WorldWideScience

Sample records for adc x-ray binary

  1. The Structure of the Accretion Disk in the ADC X-Ray Binary 4U 1822-371 at Optical and Ultraviolet Wavelengths

    CERN Document Server

    Bayless, Amanda J; Hynes, Robert I; Ashcraft, Teresa A; Cornell, Mark E

    2009-01-01

    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope (HST) and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system; and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s. We show that the disk has a vertically-extended, optically-thick component at optical wavelengths.This component extends almost to the edge of the disk and has a height equal to ~0.5 of the disk radius. As it has a low brightness temperature, we identify it as...

  2. Be/X-ray binaries

    CERN Document Server

    Reig, Pablo

    2011-01-01

    The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called "Be phenomenon", such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass transfer. Until recently, it was thought that the Be stars' disc was not significantly affected by the neutron star. In this review, I present the observational evidence accumulated in recent years on the interaction between the circumstellar disc and the compact companion. The most obvious effect is the tidal truncation of the disc. As a result, the equatorial discs in Be/X-ray binaries are smaller and denser than those around isolat...

  3. X-ray reprocessing in binaries

    Science.gov (United States)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  4. New Insights into X-ray Binaries

    CERN Document Server

    Casares, Jorge

    2009-01-01

    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.

  5. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  6. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  7. Outbursts in ultracompact X-ray binaries

    CERN Document Server

    Hameury, J -M

    2016-01-01

    Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...

  8. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  9. Be-Phenomenon in Neutron Star X-ray Binaries

    Science.gov (United States)

    Kühnel, M.; Kretschmar, P.; Fürst, F.; Pottschmidt, K.; Hemphill, P.; Rothschild, R. E.; Okazaki, A. T.; Sagredo, M.; Wilms, J.

    2017-02-01

    In this work we provide a brief insight into two aspects of Be/X-ray binaries, which are probably involved in production of X-ray outbursts: the evolution of the Be star disk, in particular of its size, and the binary geometry which drives gravitational interaction. Simultaneous X-ray and optical data will aid our investigation of the evolution of Be stars in binaries and the X-ray outburst mechanism.

  10. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultracompact X-ray binaries (UCXBs): 4U 0614+091 and 4U 1543-624. We confirm the presence of a broad O viii Ly alpha reflection line (at a parts per thousand 18 angstrom) using XMM-Newton and Chandra observations obtained in 2012 and 2013. The ...

  11. Hard X-ray emission from neutron star X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvo, T.; Santangelo, A.; Segreto, A

    2004-06-01

    In this paper we review our current knowledge of the hard X-ray emission properties of accreting X-ray Binary Pulsars and old accreting neutron stars in Low Mass X-ray Binaries in light of 7 years of BeppoSAX and RXTE observations. The paper is divided in two parts. In the first part we review the more recent findings on the phase-dependent broad band continua and cyclotron resonance scattering features observed in many systems of the X-ray Binary Pulsar class. In the second part we review the hard X-ray emission of LMXRB focussing on the hard X-ray components extending up to energies of a few hundred keV that have been clearly detected in sources of both the atoll and Z classes. The presence and characteristics of these hard emission components are then discussed in relation to source properties and spectral state. We, also, briefly mention models that have been proposed for the hard X-ray emission of neutron star X-ray binaries.

  12. X-ray spectral properties of accretion discs in X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    White, N.E.; Stella, L.; Parmar, A.N.

    1988-01-01

    Exosat observations are used to compare the spectral properties of the persistent emission from a number of X-ray burst sources, high-luminosity low-mass X-ray binaries (LMXRB) and galactic black hole candidates with various models for X-ray emission from an accretion disk surrounding a compact object in a binary system. It is shown that only a Comptonization model provides a good fit to all of the spectra considered. The fits to the spectra of the high-luminosity LMXRB systems necessitate an additional blackbody component with a luminosity 16 to 34 percent that from the Comptonized component. 82 references.

  13. Neutron Stars in X-ray Binaries and their Environments

    Science.gov (United States)

    Paul, Biswajit

    2017-09-01

    Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.

  14. X-ray Polarization from High Mass X-ray Binaries

    CERN Document Server

    Kallman, T; Blondin, J

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geoemetric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper ws show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclips...

  15. An X-ray and optical study of the ultracompact X-ray binary A1246-58

    NARCIS (Netherlands)

    Zand, J. J. M. in 't

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X (’BeppoSAX’), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission (’XMM-Newton’), the Swift mission, and the Very Larg

  16. An X-ray and optical study of the ultracompact X-ray binary A 1246-58

    NARCIS (Netherlands)

    in 't Zand, J. J. M.; Bassa, C. G.; Keek, L.; Verbunt, F.; Mendez, M.; Markwardt, C. B.; Jonker, P.G.

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X ("BeppoSAX"), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission ("XMM-Newton"), the Swift mission, and the Very Larg

  17. Mass transfer in binary X-ray systems

    Science.gov (United States)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  18. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  19. The X-ray Spectral Evolution of Galactic Black Hole X-ray Binaries Toward Quiescence

    CERN Document Server

    Plotkin, Richard M; Jonker, Peter G

    2013-01-01

    Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a normalized Eddington ratio l_x = L_{0.5-10 keV}}/L_{Edd} < 1e-5). Here, we present Chandra X-ray imaging spectroscopy for three BHXB systems (H 1743-322, MAXI J1659-152, and XTE J1752-223) as they fade into quiescence following an outburst. Multiple X-ray observations were taken within one month of each other, allowing us to track each individual system's X-ray spectral evolution during its decay. We compare these three systems to other BHXB systems. We confirm that quiescent BHXBs have softer X-ray spectra than low-hard state BHXBs, and that quiescent BHXB spectral properties show no dependence on the binary system's orbital parameters. However, the observed anti-correlation between X-ray photon index and l_x in the low-hard state does not continue once a BHXB enters quiescence. Instead, ...

  20. Exploring subluminous X-ray binaries

    NARCIS (Netherlands)

    Degenaar, N.D.

    2010-01-01

    Halfway the twentieth century, technological developments made it possible to carry detection instruments outside the absorbing layers of the Earth’s atmosphere onboard rockets and satellites. This opened up the opportunity to detect the emission from celestial objects at X-ray wavelengths, thereby

  1. An anticorrelation between X-ray luminosity and Hα equivalent width in X-ray binaries

    NARCIS (Netherlands)

    Fender, R.P.; Russell, D.M.; Knigge, C.; Soria, R.; Hynes, R.I.; Goad, M.

    2009-01-01

    We report an anticorrelation between continuum luminosity and the equivalent width (EW) of the Ha emission line in X-ray binary systems. The effect is evident both in a universal monotonic increase in Ha EW with time following outbursts, as systems fade, and in a comparison between measured EWs and

  2. An anticorrelation between X-ray luminosity and Hα equivalent width in X-ray binaries

    NARCIS (Netherlands)

    Fender, R.P.; Russell, D.M.; Knigge, C.; Soria, R.; Hynes, R.I.; Goad, M.

    2009-01-01

    We report an anticorrelation between continuum luminosity and the equivalent width (EW) of the Ha emission line in X-ray binary systems. The effect is evident both in a universal monotonic increase in Ha EW with time following outbursts, as systems fade, and in a comparison between measured EWs and

  3. An X-ray Survey of Colliding Wind Binaries

    CERN Document Server

    Gagne, Marc; Savoy, Michael; Cartagena, Carlos; Cohen, David H; Owocki, Stanley P

    2012-01-01

    We have compiled a list of 35 O+O binaries and 86 Wolf-Rayet binaries in the Milky Way and Magellanic clouds detected with the {\\it Chandra}, {\\it XMM-Newton} and {\\it ROSAT} satellites to probe the connection between their X-ray properties % ($L_{\\rm X}$, $L_{\\rm X}/L_{\\rm bol}$ and $kT$) and their system characteristics. Of the Wolf-Rayet binaries with published model parameters, all have log LX > 32, kT > 1 keV and log Lx/Lbol > -7. The most X-ray luminous W-R binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar W-R primaries. Among the O+O binaries, short-period systems have soft X-ray spectra and longer period systems show harder X-ray spectra again with a large spread in Lx/Lbol.

  4. The missing Wolf-Rayet X-ray binary systems

    Science.gov (United States)

    Munoz, M.; Moffat, A. F. J.; Hill, G. M.; Richardson, N. D.; Pablo, H.

    We investigate the rarity of the Wolf-Rayet X-ray binaries (WRXRBs) in contrast to their predecessors, the high mass X-ray binaries (HMXRBs). Recent studies suggest that common envelope (CE) mergers during the evolution of a HMXRBs may be responsible (Linden et al. 2012). We conduct a binary population synthesis to generate a population of HMXRBs mimicking the Galactic sample and vary the efficiency parameter during the CE phase to match the current WRXRB to HMXRB ratio. We find that ˜50% of systems must merge to match observational constraints.

  5. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  6. Applications of Indirect Imaging techniques in X-ray binaries

    CERN Document Server

    Harlaftis, E T

    2000-01-01

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  7. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3–30...

  8. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  9. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  10. Luminous Binary Supersoft X-Ray Sources

    Science.gov (United States)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Roseanne

    2005-01-01

    One of the key accomplishments of the two preceding years was our development of an algorithm to select SSSs in external galaxies which have been observed by Chandra or XMM-Newton. By applying this algorithm to data from a number of galaxies, we discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We call these new sources quasisoft sources (QSSs). During this past year, we have built on and extended this work. We have (1) continued to identify SSSs and QSSs in external galaxies, (2) worked on models for the sources and find that black hole models seem promising for a subset of them, and (3) have studied individual systems, especially M101-ULX1. This special system has been observed as an SSS in its high &ate, with a luminosity in excess of 10(exp 41) erg/s. It has also been observed as a QSS when it is less luminous, and as a hard source in its low state. It is one of the best candidates to be an accreting intermediate-mass black hole. We have several papers in preparation. Below we list papers which are complete, including only new work and papers whose status has changed (e.g., been accepted for publication) since our last report. In addition, our work on QSSs has received some publicity. It was the subject of a Chandra press release and was picked up by several media outlets.

  11. Very faint X-ray binaries with XMM-Newton

    Science.gov (United States)

    Armas Padilla, M.

    2016-06-01

    A population of very faint X-ray binaries has been discovered in the last years thanks to the improvement in sensitivity and resolution of the new generations of X-ray missions. These systems show anomalously low luminosities, below 10^{36} ergs/sec, challenging our understanding of accretion physics and binary evolution models, and thereby opening new windows for both observational and theoretical work on accretion onto compact objects. XMM-Newton is playing a crucial role in the study of this dim family of objects thanks to its incomparable spectral capabilities at low luminosities. I will review the state-of-the-art of the field and present our XMM results in both black hole and neutron star objects. Finally, I will discuss the possibilities that the new generation of X-ray telescopes offer for this research line.

  12. Formation and destruction of jets in X-ray binaries

    CERN Document Server

    Kylafis, N D; Kazanas, D; Christodoulou, D M

    2011-01-01

    Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state and history of the source. In particular, black-hole XRBs emit compact, steady radio jets when they are in the so-called hard state, the jets become eruptive as the sources move toward the soft state, disappear in the soft state, and re-appear when the sources return to the hard state. On the other hand, jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Significant phenomenology has been accumulated so far regarding the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. Our aim is to investigate whether the phenomenology regarding the X-ray emission on one hand and the jet appearance and disappearance on the other can be put...

  13. GIANT OUTBURSTS IN Be/X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800 (Australia)

    2014-08-01

    Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origins have remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using three-dimensional smoothed particle hydrodynamics simulations, we model the long-term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth which occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient; the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.

  14. Primordial Globular Clusters, X-Ray Binaries & Cosmological Reionisation

    CERN Document Server

    Power, C; Combet, C; Wilkinson, M I

    2009-01-01

    Globular clusters are dense stellar systems that have typical ages of ~13 billion years, implying that they formed at redshifts of z>~6. Massive stars in newly formed or primordial globular clusters could have played an important role during the epoch of cosmological reionisation (z>~6) as sources of energetic, neutral hydrogen ionising UV photons. We investigate whether or not these stars could have been as important in death as sources of energetic X-ray photons as they were during their main sequence lives. Most massive stars are expected to form in binaries, and an appreciable fraction of these (as much as ~30%) will evolve into X-ray luminous (L_X~10^38 erg/s) high-mass X-ray binaries (HMXBs). These sources would have made a contribution to the X-ray background at z>~6. Using Monte Carlo models of a globular cluster, we estimate the total X-ray luminosity of a population of HMXBs. We compare and contrast this with the total UV luminosity of the massive stars during their main sequence lives. For reasonab...

  15. The Be X-ray Binary Outburst Zoo II

    Science.gov (United States)

    Kuehnel, M.; Kretschmar, P.; Nespoli, E.; Okazaki, A. T.; Schoenherr, G.; Wilson-Hodge, C. A.; Falkner, S.; Brand, T.; Anders, F.; Schwarm, F.-W.; Kreykenbohm, I.; Mueller, S.; Pottschmidt, K.; Fuerst, F.; Grinberg, V.; Wilms, J.

    2015-03-01

    We have continued our recently started systematic study of Be X-ray binary (BeXRB) outbursts. Specifically, we are developing a catalogue of outbursts including their basic properties based on nearly all available X-ray all-sky-monitors. These properties are derived by fitting asymmetric Gaussians to the outburst lightcurves. This model describes most of the outbursts covered by our preliminary catalogue well; only 13% of all datasets show more complex outburst shapes. Analyzing the basic properties, we reveal a strong correlation between the outburst length and the reached peak flux. As an example, we discuss possible models describing the observed correlation in EXO 2030+375.

  16. X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    CERN Document Server

    Iaria, R; D'Aì, A; Burderi, L; Mineo, T; Riggio, A; Papitto, A; Robba, N R

    2012-01-01

    The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the energy band between 0.35 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is $5 \\times 10^{22}$ cm$ ^{-2}$ and the covered fraction is about 60-65%. We identify emission lines from highly ionised elements, and a prominent fluorescence ...

  17. Fundamental properties of High-Mass X-ray Binaries

    CERN Document Server

    González-Galán, A

    2015-01-01

    The aim of this PhD Thesis is to characterize a representative sample of Supergiant X-ray Binaries (SGXBs) formed by 4 sources: XTE J1855-026, a classical SGXB with long-term stable X-ray flux; AX J1841.0-0535 and AX J1845.0-0433, two supergiant fast X-ray transients (SFXTs) with the X-ray emission mostly dominated by flaring; and IGR J00370+6122, something in between these 2 sub-groups. The physical processes that produce these observable differences are still a matter of debate. In this PhD Thesis I performed a study of these 4 different systems to provide new data to constrain the models. This study consists of:(i) the determination of the orbital solution,(ii) a systematic study of the wind behavior along the orbit by the measure of Halpha variations,(iii) a model of stellar atmospheres of the donor star,(iv) establish whether there are X-ray flux variations modulated by the orbital period. The study of the wind shows that Halpha variations are dominated by intrinsic wind processes. The stellar atmosphere...

  18. Correlation between radio luminosity and X-ray timing frequencies in neutron star and black hole X-ray binaries

    NARCIS (Netherlands)

    Migliari, S.; Fender, R.P.; van der Klis, M.

    2005-01-01

    We report on correlations between radio luminosity and X-ray timing features in X-ray binary systems containing low magnetic field neutron stars and black holes. The sample of neutron star systems consists of 4U 1728-34, 4U 1820-34, Ser X-1, MXB 1730-335, GX 13+1, the millisecond X-ray pulsars SAX J

  19. A Radio Pulsar/X-ray Binary Link

    CERN Document Server

    Archibald, Anne M; Ransom, Scott M; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; McLaughlin, Maura A; Boyles, Jason; Hessels, Jason W T; Lynch, Ryan; van Leeuwen, Joeri; Roberts, Mallory S E; Jenet, Frederick; Champion, David J; Rosen, Rachel; Barlow, Brad N; Dunlap, Bart H; Remillard, Ronald A

    2009-01-01

    Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.

  20. A parsec scale X-ray extended structure from the X-ray binary Circinus X-1

    CERN Document Server

    Soleri, P; Fender, R; Wijnands, R; Tudose, V; Altamirano, D; Jonker, P G; Van der Klis, M; Kuiper, L; Kaiser, C; Casella, P

    2008-01-01

    We present the results of the analysis of two Chandra observations of Circinus X-1 performed in 2007, for a total exposure time of ~50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X-1 is an accreting neutron-star binary system that exhibits ultra-relativistic arcsec-scale radio jets and an extended arcmin-scale radio nebula. Furthermore, a recent paper has shown an X-ray excess on arcmin-scale prominent on the side of the receding radio jet. In our images we clearly detect X-ray structures both on the side of the receding and the approaching radio jet. The X-ray emission is consistent with being from synchrotron origin. Our detection is consistent with neutron-star binaries being as efficient as black-hole binaries in producing X-ray outflows, despite their shallower gravitational potential.

  1. A parsec scale X-ray extended structure from the X-ray binary Circinus X-1

    Science.gov (United States)

    Soleri, P.; Heinz, S.; Fender, R.; Wijnands, R.; Tudose, V.; Altamirano, D.; Jonker, P. G.; van der Klis, M.; Kuiper, L.; Kaiser, C.; Casella, P.

    2009-07-01

    We present the results of the analysis of two Chandra observations of Circinus X-1 performed in 2007, for a total exposure time of ~50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X-1 is an accreting neutron star binary system that exhibits ultra-relativistic arcsec-scale radio jets and an extended arcmin-scale radio nebula. Furthermore, a recent paper has shown an X-ray excess on arcmin-scale prominent on the side of the receding radio jet. In our images, we clearly detect X-ray structures on both the side of the receding and the approaching radio jet. The X-ray emission is consistent with a synchrotron origin. Our detection is consistent with neutron star binaries being as efficient as black hole binaries in producing X-ray outflows, despite their shallower gravitational potential.

  2. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    Science.gov (United States)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  3. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    CERN Document Server

    Islam, Nazma

    2016-01-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 10^{36} - 10^{39} erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity r...

  4. Population synthesis of high mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Guo-Liang Lü; Chun-Hua Zhu; Zhao-Jun Wang

    2011-01-01

    By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems, we investigate the Galactic population of high mass X-ray binaries (HMXBs). The number of HMXBs in the Galaxy is between 190 and 240, and their birthrate is from 5.9 × 10-5 yr-1 to 6.3 ×10-5 yr-1. Comparing the Corbet diagram (the positions of the spin periods vs. the orbital periods of HMXBs ) in our model with the associated observations, we find that the stellar wind structure and the process of matter transfer are very important for understanding HMXBs.

  5. On X-ray Variability in Active Binary Stars

    CERN Document Server

    Kashyap, V L; Kashyap, Vinay; Drake, Jeremy

    1999-01-01

    We compare the count-rates of active binaries observed by Einstein and ROSAT. We find significant evidence for short-term variability (approx 0.32) and marginal evidence for a larger variability at longer timescales (approx 0.38). Modeling this excess as cyclic variability, we place an upper limit on the relative amplitude of the cyclic component (I_cyc/I_min < 4) for active binaries, significantly less than the variations seen in the Solar X-ray output over the Solar cycle.

  6. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Lodola, L., E-mail: luca.lodola01@universitadipavia.it [Università degli Studi di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [TIFPA INFN, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università degli Studi di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M. [Università degli Studi di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Latreche, S. [University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); and others

    2016-07-11

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  7. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    Science.gov (United States)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  8. Population synthesis of ultra-compact X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Zhu; Guo-Liang Lü; Zhao-Jun Wang

    2012-01-01

    Ultra-compact X-ray binaries (UCXBs) are very interesting and important objects.By taking the population synthesis approach to the evolution of binaries,we carry out a detailed study of UCXBs.We estimate that there are ~ 5000-10000 UCXBs in the Galaxy,and their birthrates are ~ 2.6-7.5 × 10-4 yr-1.Most UCXBs are transient X-ray sources,but their X-ray luminosities are much lower than those of persistent sources.Therefore,the majority of observed UCXBs should be persistent sources.About 40%-70% of neutron stars (NSs) in UCXBs form via an accretion-induced collapse from an accreting ONe white dwarf (WD),1%-10% of NSs in UCXBs form via core-collapse supernovae and others form via the evolution-induced collapse of a naked helium star.About 50%-80% of UCXBs have naked helium star donors,5%-10% of UCXBs have HeWD donors,15%-40% of UCXBs have COWD donors and UCXBs with ONeWD donors are negligible.Our investigation indicates that the uncertainty mainly comes from evolution of the common-envelope which develops in these systems.

  9. Broad Iron Lines in AGN and X-ray Binaries

    CERN Document Server

    Fabian, A C

    2004-01-01

    Several AGN and black hole X-ray binaries show a clear very broad iron line which is strong evidence that the black holes are rapidly spinning. Detailed analysis of these objects shows that the emission line is not significantly affected by absorption and that the source variability is principally due to variation in amplitude of a power-law. Underlying this is a much less variable, relativistically-smeared, reflection-dominated, component which carries the imprint of strong gravity at a few gravitational radii. The strong gravitational light bending in these regions then explains the power-law variability as due to changes in height of the primary X-ray source above the disc. The reflection component, in particular its variability and the profile of the iron line, enables us to study the innermost regions around an accreting, spinning, black hole.

  10. Population Synthesis for Symbiotic X-ray Binaries

    CERN Document Server

    Lu, G -L; Postnov, K A; Yungelson, L R; Kuranov, A G; Wang, N

    2012-01-01

    Symbiotic X-ray binaries (SyXBs) comprise a rare class of low-mass X-ray binaries. We study the Galactic SyXBs, which we consider as detached binaries composed of low-mass giants and wind-fed neutron star companions, by simulation of the interaction of a magnetized neutron star (NS) with its environment and utilizing a population synthesis code. We focus mainly on the parameters that influence observational appearance of the SyXB: the donor wind velocity (vw) and the angular momentum distribution in the shell of matter settling onto NS. We estimate the birthrate of SyXB as $\\sim 4.1\\times 10^{-5}$ yr$^{-1}$ to $ \\sim 6.6\\times 10^{-6}$ yr$^{-1}$ and their number in the Galaxy as $\\sim$(100 -- 1000). Assumed stellar wind velocity from cool giants is the input parameter that influences the model SyXBs population most. Among known SyXBs or candidate systems, 4U 1954+31 and IGR J16358-4724 in which NS have very long spin periods may host quasi-spherically accreting NSs. GX 1+4 has a peculiar long-term spin behavi...

  11. Relativistic model of neutron stars in X-ray binary

    Science.gov (United States)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  12. High-energy neutrino emission from X-ray binaries

    CERN Document Server

    Christiansen, H R; Romero, G E; Christiansen, Hugo R.; Orellana, Mariana; Romero, Gustavo E.

    2006-01-01

    We show that high-energy neutrinos can be efficiently produced in X-ray binaries with relativistic jets and high-mass primary stars. We consider a system where the star presents a dense equatorial wind and the jet has a small content of relativistic protons. In this scenario, neutrinos and correlated gamma-rays result from pp interactions and the subsequent pion decays. As a particular example we consider the microquasar LSI +61 303. Above 1 TeV, we obtain a mean-orbital $\

  13. Compact Stars in low-mass X-ray binaries

    OpenAIRE

    Hossein, Sk. Monowar; Molla, Sajahan; Jafry, Md. Abdul Kayum; Kalam, Mehedi

    2014-01-01

    We propose a model for compact stars in low-mass X-ray binaries(LMXBs) namely KS 1731-260, EXO 1745-248 and 4U 1608-52. Here we investigate the physical phenomena of a compact star in the LMXBs. Using our model, we have calculated central density, surface density, mass(M) and red-shift for the above mentioned compact stars, which is very much consistent with the reported data. We also obtain the possible equation of state(EOS) of the stars which is physically acceptable.

