates a situation where the detected x-rays are not derived from a single scattering angle. A new method of scanning the x-rays scattered from an object is presented which allows quantitative determination of the spatial distribution of differential scattering cross section within a cross-sectional plane of the object. The new method incorporates a position sensitive detector and an arrangement of Soller slits. The acquired data represents both spatial and angular information. For each raypath through the object, a partial diffraction projection is measured at the off-axis detector and a set of diffraction projections is assembled by combining the diffracted signal from all rays through the object. A reconstruction strategy that accounts for attenuation of the primary beam and the scattered beam allows us to reconstruct a map of the differential scattering cross section in the sample for a given angle. Copyright (1999) Australian X-ray Analytical Association Inc. 3 refs.

  9. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE POPULATION OF NGC 404

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Weisz, D. R. [University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Gaetz, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Skillman, E. D. [University of Minnesota, Astronomy Department, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-02-15

    We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of {approx}123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of {approx}6 Multiplication-Sign 10{sup 35} erg s{sup -1} in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10{sup 35} erg s{sup -1} and 10{sup 36} erg s{sup -1}, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10{sup 37} erg s{sup -1}) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation {approx}0.5 Gyr ago.

  10. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    Science.gov (United States)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  11. X- rays and matter- the basic interactions

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens

    2008-01-01

    In this introductory article we attempt to provide the theoretical basis for developing the interaction between X-rays and matter, so that one can unravel properties of matter by interpretation of X-ray experiments on samples. We emphasize that we are dealing with the basics, which means that we...... shall limit ourselves to a discussion of the interaction of an X-ray photon with an isolated atom, or rather with a single electron in a Hartree-Fock atom. Subsequent articles in this issue deal with more complicated - and interesting - forms of matter encompassing many atoms or molecules. To cite...

  12. X-ray Emission from Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav

    2006-01-01

    Isolated (solitary or non-accreting) millisecond pulsars with observed X-ray emission can be divided in two distinct groups: those emitting nonthermal (magnetospheric) radiation and pulsars with the bulk of X-rays of a thermal origin, presumably emitted from small hot spots around the magnetic poles on the neutron star surface (polar caps). I will discuss properties of X-ray emission detected with Chandra and XMM-Newton from a number of millisecond pulsars, with emphasis on those of the thermal component, and compare them with predictions of radio pulsar models.

  13. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  14. Materials for refractive x-ray optics.

    Science.gov (United States)

    Lund, M W

    1997-01-01

    An X-ray lens using refraction has been proposed by Tomie, and demonstrated for 14 keV X-rays by Snigirev et al. This type of lens is made from a series of very weak lens elements. I calculate the properties of such lenses constructed of various chemical elements and compounds over the range of 1 to 30 keV. In general, I find that X-ray optics made from low density, low Z materials have the widest useful apertures, but require more lens elements than denser and higher Z materials.

  15. The Future of X-Ray Optics

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  16. The ROSAT X-ray Background Dipole

    OpenAIRE

    Plionis, M.; Georgantopoulos, I.

    1998-01-01

    We estimate the dipole of the diffuse 1.5 keV X-ray background from the ROSAT all-sky survey map of Snowden et al (1995). We first subtract the diffuse Galactic emission by fitting to the data an exponential scale height, finite radius, disk model. We further exclude regions of low galactic latitudes, of local X-ray emission (eg the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background (XRB) dipole points towards $(l,b) ~ (288, 25) \\pm 19 degree...

  17. First hard X-ray detection and broad-band X-ray study of the unidentified transient AX J1949.8+2534

    Science.gov (United States)

    Sguera, V.; Sidoli, L.; Paizis, A.; Masetti, N.; Bird, A. J.; Bazzano, A.

    2017-08-01

    We present the results from INTEGRAL and Swift/XRT observations of the hitherto poorly studied unidentified X-ray transient AX J1949.8+2534, and on archival multiwavelength observations of field objects. Bright hard X-ray outbursts have been discovered above 20 keV for the first time, the measured duty cycle and dynamic range are of the order of ˜4 per cent and ≥ 630, respectively. The source was also detected during a low soft X-ray state (˜2 × 10-12 erg cm-2 s-1) thanks to a Swift/XRT followup, which allowed for the first time to perform a soft X-ray spectral analysis as well as significantly improve the source positional uncertainty from arcminute to arcsecond size. From archival near-infrared data, we pinpointed two bright objects as most likely counterparts whose photometric properties are compatible with an early-type spectral nature. This strongly supports a high-mass X-ray binary (HMXB) scenario for AX J1949.8+2534, specifically a Supergiant Fast X-ray Transient (more likely) or alternatively a Be HMXB.