  14. Optical and X-ray Outbursts of Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Kiziloglu, U; Kiziloglu, N; Baykal, A

    2009-01-01

    We present the relations between Halpha equivalent width, optical brightness and X-ray flux of Be/X-ray binary system SAX J2103.5+4545, by analyzing the optical photometric and spectroscopic observations together with the X-ray observations. In the photometric observations PSF photometry were applied using MIDAS and its DAOPHOT package. The reduction and analysis of spectra were done by using MIDAS and its suitable packages. The X-ray outburst of the system occurred just after the optical outburst. The nearly symmetric Halpha emission line profiles observed during the beginning of optical outburst turn into asymmetric profiles with increased EW values during the dissipation of Be disc. Halpha lines changed from emission to absorption during the observation period. The observed double peaked HeI emission lines might come from the accretion disc of neutron star which is temporarily formed at the time of X-ray outburst.

  15. Connections between X-ray and optical variability in the low mass X-ray binary 1735-444

    Science.gov (United States)

    Corbet, R. H. D.; Smale, A. P.; Charles, P. A.; Lewin, W. H. G.; Menzies, J. W.

    1989-01-01

    The results of a long duration (4 day) simultaneous optical and X-ray observation of the low mass X-ray binary 1735-444 are presented. The observed X-ray and optical fluxes are correlated; the strength of this correlation is increased when allowance is made for the relatively large orbital modulation of the optical light. A simple interpretation of the optical radiation as reprocessed X-rays in a blackbody disk leads to an implausibly low disk temperature if the disk is assumed to have constant geometry. 1735-444 exhibits bimodal behavior having an X-ray spectral hardness ratio versus source intensity which is similar to that previously seen in sources such as Cyg X-2.

  16. The origin of the hard X-ray tail in neutron-star X-ray binaries

    Science.gov (United States)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  17. X-ray-binary spectra in the lamp post model

    CERN Document Server

    Vincent, F H; Zdziarski, A A; Madej, J

    2016-01-01

    [Abridged] Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole axis, emitting X-rays. The observed spectrum is made of 3 components: the direct spectrum; the thermal bump; and the reflected spectrum made of the Compton hump and the iron-line complex. Aims. We aim at computing accurately the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. Methods. We compute in full GR the illumination of a thin disk by a lamp along the rotation axis. We use the ATM21 radiative transfer code to compute the spectrum emitted along the disk. We ray trace this local spectrum to determine the reprocessed spectrum as observed at infinity. We discuss the dependence of the local and ray-traced spectra on the emission angle and spin. Results. We show the importa...

  18. A complementary dual-slope ADC with high frame rate and wide input range for fast X-ray imaging

    Science.gov (United States)

    Lee, Daehee; Cho, Minsik; Kang, Dong-Uk; Kim, Myung Soo; Kim, Hyunduk; Cho, Gyuseong

    2014-02-01

    The single-slope analog-to-digital converter (SS-ADC) is the most commonly used column-level ADC for high-speed industrial, complementary metal-oxide semiconductor (CMOS)-based X-ray image sensors because of its small chip area (the width of a pixel), its simple circuit structure, and its low power consumption. However, it generally has a long conversion time, so we propose an innovative design: a complimentary dual-slope ADC (CDS-ADC) that uses two opposite ramp signals instead of a single ramp to double the conversion speed. This CDS-ADC occupies only 15% more area than the original SS-ADC. A prototype 12-bit CDS-ADC and a 12-bit SS-ADC were fabricated using a 0.35-µm 1P 4M CMOS process. During comparison of the two, the measured maximum differential non-linearity (DNL) of the CDS-ADC was a 0.49 least significant bit (LSB), the maximum integral non-linearity (INL) was a 0.43 LSB, the effective number of bits (ENOB) was 9.18 bits, and the figure of merit (FOM) was 0.03 pJ/conversion. The total power consumption was 0.031 uW. The conversion time of the new CDS-ADC was half that of the SS-ADC. The proposed dual-slope concept can be extended to further multiply the conversion speed by using multiple pairs of dual-slope ramps.

  19. X-ray outbursts of low-mass X-ray binary transients observed in the RXTE era

    CERN Document Server

    Yan, Zhen

    2014-01-01

    We have performed a statistical study of the outburst properties of 110 bright X-ray outbursts in 36 low-mass X-ray binary transients (LMXBTs) seen with the All-Sky Monitor (ASM; 2--12 keV) on board the Rossi X-ray Timing Explorer ({\\it RXTE}) in 1996--2011. We have measured a number of outburst properties including peak X-ray luminosity, rate-of-change of luminosity on daily timescale, $e$-folding rise and decay timescales, outburst duration and total radiated energy. We found the average values of some properties such as peak X-ray luminosity, rise and decay timescales, outburst duration and total radiated energy of black hole LMXBTs are at least two times larger than those of neutron star LMXBTs, implying that these properties can be used to infer the nature of the central compact object of a newly discovered LMXBT. We also found the outburst peak X-ray luminosity is correlated with the rate-of-change of X-ray luminosity in both the rise and the decay phases, which is consistent with our previous studies. ...

  20. Accretion in supergiant High Mass X-ray Binaries

    Directory of Open Access Journals (Sweden)

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  1. On Low Mass X-ray Binaries and Millisecond Pulsar

    CERN Document Server

    Burderi, Luciano

    2013-01-01

    The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular momentum, the neutron star accumulates an extraordinary amount of mechanical rotational energy, up to one percent of its whole rest-mass energy. These millisecond spinning neutron stars are truly extreme physical objects: General and Special Relativity are fully in action, since their surfaces, attaining speeds close to one ...

  2. The evolution of ultracompact X-ray binaries

    CERN Document Server

    van Haaften, L M; Voss, R; Wood, M A; Kuijpers, J

    2011-01-01

    Context. Ultracompact X-ray binaries (UCXBs) typically consist of a white dwarf donor and a neutron star or black hole accretor. The evolution of UCXBs and very low mass ratio binaries in general is poorly understood. Aims. We investigate the evolution of UCXBs in order to learn for which mass ratios and accretor types these systems can exist, and if they do, what are their orbital and neutron star spin periods, mass transfer rates and evolutionary timescales. Methods. For different assumptions concerning accretion disk behavior we calculate for which system parameters dynamical instability, thermal-viscous disk instability or the propeller effect emerge. Results. At the onset of mass transfer, the survival of the UCXB is determined by how efficiently the accretor can eject matter in the case of a super-Eddington mass transfer rate. At later times, the evolution of systems strongly depends on the binary's capacity to return angular momentum from the disk to the orbit. We find that this feedback mechanism most...

  3. A parsec scale X-ray extended structure from the X-ray binary Circinus X−1

    NARCIS (Netherlands)

    Soleri, P.; Heinz, S.; Fender, R.; Wijnands, R.; Tudose, V.; Altamirano, D.; Jonker, P.G.; van der Klis, M.; Kuiper, L.; Kaiser, C.; Casella, P.

    2009-01-01

    We present the results of the analysis of two Chandra observations of Circinus X−1 performed in 2007, for a total exposure time of ∼50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X−1 is an accreting neutron star binary system that

  4. Characterizing X-ray and Radio emission in the Black Hole X-Ray Binary V404 Cygni during Quiescence

    CERN Document Server

    Rana, Vikram; Corbel, Stephane; Tomsick, John A; Chakrabarty, Deepto; Walton, Dominic J; Barret, Didier; Boggs, Steven E; Christensen, Finn E; Craig, William; Fuerst, Felix; Gandhi, Poshak; Grefenstette, Brian W; Hailey, Charles; Harrison, Fiona A; Madsen, Kristin K; Rahoui, Farid; Stern, Daniel; Tendulkar, Shriharsh; Zhang, William W

    2015-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broad-band (0.3-30 keV) quiescent luminosity of the source is 8.9$\\times$10$^{32}$ erg s$^{-1}$ for a distance of 2.4 kpc. The source shows clear variability on short time scales in radio, soft X-ray and hard X-ray bands in the form of multiple flares. The broad-band X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having photon index {\\Gamma}=2.13$\\pm$0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3{\\sigma} confidence level with e-folding energy of the cutoff to be 19$^{+19}_{-7}$ keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the JVLA reveal that the sp...

  5. GALACTIC ULTRACOMPACT X-RAY BINARIES: DISK STABILITY AND EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, C. O.; Ivanova, N.; Engel, M. C.; Pavlovskii, K.; Sivakoff, G. R.; Gladstone, J. C. [Physics Department, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Cartwright, T. F., E-mail: heinke@ualberta.ca [International Space University, 1 rue Jean-Dominique Cassini, 67400 Illkirch-Graffenstaden (France)

    2013-05-10

    We study the mass-transfer rates and disk stability conditions of ultracompact X-ray binaries (UCXBs) using empirical time-averaged X-ray luminosities from Paper I and compiled information from the literature. The majority of UCXBs are consistent with evolutionary tracks for white dwarf donors. Three UCXBs with orbital periods longer than 40 minutes have mass-transfer rates above 10{sup -10} M{sub Sun} yr{sup -1}, inconsistent with white dwarf donor tracks. We show that if helium star donors can retain their initial high entropy, they can explain the observed mass-transfer rates of these UCXBs. Several UCXBs show persistent luminosities apparently below the disk instability limit for irradiated He accretion disks. We point out that a predominantly C and/or O disk (as observed in the optical spectra of several) lowers the disk instability limit, explaining this disagreement. The orbital period and low time-averaged mass-transfer rate of 2S 0918-549 provide evidence that the donor star is a low-entropy C/O white dwarf, consistent with optical spectra. We combine existing information to constrain the masses of the donors in 4U 1916-053 (0.064 {+-} 0.010 M{sub Sun }) and 4U 1626-67 (<0.036 M{sub Sun} for a 1.4 M{sub Sun} neutron star). We show that 4U 1626-67 is indeed persistent, and not undergoing a transient outburst, leaving He star models as the best explanation for the donor.

  6. The Effect of Variability on X-Ray Binary Luminosity Functions

    Science.gov (United States)

    Binder, Breanna A.; Gross, Jacob; Williams, Benjamin F.; Eracleous, Michael; Gaetz, Terrance J.; Plucinsky, Paul P.; Skillman, Evan D.

    2017-08-01

    X-ray binaries are inherently variable X-ray sources, particularly at low luminosities (factor of ~2). The power-law index of ~1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ~1.7, a bright-end index of ~2.8-4.9, and a break luminosity of ~4 × 1036 erg s-1. This suggests that these variable sources are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN-logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN-logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of X-ray binaries outburst at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ~1%-3% of the Eddington rate.

  7. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NARCIS (Netherlands)

    N. Degenaar; A. Patruno; R. Wijnands

    2012-01-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a s

  8. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  9. On the origin of the hard X-ray tail in neutron-star X-ray binaries

    CERN Document Server

    Reig, P

    2016-01-01

    Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. We have performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons, in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We demonstrate that our jet model explains the observed power-law distribution with photon index in the range 1.8-3. Wit...

  10. Wind accretion in symbiotic X-ray binaries

    CERN Document Server

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  11. X-ray Observations of Neutron Star Binaries: Evidence for Millisecond Spins

    OpenAIRE

    Strohmayer, Tod E.

    2001-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries (LMXB), a long sought goal of X-ray astronomy. I briefly review the status of our knowledge of these oscillations. ...

  12. On the relationship between circumstellar disc size and X-ray outbursts in Be/X-ray binaries

    Science.gov (United States)

    Monageng, I. M.; McBride, V. A.; Coe, M. J.; Steele, I. A.; Reig, P.

    2017-01-01

    We present long-term Hα monitoring results of five Be/X-ray binaries to study the Be disc size variations and their influence on type II (giant) X-ray outbursts. The work is done in the context of the viscous decretion disc model which predicts that Be discs in binary systems are truncated by resonant torques induced by the neutron star in its orbit. Our observations show that type II outbursts are not correlated (nor anticorrelated) with the disc size, as they are seen to occur both at relatively small and large Be disc radii. We discuss these observations in context of alternate interpretation of Be disc behaviour, such as precession, elongation and density effects, and with cognisance of the limitations of our disc size estimates.

  13. On the relationship between circumstellar disc size and X-ray outbursts in Be/X-ray binaries

    CERN Document Server

    Monageng, Itumeleng M; Coe, Malcolm J; Steele, Iain A; Reig, Pablo

    2016-01-01

    We present long term H$\\alpha$ monitoring results of five Be/X-ray binaries to study the Be disc size variations and their influence on Type II (giant) X-ray outbursts. The work is done in the context of the viscous decretion disc model which predicts that Be discs in binary systems are truncated by resonant torques induced by the neutron star in its orbit. Our observations show that type II outbursts are not correlated(nor anti-correlated) with the disc size, as they are seen to occur both at relatively small and large Be disc radii. We discuss these observations in context of alternate interpretation of Be disc behaviour, such as precession, elongation and density effects, and with cognisance of the limitations of our disc size estimates.

  14. On Neutral Absorption and Spectral Evolution in X-ray Binaries

    CERN Document Server

    Miller, J M; Reis, R C

    2009-01-01

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low energy spectrum of X-ray binaries should properly be attributed t...

  15. X-ray irradiation of the winds in binaries with massive components

    CERN Document Server

    Krticka, Jiri; Krtickova, Iva

    2015-01-01

    Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Since hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individual components. We studied the effect of external X-ray irradiation on hot star winds. We used our kinetic equilibrium (NLTE) wind models to estimate the influence of external X-ray ionization for different X-ray luminosities and source distances. The models are calculated for parameters typical of O stars. The influence of X-rays is given by the X-ray luminosity, by the optical depth between a given point and the X-ray source, and by a distance to the X-ray source. Therefore, the results can be interpreted in the diagrams...

  16. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  17. Dissecting the Accretion Environments of X-ray Binaries with High Speed Coordinated Optical and X-ray Timing Observations

    Science.gov (United States)

    Gandhi, Poshak; Durant, M.; Fabian, A. C.; Malzac, J.; Miller, J. M.; Shahbaz, T.; Dhillon, V. S.; Marsh, T. R.; Spruit, H. C.; Makishima, K.

    2010-03-01

    We are uncovering significant optical variability in low/hard state observations of several X-ray binaries on the fastest time-scales of just tens of milliseconds typically probed with modern rapid imaging cameras. The optical light curves are remarkable in that they display properties very characteristic of X-ray variations: 1) power spectra with band-limited, red noise over broad time ranges of 10 ms - 1000 s, and in some cases, a low-frequency quasi-periodic oscillation; 2) an instantaneous variability amplitude linearly scaling with source flux; and, 3) log-normal distributions of fluxes. Aperiodic optical variability components can dominate over simple linear X-ray reprocessing expectations, and are much faster than viscous time-scales of the outer accretion disk or flow. Cross-correlated optical vs. X-ray time delays not only constrain emission mechanisms, but can also be used to probe characteristic size scales of the physical components (jet, corona), and to understand how they are coupled. Rapid, multiwavelength timing studies are thus opening a new window on the hearts of accreting sources, though the broad-band spectral plus timing properties remain to be unified consistently. I will briefly review recent results on rapid optical variability, including our new data on black hole and neutron star binary systems. The fact that the sources were all in typical low/hard states (with relatively-bright optical counterparts) suggests that correlated optical/X-ray activity may be a general feature, waiting to be uncovered in more systems. The continuance of RXTE is vital for such work.

  18. The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities

    CERN Document Server

    Gallo, E; Russell, D M; Jonker, P G; Homan, J; Plotkin, R M; Markoff, S; Miller, B P; Corbel, S; Fender, R P

    2014-01-01

    [Abridged] We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 hrs at 5.3 GHz, yielding a 4.8 \\pm 1.4 microJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4-8E+25 erg/s, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2E-14 erg/s/cm^2 (1-10 keV), corresponding to an Eddington ratio of ~4E-9 for a 7.5 solar mass black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ellr=alpha+beta*ellx (where ell denotes logarithmic luminosities), with beta=0.72\\pm0.09. XTE J1118+480 is thus the third system, togeth...

  19. A Chandra X-Ray observation of the binary millisecond pulsar PSR J1023+0038

    NARCIS (Netherlands)

    Bogdanov, S.; Archibald, A.M.; Hessels, J.W.T.; Kaspi, V.M.; Lorimer, D.; McLaughlin, M.A.; Ransom, S.M.; Stairs, I.H.

    2011-01-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the

  20. Catalogue of Galactic low-mass X-ray binaries (Liu+, 2007)

    NARCIS (Netherlands)

    Liu, Q.Z.; van Paradijs, J.A.; van den Heuvel, E.P.J.

    2007-01-01

    We present a new edition of the catalogue of the low-mass X-ray binaries in the Galaxy and the Magellanic Clouds. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 18

  1. Recognition of binary x-ray systems utilizing the doppler effect

    Science.gov (United States)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  2. X-ray Binaries in Early Type Galaxies and the Globular Cluster Connection

    NARCIS (Netherlands)

    Maccarone, T.J.; Kundu, A.; Zepf, S.E.; Puzia, T.H.; Tovmassian, G.; Sion, E.

    2004-01-01

    We summarize the key observations made in recent observations of X-ray sources in early-type galaxies. Typically about half of the X-ray binaries in early-type galaxies are in globular clusters, they are preferentially found in metal rich globular clusters, and there is no indication that cluster

  3. A Search For X-ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries

    CERN Document Server

    Getman, Konstantin V; Kospal, Agnes; Salter, Demerese M; Garmire, Gordon P

    2016-01-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all 4 binaries the current X-ray data show an increasing average X-ray flux near periastron (at about 2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries can not be...

  4. Tidal capture formation of Low Mass X-Ray Binaries from wide binaries in the field

    CERN Document Server

    Michaely, Erez

    2015-01-01

    We present a potentially efficient dynamical formation scenario for Low Mass X-ray Binaries (LMXBs) in the field, focusing on black-hole (BH) LMXBs. In this formation channel LMXBs are formed from wide binaries $(>1000$ AU) with a BH component and a stellar companion. The wide binary is perturbed by fly-by's of field stars and its orbit random-walks and changes over time. This diffusion process can drive the binary into a sufficiently eccentric orbit such that the binary components tidally interact at peri-center and the binary evolves to become a short period binary, which eventually evolves into an LMXB. The formation rate of LMXBs through this channel mostly depends on the number of such BH wide binaries progenitors, which in turn depends on the velocity kicks imparted to BHs (or NSs) at birth. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal...

  5. VizieR Online Data Catalog: X-ray and radio sources in binaries (Malkov+, 2015)

    Science.gov (United States)

    Malkov, O. Y.; Tessema, S. B.; Kniazev, A. Y.

    2016-05-01

    We have also compiled a general list of 239 radio pulsars in binary systems. The list is supplied with indication of photometric, spectroscopic or X-ray binarity, and with cross-identification data. (4 data files).

  6. The Be/X-ray Binary LSI+61303 in terms of Ejector-Propeller Model

    CERN Document Server

    Zamanov, R K; Marziani, P

    2001-01-01

    We tested the ejector-propeller model of the Be/X-ray binary LSI+61303 (V 615 Cas, GT 0236+620) by using the parameters predicted by the model in the calculations of the X-ray and radio variability. The results are: (1) in terms of the Ejector-Propeller model, the X-ray maximum is due to the periastron passage; (2) the radio outburst can be really a result of the transition from the propeller to ejector regimes; (3) the radio outburst will delay with respect to the X-ray maximum every orbital period. The proposed scenario seems to be in good agreement with the observations.

  7. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    OpenAIRE

    Zycki, P. T.; A. Niedzwiecki(University of Lodz, Poland); Sobolewska, M. A.

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretio...

  8. Model of two-stream non-radial accretion for binary X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, V.M. (Sternberg Astronomical Inst., Moscow (USSR))

    1982-03-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered.

  9. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    Science.gov (United States)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  10. Variable Low-Mass X-ray Binaries in Early-Type Galaxies

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2007-01-01

    As the Chandra X-ray Observatory mission matures, increasing numbers of nearby galaxies are being observed multiple times, sampling the variability of extragalactic X-ray binaries on timescales extending from seconds to years. We present results on luminous low-mass X-ray binaries from several early-type galaxies. We show that instantaneous LMXB luminosity functions of early-type galaxies do not significantly change between observations; a relatively low fraction of sources are strongly variable on <~ 5 yr timescales. We discuss the implications that a relatively small number of transient LMXBs are being discovered in early-type galaxies.

  11. Accretion disc atmospheres and winds in low-mass X-ray binaries

    CERN Document Server

    Trigo, M Díaz

    2015-01-01

    In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.

  12. X-ray reflection in oxygen-rich accretion discs of ultra-compact X-ray binaries

    CERN Document Server

    Madej, O K; Jonker, P G; Parker, M L; Ross, R; Fabian, A C; Chenevez, J

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultra-compact X-ray binaries: 4U~0614+091 and 4U~1543$-$624. We confirm the presence of a broad O VIII Ly$\\alpha$ reflection line (at $\\approx18\\ \\AA$) using {\\it XMM-Newton} and {\\it Chandra} observations obtained in 2012 and 2013. The donor star in these sources is carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O VIII Ly$\\alpha$ line particularly strong. We also confirm the presence of a strong absorption edge at $\\approx14$ \\AA\\ so far interpreted in the literature as due to absorption by neutral neon in the circumstellar and interstellar medium. However, the abundance required to obtain a good fit to this edge is $\\approx3-4$ times solar, posing a problem for this interpretation. Furthermore, modeling the X-ray reflection off a carbon and oxygen enriched, hydrogen and helium poor disc with models assuming solar composition likely biases several of the best-fit parameters. In order to...

  13. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    CERN Document Server

    Elshamouty, K; Chouinard, R

    2016-01-01

    The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsations. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks \\textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} \\sim 4\\times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature \\lt\\ 6.7$\\pm 0.2$ K and inferred emitting radius of $\\sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high...

  14. The X-ray spectral properties of very-faint persistent neutron star X-ray binaries

    CERN Document Server

    M., Armas Padilla; R, Wijnands

    2013-01-01

    AX J1754.2-2754, 1RXS J171824.2-402934 and 1RXH J173523.7-354013 are three persistent neutron star low-mass X-ray binaries that display a 2--10 keV accretion luminosity Lx of only (1-10)x1E34 erg s-1 (i.e., only ~0.005-0.05 % of the Eddington limit). The phenomenology of accreting neutron stars which accrete at such low accretion rates is not yet well known and the reason why they have such low accretion rates is also not clear. Therefore, we have obtained XMM-Newton data of these three sources and here we report our analysis of the high-quality X-ray spectra we have obtained for them. We find that AX J1754.2-2754 has Lx~1E35 erg s-1, while the other two have X-ray luminosities about an order of magnitude lower. However, all sources have a similar, relatively soft, spectrum with a photon index of 2.3-2.5, when the spectrum is fitted with an absorbed power-law model. This model fits the data of AX J1754.2-2754 adequately, but it cannot fit the data obtained for 1RXS J171824.2-402934 and 1RXH J173523.7-354013. ...

  15. Suzaku view of Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    CERN Document Server

    Jaisawal, Gaurava K; Epili, Prahlad

    2016-01-01

    We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the observations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($\\leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $\\sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $\\sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line...

  16. The Be/X-ray binary system V 0332+53: A Short Review

    CERN Document Server

    Caballero-Garcia, M D; Arabaci, M Ozbey; Hudec, R

    2015-01-01

    Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relatively clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.

  17. A Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29

    NARCIS (Netherlands)

    E.M. Cackett; E.F. Brown; A. Cumming; N. Degenaar; J. Fridriksson; J. Homan; J.M. Miller; R. Wijnands

    2013-01-01

    The quasi-persistent neutron star low-mass X-ray binary MXB 1659-29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 yr showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutr

  18. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    Science.gov (United States)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  19. MHD Wind Models in X-Ray Binaries and AGN

    Science.gov (United States)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  20. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  1. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    Energy Technology Data Exchange (ETDEWEB)

    Enoto, Teruaki; Corbet, Robin H. D. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Sasano, Makoto [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamada, Shin' ya; Tamagawa, Toru; Makishima, Kazuo [High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Pottschmidt, Katja; Marcu, Diana [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Wilms, Jörn, E-mail: teruaki.enoto@nasa.gov [Dr. Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  2. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  3. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    Science.gov (United States)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    Context. High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the cirscumstellar disk in Be/X-ray binaries. In either case, the Hα line stands out as the main source of information about the state of the accreting material. Aims: We present the results of our monitoring program to study the long-term variability of the Hα line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Methods: We fitted the Hα line with Gaussian profiles and obtained the line parameters and equivalent width. The peak separation in split profiles was used to determine the disk velocity law and estimate the disk radius. The relative intensity of the two peaks (V/R ratio) allowed us to investigate the distribution of gas particles in the disk. The equivalent width was used to characterise the degree of variability of the systems. We also studied the variability of the Hα line in correlation with the X-ray activity. Results: Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods; ii) we show that a Keplerian distribution of gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars; iii) a decrease in the Hα equivalent width is generally observed after major X-ray outbursts; iv) we confirm that the Hα equivalent width correlates with disk radius; v) while systems with supergiant companions display multi-structured profiles, most of the Be/X-ray binaries show, at some epoch, double-peak asymmetric profiles, which indicates that density inhomogeneities is a common property in the disk of Be/X-ray binaries; vi) the

  4. High-mass X-ray binaries and OB runaway stars

    NARCIS (Netherlands)

    Kaper, L.; van der Meer, A.; Tijani, A.H.; Allen, C.; Scarfe, C.

    2004-01-01

    High-mass X-ray binaries (HMXBs) represent an important phase in the evolution of massive binary systems and provide fundamental information on the properties of the OB-star primaries and their compact secondaries (neutron star, black hole). Recent observations indicate that the neutron stars in som

  5. Massive Stars and Their Compact Remnants in High-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Kaper, L.; van der Meer, A.

    2007-01-01

    In a high-mass X-ray binary (HMXB) a massive star interacts with a neutron-star or black-hole companion in various ways. The gravitational interaction enables the measurement of fundamental parameters such as the mass of both binary components, providing important constraints on the evolutionary his

  6. VHE Gamma-rays from Galactic X-ray Binary Systems

    CERN Document Server

    Paredes, J M

    2008-01-01

    The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259-63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides a clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of non-thermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) gamma-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE gamma-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.

  7. X-ray Observations of Neutron Star Binaries Evidence for Millisecond Spins

    CERN Document Server

    Strohmayer, T E

    2001-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries (LMXB), a long sought goal of X-ray astronomy. I briefly review the status of our knowledge of these oscillations. So far 10 neutron star systems have been observed to produce burst oscillations, interestingly, the observed frequencies cluster in a fairly narrow range from about 300 - 600 Hz, well below the break-up frequency for most modern neutron star equations of state (EOS). This has led to suggestions that their spin frequencies may be limited by the loss of angular momentum due to gravitational wave emission. Connections with gravity wave rotational instabilities will be briefly described.

  8. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition)

    CERN Document Server

    Ritter, H

    2003-01-01

    The catalogue lists coordinates, apparent magnitudes, orbital parameters, and stellar parameters of the components and other characteristc properties of 472 cataclysmic binaries, 71 low-mass X-ray binaries and 113 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 635 of the 656 objects, and a cross-reference list of alias object designations. Literature published before 1 January 2003 has, as far as possible, been taken into account. All data can be accessed via the dedicated catalogue webpage at http://www.mpa-garching.mpg.de/RKcat/ (MPA) and http://physics.open.ac.uk/RKcat/ (OU). We will update the information given on the catalogue webpage regularly, initially every six months.

  9. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  10. The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    CERN Document Server

    Degenaar, N; Reynolds, M T; Miller, J M; Altamirano, D; Kennea, J; Gehrels, N; Haggard, D; Ponti, G

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary / radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst...

  11. Spectral states and state preference of galactic X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using observations in the past four years with the All Sky Monitor(ASM) onboard the Rossi X-ray Timing Explorer(RXTE) and the Burst Alert Telescope(BAT) onboard the Swift,we demonstrate that the hard state and the soft state are the primary spectral states in galactic black hole and neutron star X-ray binaries.In addition,we show quantitatively the preference of the two spectral states for each of the 22 bright persistent sources.

  12. Inner edge of accretion disks in low mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1995-01-01

    The magnitude of the inner edge of accretion disks in low mass X-ray binaries is controversial in theoretical considerations and observations. Using the inner boundary conditions of accretion disks the inner disk radius has been calculated by taking into account the effect of feedback radiation and the deviation of disk rotation from Keplerian. Results have been applied to the observations and possible interpretations have been proposed for the X-ray spectra and quasiperiodic oscillations.

  13. An X-ray study of the dipping low mass X-ray binary XB 1323-619

    CERN Document Server

    Balucinska-Church, M; Oosterbroek, T; Segreto, A; Morley, R E; Parmar, A N

    1999-01-01

    During a BeppoSAX observation of the low-mass X-ray binary dip source XB 1323-619 a total of 10 type I X-ray bursts and parts of 12 intensity dips were observed. During non-bursting, non-dipping intervals, the 1-150 keV BeppoSAX spectrum can be modelled by a cutoff power-law with a photon index of 1.48 +/- 0.01, a cutoff energy of 44.1 +5.1/-4.4 keV together with a blackbody with kT of 1.77 +/- 0.25 keV contributing ~15% of the 2-10 keV flux. Absorption equivalent to 3.88 +/- 0.16x10^22 H atom cm^(-2) is required. The dips repeat with a period of 2.938 +/- 0.020 hr and span 40% of the orbital cycle. During dips the maximum reduction in 2-10 keV intensity is ~65%. The spectral changes during dips are complex and cannot be modelled by a simple absorber because of the clear presence of part of the non-dip spectrum which is not absorbed. Spectral evolution in dipping can be well modelled by progressive covering of the cutoff power-law component which must be extended, plus rapid absorption of the point-source bla...

  14. A New Approach to Black hole Spin in X-Ray Binaries

    Institute of Scientific and Technical Information of China (English)

    ZUO Xue-Qin; WANG Ding-Xiong; MA Ren-Yi

    2005-01-01

    @@ A new approach of detecting the black hole spin in x-ray binaries is proposed based on the model of the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes, in which the BZ process is used to power the jet emissions from x-ray binaries, and high frequency quasi-periodic oscillations (QPOs) are explained by a rotating hotspot in the inner region of the accretion disc surrounding a fast-spinning black hole. It is shown that the black hole spins of several x-ray binaries (XTE J1550-564, GRO J1665-40 and GRS 1915+105) can be constrained in a rather narrow range, provided that QPOs and jets coexist in these sources.

  15. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R. [Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Altamirano, D. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Kennea, J. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haggard, D. [CIERA, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ponti, G., E-mail: degenaar@umich.edu [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany)

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  16. Evolution of intermediate-mass X-ray binaries driven by magnetic braking of Ap/Bp stars: I. ultracompact X-ray binaries

    CERN Document Server

    Chen, Wen-Cong

    2016-01-01

    It is generally believed that Ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf or helium star where mass transfer is driven by gravitational radiation. However, the standard white-dwarf evolutionary channel cannot produce the relatively long-period ($40 - 60$\\,min) UCXBs with high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field ($100 - 10000$\\,G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the \\emph{MESA} code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency $f=10^{-5}$, the a...

  17. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    CERN Document Server

    Madau, Piero

    2016-01-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct HeI photoionizations are the main source of IGM ...

  18. A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    CERN Document Server

    Corcoran, M F; Pablo, H; Shenar, T; Pollock, A M T; Waldron, W L; Moffat, A F J; Richardson, N D; Russell, C M P; Hamaguchi, K; Huenemoerder, D P; Oskinova, L; Hamann, W -R; Naze, Y; Ignace, R; Evans, N R; Lomax, J R; Hoffman, J L; Gayley, K; Owocki, S P; Leutenegger, M; Gull, T R; Hole, K T; Lauer, J; Iping, R C

    2015-01-01

    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parame...

  19. All the X-ray binaries in the Universe: X-ray Emission from Normal and Starburst Galaxies Near and Far

    Science.gov (United States)

    Hornschemeier, Ann; Basu-Zych, Antara; Lehmer, Bret

    2015-08-01

    There has recently been quite a bit of excitement on the role of X-ray emission from galaxies in early heating of the IGM, demonstrating that understanding of X-ray emission from normal and starburst galaxies may have significant impact on structure formation in the Universe. The X-ray output from X-ray binaries and hot gas are both important and may rival the ionizing output of AGN at z>5, particularly for Hydrogen reionization. Here we present our research on constraining the X-ray SED of galaxies across cosmic time via several complementary approaches. In the very local universe (d optical/UV surveys that may be studied with Chandra. We will finish with a discussion of starburst galaxies emitting X-rays at z>4, which thanks to the extremely deep Chandra Deep Field-South 7 Ms survey, are better constrained than ever before. We discuss survey strategy and how the various pieces of the puzzle fit together regarding the X-ray output of galaxies and their X-ray binary populations over cosmic time. We discuss implications for next-generation missions and instruments, including those with wide-field survey capabilities and high throughput, especially the Athena mission.

  20. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  1. Evidence for Quasi-periodic X-Ray Dips from an Ultraluminous X-Ray Source: Implications for the Binary Motion

    CERN Document Server

    Pasham, Dheeraj R

    2013-01-01

    We report results from long-term (approximately 1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6+-4 days the amplitude of which weakens during the second half of the light curve and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243+-23 days, in contra...

  2. Hystereses in dwarf nova outbursts and low-mass X-ray binaries

    Science.gov (United States)

    Hameury, J.-M.; Lasota, J.-P.; Knigge, C.; Körding, E. G.

    2017-04-01

    Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star, or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries, which contain neutron-star or black-hole accretors, exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV, and X-ray fluxes. Aims: We examine the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods: We used our disc evolution code for modelling dwarf nova outbursts, and constructed the hardness intensity diagram as predicted by the disc instability model. Results: We show explicitly that the standard DIM, modified only to account for disc truncation, can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions: The spectral evidence for the existence of different accretion regimes or components (disc, corona, jets, etc.) should only be based on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays; this task is difficult because of interstellar absorption. The existing data, however, indicate that a hysteresis is in the EUV - X-ray domain is present in SS Cyg.

  3. X-rays from the oxygen-type Wolf-Rayet binary WR30a

    CERN Document Server

    Zhekov, S A

    2015-01-01

    We present an analysis of XMM-Newton X-ray data of WR30a (WO+O), a close massive binary that harbours an oxygen-rich Wolf-Rayet star. Its spectrum is characterized by the presence of two well-separated broad peaks, or `bumps', one peaking at energies between 1 and 2 keV and the other between 5 and 7 keV. A two-component model is required to match the observed spectrum. The higher energy spectral peak is considerably more absorbed and dominates the X-ray luminosity. For the currently accepted distance of 7.77 kpc, the X-ray luminosity of WR30a is L_X > 10^{34} erg s^{-1}, making it one of the most X-ray luminous WR+O binary amongst those in the Galaxy with orbital periods less than ~20 d. The X-ray spectrum can be acceptably fitted using either thermal or nonthermal models, so the X-ray production mechanism is yet unclear.

  4. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    CERN Document Server

    Luo, B; Fragos, T; Kim, D -W; Belczynski, K; Brassington, N J; Pellegrini, S; Tzanavaris, P; Wang, Junfeng; Zezas, A

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are ~40% of the bulge sources and ~25% of the ring sources showing >3\\sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (~75%) and ring (~65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completenes...

  5. Radio emission from the high-mass X-ray binary BP Cru: first detection

    CERN Document Server

    Pestalozzi, M; Hobbs, G; Lopez-Sanchez, A R

    2009-01-01

    BP Cru is a well known high-mass X-ray binary composed of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in other bands than X-rays and optical has been reported to date in the literature, though massive X-ray binaries containing black holes can have radio emission from a jet. In order to assess the presence of a radio jet, we searched for radio emission towards BP Cru using the Australia Compact Array Telescope during a survey for radio emission from Be/X-ray transients. We probed the 41.5d orbit of BP Cru with the Australia Telescope Compact Array not only close to periastron but also close to apastron. BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. We propose that the radio emission of BP Cru probably arises from two components: a persis...

  6. Radiative Spectra from Disk Corona and Inner Hot Flow in Black Hole X-ray Binaries

    CERN Document Server

    Kawabata, Ryoji

    2010-01-01

    To understand the origin of hard X-ray emissions from black hole X-ray binaries during their low/hard states, we calculate the X-ray spectra of black-hole accretion flow for the following three configurations of hot and cool media: (a) an inner hot flow and a cool outer disk (inner hot flow model), (b) a cool disk sandwiched by disk coronae (disk corona model), and (c) the combination of those two (hybrid model). The basic features we require for successful models are (i) significant hard X-ray emission whose luminosity exceeds that of soft X-rays, (ii) high hard X-ray luminosities in the range of (0.4 - 30) times 10^{37} erg s^{-1}, and (iii) the existence of two power-law components in the hard X-ray band with the photon indices of Gamma_s ~ 2 > Gamma_h, where Gamma_s and Gamma_h are the photon indices of the softer (10 keV) power-law components, respectively. Contribution by non-thermal electrons nor time-dependent evolution are not considered. We find that Models (a) and (b) can be ruled out, since the sp...

  7. The Young Binary DQ Tau: A Hunt For X-ray Emission From Colliding Magnetospheres

    CERN Document Server

    Getman, Konstantin V; Salter, Demerese M; Garmire, Gordon P; Hogerheijde, Michiel R

    2011-01-01

    The young high-eccentricity binary DQ Tau exhibits powerful recurring millimeter-band (mm) flaring attributed to collisions between the two stellar magnetospheres near periastron, when the stars are separated by only ~8Rstar. These magnetospheric interactions are expected to have scales and magnetic field strengths comparable to those of large X-ray flares from single pre-main-sequence (PMS) stars observed in the Chandra Orion Ultradeep Project (COUP). To search for X-rays arising from processes associated with colliding magnetospheres, we performed simultaneous X-ray and mm observations of DQ Tau near periastron phase. We report here several results. 1) As anticipated, DQ Tau was caught in a flare state in both mm and X-rays. A single long X-ray flare spanned the entire 16.5 hour Chandra exposure. 2) The inferred morphology, duration, and plasma temperature of the X-ray flare are typical of those of large flares from COUP stars. 3) However, our study provides three lines of evidence that this X-ray flare lik...

  8. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    CERN Document Server

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  9. Stacking Star Clusters in M51: Searching for Faint X-Ray Binaries

    CERN Document Server

    Vulic, N; Gallagher, S C

    2012-01-01

    The population of low-luminosity (< 10^35 erg/s) X-Ray Binaries (XRBs) has been investigated in our Galaxy and M31 but not further. To address this problem, we have used data from the Chandra X-Ray Observatory and the Hubble Space Telescope to investigate the faint population of XRBs in the grand-design spiral galaxy M51. A matching analysis found 25 star clusters coincident with 20 X-ray point sources within 1.5" (60 pc). From X-ray and optical color-color plots we determine that this population is dominated by high-mass XRBs. A stacking analysis of the X-ray data at the positions of optically-identified star clusters was completed to probe low-luminosity X-ray sources. No cluster type had a significant detection in any X-ray energy band. An average globular cluster had the largest upper limit, 9.23 x 10^34 erg/s, in the full-band (0.3 - 8 keV) while on average the complete sample of clusters had the lowest upper limit, 6.46 x 10^33 erg/s in the hard-band (2 - 8 keV). We determined average luminosities of...

  10. Retrograde accretion discs in high-mass Be/X-ray binaries

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-09-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  11. Theoretical spectra of nonmagnetized low-mass X-ray binaries

    Science.gov (United States)

    Czerny, Bozena; Czerny, Michal; Grindlay, Jonathan E.

    1986-01-01

    Theoretical X-ray spectra of low-mass X-ray binaries with negligible magnetic fields are presented. The geometry of the X-ray emitting region, the energetic efficiency of the accretion in the disk and in the boundary layer which leads to a relation between the disk and the boundary layer luminosities, and the irradiation of the disk by the boundary layer are studied. The model of the radiation spectrum emerging from the neutron star and the innermost part of the disk is presented. The relativistic and Doppler effects and their influence on the spectrum as a function of inclination angle are discussed. A simple method for comparing the spectrum model with observations by studying the hardness ratio is given, and the results for three X-ray sources in globular clusters observed by the Einstein satellite are presented. The range of applicability of the spectrum models is also discussed.

  12. Radio emission of the Galactic X-rays binaries with relativistic jets

    CERN Document Server

    Trushkin, S A

    2000-01-01

    Variable non-thermal radio emission from Galactic X-ray binaries is a trace of relativistic jets, created near accretion disks. The spectral characteristics of a lot of radio flares in the X-ray binaries with jets (RJXB) is discussed in this report. We carried out several long daily monitoring programs with the RATAN-600 radio telescope of the sources: SS433, Cyg X-3, LSI+61o303, GRS 1915+10 and some others. We also reviewed some data from the GBI monitoring program at two frequencies and hard X-ray BATSE (20-100 keV) and soft X-ray RTXE (2-12 keV) ASM data. We confirmed that flaring radio emission of Cyg X-3 correlated with hard and anti-correlated with soft X-ray emission during the strong flare (>$ Jy) in May 1997. During two orbital periods we investigated radio light curves of the remarkable X-binary LSI+61o303. Two flaring events near a phase 0.6 of the 26.5-day orbital period have been detected for first time at four frequencies simultaneously. Powerful flaring events of SS433 were detected at six freq...

  13. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    CERN Document Server

    Roberts, T P

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  14. Near-infrared observations of the Be/X-ray binary pulsar A0535+262

    Institute of Scientific and Technical Information of China (English)

    Sachindra Naik; Blesson Mathew; D. P. K. Banerjee; N. M. Ashok; Rajeev R. Jaiswal

    2012-01-01

    We present the results obtained from extensive near-infrared (IR) spectro-scopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~ 111 d orbital period.This observation campaign is part of the monitoring program of selective Be/X-ray binary systems aimed at understanding X-ray and near-IR properties at different orbital phases,especially during the periastron passage of the neutron star.The near-IR observations presented here were carried out using the 1.2 m telescope at the Mt.Abu IR Observatory.Though the source was relatively faint for spectroscopic observations with the 1.2 m telescope,we monitored the source closely during the 2011 February-March giant X-ray outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra took place at the periastron passage.Changes of such a striking nature were expected to be detectable in our spectra.Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst,which could suggest a mild evacuation/truncation of the circumstellar disk of the Be companion.Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830,1.7002 and 2.0585 μm.The presence of all the hydrogen emission lines in the JHK spectra,along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases,suggests that the near- IR line emitting regions of the disk are not significantly affected during the X-ray outburst.

  15. The first pre-supersoft X-ray binary

    Science.gov (United States)

    Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rebassa-Mansergas, A.; Brahm, R.; Zorotovic, M.; Toloza, O.; Pala, A. F.; Tappert, C.; Bayo, A.; Jordán, A.

    2015-09-01

    We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 h binary identified by combining data from the Radial Velocity Experiment survey and the Galaxy Evolution Explorer survey. A combination of spectral energy distribution fitting and optical and Hubble Space Telescope ultraviolet spectroscopy allowed us to place fairly precise constraints on the physical parameters of the binary. The system, TYC 6760-497-1, consists of a hot Teff ˜ 20 000 K, M_{WD}˜ 0.6 {{M_{{⊙}}}} white dwarf and an F8 star (M_{MS}˜ 1.23{M_{⊙}}, R_{MS}˜ 1.3 {R_{⊙}}) seen at a low inclination (i ˜ 37°). The system is likely the descendant of a binary that contained the F star and an ˜2 M⊙ A-type star that filled its Roche lobe on the thermally pulsating asymptotic giant branch, initiating a common envelope phase. The F star is extremely close to Roche lobe filling and there is likely to be a short phase of thermal time-scale mass transfer on to the white dwarf during which stable hydrogen burning occurs. During this phase, it will grow in mass by up to 20 per cent, until the mass ratio reaches close to unity, at which point it will appear as a standard cataclysmic variable star. Therefore, TYC 6760-497-1 is the first known progenitor of a supersoft source system, but will not undergo a Type Ia supernova explosion. Once an accurate distance to the system is determined by Gaia, we will be able to place very tight constraints on the stellar and binary parameters.

  16. The first pre-supersoft X-ray binary

    CERN Document Server

    Parsons, S G; Gansicke, B T; Rebassa-Mansergas, A; Brahm, R; Zorotovic, M; Toloza, O; Pala, A F; Tappert, C; Bayo, A; Jordan, A

    2015-01-01

    We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 hour binary identified by combining data from the RAdial Velocity Experiment (RAVE) survey and the Galaxy Evolution Explorer (GALEX) survey. A combination of spectral energy distribution fitting and optical and Hubble Space Telescope ultraviolet spectroscopy allowed us to place fairly precise constraints on the physical parameters of the binary. The system, TYC 6760-497-1, consists of a hot Teff~21,500K, M~0.65Ms white dwarf and an F8 star (M~1.23Ms, R~1.35Rs) seen at a low inclination (i~35 deg). The system is likely the descendent of a binary that contained the F star and a ~2Ms A-type star that filled its Roche-lobe on the second asymptotic giant branch, initiating a common envelope phase. The F star is extremely close to Roche-lobe filling and there is likely to be a short phase of thermal timescale mass-transfer onto the white dwarf. During this phase it will grow in mass by up to 20 per cent, until the mass...

  17. The Case for Massive, Evolving Winds in Black Hole X-ray Binaries

    CERN Document Server

    Neilsen, Joseph

    2013-01-01

    In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, focusing on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.

  18. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion. Revised

    Science.gov (United States)

    DilVrtilek, Saeqa; Mushotzky, Richard (Technical Monitor)

    2001-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. observation of one of the two objects has taken place and the data were received in late November. The second object is yet to be observed. Over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  19. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. The second of two objects was not observed until September of 2002. Data analysis for the new observation is underway. over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  20. Discovery of very high energy gamma-rays associated with an X-ray binary

    CERN Document Server

    Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; De Jager, O C; Khelifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-01-01

    X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and X-ray observations have led to the presumption that some X-ray binaries called microquasars behave as scaled down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission >100 GeV from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

  1. On the disruption of pulsar and X-ray binaries in globular clusters

    CERN Document Server

    Verbunt, Frank

    2013-01-01

    The stellar encounter rate Gamma has been shown to be strongly correlated with the number of X-ray binaries in clusters and also to the number of radio pulsars. However, the pulsar populations in different clusters show remarkably different characteristics: in some GCs the population is dominated by binary systems, in others by single pulsars and exotic systems that result from exchange encounters. In this paper, we describe a second dynamical parameter for globular clusters, the encounter rate for a single binary, gamma. We find that this parameter provides a good characterization of the differences between the pulsar populations of different globular clusters. The higher gamma is for any particular globular cluster the more isolated pulsars and products of exchange interactions are observed. Furthermore, we also find that slow and "young" pulsars are found almost exclusively in clusters with a high gamma; this suggests that these kinds of objects are formed by the disruption of X-ray binaries, thus halting ...