  18. An Einstein Observatory X-ray survey of main-sequence stars with shallow convection zones

    Science.gov (United States)

    Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.

    1985-01-01

    The results of an X-ray survey of bright late A and early F stars on the main B-V sequence between 0.1 and 0.5 are presented. All the stars were observed with the Einstein Observatory for a period of at least 500 seconds. The survey results show significantly larger X-ray luminosities for the sample binaries than for the single stars. It is suggested that the difference is due to the presence of multiple X-ray sources in binaries. It is shown that the X-ray luminosities for single stars increase rapidly with increasing color, and that the relation Lx/Lbol is equal to about 10 to the -7th does not hold for A stars. No correlation was found between X-ray luminosity and projected equatorial rotation velocity. It is argued on the basis of the observations that X-ray emission in the sample stars originated from coronae. The available observational evidence supporting this view is discussed.

  19. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes(1,2). Their X-ray luminosities in the 0...... at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear...... region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity...

  20. Search for Infrared Counterparts to X-Ray Point Sources in M 51 and NGC 4559

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Brandl, Bernhard

    2006-02-01

    We propose to use the KPNO-4m telescope to take near-infrared (IR) images of the star-forming galaxies M51 and NGC 4559 to study the environments of their X-ray point sources. We chose these galaxies because of the extensive archival HST optical and Chandra X-ray observations of them. With our proposed observations, we will search for IR counterparts to X-ray binary sources. Many of these point sources are X-ray binaries containing a compact object that is left after the violent death of a massive star. By studying compact objects residing in the young stellar clusters where they formed, we can obtain the most interesting constraints on their environments and progenitor. Using these proposed observations along with HST and Chandra archival images, we will perform multi-wavelength studies on the stellar clusters associated with these X-ray sources. Fitting the photometry to Bruzual- Charlot spectral evolution models, we will estimate cluster mass, age and metallicity range. We will use this to constrain theories of compact object formation and evolution, particularly for the origins of the intermediate-mass black holes (IMBH) thought to power ultra-luminous X-ray sources (ULX). In future observations, we will acquire follow up spectra of the IR counterparts to study the cluster dynamics as well as rule out the possibility some ULXs are background quasars. We are requesting two nights on the KPNO-4m using FLAMINGOS to take J and K_s observations.

  1. State-dependent Orbital Modulation of X-Rays in CYG X-3

    Science.gov (United States)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Ge, Ming-Yu; Li, Jian; Zhang, Shu

    2013-01-01

    We analyze all of the available RXTE observations of Cyg X-3 in order to investigate the connection between the central X-ray source and its surrounding environment. The hardness-intensity diagram of Cyg X-3 displays a "shoe" shape rather than the Q-type shape commonly seen in other black hole X-ray binary, and exhibits no apparent hysteresis effect. During the γ-ray outbursts, no existing data are located in the hard and intermediate states, which suggest the absence of a significant population of non-thermal electrons when the source is in these states. For the first time, we present the orbital modulation of the X-ray light curve (LC) of all five states. The different energy band LCs are in phase with each other in all five states, and the modulation amplitude of both soft and hard X-ray LCs monotonously increases with decreasing hardness from hard to soft non-thermal states. We confirm that the modulation depth decreases with increasing energy in the hard, intermediate, and very high states, as originally reported by Zdziarski et al. However, in the soft non-thermal state, the hard X-ray modulation strength significantly increases and is even larger than the soft X-ray one. Our results rule out both wind absorption and jet origins of the hard X-ray LC modulation in the soft non-thermal state, and challenge our understanding of the states of Cyg X-3.

  2. Impact of ultraluminous X-ray sources on photoabsorption in the first galaxies

    Science.gov (United States)

    Sazonov, S.; Khabibullin, I.

    2018-02-01

    In the local Universe, integrated X-ray emission from high-mass X-ray binaries (HMXBs) is dominated by the brightest ultraluminous X-ray sources (ULXs) with luminosity ≳ 1040 erg s-1. Such rare objects probably also dominated the production of X-rays in the early Universe. We demonstrate that a ULX with LX ˜ 1040-1041 erg s-1 (isotropic-equivalent luminosity in the 0.1-10 keV energy band) shining for ˜105 years (the expected duration of a supercritically accreting phase in HMXBs) can significantly ionise the ISM in its host dwarf galaxy of total mass M ˜ 107-108M⊙ and thereby reduce its opacity to soft X-rays. As a result, the fraction of the soft X-ray (below 1 keV) radiation from the ULX escaping into the intergalactic medium (IGM) can increase from ˜20-50% to ˜30-80% over its lifetime. This implies that HMXBs can induce a stronger heating of the IGM at z ≳ 10 compared to estimates neglecting the ULX feedback on the ISM. However, larger galaxies with M ≳ 3 × 108M⊙ could not be significantly ionised even by the brightest ULXs in the early Universe. Since such galaxies probably started to dominate the global star-formation rate at z ≲ 10, the overall escape fraction of soft X-rays from the HMXB population probably remained low, ≲ 30%, at these epochs.