  2. The X-ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-ray Sources

    CERN Document Server

    Laycock, Silas G T; Williams, Benjamin F; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M

    2016-01-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magella...

  3. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2000-06-01

    We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20-140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.

  4. Revealing the physics of r modes in low-mass X-ray binaries

    NARCIS (Netherlands)

    Ho, W.C.G.; Andersson, N.; Haskell, B.

    2011-01-01

    We consider the astrophysical constraints on the gravitational-wave-driven r-mode instability in accreting neutron stars in low-mass x-ray binaries. We use recent results on superfluid and superconducting properties to infer the core temperature in these neutron stars and show the diversity of the o

  5. The X-ray emission of the WR+O binary WR 79

    NARCIS (Netherlands)

    Gosset, E.; Sana, H.; Rauw, G.; Nazé, Y.

    2011-01-01

    In the framework of our multiwavelength study of the open cluster NGC6231, we observed the colliding-wind WR+O binary WR79 at six different epochs with the XMM-Newton observatory. These pointings offer the possibility to study the X-ray spectrum of WR79 and its possible variability. Our results are

  6. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303

    CERN Document Server

    Chernyakova, M; Molkov, S; Malyshev, D; Lutovinov, A; Pooley, G; 10.1088/2041-8205/747/2/L29

    2012-01-01

    We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over long, multi-year, time scale. Using the data of monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from $\\phi_X\\simeq 0.35$ to $\\phi_X\\simeq 0.75$ on the superorbital 4.6 yr time scale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by $\\Delta\\phi_{X-R}\\simeq 0.2$. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle filled plasma blobs from inside the binary to the radio emission region at the distance ~10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

  7. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    Science.gov (United States)

    González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.

    2017-02-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  8. The formation of the black hole in the X-ray binary system V404 Cyg

    NARCIS (Netherlands)

    J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen

    2009-01-01

    Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to

  9. Warped accretion discs and the long periods in X-ray binaries

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; Pringle, J.E.

    1999-01-01

    Precessing accretion discs have long been suggested as explanations for the long periods observed in a variety of X-ray binaries, most notably Her X-1/HZ Her. We show that an instability of the response of the disc to the radiation reaction force from the illumination by the central source can cause

  10. The formation of black holes derived from X-ray binaries

    NARCIS (Netherlands)

    Repetto, S.

    2016-01-01

    This Thesis revolves around the topic of black holes (BHs) in X-ray binaries (XRBs). The trigger of this work was to understand how stellar-mass BHs form, a question which we tackled both with theoretical as well as observational studies. The formation mechanism of BHs is an unsolved problem in high

  11. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    CERN Document Server

    Hernández, J I González; Rebolo, R; Casares, J

    2016-01-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2m-VLT telecope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of $\\dot P=-20.7\\pm12.7$ ms yr$^{-1}$ ($-24.5\\pm15.1$ $\\mu $s per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  12. The ubiquity of the rms-flux relation in black hole X-ray binaries

    NARCIS (Netherlands)

    Heil, L.M.; Vaughan, S.; Uttley, P.

    2012-01-01

    We have investigated the short-term linear relation between the rms variability and the flux in 1961 observations of nine black hole X-ray binaries. The rms-flux relation for the 1-10 Hz range is ubiquitously observed in any observation with good variability signal-to-noise ratio (>3 per cent, 1-10 

  13. The formation of black holes derived from X-ray binaries

    NARCIS (Netherlands)

    Repetto, S.

    2016-01-01

    This Thesis revolves around the topic of black holes (BHs) in X-ray binaries (XRBs). The trigger of this work was to understand how stellar-mass BHs form, a question which we tackled both with theoretical as well as observational studies. The formation mechanism of BHs is an unsolved problem in high

  14. The influence of spin on jet power in neutron star X-ray binaries

    NARCIS (Netherlands)

    Migliari, S.; Miller-Jones, J.C.A.; Russell, D.M.

    2011-01-01

    We investigate the role of the compact object in the production of jets from neutron star X-ray binaries. The goal is to quantify the effect of the neutron star spin, if any, in powering the jet. We compile all the available measures or estimates of the neutron star spin frequency in jet-detected ne

  15. Accretion states in X-ray binaries and their connection to GeV emission

    Science.gov (United States)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  16. Low-level accretion in neutron star X-ray binaries

    NARCIS (Netherlands)

    Wijnands, R.; Degenaar, N.; Armas Padilla, M.; Altamirano, D.; Cavecchi, Y.; Linares, M.; Bahramian, A.; Heinke, C.O.

    2015-01-01

    We search the literature for reports on the spectral properties of neutron star low-mass X-ray binaries when they have accretion luminosities between 1034 and 1036 erg s−1, corresponding to roughly 0.01-1 per cent of the Eddington accretion rate for a neutron star. We found that in this luminosity r

  17. High-Mass X-ray binaries in the Small Magellanic Cloud

    CERN Document Server

    Haberl, Frank

    2015-01-01

    The last comprehensive catalogue of high-mass X-ray binaries in the Small Magellanic Cloud (SMC) was published about 10 years ago. Since then new such systems were discovered, mainly by X-ray observations with Chandra and XMM-Newton. For the majority of the proposed HMXBs in the SMC no X-ray pulsations were discovered yet and unless other properties of the X-ray source and/or the optical counterpart confirm their HMXB nature, they remain only candidate HMXBs. From a literature search we collect a catalogue of 148 confirmed and candidate HMXBs in the SMC and investigate their properties to shed light on their real nature. Based on the sample of well established HMXBs (the pulsars), we investigate which observed properties are most appropriate for a reliable classification. Using spectral and temporal characteristics of the X-ray sources and colour-magnitude diagrams from the optical to the infrared of their likely counterparts and taking into account the uncertainty in the X-ray position we define different le...

  18. Preheating of the early universe by radiation from high-mass X-ray binaries

    Science.gov (United States)

    Sazonov, S. Yu.; Khabibullin, I. I.

    2017-04-01

    Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25-2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s-1, could significantly heat ( T > T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.

  19. Revealing a new symbiotic X-ray binary with Gemini NIFS

    CERN Document Server

    Bahramian, Arash; Heinke, Craig O; Wijnands, Rudy; Kaur, Ramanpreet; Altamirano, Diego

    2014-01-01

    We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5-295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5-295044 has shown a hard X-ray spectrum (we verify its association with an Integral/IBIS 18-40 keV detection in 2013 using a short Swift/XRT observation), high and varying N$_H$, and rapid flares on timescales down to minutes, suggesting wind accretion onto a compact star. We observed its near-infrared counterpart using the Near-infrared Integral Field Spectrograph (NIFS) at Gemini-North, and classify the companion as ~ M2 III. We infer a distance of $3.1^{+1.8}_{-1.1}$ kpc (conservative 1-sigma errors), and therefore calculate that the observed X-ray luminosity (2-10 keV) has reached to at least 4$\\times10^{34}$ erg/s. We therefore conclude that the source is a symbiotic X-ray binary containing a neutron star (or, less likely, black hole) accreting from the wind of a giant.

  20. Disc-jet coupling in atoll-type neutron star X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Migliari, S.; Fender, R.P.; Rupen, M.; Jonker, P.G.; Klein-Wolt, M.; Hjellming, R.M.; Wachter, S.; Homan, J.; Klis, M. van der

    2004-06-01

    Atoll-type neutron star (NS) X-ray binaries share lots of properties with low/hard state black hole candidates (BHC) and are therefore the key sources for our understanding of the differences and similarities in the disc-jet connection of BHC and NS systems and the physical processes involved. We present the analysis of simultaneous radio (VLA) and X-ray (RXTE) observations of three atoll sources: 4U 1728-34, 4U 1820-30 and Ser X-1 (first radio detection). In 4U 1728-34 we find a significant correlation between radio and X-ray flux and, for the first time in an X-ray binary, a significant quantitative correlation between radio flux and X-ray timing features. As in BHCs it seems that also in atolls (i.e. in 4U 1820-30, Ser X-1 and in one observation of 4U 1728-34) the radio emission is 'quenched' above a certain luminosity, when the sources are in a softer state.

  1. Evolution of Intermediate-mass X-Ray Binaries Driven by the Magnetic Braking of AP/BP Stars. I. Ultracompact X-Ray Binaries

    Science.gov (United States)

    Chen, Wen-Cong; Podsiadlowski, Philipp

    2016-10-01

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40-60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100-10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10-5, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10-3, and 10-5, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  2. The optical counterpart to the Be/X-ray binary SAX J2239.3+6116

    Science.gov (United States)

    Reig, P.; Blay, P.; Blinov, D.

    2017-01-01

    Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.

  3. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    Science.gov (United States)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  4. Multiwavelength observations of the Be/X-ray binary 4U1145-619

    OpenAIRE

    Stevens, James B.; Reig, Pablo; Coe, Malcolm J.; Buckely, David H.; Fabregat, Juan; Steele, Iain A.

    1997-01-01

    We report optical and infrared observations of the massive X-ray binary system 4U1145-619 (V801 Cen) which show that the circumstellar disc of the Be star component is in decline. Infrared J,H,K,L magnitudes of V801Cen have been monitored from 1993 March to 1996 April. H alpha spectra have been obtained throughout the same period. We find that both the infrared excess and the Balmer emission have been in decline throughout the period of observations. A 13 year optical and X-ray history of the...

  5. The spectra of accretion discs in low-mass X-ray binaries

    CERN Document Server

    Ross, R R

    1995-01-01

    We present self-consistent models for the radiative transfer in Shakura-Sunyaev accretion discs in bright low-mass X-ray binaries (LMXB). Our calculations include the full effects of incoherent Compton scattering and the vertical temperature structure within the disc, as well as the effects of Doppler blurring and gravitational redshift. We find that the observed X-ray spectra are well fit by exponentially cutoff power-law models. The difference between the observed total spectrum and our calculated disc spectrum should reveal the spectrum of the disc/neutron star boundary layer and other emitting regions considered to be present in LMXB.

  6. Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1

    OpenAIRE

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2014-01-01

    The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is ...

  7. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    Science.gov (United States)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color–magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  8. Supermassive binary black holes - possible observational effects in the x-ray emission

    Directory of Open Access Journals (Sweden)

    Jovanović Predrag

    2014-01-01

    Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe Kα line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects

  9. Spitzer Space Telescope Observations of Low Mass X-ray Binaries

    CERN Document Server

    Wachter, Stefanie

    2008-01-01

    We present preliminary results from our archival Spitzer Space Telescope program aimed at characterizing the mid-IR properties of compact objects, both isolated and in binary systems, i.e. white dwarfs, X-ray binaries, cataclysmic variables, and magnetars. Most of these sources are too faint at mid-IR wavelengths to be observable from the ground, so this study provides the very first comprehensive look at the mid-IR emission of these objects. Here we present our results for the low mass X-ray binaries. We considered all of the systems listed in the most recent catalog of Liu et al. (2007) that have known optical counterparts. The particular goals of our projects encompass: to establish the mid-IR spectral energy distribution, to search for the signatures of jets, circumbinary disks, low mass or planetary companions and debris disks, and to study the local environment of these sources.

  10. Optical and X-ray observations of the low-mass X-ray binary EXO 0748-676

    Science.gov (United States)

    Thomas, Brian; Corbet, Robin; Augusteijn, Thomas; Callanan, Paul; Smale, Alan P.

    1993-01-01

    Optical and X-ray observations of EXO-676 in late March 1989 are presented. Our optical observations provide some support for the previously observed correlation between the mean optical brightness and light curve morphology. Unexpectedly, the mean X-ray and optical flux levels during this period do not reflect similar system states. The optical counterpart is found to be in an intermediate to low state, while X-ray data imply a bright (high) state. The changed relationship between optical and X-ray fluxes is evidence showing that EXO 0748-676 has possibly evolved. We fail to find correlated variability in simultaneous X-ray and optical observations. The lack of covariability is attributed to the limited simultaneous coverage of the source and/or significant geometric modulation in the optical light curve.

  11. Multiwavelength observations of the Be/X-ray binary 4U1145-619

    CERN Document Server

    Stevens, J B; Coe, M J; Buckely, D H; Fabregat, J; Steele, I A; Stevens, James B.; Reig, Pablo; Coe, Malcolm J.; Buckely, David H.; Fabregat, Juan; Steele, Iain A.

    1997-01-01

    We report optical and infrared observations of the massive X-ray binary system 4U1145-619 (V801 Cen) which show that the circumstellar disc of the Be star component is in decline. Infrared J,H,K,L magnitudes of V801Cen have been monitored from 1993 March to 1996 April. H alpha spectra have been obtained throughout the same period. We find that both the infrared excess and the Balmer emission have been in decline throughout the period of observations. A 13 year optical and X-ray history of the source has been collated, revealing a possible correlation between the optical and X-ray activity. In addition, we have used u,v,b,y,beta indices, corrected for both circumstellar and interstellar effects, to calculate the physical parameters of the underlying B star.

  12. Low-Mass X-ray Binaries and Globular Clusters in Centaurus A

    CERN Document Server

    Jordan, Andres; McLaughlin, Dean E; Blakeslee, John P; Evans, Daniel A; Kraft, Ralph P; Hardcastle, Martin J; Peng, Eric W; Cote, Patrick; Croston, Judith H; Juett, Adrienne M; Minniti, Dante; Raychaudhury, Somak; Sarazin, Craig L; Worrall, Diana M; Harris, William E; Woodley, Kristin A; Birkinshaw, Mark; Brassington, Nicola J; Forman, William R; Jones, Christine; Murray, Stephen S

    2007-01-01

    We present results of Hubble Space Telescope and Chandra X-ray Observatory observations of globular clusters (GCs) and low-mass X-ray binaries (LMXBs) in the central regions of Centaurus A. Out of 440 GC candidates we find that 41 host X-ray point sources that are most likely LMXBs. We fit King models to our GC candidates in order to measure their structural parameters. We find that GCs that host LMXBs are denser and more compact, and have higher encounter rates and concentrations than the GC population as a whole. We show that the higher concentrations and masses are a consequence of the dependence of LMXB incidence on central density and size plus the general trend for denser GCs to have higher masses and concentrations. We conclude that neither concentration nor mass are fundamental variables in determining the presence of LMXBs in GCs, and that the more fundamental parameters relate to central density and size.

  13. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  14. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  15. ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Fragos, T.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Naoz, S. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Basu-Zych, A., E-mail: tfragos@cfa.harvard.edu [NASA Goddard Space Flight Centre, Code 662, Greenbelt, MD 20771 (United States)

    2013-10-20

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ∼ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z ∼> 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ∼4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ∼300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages ∼> 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  16. Energy Feedback from X-ray Binaries in the Early Universe

    CERN Document Server

    Fragos, Tassos; Naoz, Smadar; Zezas, Andreas; Basu-Zych, Antara R

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows no changes with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specificall...

  17. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; Ptak, A.; Sivakoff, G. R.; Tzanavaris, P.; Yukita, M.

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  18. The role of metallicity in high mass X-ray binaries in galaxy formation models

    CERN Document Server

    Artale, M C; Tissera, P B

    2014-01-01

    Context: Recent theoretical works claim that high-mass X-ray binaries (HMXBs) could have been important sources of energy feedback into the interstellar and intergalactic media, playing a major role in the reionization epoch. A metallicity dependence of the production rate or luminosity of the sources is a key ingredient generally assumed but not yet probed. Aims: Our goal is to explore the relation between the X-ray luminosity (Lx) and star formation rate of galaxies as a possible tracer of a metallicity dependence of the production rates and/or X-ray luminosities of HMXBs. Methods: We developed a model to estimate the Lx of star forming galaxies based on stellar evolution models which include metallicity dependences. We applied our X-ray binary models to galaxies selected from hydrodynamical cosmological simulations which include chemical evolution of the stellar populations in a self-consistent way. Results: Our models successfully reproduce the dispersion in the observed relations as an outcome of the com...

  19. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    CERN Document Server

    Jonker, P G

    2007-01-01

    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient CenX-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to t...

  20. A new gamma-ray loud, eclipsing low-mass X-ray binary

    CERN Document Server

    Strader, Jay; Chomiuk, Laura; Heinke, Craig O; Udalski, Andrzej; Peacock, Mark; Shishkovsky, Laura; Tremou, Evangelia

    2016-01-01

    We report the discovery of an eclipsing low-mass X-ray binary at the center of the 3FGL error ellipse of the unassociated Fermi/Large Area Telescope gamma-ray source 3FGL J0427.9-6704. Photometry from OGLE and the SMARTS 1.3-m telescope and spectroscopy from the SOAR telescope have allowed us to classify the system as an eclipsing low-mass X-ray binary (P = 8.8 hr) with a main sequence donor and a neutron star accretor. Broad double-peaked H and He emission lines suggest the ongoing presence of an accretion disk. Remarkably, the system shows shows separate sets of absorption lines associated with the accretion disk and the secondary, and we use their radial velocities to find evidence for a massive (~ 1.8-1.9 M_sun) neutron star primary. In addition to a total X-ray eclipse of duration ~ 2200 s observed with NuSTAR, the X-ray light curve also shows properties similar to those observed among known transitional millisecond pulsars: short-term variability, a hard power-law spectrum (photon index ~ 1.7), and a co...

  1. Discovery of an X-ray Emitting Contact Binary System 2MASS J11201034$-$2201340

    CERN Document Server

    Hu, Chin-Ping; Chou, Yi; Liu, L; Qian, S -B; Hui, C Y; Kong, Albert K H; Lin, L C C; Tam, P H T; Li, K L; Ngeow, Chow-Choong; Chen, W P; Ip, Wing-Huen

    2016-01-01

    We report the detection of orbital modulation, a model solution, and X-ray properties of a newly discovered contact binary, 2MASS J11201034$-$2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of $\\gamma$-ray millisecond pulsars among the unidentified objects detected by the {\\it Fermi Gamma-ray Space Telescope}. The optical counterpart of the X-ray source (unrelated to the $\\gamma$-ray source) was then identified using archival databases. The long-term CRTS survey detected a precise signal with a period of $P=0.28876208(56)$ days. A follow-up observation made by the SLT telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution, which is well fitted by a K2V spectral template. The fitting result of the orbital profile using the Wilson--Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type c...

  2. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    Science.gov (United States)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  3. A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary $\\delta$ Orionis Aa: II. X-ray Variability

    CERN Document Server

    Nichols, J S; Corcoran, M F; Waldron, W; Nazé, Y; Pollock, A M T; Moffat, A F J; Lauer, J; Shenar, T; Russell, C M P; Richardson, N D; Pablo, H; Evans, N R; Hamaguchi, K; Gull, T; Hamann, W R; Oskinova, L; Ignace, R; Hoffman, Jennifer L; Hole, K T; Lomax, J R

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral dataset of the $\\delta$ Orionis Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ~479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 $\\AA$ is confirmed, with maximum amplitude of about +/-15% within a single ~125 ks observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phase=0.0 when the seconda...

  4. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  5. Short term aperiodic variability of X-ray binaries: its origin and implications

    CERN Document Server

    Revnivtsev, M

    2008-01-01

    In this review I briefly describe the latest advances in studies of aperiodic variability of accreting X-ray binaries and outline the model which currently describe the majority of observational appearances of variability of accreting sources in the best way. Then I concentrate on the case of luminous accreting neutron star binaries (in the soft/high spectral state), where study of variability of X-ray emission of sources allowed us to resolve long standing problem of disentangling the contribution of accretion disk and boundary/spreading layer components to the time average spectrum of sources. The obtained knowledge of the shape of the spectrum of the boundary layer allowed us to make estimates of the mass and radii of accreting neutron stars.

  6. The high optical polarization in the Be/X-ray binary EXO 2030+375

    CERN Document Server

    Reig, P; Papadakis, I; Kylafis, N; Tassis, K

    2014-01-01

    Polarization in classical Be stars results from Thomson scattering of the unpolarized light from the Be star in the circumstellar disc. Theory and observations agree that the maximum degree of polarization from isolated Be stars is < 4%. We report on the first optical polarimetric observations of the Be/X-ray binary EXO\\,2030+375. We find that the optical (R band) light is strongly linearly polarized with a degee of polarization of 19%, the highest ever measured either in a classical or Be/X-ray binary. We argue that the interstellar medium cannot account for this high polarization degree and that a substantial amount must be intrinsic to the source. We propose that it may result from the alignment of non-spherical ferromagnetic grains in the Be star disc due to the strong neutron star magnetic field.

  7. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    Science.gov (United States)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  8. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    OpenAIRE

    Albert; André; Anton; Ardid; Aubert,; Avgitas; Baret; Barrios-Martí; Basa; Bertin; Biagi; Bormuth; Bouwhuis; Bruijn, de, M.E.; Brunner

    2017-01-01

    ANTARES is currently the largest neutrino telescope operating in the NorthernHemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources.Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and arethus well-suited to detect neutrinos produced in transient astrophysical sources. A timedependentsearch has been applied to a list of 33 X-ray binaries undergoing high flaringactivities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and du...

  9. Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    CERN Document Server

    van Haaften, L M; Voss, R; van der Sluys, M V; Toonen, S

    2015-01-01

    Aims. We model the present-day population of 'classical' low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. Methods. We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results. We find a population of ~2.1 x 10^3 LMXBs with neutron star accretors. Of these about 15 - 40 are expected to be persistent (depending on model assumptions), with luminosities higher than 10^35 erg s^-1. About 7 - 20 transient sources are expected to be in outburst at any given time. Within a factor of two these number...

  10. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  11. X-ray and $\\gamma$-ray Studies of the Millisecond Pulsar and PossibleX-ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    CERN Document Server

    Bogdanov, Slavko; Crawford, Fronefield; Possenti, Andrea; McLaughlin, Maura A; Freire, Paulo

    2013-01-01

    We present X-ray observations of the ``redback'' eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $\\gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $\\gamma$-ray point source, due to the strong Galactic diffuse emission at i...

  12. Long-term variability of low-mass X-ray binaries

    Directory of Open Access Journals (Sweden)

    Filippova E.

    2014-01-01

    Full Text Available We consider modulations of mass captured by the compact object from the companion star’s stellar wind in Low Mass X-ray Binaries with late type giants. Based on 3D simulations with two different hydrodynamic codes used Lagrangian and Eulerian approaches – the SPH code GADGET and the Eulerian code PLUTO, we conclude that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. Observational appearances of this wind might be similar to that of an accretion disc corona/wind.

  13. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  14. Identification of the donor in the X-ray binary GRS 1915+105

    CERN Document Server

    Greiner, J; McCaughrean, M J; Castro-Tirado, A J; Mennickent, R E

    2001-01-01

    We report on the results of medium-resolution spectroscopy of GRS 1915+105 in the near-infrared H and K band using the 8m VLT at ESO. We clearly identify absorption bandheads from 12CO and 13CO. Together with other features this results in a classification of the mass-donating star in this binary as a K-M III star, clearly indicating that GRS 1915+105 belongs to the class of low-mass X-ray binaries (LMXB).

  15. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    Science.gov (United States)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  16. Evidence for a jet contribution to the optical/infrared light of neutron star X-ray binaries

    NARCIS (Netherlands)

    Russell, D.M.; Fender, R.P.; Jonker, P.G.

    2007-01-01

    Optical/near-infrared (optical/NIR, OIR) light from low-mass neutron star X-ray binaries (NSXBs) in outburst is traditionally thought to be thermal emission from the accretion disc. Here we present a comprehensive collection of quasi-simultaneous OIR and X-ray data from 19 low magnetic field NSXBs,

  17. XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence

    NARCIS (Netherlands)

    Trigo, M. Diaz; Boirin, L.; Costantini, E.; Mendez, M.; Parmar, A.

    2011-01-01

    The neutron star low-mass X-ray binary EXO 0748-676 started a transition from outburst to quiescence in August 2008, after more than 24 years of continuous accretion. The return of the source to quiescence has been monitored extensively by several X-ray observatories. Here, we report on four XMM-New

  18. On the rarity of X-ray binaries with Wolf-Rayet donors

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T. [Univ. of California, Santa Cruz, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Valsecchi, F. [Northwestern Univ., Evanston, IL (United States); Kalogera, V. [Northwestern Univ., Evanston, IL (United States)

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  19. Wind-jet interaction in high-mass X-ray binaries

    Science.gov (United States)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  20. Classification of compact binaries: an X-ray analog to the HR diagram

    Science.gov (United States)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  1. Isotropic Detectable X-ray Counterparts to Gravitational Waves from Neutron Star Binary Mergers

    CERN Document Server

    Kisaka, Shota; Nakamura, Takashi

    2015-01-01

    Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau emission in short GRBs by the merger ejecta produces nearly isotropic emission for $\\sim 10^4$ s with flux $10^{-10}-10^{-13}$ erg cm$^{-2}$ s$^{-1}$ in X-ray. This is detectable by wide field X-ray detectors such as ISS-Lobster, eROSITA and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity and GW polarizations. The activity of plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the $r$-process radioactivity.

  2. A Transient Black-Hole Low-Mass X-Ray Binary Candidate in Centaurus A

    CERN Document Server

    Sivakoff, Gregory R; Jordán, Andrés; Juett, Adrienne M; Evans, Daniel A; Forman, William R; Hardcastle, Martin J; Sarazin, Craig L; Birkinshaw, Mark; Brassington, Nicola J; Croston, Judith H; Harris, William E; Jones, Christine; Murray, Stephen S; Raychaudhury, Somak; Woodley, Kristin A; Worrall, Diana M

    2008-01-01

    We report the discovery of a bright transient X-ray source, CXOU J132518.2-430304, towards Centaurus A (Cen A) using six new Chandra X-Ray Observatory observations in 2007 March--May. Between 2003 and 2007, its flux has increased by a factor of >770. The source is likely a low-mass X-ray binary in Cen A with unabsorbed 0.3-10 keV band luminosities of (2-3) x 10^{39} erg s^-1 and a transition from the steep-power law state to the thermal state during our observations. CXOU J132518.2-430304 is the most luminous X-ray source in an early-type galaxy with extensive timing information that reveals transience and a spectral state transition. Combined with its luminosity, these properties make this source one of the strongest candidates to date for containing a stellar-mass black hole in an early-type galaxy. Unless this outburst lasts many years, the rate of luminous transients in Cen A is anomalously high compared to other early-type galaxies.

  3. The reverberation lag in the low mass X-ray binary H1743-322

    CERN Document Server

    De Marco, B

    2016-01-01

    The evolution of the inner accretion flow of a black hole X-ray binary (BHXRB) during the outburst is still a matter of active research. X-ray reverberation lags are powerful tools to constrain the disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared results obtained from the analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts, happened in 2008 and 2014. During all the observations the source is caught in the hard state and at similar luminosities ($\\mathrm{L_{3-10\\ keV}/L_{Edd}\\sim 0.004}$). We detected a soft X-ray lag of $\\sim$60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at s...

  4. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    Science.gov (United States)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  5. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    CERN Document Server

    Zycki, P T; Sobolewska, M A

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretion flow oscillates, while the cold disc is absent at the QPO radius. We find that the QPO spectra are generally similar to the spectrum of radiation emitted at the QPO radius, and they are broadened by the relativistic effects. In particular, the QPO spectrum contains the disc component in the oscillating disc with a corona scenario. We also review the available data on energy dependencies of high frequency QPO, and we point out that they appear to lack the disc component in their energy spectra. This would suggest the hot...

  6. A Transient Supergiant X-ray Binary in IC10. An Extragalactic SFXT?

    CERN Document Server

    Laycock, Silas; Oram, Kathleen; Balchunas, Andrew

    2014-01-01

    We report the discovery of a large amplitude (factor of $\\sim$100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high mass X-ray binary (HMXB) consisting of a luminous blue supergiant and a neutron star (NS). The highest measured luminosity of the source was 1.8$\\times$10$^{37}$ erg s$^{-1}$ during an outburst in 2003. Observations before, during and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard powerlaw ($\\Gamma$=0.3) with fitted column density ($N_H$=6.3$\\times$10$^{21}$ atom cm$^{-2}$) consistent with the established absorption to sources in IC10. The optical spectrum shows hydrogen Balmer lines strongly in emission, at the correct blueshift (-340 km/s) for IC10. The NIII triplet emission feature is seen, accomp...

  7. WATCHDOG: A Comprehensive All-Sky Database of Galactic Black Hole X-ray Binaries

    CERN Document Server

    Tetarenko, B E; Heinke, C O; Gladstone, J C

    2015-01-01

    With the advent of more sensitive all-sky instruments, the transient Universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments aboard the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion ...

  8. High proper motion X-ray binaries from the Yale Southern Proper Motion Survey

    CERN Document Server

    Maccarone, Thomas J; Casetti-Dinescu, Dana I

    2014-01-01

    We discuss the results of cross-correlating catalogs of bright X-ray binaries with the Yale Southern Proper Motion catalog (version 4.0). Several objects already known to have large proper motions from Hipparcos are recovered. Two additional objects are found which show substantial proper motions, both of which are unusual in their X-ray properties. One is IGR J17544-2619, one of the supergiant fast X-ray transients. Assuming the quoted distances in the literature for this source of about 3 kpc are correct, this system has a peculiar velocity of about 275 km/sec -- greater than the velocity of a Keplerian orbit at its location of the Galaxy, and in line with the expectations formed from suggestions that the supergiant fast X-ray transients should be highly eccentric. We discuss the possibility that these objects may help explain the existence of short gamma-ray bursts outside the central regions of galaxies. The other is the source 2A~1822-371, which is a member of the small class of objects which are low mas...

  9. Highly absorbed X-ray binaries in the Small Magellanic Cloud

    CERN Document Server

    Novara, G; Mereghetti, S; Haberl, F; Coe, M; Filipovic, M; Udalski, A; Paizis, A; Pietsch, W; Sturm, R; Gilfanov, M; Tiengo, A; Payne, J; Smits, D; De Horta, A

    2011-01-01

    Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a search for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly ...

  10. Chandra Observations of the Faintest Low-Mass X-ray Binaries

    CERN Document Server

    Wilson, C A; Kouveliotou, C; Jonker, P G; Van der Klis, M; Lewin, W H G; Belloni, T; Méndez, M; Wilson, Colleen. A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; Klis, Michiel van der; Lewin, Walter H.G; Belloni, Tomaso; Mendez, Mariano

    2003-01-01

    There exists a group of persistently faint galactic X-ray sources that, based on their location in the galaxy, high L_x/L_opt, association with X-ray bursts, and absence of low frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected) were improved to 0.6" error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power law indices typically 1.4-2.1, which are consistent with typical faint LMXB spectra.

  11. Faint X-ray Binaries and Their Optical Counterparts in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2014-01-01

    X-ray binaries (XRBs) are probes of both star formation and stellar mass, but more importantly remain one of the only direct tracers of the compact object population. To investigate the XRB population in M31, we utilized all 121 publicly available observations of M31 totalling over 1 Ms from $\\it{Chandra's}$ ACIS instrument. We studied 83 star clusters in the bulge using the year 1 star cluster catalogue from the Panchromatic Hubble Andromeda Treasury Survey. We found 15 unique star clusters that matched to 17 X-ray point sources within 1'' (3.8 pc). This population is composed predominantly of globular cluster low-mass XRBs, with one previously unidentified star cluster X-ray source. Star clusters that were brighter and more compact preferentially hosted an X-ray source. Specifically, logistic regression showed that the F475W magnitude was the most important predictor followed by the effective radius, while color (F475W$-$F814W) was not statistically significant. We also completed a matching analysis of 1566...

  12. Detection of the Second Eclipsing High-Mass X-Ray Binary in M 33

    Science.gov (United States)

    Pietsch, Wolfgang; Haberl, Frank; Gaetz, Terrance J.; Hartman, Joel D.; Plucinsky, Paul P.; Tüllmann, Ralph; Williams, Benjamin F.; Shporer, Avi; Mazeh, Tsevi; Pannuti, Thomas G.

    2009-03-01

    Chandra data of the X-ray source [PMH2004] 47 were obtained in the ACIS Survey of M 33 (ChASeM33) in 2006. During one of the observations, the source varied from a high state to a low state and back, in two other observations it varied from a low state to respectively intermediate states. These transitions are interpreted as eclipse ingresses and egresses of a compact object in a high-mass X-ray binary (HMXB) system. The phase of mideclipse is given by HJD 245 3997.476 ± 0.006, the eclipse half angle is 30fdg6 ± 1fdg2. Adding XMM-Newton observations of [PMH2004] 47 in 2001 we determine the binary period to be 1.732479 ± 0.000027 days. This period is also consistent with ROSAT HRI observations of the source in 1994. No short-term periodicity compatible with a rotation period of the compact object is detected. There are indications for a long-term variability similar to that detected for Her X-1. During the high state the spectrum of the source is hard (power-law spectrum with photon index ~0.85) with an unabsorbed luminosity of 2 ×1037 erg s-1 (0.2-4.5 keV). We identify as an optical counterpart a V ~ 21.0 mag star with T eff>19000 K, log(g)>2.5. The Canada-France-Hawaii Telescope optical light curves for this star show an ellipsoidal variation with the same period as the X-ray light curve. The optical light curve together with the X-ray eclipse can be modeled by a compact object with a mass consistent with a neutron star or a black hole in an HMXB. However, the hard power-law X-ray spectrum favors a neutron star as the compact object in this second eclipsing X-ray binary in M 33. Assuming a neutron star with a canonical mass of 1.4 M sun and the best-fit companion temperature of 33,000 K, a system inclination i = 72° and a companion mass of 10.9 M sun are implied.

  13. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  14. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    Science.gov (United States)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  15. Spectral-Timing to Probe Strong Gravity in X-ray Binaries

    Science.gov (United States)

    Stevens, Abigail; Uttley, Phil

    2017-01-01

    X-ray spectral-timing seeks to investigate how matter behaves in strong gravitational fields. Observations suggest that different types of quasi-periodic oscillations (QPOs) are associated with different emission-region geometries (e.g. disk-like or jet-like) in the innermost part of an X-ray binary, close to the neutron star or black hole. We developed a technique for phase-resolved spectroscopy of QPOs, and have applied it to low-frequency QPOs from black hole X-ray binaries. On the QPO time-scale, we find that the energy spectrum changes not only in normalization, but also in spectral shape. We identify these changes as a phase-dependence of the intrinsic power-law emission as well as the response of the accretion disk to variable illumination by the power-law. We also look for systematic trends between different classes of sources and different accretion states. These trends help us to further constrain the origin of low-frequency QPOs and QPO evolution with the changing emission geometry in the strong-gravity regime.

  16. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  17. Non-thermal emissions from accreting X-ray binary pulsars

    Science.gov (United States)

    Zhang, Jian-Fu; Jin, Hui; Dong, Ai-Jun

    2014-03-01

    We study non-thermal emissions from cascade processes in accreting X-ray binary pulsars. In the framework of the magnetospheric gap model, we consider three photon fields, which are respectively from the polar cap of a pulsar, its surrounding accretion disk and a massive companion star with a circumstellar disk, to shield the gap. The gap-accelerated ultra-relativistic electrons emit high-energy photons via curvature radiation and an inverse Compton scattering process, in which part of these high-energy photons absorbed by interactions with the surrounding photon fields can facilitate the following electromagnetic cascades. We first carry out numerical calculations of the cascade processes in order to obtain the predicted emission spectra. As an example, we subsequently apply this model to reproduce observations of LS I +61° 303. We find that the results can fit observations ranging from hard X-ray to γ-ray bands. In particular, they can explain the spectral cutoff feature at a few GeV. Finally, we suggest that the emissions detected by the Fermi Large Area Telescope from X-ray binary pulsars originate in the magnetosphere region of the pulsar.

  18. Interference as an origin of the peaked noise in accreting X-ray binaries

    CERN Document Server

    Veledina, Alexandra

    2016-01-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the up-scattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the fr...

  19. A search for counterparts to massive X-ray binaries using photometric catalogues

    CERN Document Server

    Negueruela, I; Negueruela, Ignacio; Schurch, Matthew

    2006-01-01

    (abridged) INTEGRAL has discovered large numbers of new hard X-ray sources, many of which are believed to be high mass X-ray binaries. However, for a significant fraction, their counterparts remain unidentified. We explore the use of photometric catalogues to find optical counterparts to high mass X-ray binaries. Candidates were selected from 2MASS photometry by means of a reddening free Q parameter. Sufficiently bright candidates were spectroscopically observed. Many of the candidates selected turned out to be moderately reddened late A or early F stars, but our method is able to identify the counterpart to IGR J16207-5129, confirmed by a Chandra localisation. We classify this object as a B0 supergiant. In the field of AX J1820.5-1434, we find a mid or early B-type star, but we cannot confirm it as the counterpart. For AX J1700.2-4220, we do not find any suitable candidate within the ASCA error circle. We classify HD 153295, a marginal candidate to be the counterpart, as B0.5IVe, and find a distance compatib...

  20. Coronae and Winds from Irradiated Disks in X-ray binaries

    CERN Document Server

    Higginbottom, Nick

    2015-01-01

    X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds' cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, w...

  1. On the Formation of Galactic Black Hole Low-Mass X-ray Binaries

    CERN Document Server

    Wang, Chen; Li, Xiang-Dong

    2016-01-01

    Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distribution...

  2. The X-ray luminosity function of low mass X-ray binaries in early-type galaxies, their metal-rich, and metal-poor globular clusters

    CERN Document Server

    Peacock, Mark B

    2015-01-01

    We present the X-ray luminosity function (XLF) of low mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-types galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB populations to be observed to X-ray luminosities of $10^{37}-10^{38}$ erg/s, and HST optical mosaics which enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample, or change in a way that does not effect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of $3\\times10^{-6}$ (equiva...

  3. The X-ray Luminosity Functions of Field Low Mass X-ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    CERN Document Server

    Lehmer, B D; Zezas, A; Alexander, D M; Basu-Zych, A; Bauer, F E; Brandt, W N; Fragos, T; Hornschemeier, A E; Kalogera, V; Ptak, A; Sivakoff, G R; Tzanavaris, P; Yukita, M

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galax...

  4. The evolution of the current outburst of the low mass X-ray binary IGR J17091-3624

    Science.gov (United States)

    Grinberg, Victoria; Fuerst, Felix; Ballhausen, Ralf; Eikmann, Wiebke; Wilms, Joern; Ferrigno, Carlo; Bozzo, Enrico; Cadolle Bel, Marion; Egron, Elise; Favre, Thierry; Krauss, Felicia; Kreykenbohm, Ingo; Nowak, Michael A.; Pottschmidt, Katja; Rodriguez, Jerome

    2016-03-01

    The transient low mass X-ray binary IGR J17091-3624 is a key source to understanding accretion/ejection processes in X-ray binaries. Observations during its best studied outburst in 2011 have shown that the source shows variability patterns that have so far been unique to GRS 1915+105 (Altamirano et al., 2011, ApJ, 742, L17).

  5. On pulsar-driven mass ejection in low-mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Lei Fu; Xiang-Dong Li

    2011-01-01

    There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence.We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar,and the gas pressure at the inner Lagrange point or at the surrounding accretion disk.We calculate the critical spin period of the pulsar below which mass ejection is allowed.Combining with the evolution of the mass transfer rate,we present constraints on the orbital periods of the systems.We show that mass ejection could happen in both wide and compact LMXBs.It may be caused by transient accretion due to thermal instability in the accretion disks in the former,and irradiation-driven mass-transfer cycles in the latter.

  6. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    Energy Technology Data Exchange (ETDEWEB)

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew [Department of Physics and Applied Physics, Olney Science Center, University of Massachusetts, Lowell, MA 01854 (United States)

    2014-07-01

    We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  7. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    Science.gov (United States)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; Mukai, K.; Possenti, A.

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  8. The search for low-luminosity high-mass X-ray binaries and the study of X-ray populations in the Galactic disk

    Science.gov (United States)

    Fornasini, Francesca; Tomsick, John; Bodaghee, Arash; Rahoui, Farid; Krivonos, Roman; Corral-Santana, Jesus; An, Hongjun; Bauer, Franz E.; Gotthelf, Eric V.; Stern, Daniel; NuSTAR Galactic Plane Survey Team

    2016-01-01

    High-mass X-ray binaries (HMXBs), which consist of a neutron star (NS) or black hole (BH) accreting material from a massive stellar companion, provide valuable insights into the evolution of massive stars and the merger rates of NS/NS, NS/BH, and BH/BH binaries whose gravitational wave signatures will soon be detectable by facilities such as Advanced-LIGO. INTEGRAL discoveries of new classes of lower-luminosity HMXBs, some highly obscured and some showing extreme transient activity, as well as the recent discovery of the very quiescent and only known Be-BH binary, have considerably changed our understanding of clumping in massive stellar winds and the relative importance of different binary evolutionary channels. In order to better characterize the low-luminosity HMXB population, we have performed a survey of a square degree region in the direction of the Norma spiral arm with Chandra and NuSTAR. These surveys, combined with optical and infrared spectroscopic follow-up of the counterparts of hard X-ray sources, have yielded three HMXB candidates to date. Future radial-velocity follow-up of these candidates, as well as other Be HMXB candidates from the NuSTAR serendipitous survey, will help determine whether these sources truly are HMXBs and, if so, constrain the mass of the compact object in these systems. If confirmed, these HMXB candidates could extend our measurement of the HMXB luminosity function by about two orders of magnitude and provide important constraints on massive binary evolutionary models. In addition, the colliding wind binaries and pulsar wind nebulae discovered in the Norma X-ray survey will help shed light on other aspects of massive stellar evolution and massive stellar remnants. Finally, these surveys provide the opportunity to compare the hard X-ray populations in the Galactic disk and the Galactic Center. While the dominant hard X-ray populations in both of these Galactic regions appear to be cataclysmic variables (CVs), those in the Norma

  9. Spin Evolution of Neutron Stars in OB/X-ray Binaries

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang; Xiang-Dong Li; Zhen-Ru Wang

    2004-01-01

    We have investigated the relation between the orbital period Porb and the spin period Ps of neutron stars in OB/X-ray binaries.By simulating the timedevelopment of the mass loss rate and radius expansion of a 20M(◎)donor star,we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs(that is,when the break spin period is reached),or when the OB star begins evolving off the main sequence or has filled its Roche lobe.Our results are compatible with the observations of OB/X-ray binaries.We find that in relatively narrow systems with orbital periods less than tens of days,neutron stars with initial magnetic field B0 stronger than about 3 × 1012 G can reach the break spin period to allow steady wind accretion in the main sequence time,whereas neutron stars with B0 < 3 × 1012 G and/or in wide systems would still be in one of the pulsar,rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe.Our results may help understand the various characteristics of the observed OB/neutron star binaries along with their distributions in the Ps -Porb diagram.

  10. On Binary Driven Hypernovae and their nested late X-ray emission

    CERN Document Server

    Ruffini, R; Bianco, C L; Enderli, M; Izzo, L; Kovacevic, M; Penacchioni, A V; Pisani, G B; Rueda, J A; Wang, Y

    2014-01-01

    Context: The induced gravitational collapse (IGC) paradigm addresses the very energetic (10^{52}-10^{54}erg) long gamma-ray bursts (GRBs) associated to supernovae (SNe). In alternative to the traditional "collapsar" model, an evolved FeCO core with a companion neutron star (NS) in a tight binary system is considered as progenitor. This special class of sources, here named "binary driven hypernovae" (BdHNe), presents a composite sequence made by four different episodes [...]. Aims: a) To compare and contrast the steep decay, the plateau and the power-law decay of the X-ray luminosities of three selected BdHNe [...]; b) to explain the different sizes and Lorentz factors of the emitting regions of the four Episodes, [...]; c) to evidence the possible role of r-process, originating in the binary system of the progenitor. Methods: We compare and contrast the late X-ray luminosity of the above three BdHNe. We examine correlations between the time at the starting point of the constant late power-law decay, t^*_a, th...

  11. The Connection Between X-ray Binaries and Star Clusters in NGC 4449

    CERN Document Server

    Rangelov, Blagoy; Chandar, Rupali

    2011-01-01

    We present 23 candidate X-ray binaries with luminosities down to 1.8x10^36 erg/s, in the nearby starburst galaxy NGC 4449, from observations totaling 105 ksec taken with the ACIS-S instrument on the Chandra Space Telescope. We determine count rates, luminosities, and colors for each source, and perform spectral fits for sources with sufficient counts. We also compile a new catalog of 129 compact star clusters in NGC 4449 from high resolution, multi-band optical images taken with the Hubble Space Telescope, doubling the number of clusters known in this galaxy. The UBVI,Ha luminosities of each cluster are compared with predictions from stellar evolution models to estimate their ages and masses. We find strong evidence for a population of very young massive, black-hole binaries, which comprise nearly 50% of the detected X-ray binaries in NGC 4449. Approximately a third of these remain within their parent star clusters, which formed t < 6-8 Myr ago, while others have likely been ejected from their parent clust...

  12. Lense-Thirring precession in neutron-star low-mass X-ray binaries

    Science.gov (United States)

    Homan, Jeroen

    Quasi-periodic oscillations (QPOs) with low frequencies (0.01-70 Hz) have been observed in the X-ray light curves of most neutron-star and black-hole low-mass X-ray binaries. Despite having been discovered more than 25 years ago, their origin is still not well understood. Similarities between the low-frequency QPOs in the two types of systems suggest that they have a common origin in the accretion flows around black holes and neutron stars. Some of the proposed models that attempt to explain low- frequency QPOs invoke a General Relativistic effect known as Lense-Thirring precession (or "frame dragging"). However, for Lense-Thirring precession to produce substantial modulations of the X-ray flux through relativistic beaming and gravitational lensing, the rotation axis of the inner part of the accretion disk needs to have a substantial tilt (10-20 degrees) with respect to the spin axis of the compact object. We argue that observational evidence for such titled inner accretion disks can be found in the variability of neutron- star low-mass X-ray binaries that are viewed at inclination angles of 60-80 degrees. In these systems low-frequency QPOs at ~0.1-15 Hz are observed that modulate the emission from the neutron star by quasi-periodic obscuration, presumably by a titled inner disc. The goal of our proposed program is to test whether the frequency evolution and spectral state dependence of these QPOs is similar to what is observed for the low-frequency QPOs that are observed in lower-inclination neutron-star X-ray binaries. To make such a comparison, we need to better characterize the properties and behavior of these QPOs. Our study will make use of almost 1300 RXTE observations of 11 sources, totaling 5.7 Ms of data. Signatures of strong gravity have long been sought after in accreting compact objects. While strong evidence from spectral features has emerged in the last decade (e.g. gravitationally broadened iron emission lines), there have only been hints of such

  13. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    Science.gov (United States)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  14. The distances to the X-ray binaries LSI +61 303 and A0535+262

    CERN Document Server

    Steele, I A; Coe, M J; Roche, P

    1998-01-01

    Chevalier & Ilovaisky (1998) use Hipparcos data to show that the X-ray binary systems LSI+61 303 and A0535+262 are a factor of ten closer (i.e. d = few hundred pc) than previously thought (d = 2 kpc). We present high quality CCD spectra of the systems, and conclude that the spectral types, reddening and absolute magnitudes of these objects are strongly inconsistent with the closer distances. We propose that the Hipparcos distances to these two systems are incorrect due to their relatively faint optical magnitudes.