  3. Much NICER Monitoring of the X-ray Spectrum of Eta Carinae

    Science.gov (United States)

    Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven

    2018-01-01

    Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.

  4. X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062-6143

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Fabian, A. C., E-mail: degenaar@umich.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom)

    2013-04-20

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the {approx_equal}18 minute long X-ray burst tail shows an episode of {approx_equal}10 minutes during which the intensity is strongly fluctuating by a factor of {approx_equal}3 above and below the underlying decay trend on a timescale of seconds. The X-ray spectrum reveals a highly significant emission line around {approx_equal}1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line (assuming Keplerian motion), and photoionization modeling of the Fe-K absorption features each independently point to gas at a radius of {approx_equal} 10{sup 3} km as the source of these features. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  5. Insights from soft X-rays

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the pri......The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength...... of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine...

  6. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y

    2003-01-01

    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  7. Center for X-ray Optics (CXRO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for X-Ray Optics at Lawrence Berkeley National Laboratory works to further science and technology using short wavelength optical systems and techniques....

  8. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Lung tissue absorbs little radiation and will appear dark on the image. Until recently, x-ray images ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  9. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... developed. Inverse replica molding in PDMS of the CRLs was established as an effective way to circumvent the limitations AFM probes have when concave surfaces need to be characterized, e.g. due to the finite lengths of AFM probes. Four different x-ray optical components have been designed, manufactured...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  10. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  11. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks; (1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  12. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  13. Nonrelativistic quantum X-ray physics

    CERN Document Server

    Hau-Riege, Stefan P

    2015-01-01

    Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...

  14. Experimental X-Ray Ghost Imaging.

    Science.gov (United States)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-09-09

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  15. X-ray induced optical reflectivity

    Directory of Open Access Journals (Sweden)

    Stephen M. Durbin

    2012-12-01

    Full Text Available The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4, a semiconductor (gallium arsenide, GaAs, and a metal (gold, Au, obtained with ∼100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  16. Milli X-Ray Fluorescence Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — The Eagle III Micro XRF unit is similar to a traditional XRF unit, with the primary difference being that the X-rays are focused by a polycapillary optic into a spot...

  17. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks;(1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  18. Quantum optics with X-rays

    Science.gov (United States)

    Kuznetsova, Elena; Kocharovskaya, Olga

    2017-11-01

    The demonstration of strong coupling between two nuclear polariton modes in the X-ray spectral region using two coupled cavities each containing a thin layer of iron brings new opportunities for exploring quantum science.

  19. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...

  20. X-ray telescope mirrors made of slumped glass sheets

    Science.gov (United States)

    Winter, A.; Breunig, E.; Friedrich, P.; Proserpio, L.

    2017-11-01

    For several decades, the field of X-ray astronomy has been playing a major role in understanding the processes in our universe. From binary stars and black holes up to galaxy clusters and dark matter, high energetic events have been observed and analysed using powerful X-ray telescopes like e.g. Rosat, Chandra, and XMM-Newton [1,2,3], giving us detailed and unprecedented views of the high-energy universe. In November 2013, the theme of "The Hot and Energetic Universe" was rated as of highest importance for future exploration and in June 2014 the ATHENA Advanced Telescope for High Energy Astrophysics was selected by ESA for the second large science mission (L2) in the ESA Cosmic Vision program, with launch foreseen in 2028 [4]. By combining a large X-ray telescope with state-of-the-art scientific instruments, ATHENA will address key questions in astrophysics, including: How and why does ordinary matter assemble into the galaxies and galactic clusters that we see today? How do black holes grow and influence their surroundings? In order to answer these questions, ATHENA needs a powerful mirror system which exceed the capabilities of current missions, especially in terms of collecting area. However, current technologies have reached the mass limits of the launching rocket, creating the need for more light-weight mirror systems in order to enhance the effective area without increasing the telescope mass. Hence new mirror technologies are being developed which aim for low-weight systems with large collecting areas. Light material like glass can be used, which are shaped to form an X-ray reflecting system via the method of thermal glass slumping.