  15. Evolution of Low-Mass X-ray Binaries: the Effect of Donor Evaporation

    CERN Document Server

    Jia, Kun

    2016-01-01

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs including redbacks and black widows indicates that evaporation of the donor star by the MSP's irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possibly the formation of isolated MSPs.

  16. Evolution of Low-mass X-Ray Binaries: The Effect of Donor Evaporation

    Science.gov (United States)

    Jia, Kun; Li, Xiang-Dong

    2016-10-01

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possibly the formation of isolated MSPs.

  17. Spectral Properties of the X-ray Binary Pulsar LMC X-4 during Different Intensity States

    Indian Academy of Sciences (India)

    S. Naik; B. Paul

    2002-03-01

    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.

  18. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    OpenAIRE

    Wachter, Stefanie

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22 h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser ...

  19. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  20. Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    CERN Document Server

    Lamb, Frederick K

    2007-01-01

    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become milliseco...

  1. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    CERN Document Server

    Wachter, S

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22~h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser X-1 is one of the most intense persistent X-ray burst sources known. It is also one of only three burst systems for which simultaneous optical and X-ray bursts have been observed. The faint blue optical counterpart MM Ser (B~19.2) has long been known to have a companion 2.1" distant. Our images indicate that MM Ser is itself a further superposition of two stars, separated by only 1". At the very least, the ratio of inferred burst to quiescent optical flux is affected by the discovery of this additional component. In the w...

  2. Chandra Observations of the Gamma-ray Binary LSI+61303: Extended X-ray Structure?

    CERN Document Server

    Paredes, J M; Bosch-Ramon, V; West, J R; Butt, Y M; Torres, D F; Martí, J

    2007-01-01

    We present a 50 ks observation of the gamma-ray binary LSI+61303 carried out with the ACIS-I array aboard the Chandra X-ray Observatory. This is the highest resolution X-ray observation of the source conducted so far. Possible evidence of an extended structure at a distance between 5 and 12 arcsec towards the North of LSI+61303 have been found at a significance level of 3.2 sigma. The asymmetry of the extended emission excludes an interpretation in the context of a dust-scattered halo, suggesting an intrinsic nature. On the other hand, while the obtained source flux, of F_{0.3-10 keV}=7.1^{+1.8}_{-1.4} x 10^{-12} ergs/cm^2/s, and hydrogen column density, N_{H}=0.70+/-0.06 x 10^{22} cm^{-2}, are compatible with previous results, the photon index Gamma=1.25+/-0.09 is the hardest ever found. In light of these new results, we briefly discuss the physics behind the X-ray emission, the location of the emitter, and the possible origin of the extended emission ~0.1 pc away from LSI+61303.

  3. Near-infrared survey of High Mass X-ray Binary candidates

    CERN Document Server

    Torrejón, J M; Smith, D M; Harrison, T E

    2009-01-01

    We combine infrared spectra in the I, J, H and K bands together with JHK photometry to characterize the spectral type, luminosity class and distance to the infrared counterparts to five INTEGRAL sources. For SAX J18186-1703 and IGR J18483-0311, we present the first intermediate-resolution spectroscopy reported. We find that four systems harbour early-type B supergiants. All of them are heavily obscured, with E(B-V) ranging between 3 and 5, implying visual extinctions of ~ 9 to 15 magnitudes. We refine the published classifications of IGR J18027-2016 and IGR J19140+0951 by constraining their luminosity class. In the first case, we confirm the supergiant nature and rule out class III. In the second case, we propose a slightly higher luminosity class (Ia instead of Iab) and give an improved value of the distance based on new optical photometry. Owing to their infrared and X-ray characteristics, IGR J18027-2016 and IGR J19140+0951, emerge as Supergiant X-ray binaries with X-ray luminosities of the order of Lx ~ [...

  4. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  5. Intermittent dipping in a low-mass X-ray Binary

    CERN Document Server

    Galloway, Duncan K; Upjohn, James; Stuart, Matthew

    2016-01-01

    Periodic dips observed in approx. 20% of low-mass X-ray binaries are thought to arise from obscuration of the neutron star by the outer edge of the accretion disk. We report the detection with the Rossi X-ray Timing Explorer of two dipping episodes in Aql X-1, not previously a known dipper. The X-ray spectrum during the dips exhibited an elevated neutral column density, by a factor between 1 and almost two orders of magnitude. Dips were not observed in every cycle of the 18.95-hr orbit, so that the estimated frequency for these events is 0.10 (+0.07,-0.05)/cycle. This is the first confirmed example of intermittent dipping in such a system. Assuming that the dips in Aql X-1 occur because the system inclination is intermediate between the non-dipping and dipping sources, implies a range of 72-79 deg. for the source. This result lends support for the presence of a massive (> 2 M_sun) neutron star in Aql X-1, and further implies that approx. 30 additional LMXBs may have inclinations within this range, raising the...

  6. The mysterious sdO X-ray binary BD+37 442

    CERN Document Server

    Heber, U; Irrgang, A; Schneider, D; Barbu-Barna, I; Mereghetti, S; La Palombara, N

    2014-01-01

    Pulsed X-ray emission in the luminous, helium-rich sdO BD+37 442 has recently been discovered (La Palombara et al., 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD+37 442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD+37 442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of ...

  7. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the SMC

    CERN Document Server

    Hénault-Brunet, V; Guerrero, M A; Sun, W; Chu, Y -H; Evans, C J; Gallagher, J S; Gruendl, R A; Reyes-Iturbide, J

    2011-01-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power-law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in H-alpha and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion...

  8. Detection of the first infra-red quasi periodic oscillation in a black hole X-ray binary

    CERN Document Server

    Kalamkar, M; Uttley, P; O'Brien, K; Russell, D; Maccarone, T; van der Klis, M; Vincentelli, F

    2015-01-01

    We present analysis of fast variability of Very Large Telescope/ISAAC (infra-red), \\textit{XMM-Newton}/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a Quasi Periodic Oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The broad band sub-second time scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 100 ms. This short time delay, shape of the cross correlation function and spectral energy distribution strongly indicate that this broad band variable IR emission is the synchrotron emission from the jet. A jet origin for the IR ...

  9. Correlated optical/X-ray variability in the high-mass X-ray binary SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A; Blay, P

    2009-01-01

    SAX J2103.5+4545 is the Be/X-ray binary with the shortest orbital period. It shows extended bright and faint X-ray states that last for a few hundred days. The main objective of this work is to investigate the relationship between the X-ray and optical variability and to characterise the spectral and timing properties of the bright and faint states. We have found a correlation between the spectral and temporal parameters that fit the energy and power spectra. Softer energy spectra correspond to softer power spectra. That is to say, when the energy spectrum is soft the power at high frequencies is suppressed. We also present the results of our monitoring of the Halpha line of the optical counterpart since its discovery in 2003. There is a correlation between the strength and shape of the Halpha line, originated in the circumstellar envelope of the massive companion and the X-ray emission from the vicinity of the neutron star. Halpha emission, indicative of an equatorial disc around the B-type star, is detected...

  10. The soft X-ray spectrum of the high-mass X-ray binary V0332+53 in quiescence

    Science.gov (United States)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-11-01

    The behaviour of neutron stars in high-mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass-transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7 ± 0.2 K and inferred emitting radius of ˜0.2-0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hotspot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  11. Discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40

    CERN Document Server

    Migliari, S; Belloni, T; Van der Klis, M; Fender, R P; Campana, S; Kouveliotou, C; Méndez, M; Lewin, W H G

    2003-01-01

    We report the discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40 during the 100 ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~ (3-9)x10^(-10) erg cm^(-2)s^(-1). A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate Mdot~7x10^(-11) Msun/yr, that may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of 4U 1708-40, where no bursts have been observed; we found persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts...

  12. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS

    Science.gov (United States)

    Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.

    2013-01-01

    We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.

  13. Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1

    Science.gov (United States)

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2015-01-01

    The massive black hole (BH)+Wolf-Rayet (WR) binary IC 10 X-1 was observed in a series of 10 Chandra and two XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 × 1037 erg s-1, with a spectral hardening event in 2009. We phase connected the entire light curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1) d. The duration of minimum flux in the X-ray eclipse is ˜5 h which together with the optical radial velocity (RV) curve for the companion yields a radius for the eclipsing body of 8-10 R⊙ for the allowed range of masses. The orbital separation (a1 + a2) = 18.5-22 R⊙ then provides a limiting inclination i > 63° for total eclipses to occur. The eclipses are asymmetric (egress duration ˜0.9 h) and show energy dependence, suggestive of an accretion disc hotspot and corona. The eclipse is much (˜5×) wider than the 1.5-2 R⊙ WR star, pointing to absorption/scattering in the dense wind of the WR star. The same is true of the close analog NGC 300 X-1. RV measurements of the He II [λλ4686] line from the literature show a phase shift with respect to the X-ray ephemeris such that the velocity does not pass through zero at mid-eclipse. The X-ray eclipse leads inferior conjunction of the RV curve by ˜90°, so either the BH is being eclipsed by a trailing shock/plume, or the He II line does not directly trace the motion of the WR star and instead originates in a shadowed partially ionized region of the stellar wind.

  14. Tracing the Lowest Propeller Line in Magellanic High-mass X-Ray Binaries

    Science.gov (United States)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel

    2016-09-01

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P S < 12 s, detected at relatively low X-ray luminosities L X , appear to define such a line in the P S -L X diagram, characterized by a magnetic moment of μ = 3 × 1029 G cm3. This value implies the presence of surface magnetic fields of B ≥ 3 × 1011 G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  15. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    Science.gov (United States)

    Ho, Wynn C. G.; Ng, C.-Y.; Lyne, Andrew G.; Stappers, Ben W.; Coe, Malcolm J.; Halpern, Jules P.; Johnson, Tyrel J.; Steele, Iain A.

    2017-01-01

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45-50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swift observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ˜70 since 2002 and ˜20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ˜2 over time-scales as short as 1-2 months. Multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.

  16. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    CERN Document Server

    Ho, Wynn C G; Lyne, Andrew G; Stappers, Ben W; Coe, Malcolm J; Halpern, Jules P; Johnson, Tyrel J; Steele, Iain A

    2016-01-01

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly toward periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi gamma-ray data, allows us to update and refine the orbital period to 45-50 yr and time of periastron passage to November 2017. We analyze archival and recent Chandra and Swift observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Halpha emission line of the Be star suggest that the size of its circumstellar disk may be varying by ~2 over timescales as...

  17. The Origin of Warped, Precessing Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Maloney, Philip R.; Begelman, Mitchell C.

    1997-01-01

    The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.

  18. GRB060602B = Swift J1749.4-2807: an unusual transiently accreting neutron-star X-ray binary

    CERN Document Server

    Wijnands, Rudy; Cackett, Ed M; Starling, Rhaana L C; Remillard, Ron A

    2007-01-01

    We present an analysis of the Swift BAT and XRT data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type-I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM-Newton data approximately 6 years before the burst and in more recent XMM-Newton data obtained at the end of September 2006 (nearly 4 months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4-2807, based on the Swift/BAT discovery coordinates. Using the BAT data of the type-I X-ray burst we determined that the source is at most at a distance of 6.7+-1.3 kpc. For a transiently accreting X-ray binary its soft X-ray behaviour is atypical: its 2-10 keV X-ray lumino...

  19. Tracing X-ray Binary Population Evolution By Galaxy Dissection: First Results from M51

    Science.gov (United States)

    Lehmer, Bret; Eufrasio, Rafael T.; Markwardt, Larissa; Zezas, Andreas; Basu-Zych, Antara; Fragos, Tassos; Hornschemeier, Ann E.; Kalogera, Vassiliki; Ptak, Andrew; Tzanavaris, Panayiotis; Yukita, Mihoko

    2017-01-01

    Recently, we have found, in the Chandra Deep Field-South, that the emission from X-ray binary (XRB) populations in galaxies evolves significantly with cosmic time, most likely due to changes in the physical properties of galaxies like star-formation rate, stellar mass, stellar age, and metallicity. However, it has been challenging to directly show that these same physical properties are connected to XRB populations using data from nearby galaxies. We present a new technique for empirically calibrating how X-ray binary (XRB) populations evolve following their formation in a variety of environments. We first utilize detailed stellar population synthesis modeling of far-UV to far-IR broadband data of nearby (face-on spiral galaxies to construct maps of the star-formation histories on subgalactic scales. Using Chandra data, we then identify the locations of the XRBs within these galaxies and correlate their formation frequencies with local galaxy properties. In this talk, I will show promising first results for the Whirlpool galaxy (M51), and will discuss how expanding our sample to an archival sample of 20 face-on spirals will lead to a detailed empirical timeline for how XRBs form and evolve in various environments.

  20. The optical counterpart to the Be/X-ray binary SAX J2239.3+6116

    CERN Document Server

    Reig, P; Blinov, D

    2016-01-01

    The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 A spectroscopy. The optical counterpart to SAX J2239.3+6116 is a V=14.8 B0Ve star located at a distance of ~4.9 kpc. The interstellar reddening in the direction of the source is E(B-V)=1.70 mag. The monitoring of the Halpha line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. We attribute the long-term decrease in the intensity of the Halpha line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of ...

  1. Population synthesis of ultracompact X-ray binaries in the Galactic Bulge

    CERN Document Server

    van Haaften, L M; Voss, R; Toonen, S; Zwart, S F Portegies; Yungelson, L R; van der Sluys, M V

    2013-01-01

    [abridged] Aims. We model the number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic Bulge. The objective is to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods. The binary population synthesis code SeBa and stellar evolutionary tracks are used to model the UCXB population. The luminosity behavior of UCXBs is predicted using long-term X-ray observations of the known UCXBs and the thermal-viscous disk instability model. Results. In our model, the majority of UCXBs initially have a helium burning star donor. In the absence of a mechanism that destroys old UCXBs, we predict (0.2 - 1.9) x 10^5 UCXBs in the Galactic Bulge, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5 - 50 UCXBs should be brighter than 10^35 erg/s, mostly persistent sources with orbital periods shorter than 30 min and with degenerate helium and ca...

  2. Three X-ray Flares Near Primary Eclipse of the RS CVn Binary XY UMa

    CERN Document Server

    Gong, Hang; Maccarone, Thomas; Reale, Fabio; Liu, Jifeng; Heckert, Paul A

    2016-01-01

    We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa ($\\rm P_{orb}\\approx$ 0.48d). In two $\\emph{Chandra}$ ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly ($<0.125\\rm P_{orb}$) after a primary eclipse, and the other two happening shortly ($<0.05\\rm P_{orb}$) before a primary eclipse. Two flares occurred within roughly one orbital period ($\\Delta \\phi\\approx1.024\\rm P_{orb}$) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales both during quiescence and during flares, as well as the timing of the flares. We explore the possibility that the flares are orbit-induced by introducing a small orbital eccentricity, which is quite challenging for this close binary.

  3. Attempt to explain black hole spin in X-ray binaries by new physics

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2015-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M{sub s}un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)

  4. Unsupervised spectral decomposition of X-ray binaries with application to GX 339--4

    CERN Document Server

    Koljonen, Karri I I

    2014-01-01

    In this paper we explore unsupervised spectral decomposition methods for distinguishing the effect of different spectral components for a set of consecutive spectra from an X-ray binary. We use well-established linear methods for the decomposition, namely principal component analysis (PCA), independent component analysis (ICA) and non-negative matrix factorisation (NMF). Applying these methods to a simulated dataset consisting of a variable multicolour disc black body and a cutoff power law, we find that NMF outperforms the other two methods in distinguishing the spectral components. In addition, due the non-negative nature of NMF, the resulting components may be fitted separately, revealing the evolution of individual parameters. To test the NMF method on a real source, we analyse data from the low-mass X-ray binary GX 339-4 and found the results to match those of previous studies. In addition, we found the inner radius of the accretion disc to be located at the innermost stable orbit in the intermediate sta...

  5. M31 globular cluster structures and the presence of X-ray binaries

    CERN Document Server

    Agar, J R R

    2013-01-01

    [Abridged] M31 has several times more globular clusters (GCs) than the Milky Way. It contains a correspondingly larger number of low mass X-ray binaries (LMXBs) associated with GCs, and can be used to investigate the GC properties which lead to X-ray binary formation. The best tracer of the spatial structure of M31 GCs is high-resolution imaging from the Hubble Space Telescope, and we have used HST data to derive structural parameters for 29 LMXB-hosting M31 GCs. These measurements are combined with structural parameters from the literature for a total of 41 (of 50 known) LMXB GCs and a comparison sample of 65 non-LMXB GCs. Structural parameters measured in blue bandpasses are found to show smaller core radii and higher concentrations than those measured in red bandpasses; this difference is enhanced in LMXB clusters and could be related to stellar population differences. Clusters with LMXBs show higher collision rates for their mass compared to those without LMXBs and collision rates estimated at the core ra...

  6. Stellar wind in state transitions of high-mass X-ray binaries

    CERN Document Server

    Čechura, Jan

    2014-01-01

    Aims: We have developed a new code for the three-dimensional time-dependent raditation hydrodynamic simulation of the stellar wind in interacting binaries to improve models of accretion in high-mass X-ray binaries and to quantitatively clarify the observed variability of these objects. We used the code to test the influence of various parameters on the structure and properties of circumstellar matter. Methods: Our code takes into account acceleration of the wind due to the Roche effective potential, Coriolis force, gas pressure, and (CAK-) radiative pressure in the lines and continuum of the supergiant radiation field that is modulated by its gravity darkening and by the photo-ionization caused by X-ray radiation from the compact companion. The parameters of Cygnus X-1 were used to test the properties of our model. Results: Both two- and three-dimensional numerical simulations show that the Coriolis force substantially influences the mass loss and consequently the accretion rate onto the compact companion. Th...

  7. Population of persistent high mass X-ray binaries in the Milky Way

    CERN Document Server

    Lutovinov, A A; Tsygankov, S S; Krivonos, R A

    2013-01-01

    We present results of the study of persistent high mass X-ray binaries (HMXBs) in the Milky Way, obtained from the deep INTEGRAL Galactic plane survey. This survey provides us a new insight into the population of high mass X-ray binaries because almost half of the whole sample consists of sources discovered with INTEGRAL. It is demonstrated for the first time that the majority of persistent HMXBs have supergiant companions and their luminosity function steepens somewhere around ~2x10^{36} erg/s. We show that the spatial density distribution of HMXBs correlates well with the star formation rate distribution in the Galaxy. The vertical distribution of HMXBs has a scale-height h~85 pc, that is somewhat larger than the distribution of young stars in the Galaxy. We propose a simple toy model, which adequately describes general properties of HMXBs in which neutron stars accrete a matter from the wind of the its companion (wind-fed NS-HMXBs population). Using the elaborated model we argue that a flaring activity of ...

  8. Hydrodynamical winds from two-temperature plasma in X-ray binaries

    CERN Document Server

    Lin, D J; Taam, R E; Lin, David J.

    2000-01-01

    Hydrodynamical winds from a spherical two-temperature plasma surrounding a compact object are constructed. The mass-loss rate is computed as a function of electron temperature, optical depth and luminosity of the sphere, the values of which can be constrained by the fitting of the spectral energy distributions for known X-ray binary systems. The sensitive dependence of the mass loss rate with these parameters leads to the identification of two distinct regions in the parameter space separating wind-dominated from non wind dominated systems. A critical optical depth, tau_c, as a function of luminosity and electron temperature, is defined which differentiates these two regions. Systems with optical depths significantly smaller than tau_c are wind-dominated. The results are applied to black hole candidate X-ray binary systems in the hard spectral state (Cyg X-1, GX 339-4 and Nova Muscae), and it is found that the inferred optical depth (tau) is similar to tau_c suggesting that they are wind regulated systems. On...

  9. Detection of the second eclipsing high mass X-ray binary in M 33

    CERN Document Server

    Pietsch, W; Gaetz, T J; Hartman, J D; Plucinsky, P P; Tüllmann, R; Williams, B F; Shporer, A; Mazeh, T; Pannuti, T G

    2008-01-01

    Chandra data of the X-ray source [PMH2004] 47 were obtained in the ACIS Survey of M 33 (ChASeM33) in 2006. During one of the observations, the source varied from a high state to a low state and back, in two other observations it varied from a low state to respectively intermediate states. These transitions are interpreted as eclipse ingress and egresses of a compact object in a high mass X-ray binary system. The phase of mid eclipse is given by HJD 2453997.476+-0.006, the eclipse half angle is 30.6+-1.2 degree. Adding XMM-Newton observations of [PMH2004] 47 in 2001 we determine the binary period to be 1.732479+-0.000027 d. This period is also consistent with ROSAT HRI observations of the source in 1994. No short term periodicity compatible with a rotation period of the compact object is detected. There are indications for a long term variability similar to that detected for Her X-1. During the high state the spectrum of the source is hard (power law spectrum with photon index ~0.85) with an unabsorbed luminos...

  10. Low-level accretion in neutron-star X-ray binaries

    CERN Document Server

    Wijnands, R; Padilla, M Armas; Altamirano, D; Cavecchi, Y; Linares, M; Bahramian, A; Heinke, C O

    2014-01-01

    We search the literature for reports on the spectral properties of neutron-star low-mass X-ray binaries when they have accretion luminosities between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the spectrum softens). Such behaviour has been reported before for individual sources, but here we demonstrate that very likely most (if not all) neutron-star systems behave in a similar manner and possibly even follow a universal relation. When comparing the neutron-star systems with black-hole systems, it is clear that most black-hole binaries have significantly harder spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data points, there are indications that these spectral differences also extend to the 1E35 - 1E36 erg/s range. We note, however, that the system in our sample which has the hardest spectra is in fact a neutron-s...

  11. BeppoSAX observation of the X-ray binary pulsar Vela X-1

    Science.gov (United States)

    Orlandini, M.; Dal Fiume, D.; Nicastro, L.; Giarrusso, S.; Segreto, A.; Piraino, S.; Cusumano, G.; Del Sordo, S.; Guainazzi, M.; Piro, L.

    1997-05-01

    We report on the spectral (pulse averaged) and timing analysis of the ~20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~2 in intensity, and a factor 10 in NH. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X-ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206+/-0.001 sec.

  12. Exploring the high frequency emission of radio loud X-ray binaries

    CERN Document Server

    Paredes, J M; Peracaula, M; Pooley, G G; Mirabel, I F

    2000-01-01

    We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.

  13. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    CERN Document Server

    Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...

  14. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Science.gov (United States)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  15. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    OpenAIRE

    Nelemans, G.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular I discuss the evidence for and against asymmetric kicks imparted on the black hole at formation and find contradicting answers, as there seems to be evidence for kick for individual systems and from the Galactic $z$-distribution of black hole X-ray binaries, but not from t...

  16. High-Resolution spectroscopy of the low-mass X-ray binary EXO 0748-67

    CERN Document Server

    Cottam, J; Brinkman, A C; Den Herder, J M; Erd, Christian

    2001-01-01

    We present initial results from observations of the low-mass X-ray binary EXO 0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton Observatory. The spectra exhibit discrete structure due to absorption and emission from ionized neon, oxygen, and nitrogen. We use the quantitative constraints imposed by the spectral features to develop an empirical model of the circumsource material. This consists of a thickened accretion disk with emission and absorption in the plasma orbiting high above the binary plane. This model presents challenges to current theories of accretion in X-ray binary systems.

  17. GRB060602B = Swift J1749.4-2807: an unusual transiently accreting neutron-star X-ray binary

    OpenAIRE

    Wijnands, R.; Rol, E.; Cackett, E.; Starling, R. L. C.; Remillard, R.A.

    2007-01-01

    We present an analysis of the Swift BAT and XRT data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type-I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival...

  18. Type-I X-ray bursts reveal a fast co-evolving behavior of the corona in an X-ray binary

    CERN Document Server

    Chen, Yu-Peng; Zhang, Shuang-Nan; Li, Jian; Wang, Jian-Min

    2013-01-01

    The coronae in X-ray binaries (XRBs) still remain poorly understood, although they have been believed for a long time to play a key role in modeling the characteristic outbursts of XRBs. Type-I X-ray bursts, the thermonuclear flashes happening on the surface of a neutron star (NS), can be used as a probe to the innermost region of a NS XRB, where the corona is believed to be located very close to the NS. We report the discovery of a tiny life cycle of the corona that is promptly co-evolved with the type-I bursts superimposed on the outburst of the NS XRB IGR J17473$-$2721. This finding may serve as the first evidence of directly seeing the rapid disappearance and formation of a corona in an XRB with a cooling/heating timescale of less than a second, which can strongly constrain the accretion models in XRBs at work.

  19. Origin of power-law X-ray emission in the steep power-law state of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Li-Hong Yan; Jian-Cheng Wang

    2011-01-01

    We present a new explanation for the origin of the steep power-law (SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies, which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss the relevance of the model to high-frequency quasi-periodic oscillations and the extremely high luminosity of the SPL state.

  20. THE X-RAY LUMINOSITY FUNCTION OF LOW MASS X-RAY BINARIES IN EARLY-TYPE GALAXIES, THEIR METAL-RICH, AND METAL-POOR GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, Mark B.; Zepf, Stephen E., E-mail: mpeacock@msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-02-10

    We present the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-type galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB populations to be observed to X-ray luminosities of 10{sup 37}–10{sup 38} erg s{sup −1}, and Hubble Space Telescope optical mosaics that enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample or change in a way that does not affect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of 3 × 10{sup −6} (equivalent to 4.7σ for a normal distribution). The difference is such that the XLF of the GC LMXBs is flatter than that of the field LMXBs, with the GCs hosting relatively more bright sources and fewer faint sources. A comparison of the XLF of the metal-rich and metal-poor GCs hints that the metal-poor clusters may have more bright LMXBs, but the difference is not statistically significant.

  1. The nature of the Island and Banana States in Atoll sources and a Unified Model for Low Mass X-ray Binaries

    CERN Document Server

    Church, M J; Balucinska-Church, M

    2013-01-01

    We propose an explanation of the Island and Banana states and the relation between Atoll and Z-track sources, constituting a unified model for Low Mass X-ray Binaries (LMXB). We find a dramatic transition at a luminosity of 1 - 2.10^{37} erg/s above which the high energy cut-off E_CO of the Comptonized emission in all sources is low at a few keV. There is thermal equilibrium between the neutron star at ~2 keV and the Comptonizing accretion disk corona (ADC) causing the low E_CO in the Banana state of Atolls and all states of the Z-track sources. Below this luminosity, E_CO increases towards 100 keV causing the hardness of the island state. Thermal equilibrium is lost, the ADC becoming much hotter than the neutron star via an additional coronal heating mechanism. This suggests a unified model of LMXB: the Banana state is a basic state with the mass accretion rate Mdot increasing, corresponding to the Normal Branch of Z-track sources. The Island state has high ADC temperature, this state not existing in the Z-t...

  2. An Ultracompact X-Ray Binary in the Globular Cluster M15 (NGC 7078)

    Science.gov (United States)

    Dieball, A.; Knigge, C.; Zurek, D. R.; Shara, M. M.; Long, K. S.; Charles, P. A.; Hannikainen, D. C.; van Zyl, L.

    2005-11-01

    We have used the Advanced Camera for Surveys on board the Hubble Space Telescope to image the core of the globular cluster M15 in the far-ultraviolet (FUV) wave band. Based on these observations, we identify the FUV counterpart of the recently discovered low-mass X-ray binary M15 X-2. Our time-resolved FUV photometry shows a modulation with 0.062+/-0.004 mag semiamplitude, and we clearly detect a period of 22.5806+/-0.0002 minutes. We have carried out extensive Monte Carlo simulations, which show that the signal is consistent with being coherent over the entire observational time range of more than 3000 cycles. This strongly suggests that it represents the orbital period of the binary system. M15 X-2 is FUV-bright (FUV~=17 mag) and is characterized by an extremely blue spectral energy distribution (Fλ~λ-2.0). We also find evidence for an excess of flux between 1500 and 1600 Å and probably between 1600 and 2000 Å that might be due to C IV 1550 Å and He II 1640 Å emission lines. We also show that M15 X-2's X-ray luminosity can be powered by accretion at the rate expected for mass transfer driven by gravitational waves at this binary period. The observed FUV emission appears to be dominated by an irradiated accretion disk around the neutron star primary, and the variability can be explained by irradiation of the low-mass white dwarf donor if the inclination of the system is ~34°. We conclude that all observational characteristics of M15 X-2 are consistent with its being an ultracompact X-ray binary, only the third confirmed such object in a globular cluster. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  3. Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    CERN Document Server

    Sturm, R; Vasilopoulos, G; Bartlett, E S; Maggi, P; Rau, A; Greiner, J; Udalski, A

    2014-01-01

    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical li...

  4. Low-Mass X-Ray Binary MAXI J1421-613 Observed by MAXI GSC and Swift XRT

    CERN Document Server

    Serino, Motoko; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A; Fukushima, Kosuke; Nagayama, Takahiro

    2015-01-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC and the Swift XRT follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is $\\approx$ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm$^{-2}$ s$^{-1}$. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc...

  5. Inner Accretion Disk Regions of Black Hole X-ray Binaries

    Science.gov (United States)

    Salvesen, Greg

    2015-01-01

    The innermost regions of accretion disks in black hole X-ray binaries dominate the observed X-ray emission, which is the main diagnostic that one uses to gain insights into the physics of black holes and accretion. The standard spectrum predicted from a geometrically thin, optically thick disk experiences non-trivial modification due to conspiring physical effects operating within the vertical disk structure such as Comptonization, free-free emission/absorption, bound-free opacities, and energy dissipation by magnetic processes. The complicated interplay of these effects cause the seed accretion disk spectrum to become hardened and it is this hardened emergent spectrum that we observe. To zeroth order, this hardening can be described by a phenomenological parameter called the spectral hardening factor.In practice, the adopted degree of spectral hardening is confined to lie within a rather restrictive range. I will discuss the following consequences of relaxing this criterion, while still requiring the spectral hardening factor to take on physically plausible values. Examining multiple state transitions of the black hole X-ray binary GX 339-4 with archival data from the Rossi X-ray Timing Explorer, I will show that appealing to a spectral hardening factor that varies during state transitions provides a viable alternative to a truncated disk model for the evolution of the inner accretion disk. Having demonstrated that moderate degrees of accretion disk spectral hardening cannot be ruled out by observations, I will explore this possibility from a theoretical standpoint. Extending previous work on radiative transfer modeling coupled to the vertical disk structure, I present the impacts on the emergent accretion disk spectrum caused by disk inclination and by allowing accretion power to be dissipated in the corona. Using magnetohydrodynamic simulations of a localized patch of the accretion disk (i.e., shearing box) performed with the Athena code, I will present the

  6. Ultracompact X-Ray Binaries with Neon-Rich Degenerate Donors

    CERN Document Server

    Juett, A M; Chakraborty, D; Juett, Adrienne M.; Psaltis, Dimitrios; Chakrabarty, Deepto

    2001-01-01

    There are three low-mass X-ray binaries (4U 0614+091, 2S 0918-549, and 4U 1543-624) for which broad line emission near 0.7 keV was previously reported. A recent high-resolution observation of 4U 0614+091 with the Chandra/LETGS found evidence for an unusually high Ne/O abundance ratio along the line of sight but failed to detect the previously reported 0.7 keV feature. We have made a search of archival ASCA spectra and identified a fourth source with the 0.7 keV feature, the 20-min ultracompact binary 4U 1850-087. In all four of these sources, the 0.7 keV residual is eliminated from the ASCA spectra by allowing excess photoelectric absorption due to a non-solar relative abundance of neon, just as in the LETGS spectrum of 4U 0614+091. The optical properties of these systems suggest that all four are ultracompact (P_orb<80 min) binaries. We propose that there is excess neon local to each of these sources, as also found in the ultracompact binary pulsar 4U 1626-67. We suggest that the mass donor in these syste...

  7. XMM-Newton observations of four high mass X-ray binaries and IGR J17348-2045

    CERN Document Server

    Bozzo, E; Ferrigno, C; Falanga, M; Campana, S; Paltani, S; Stella, L; Walter, R

    2012-01-01

    We present the results of the XMM-Newton observations of five hard X-ray emitters: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703, and IGR J17348-2045. The first source is a confirmed supergiant high mass X-ray binary, the following two are candidates supergiant fast X-ray transients, SAX J1818.6-1703 is a confirmed supergiant fast X-ray transient and IGR J17348-2045 is one of the still unidentified objects discovered with INTEGRAL. The XMM-Newton observations permitted the first detailed soft X-ray spectral and timing study of IGR J08262-3736 and provided further support in favor of the association of IGR J17354-3255 and IGR J16328-4726 with the supergiant fast X-ray transients. SAX J1818.6-1703 was not detected by XMM-Newton, thus supporting the idea that this source reaches its lowest X-ray luminosity (~10^32 erg/s) around apastron. For IGR J17348-2045 we identified for the first time the soft X-ray counterpart and proposed the association with a close-by radio object, suggestive of an...

  8. 2S1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    CERN Document Server

    Lutovinov, Alexander A; Townsend, Lee J; Tsygankov, Sergey S; Kennea, Jamie

    2016-01-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disk). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as $>15$ kpc. This distance estimation is supported by the X-ray data and makes 2S1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  9. A dozen colliding wind X-ray binaries in the star cluster R136 in the 30 Doradus region

    CERN Document Server

    Zwart, S P; Lewin, W H G; Zwart, Simon Portegies; Pooley, David; Lewin, Walter

    2002-01-01

    We analyzed archival Chandra X-ray observations of the central portion of the 30 Doradus region in the Large Magellanic Cloud. The image contains 20 X-ray point sources with luminosities between 5x10^32 and 2x10^35 erg/s (0.2 to 3.5 keV). A dozen sources have bright WN Wolf-Rayet or spectral type O stars as optical counterparts. Nine of these are within about 3.4pc of R136, the central star cluster of NGC2070. We derive an empirical relation between the X-ray luminosity and the parameters for the stellar wind of the optical counterpart. The relation gives good agreement for known colliding wind binaries in the Milky Way Galaxy and for the identified X-ray sources in NGC2070. We conclude that probably all identified X-ray sources in NGC2070 are colliding wind binaries and that they are not associated with compact objects. This conclusion contradicts Wang (1995) who argued, using ROSAT data, that two earlier discovered X-ray sources are accreting black-hole binaries. Five early type stars in R136 are not bright...

  10. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    Directory of Open Access Journals (Sweden)

    Ferrigno C.

    2014-01-01

    Full Text Available The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL. We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s−1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  11. Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    Science.gov (United States)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; van der Sluys, M. V.; Toonen, S.

    2015-07-01

    Aims: We model the present-day population of classical low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. We model the Galactic Bulge because it contains a well-observed population and it is the target of the Galactic Bulge Survey. Methods: We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results: We find a population of ~2.1 × 103 LMXBs with neutron star accretors. Of these about 15-40 are expected to be persistent (depending on model assumptions), with luminosities higher than 1035 erg s-1. About 7-20 transient sources are expected to be in outburst at any given time. Within a factor of two these numbers are consistent with the observed population of bright LMXBs in the Bulge. This gives credence to our prediction of the existence of a population of ~1.6 × 103 LMXBs with low donor masses that have gone through the period minimum, and have present-day mass transfer rates below 10-11 M⊙ yr-1. Conclusions: Even though the observed population of hydrogen-rich LMXBs in the Bulge is larger than the observed population of (hydrogen-deficient) UCXBs, the latter have a higher formation rate. While UCXBs may dominate the total LMXB population at the present time, the majority would be very faint or may have become detached and produced millisecond radio pulsars. In that case UCXBs would contribute significantly more to the formation of millisecond radio pulsars than hydrogen-rich LMXBs.

  12. An extended X-ray object ejected from the PSR B1259-63/LS 2883 binary

    CERN Document Server

    Pavlov, George G; Kargaltsev, Oleg; Rangelov, Blagoy; Durant, Martin

    2015-01-01

    We present the analysis of the Chandra X-ray Observatory observations of the eccentric gamma-ray binary PSR B1259-63/LS 2883. The analysis shows that the extended X-ray feature seen in previous observations is still moving away from the binary with an average projected velocity of about 0.07c and shows a hint of acceleration. The spectrum of the feature appears to be hard (photon index of 0.8) with no sign of softening compared to previously measured values. We interpret it as a clump of plasma ejected from the binary through the interaction of the pulsar with the decretion disk of the O-star around periastron passage. We suggest that the clump is moving in the unshocked relativistic pulsar wind (PW), which can accelerate the clump. Its X-ray emission can be interpreted as synchrotron radiation of the PW shocked by the collision with the clump.

  13. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  14. X-Ray Spectra of The High-Mass X-RAY Binary 4U~1700-37 using BeppoSAX, Suzaku and RXTE Observations

    CERN Document Server

    Seifina, Elena; Shaposhnikov, Nikolai

    2016-01-01

    We present an X-ray spectral analysis of the high-mass binary 4U~1700-37 during its hard-soft state evolution. We use the BeppoSAX, Suzaku and RXTE (Rossi X-ray Timing Explorer), Suzaku and BeppoSAX observations for this investigation. We argue that the X-ray broad-band spectra during all spectral states can be adequately reproduced by a model, consisting of a low-temperature Blackbody component, two Comptonized components both due to the presence of a Compton cloud (CC) that up-scatters seed photons of $T_{s1}$~< 1.4 keV, and $T_{s2}<$1 keV, and an iron-line component. We find using this model that the photon power-law index is almost constant, $\\Gamma_{1}\\sim 2$ for all spectral states. However, $\\Gamma_{2}$ shows a behavior depending on the spectral state. Namely, $\\Gamma_{2}$ is quasi-constant at the level of $\\Gamma_{2}\\sim 2$ while the CC plasma temperature $kT^{(2)}_e$ is less than 40 keV; on the other hand, $\\Gamma_{2}$ is in the range of $1.3<\\Gamma_{2}<2$, when $kT^{(2)}_e$ is greater th...

  15. Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays

    CERN Document Server

    Fender, R P; Belloni, T M

    2009-01-01

    In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend -- notably into the timing properties -- the previously published `unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and `relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an...

  16. Measurements of Variability of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697 from Multi-Epoch Chandra X-ray Observations

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Multi-epoch Chandra X-ray observations of nearby massive early-type galaxies open up the study of an important regime of low-mass X-ray binary (LMXB) behavior -- long term variability. In a companion paper, we report on the detection of 158 X-ray sources down to a detection/completeness limit of 0.6/1.4 x 10^{37} ergs/s using five Chandra observations of NGC 4697, one of the nearest (11.3 Mpc), optically luminous (M_B < -20), elliptical (E6) galaxy. In this paper, we report on the variability of LMXB candidates measured on timescales from seconds to years. At timescales of seconds to hours, we detect five sources with significant variability. Approximately 7% of sources show variability between any two observations, and 16+/-4% of sources do not have a constant luminosity over all five observations. Among variable sources, we identify eleven transient candidates, with which we estimate that if all LMXBs in NGC 4697 are long-term transients then they are on for ~ 100 yr and have a 7% duty cycle. These numbe...

  17. X-ray outbursts of ESO 243-49 HLX-1: comparison with Galactic low-mass X-ray binary transients

    CERN Document Server

    Yan, Zhen; Soria, Roberto; Altamirano, Diego; Yu, Wenfei

    2015-01-01

    We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens the similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicat...

  18. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    Science.gov (United States)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  19. Orbital period change of the low-mass X-ray binary EXO 0748-676

    Science.gov (United States)

    Asai, Kazumi; Dotani, Tadayasu; Nagase, Fumiaki; Corbet, Robin H. D.; Shaham, Jacob

    1992-01-01

    The transient low-mass X-ray binary, EXO 0748-676, discovered with EXOSAT, is known to exhibit eclipses of a 492-s duration with a 3.82-hr period, intensity dips at pre-eclipse phases and type-I X-ray bursts. We observed this source with Ginga in 1989 March, 1990 December, 1991 January, and 1991 August and determined nine eclipse center times. Combining these eclipse center times with the previous result of the EXOSAT observations, we find that the orbital period of this source is not decaying monotonically, contrary to the previously reported suggestion. Instead, it shows a more complex behavior. A quadratic fit to the eclipse data yields a positive rate of change in orbital period with an approximate rate of 0.9 x 10 exp 7/yr, although the EXOSAT observations made in 1985 do not fit this trend. A sinusoidal function gives a better fit to the observed orbital period changes with a period of about 12 yr and an amplitude of about 44 lt-s, although the period is much longer than the observation interval of about 6.5 yr. Possible mechanisms for the orbital period change are discussed.

  20. A new symbiotic low mass X-ray binary system: 4U 1954+319

    CERN Document Server

    Mattana, F; Falanga, M; Senziani, F; De Luca, A; Esposito, P; Caraveo, P A

    2006-01-01

    4U 1954+319 was discovered 25 years ago, but only recently has a clear picture of its nature begun to emerge. We present for the first time a broad-band spectrum of the source and a detailed timing study using more than one year of monitoring data. The timing and spectral analysis was done using publicly available Swift, INTEGRAL, BeppoSAX, and RXTE/ASM data in the 0.7-150 keV energy band. The source spectrum is described well by a highly absorbed (N_H~10^23 cm^-2) power law with a high-energy exponential cutoff around 15 keV. An additional black body component is needed below 3 keV to account for a soft excess. The derived ~5 hr periodicity, with a spin-up timescale of ~25 years, could be identified as the neutron star spin period. The spectral and timing characteristics indicate that we are dealing both with the slowest established wind-accreting X-ray pulsar and with the second confirmed member of the emerging class dubbed "symbiotic low mass X-ray binaries" to host a neutron star.

  1. POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Adam [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Maccarone, Thomas J. [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Poutanen, Juri [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Krawczynski, Henric, E-mail: a.r.ingram@uva.nl [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2015-07-01

    It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense–Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about the Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur)

  2. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Dolphin, Andrew, E-mail: ben@astro.washington.edu, E-mail: bbinder@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: mce@astro.psu.edu, E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  3. The Ages of High Mass X-ray Binaries in NGC 2403 and NGC 300

    CERN Document Server

    Williams, Benjamin F; Dalcanton, Julianne J; Eracleous, Michael; Dolphin, Andrew

    2013-01-01

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source (ULX) in NGC 2403, which we associate with a 60 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of ...

  4. Si K Edge Structure and Variability in Galactic X-Ray Binaries

    CERN Document Server

    Schulz, Norbert S; Canizares, Claude R

    2016-01-01

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above $10^{22}$ cm$^{-2}$. The observations were performed with the \\emph{Chandra} High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844$\\pm$0.001 eV. The edge exhibits significant substructure which can be described by a near edge absorption feature at 1849$\\pm$0.002 eV and a far edge absorption feature at 1865$\\pm$0.002 eV. Both of these absorption features appear variable with equivalent widths up to several m\\AA. We can describe the edge structure with several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges ...

  5. Recent activity of the Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Camero, A; Soto, J Gutierrez; Arabaci, M Ozbey; Nespoli, E; Kiaeerad, F; Beklen, E; Garcia-Rojas, J; Caballero-Garcia, M

    2014-01-01

    Aims. We present a multiwavelength study of the Be/X-ray binary system SAX J2103.5+4545 with the goal of better characterizing the transient behaviour of this source. Methods. SAX J2103.5+4545 was observed by Swift-XRT four times in 2007 from April 25 to May 5, and during quiescence in 2012 August 31. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 August, and from the TUBITAK National Observatory (Antalya, Turkey) since 2009 June. We have performed spectral and photometric temporal analyses in order to investigate the different states exhibited by SAX J2103.5+4545. Results. In X-rays, an absorbed power law model provided the best fit for all the XRT spectra. An iron-line feature at ~6.42 keV was present in all the observations except for that taken during quiescence in 2012. The photon indexes are consistent with previous studies of SAX J2103.5+454...

  6. Gamma ray attenuation in X-ray binaries: An application to LSI +61 303

    CERN Document Server

    Nunez, Paul D; Vincent, Stephane

    2011-01-01

    The X-ray binary LSI +61 303, consisting of a main sequence Be star and a compact object has been detected in the TeV range with MAGIC and VERITAS, and showed a clear intensity modulation as a function of the orbital phase. We describe a gamma-ray attenuation model and apply it to this system. Our first result is that interaction of high energy photons with the background radiation produced by the main sequence star alone does not account for the observed modulation. We then include interactions between very high energy radiation and matter, and are able to constrain fundamental parameters of the system such as the mass of the compact object and the density of circumstellar matter around the Be star. In our analysis of the TeV data, we find that the compact object has mass $M_2>2.5M_{\\odot}$ at the 99% confidence level, implying it is most likely a black hole. However, we find a column density which conflicts with results from X-ray observations, suggesting that attenuation may not play an important role in t...

  7. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    CERN Document Server

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  8. Discovery of the Third Transient X-ray Binary in the Galactic Globular Cluster Terzan 5

    CERN Document Server

    Bahramian, Arash; Sivakoff, Gregory R; Altamirano, Diego; Wijnands, Rudy; Homan, Jeroen; Linares, Manuel; Pooley, David; Degenaar, Nathalie; Gladstone, Jeanette C

    2013-01-01

    We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to the hard state, thanks to our early coverage (starting at L_X ~ 4x10^{34} ergs/s) of the outburst. This hardening appears to be due to the decline in relative strength of a soft thermal component from the surface of the neutron star (NS) during the rise. We identify a {Type I X-ray burst} in Swift/XRT data with a long (16 s) decay time, indicative of {hydrogen burning on the surface of the} NS. We use Swift/BAT, Maxi/GSC, Chandra/ACIS, and Swift/XRT data to study the spectral changes during the outburst, identifying a clear hard-to-soft state transition. We use a Chandra/ACIS observation during outburst to identify the transient's position. Seven archival Chandra/ACIS observations show evidence for variations in Terzan 5 X-3's non-thermal component, but not the ther...

  9. Absorption lines from magnetically-driven winds in X-ray binaries

    CERN Document Server

    Chakravorty, S; Ferreira, J; Henri, G; Belmont, R; Clavel, M; Corbel, S; Rodriguez, J; Coriat, M; Drappeau, S; Malzac, J

    2016-01-01

    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio ($\\varepsilon$) and (b) the ejection efficiency ($p$). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbul...

  10. Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1

    CERN Document Server

    Laycock, Silas G T; Moro, Matthew J

    2014-01-01

    The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is 5 hr which together with the optical radial velocity curve for the companion yields a radius for the eclipsing body of 8-10 Rsun for the allowed range of masses. The orbital separation of 18.5-22 Rsun then provides a limiting inclination i>63 degrees for total eclipses to occur. The eclipses are asymmetric (egress duration 0.9 hr) and show energy dependence, suggestive of an accretion-disk hotspot and corona. The eclipse is much (5X) wider than the 1.5-2 Rsun WR star, pointing to absorption/scattering in the dense wind of...

  11. BeppoSAX observation of the X-ray binary pulsar Vela X-1

    CERN Document Server

    Orlandini, M; Nicastro, L; Giarrusso, S; Segreto, A; Piraino, S; Cusumano, G; Del Sordo, S; Guainazzi, M; Piro, L

    1997-01-01

    We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic c...

  12. Non-axisymmetric Structure of Accretion Disks in Be/X-ray Binaries

    CERN Document Server

    Hayasaki, K; Hayasaki, Kimitake; Okazaki, Atsuo T.

    2004-01-01

    The non-axisymmetric structure of accretion disks around the neutron star in Be/X-ray binaries is studied by analyzing the results from three dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations. It is found that ram pressure due to the phase-dependent mass transfer from the Be-star disk excites a one-armed, trailing spiral structure in the accretion disk around the neutron star. The spiral wave has a transient nature; it is excited around the periastron, when the material is transferred from the Be disk, and is gradually damped afterwards. It is also found that the orbital phase-dependence of the mass-accretion rate is mainly caused by the inward propagation of the spiral wave excited in the accretion disk.

  13. First correlation between compact object and circumstellar disk in the Be/X-ray binaries

    CERN Document Server

    Zamanov, R K

    2000-01-01

    A remarkable correlation between the H-alpha emission line and the radio behaviour of LSI+61 303 (V615 Cas, GT 0236+610) over its 4 yr modulation is discovered. The radio outburst peak is shifted by a quarter of the 4 yr modulation period (about 400 days) with respect to the equivalent width of the H-alpha emission line variability. The onset of the LSI+61 303 radio outbursts varies in phase with the changes of the H-alpha emission line, at least during the increase of H-alpha equivalent width. This is the first clear correlation between the emission associated to the compact object and the Be circumstellar disk in a Be/X-ray binary system.

  14. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For black hole binaries(BHBs) and active galactic nuclei(AGNs),bifurcation timescales(BTs) Δtb exist,below which time-domain power is significantly higher than the corresponding Fourier power.Quasi-periodic oscillations(QPOs) are removed from the Fourier spectra of BHBs.A relationship between BT,black hole mass and bolometric luminosity is derived.Strong anti-correlation between BT and luminosity of Cyg X-1 is found.After removing the QPOs,BTs are also obtained for two ultraluminous X-ray sources(ULXs),M82 X-1 and NGC5408 X-1.The results support that they harbor intermediate mass black holes(IMBHs).

  15. A High Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    CERN Document Server

    Wiktorowicz, Sloane J

    2008-01-01

    We present commissioning data for the POLISH instrument obtained on the Hale 5-m telescope. The goal of this high precision polarimeter is to constrain orbital inclination of high mass X-ray binaries and to therefore obtain independent mass estimates for their black hole companions. We have obtained photon shot noise limited precision on standard stars, and we have measured the polarization of bright stars at the part per million level on a nightly basis. Systematic effects have been reduced to less than 1% of the measured polarization for polarized sources and to the part per million level for weakly polarized sources. The high sensitivity of this instrument to asymmetry suggests that valuable contributions will be made in many other fields, including studies of extrasolar planets, debris disks, and stellar astrophysics.

  16. Polarization modulation from Lense-Thirring precession in X-ray binaries

    CERN Document Server

    Ingram, Adam; Poutanen, Juri; Krawczynski, Henric

    2015-01-01

    It has long been recognised that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps the most promising model associates the QPO with Lense-Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about the Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors towards the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted...

  17. Periodic X-ray Modulation and its relation with orbital elements in Compact Binaries

    CERN Document Server

    Ghosh, Arindam

    2014-01-01

    Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period. This, in turn, would modulate accretion rates, and the seed photon flux which are inverse Comptonized to produce harder X-rays. By analyzing complete all sky monitor (ASM) data (1.5-12 keV) of RXTE and all sky survey data (15-50 keV) of Swift/BAT we discover this periodicity in several objects. We also estimate eccentricities from the RMS power of the peak around quasi-orbital periods (QOP). Our method provides an independent way to obtain time periods and eccentricities of such compact binaries.

  18. Magnetic dichroism effect of binary alloys using circularly-polarized x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S. Z.; Schumann, F.O.; Willis, R.F.; Goodman, K.W.; Tobin, J.G.; Carr, R.

    1997-05-01

    We have studies the magnetic propertied of CoNi binary alloy films with various atomic compositions using soft x-ray magnetic circular dichroism (XMCD) technique. The alloy films were deposited on single Cu(100) crystals in situ using our well-established epitaxial growth technique to achieve a layer-by-layer growth and a metastable fcc structure, with all films exhibiting an in-plane magnetic anistrophy. Utilizing the element-specific ability and nanostructure magnetization sensitivity of this technique, we have been able to perform the absorption measurements at L2 and L3 edge of Co and Ni atoms and observed large dichroism signals. The extraction of spin moment and orbital moment for varying elemental stoichiometry using magneto- optical sum rules is discussed.

  19. Time-dependent search for neutrino emission from x-ray binaries with the ANTARES telescope

    CERN Document Server

    Albert, A; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Di Palma, I; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geiÿelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Höÿl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kieÿling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A timedependent search has been applied to a list of 33 x-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter predictions for s...

  20. Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra

    CERN Document Server

    Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.

    2004-01-01

    We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...

  1. Long time-scale variability of X-ray binaries with late type giant companions

    CERN Document Server

    Filippova, E; Parkin, E R

    2013-01-01

    In this paper we propose and examine a physical mechanism which can lead to the generation of noise in the mass accretion rate of low mass X-ray binaries on time-scales comparable to the orbital period of the system. We consider modulations of mass captured by the compact object from the companion star's stellar wind in binaries with late type giants, systems which usually have long orbital periods. We show that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. The cause of the variability is an undeveloped turbulent motion (perturbed motion without significant vorticity) of wind matter near the compact object. Our conclusions are supported by 3D simulations with two different hydrodynamic codes based on Lagrangian and Eulerian approaches -- the SPH code GADGET and the Eulerian code PLUTO. In this work we assume that the wind mass loss rate of the second...

  2. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  3. Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries

    CERN Document Server

    Boshkayev, Kuantay; Muccino, Marco

    2016-01-01

    We investigate the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the Hartle-Thorne spacetime. On the basis the relativistic precession model we extract the total mass $M$, angular momentum $J$, and quadrupole moment $Q$ of a compact object in a low-mass X-ray binary by analyzing the data of the Z -source GX 5-1. In view of the recent neutron star model we compute the radius, angular velocity and other parameters of this source by imposing the observational and theoretical constraints on the mass-radius relation.

  4. THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Fragos, T. [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland); McClintock, J. E., E-mail: anastasios.fragkos@unige.ch [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-10

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.

  5. The origin of Black-Hole Spin in Galactic Low-Mass X-ray Binaries

    Science.gov (United States)

    Fragos, Tassos; McClintock, Jeffrey

    2015-08-01

    Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spin measurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a*~0 to a*1. In this talk I propose that the BH spin in LMXBs is acquired through accretion onto the BH during its long stable accretion phase. In order to test this hypothesis, I calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, I examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of observed Galactic LMXBs with BH spin measurements. Mass-transfer sequences that simultaneously satisfy all observational constraints represent possible progenitors of the considered LMXBs and thus give estimates of the amount of matter that the BH has accreted since the onset of Roche-Lobe overflow. I find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted by the accreted matter. Furthermore, based on this hypothesis, I derive limits on the maximum spin that a BH can have depending on the orbital period of the binary it resides in, and give predictions on the maximum possible BH spin of Galactic LMXBs where a BH spin measurement is not yet available. Finally I will discuss the implication that our findings have on the birth black hole mass distribution.

  6. Radiative Signatures of Reconnection in X-ray Binary Spectral States

    Science.gov (United States)

    Uzdensky, Dmitri

    Accreting black holes (BHs) in Galactic X-ray Binary (XRB) systems represent some of the main targets of space-based high-energy observatories such as NASA s RXTE, Chandra, and NuSTAR, as well as the international observatories XMM Newton, INTEGRAL, Suzaku (Astro-E), and Astro-H. The overall radiative energy output (mostly X-rays) is ultimately powered by the conversion of the gravitational potential energy of the matter falling onto a black hole and forming an accretion disk or a hot accretion flow around it. Observationally, these systems are found to cycle between a few discrete spectral states, characterized by different overall X-ray power and spectral hardness: (1) the bright thermal high-soft state, dominated by a soft (1 keV) thermal component attributed to a thin dense accretion disk with a relatively weak corona producing a power-law tail emission to at least 1 MeV; (2) the low-hard state, showing no signs of a thin accretion disk and dominated by a single hard (with index ~ -1.7) power law truncating at about 100 keV; and (3) the bright Steep Power Law state with both a standard thin disk and a powerful coronal power-law (with index about -2.5) emission extending to at least 1 MeV. Explaining the key features of these nonthermal spectra, i.e., their power law indices and high-energy cutoffs, is one of the outstanding problems in high-energy astrophysics. The hard (10keV 1MeV) X-ray emission in these states is believed to be produced by inverse-Compton scattering in relativistically-hot gas, presumably heated by magnetic reconnection processes, and forming either an accretion disk corona or the hot accretion flow itself. Since the radiative cooling time of the energetic electrons in the intense radiation fields found in these systems is very short, the observed non-thermal hard X-ray spectra should directly reflect the instantaneous energy spectra of the electrons accelerated in reconnection events. Recent advances in kinetic simulations of reconnection

  7. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  8. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  9. Observational Evidence For The Cause Of The `Parallel Track' Phenomenon And Hysteresis Of Spectral Transitions In X-ray Binaries

    Science.gov (United States)

    Yu, Wenfei

    2010-03-01

    RXTE observations of neutron star LMXBs have shown the same kHz QPO frequency or the same X-ray color occurs at different X-ray fluxes in a single source, forming the so-called `parallel track' phenomenon. Hysteresis effect of spectral transitions, which is usually seen in black hole or neutron star soft X-ray transients, corresponds to the special cases of the phenomenon when the X-ray colors transit between two main spectral branches. Our systematic studies of the spectral state transitions seen in bright X-ray binaries with the RXTE/ASM and the Swift/BAT in the past 4-5 years indicates that the rate-of-change of the mass accretion rate dominates over the mass accretion rate itself in causing spectral state transitions, implying the rate-of-change of the mass accretion rate, an indicator of the non-stationary accretion in X-ray binaries, is the cause of both phenomena. Spectral and timing evidence will be provided in the presentation.

  10. A search for iron emission lines in the Chandra X-ray spectra of neutron star low-mass X-ray binaries

    CERN Document Server

    Cackett, E M; Homan, J; Van der Klis, M; Lewin, W H G; Méndez, M; Raymond, J; Steeghs, D; Wijnands, R

    2008-01-01

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and Active Galactic Nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, recent observations with Suzaku and XMM-Newton have revealed broad asymmetric iron line profiles in 4 neutron star LMXBs, confirming an inner disk origin for these lines in neutron star systems. Here, we present a search for iron lines in 6 neutron star LMXBs. For each object we have simultaneous Chandra and RXTE observations at 2 separate epochs, allowing for both a high resolution spectrum, as well as broadband spectral coverage. Out of the six objects in the survey, we only find significant iron lines in two of the objects, GX 17+2 and GX 349+2. However, we cannot rule out that there are weak, broad lines present in the other sources. The equivalent width of the line in GX 17+2 is consistent between the 2 epochs, while in GX 349+2 the line equivalent width increases by a factor of ~3 betwe...

  11. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  12. Detection of the first infra-red quasi-periodic oscillation in a black hole X-ray binary

    Science.gov (United States)

    Kalamkar, M.; Casella, P.; Uttley, P.; O'Brien, K.; Russell, D.; Maccarone, T.; van der Klis, M.; Vincentelli, F.

    2016-08-01

    We present the analysis of fast variability of Very Large Telescope/ISAAC (Infrared Spectrometer And Array Camera) (infra-red), XMM-Newton/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a quasi-periodic oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The band-limited sub-second time-scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 120 ms. This short time delay, shape of the cross-correlation function and spectral energy distribution strongly indicate that this band-limited variable IR emission is the synchrotron emission from the jet. A jet origin for the IR QPO is strongly favoured, but cannot be definitively established with the current data. The spectral energy distribution indicates a thermal disc origin for the bulk of the optical emission, but the origin of the optical QPO is unclear. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  13. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Norman, Michael L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ahn, Kyungjin [Department of Earth Science Education, Chosun University, Gwangju 501-759 (Korea, Republic of); Wise, John H. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); O' Shea, Brian W., E-mail: hxu@ucsd.edu, E-mail: mlnorman@ucsd.edu, E-mail: kjahn@chosun.ac.kr, E-mail: jwise@gatech.edu, E-mail: oshea@msu.edu [Lyman Briggs College and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  14. Long-term evolution of accretion disks around the neutron star in Be/X-ray binaries

    CERN Document Server

    Hayasaki, K; Hayasaki, Kimitake; Okazaki, Atsuo T.

    2005-01-01

    we study the long-term evolution of the accretion disk around the neutron star in Be/X-ray binaries. We confirm the earlier result by Hayasaki & Okazaki (2004) that the disk evolves via a two-stage process, which consists of the initial developing stage and the later developed stage. The peak mass-accretion rate is distributed around apastron after the disk is fully developed. This indicates that the modulation of the mass accretion rate is essentially caused by an inward propagation of the one-armed spiral wave. The X-ray luminosity peak around the apastron could provide circumstatial evidence for an persistent disk around the neutron star in Be/X-ray binaries.

  15. JEM-X observations of the Be/X-ray binary EXO 2030+375

    DEFF Research Database (Denmark)

    Nunez, S.M.; Reig, P.; Blay, P.

    2003-01-01

    We have used data from the Joint European Monitor (JEM-X) to perform an X-ray spectral and timing analysis of the 42-s transient pulsar EXO 2030+375 during an X-ray outburst. X-ray pulsations are clearly detected with an average pulse period of 41.66+/-0.05 s and an average pulse fraction of 60%....

  16. Inclination dependence of QPO phase lags in black hole X-ray binaries

    CERN Document Server

    Eijnden, J van den; Uttley, P; Motta, S E; Belloni, T M; Gardenier, D W

    2016-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from $\\sim0.05$-$30$ Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both Type-B and Type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the Type-C QPO frequency strongly depends on inclination, both in evolution with QPO frequency and sign. Although we find that the Type-B QPO soft lags are associated with high inclination sources, the source sample is too small to confirm this as a significant inclination dependence. These results are consistent with a geometrical origin of Type-C QPOs and a different origin for Type-B and Type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cyc...

  17. Physical parameters of the high-mass X-ray binary 4U1700-37

    CERN Document Server

    Clark, J S; Crowther, P A; Kaper, L; Fairbairn, M; Langer, N; Brocksopp, C

    2002-01-01

    We present the results of a detailed non-LTE analysis of the UV and optical spectrum of the O6.5Iaf+ star HD153919 - the mass donor in the high-mass X-ray binary 4U1700-37. Given the eclipsing nature of the system these results allow us to determine the most likely masses of both components of the binary via Monte Carlo simulations. These suggest a mass for HD153919 of 58+/-11M_sun - implying the initial mass of the companion was rather high (>60 M_sun). The most likely mass for the compact companion is found to be 2.44+/-0.27M_sun, with only 3.5 per cent of the trials resulting in a mass less than 2.0M_sun and none less than 1.65M_sun. Our observational data is inconsistent with the canonical neutron star mass and the lowest black hole mass observed (>4.4M_sun; Nova Vel). Significantly changing observational parameters can force the compact object mass into either of these regimes but this results in the O-star mass changing by factors of greater than 2, well beyond the limits determined from its evolutionar...

  18. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    Science.gov (United States)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}ȯ pre-SN star in a close binary with a 12 {M}ȯ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  19. An ultracompact X-ray binary in the globular cluster M15 (NGC7078)

    CERN Document Server

    Dieball, A; Zurek, D R; Shara, M M; Long, K S; Charles, P A; Hannikainen, D C; Van Zyl, L

    2005-01-01

    We have used the Advanced Camera for Surveys on board the Hubble Space Telescope to image the core of the globular cluster M15 in the far-ultraviolet (FUV) waveband. Based on these observations, we identify the FUV counterpart of the recently discovered low-mass X-ray binary M15 X-2. Our time-resolved FUV photometry shows a modulation with 0.062+/-0.004 mag semi-amplitude and we clearly detect a period of 22.5806+/-0.0002 min. We have carried out extensive Monte Carlo simulations which show that the signal is consistent with being coherent over the entire observational time range of more than 3000 cycles. This strongly suggests that it represents the orbital period of the binary system. M15 X-2 is FUV bright (approx. 17 mag) and is characterized by an extremely blue spectral energy distribution (F_lambda ~ lambda^{-2.0}). We also find evidence for an excess of flux between 1500 and 1600 \\AA and probably between 1600 and 2000 \\AA, which might be due to CIV 1550 and HeII 1640 emission lines. We also show that M...

  20. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode

    NARCIS (Netherlands)

    A. Pe'er; P. Casella

    2009-01-01

    There is strong evidence for powerful jets in the low/hard state of black hole X-ray binaries (BHXRBs). Here, we present a model in which electrons are accelerated once at the base of the jet, and are cooled by synchrotron emission and possible adiabatic energy losses. The accelerated electrons assu

  1. Long-term Properties of Accretion Disks in X-ray Binaries II. Stability of Radiation-Driven Warping

    CERN Document Server

    Clarkson, W I; Coe, M J; Laycock, S

    2003-01-01

    A significant number of X-ray binaries are now known to exhibit long-term ``superorbital'' periodicities on timescales of $\\sim$ 10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, in particular warping and/or precession of the accretion disk. Recent theoretical work predicts the stability to disk warping of X-ray binaries as a function of the mass ratio, binary radius, viscosity and accretion efficiency, and here we examine the constraints that can be placed on such models by current observations. In paper I we used a dynamic power spectrum (DPS) analysis of long-term X-ray datasets (CGRO, RXTE), focusing on the remarkable, smooth variations in the superorbital period exhibited by SMC X-1. Here we use a similar DPS analysis to investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4 and Her X-1, and thereby confront stability predictions with observation. We find that the period and nature of superorbital v...

  2. Stellar or Non-Stellar Light? Determining Near-Infrared Contamination in Low Mass X-ray Binaries

    OpenAIRE

    Gelino, Dawn M.; Gelino, Christopher R.; Thomas E. Harrison

    2009-01-01

    Low-mass X-ray binary (LMXB) systems are comprised of a low-mass, K or M dwarflike star orbiting a compact object. Stellar black hole masses and their distributions are important inputs for binary evolution and supernova models. Currently, the main limiting factor in determining accurate black hole masses in LMXBs is the uncertainty of the orbital inclination angle due to an unknown amount of contaminating light in the near infrared. If present, this light dilutes the ellipsoidal variations o...

  3. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA/Goddard Spaceflight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Gallagher, S. C.; Lenkić, L. [Department of Physics and Astronomy and Centre for Planetary and Space Exploration, The University of Western Ontario, London, ON N6A 3K7 (Canada); Desjardins, T. D. [Department of Physics and Astronomy, 177 Chem.-Phys. Building, University of Kentucky, 505 Rose Street, Lexington KY 40506-0055202 (United States); Walker, L. M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Mulchaey, J. S. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States)

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  4. Discovery of the third transient X-ray binary in the galactic globular cluster Terzan 5

    Energy Technology Data Exchange (ETDEWEB)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Altamirano, Diego; Wijnands, Rudy [Astronomical Institute " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Degenaar, Nathalie, E-mail: bahramia@ualberta.ca [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-01-10

    We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to the hard state, thanks to our early coverage (starting at L{sub X} ∼ 4 × 10{sup 34} erg s{sup –1}) of the outburst. This hardening appears to be due to the decline in relative strength of a soft thermal component from the surface of the neutron star (NS) during the rise. We identify a Type I X-ray burst in Swift/XRT data with a long (16 s) decay time, indicative of hydrogen burning on the surface of the NS. We use Swift/BAT, MAXI/GSC, Chandra/ACIS, and Swift/XRT data to study the spectral changes during the outburst, identifying a clear hard-to-soft state transition. We use a Chandra/ACIS observation during outburst to identify the transient's position. Seven archival Chandra/ACIS observations show evidence for variations in Terzan 5 X-3's nonthermal component but not the thermal component during quiescence. The inferred long-term time-averaged mass accretion rate, from the quiescent thermal luminosity, suggests that if this outburst is typical and only slow cooling processes are active in the NS core, such outbursts should recur every ∼10 yr.

  5. Dip Spectroscopy of the Low Mass X-Ray Binary XB 1254-690

    Science.gov (United States)

    Smale, Alan P.; Church, M. J.; BalucinskaChurch, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We observed the low mass X-ray binary XB 1254-690 with the Rossi X-ray Timing Explorer in 2001 May and December. During the first observation strong dipping on the 3.9-hr orbital period and a high degree of variability were observed, along with "shoulders" approx. 15% deep during extended intervals on each side of the main dips. The first observation also included pronounced flaring activity. The non-dip spectrum obtained using the PCA instrument was well-described by a two-component model consisting of a blackbody with kT = 1.30 +/- 0.10 keV plus a cut-off power law representation of Comptonized emission with power law photon index 1.10 +/- 0.46 and a cut-off energy of 5.9(sup +3.0, sub -1.4) keV. The intensity decrease in the shoulders of dipping is energy-independent, consistent with electron scattering in the outer ionized regions of the absorber. In deep dipping the depth of dipping reached 100%, in the energy band below 5 keV, indicating that all emitting regions were covered by absorber. Intensity-selected dip spectra were well-fit by a model in which the point-like blackbody is rapidly covered, while the extended Comptonized emission is progressively overlapped by the absorber, with the, covering fraction rising to 95% in the deepest portion of the dip. The intensity of this component in the dip spectra could be modeled by a combination of electron scattering and photoelectric absorption. Dipping did not occur during the 2001 December observation, but remarkably, both bursting and flaring were observed contemporaneously.

  6. Hubble Space Telescope Imaging of Bright Galactic X-Ray Binaries in Crowded Fields

    Science.gov (United States)

    Deutsch, Eric W.; Margon, Bruce; Wachter, Stefanie; Anderson, Scott F.

    1996-01-01

    We report high spatial resolution HST imagery and photometry of three well-studied, intense Galactic X-ray binaries, X2129+470, CAL 87, and GX 17+2. All three sources exhibit important anomalies that are not readily interpreted by conventional models. Each source also lies in a severely crowded field, and in all cases the anomalies would be removed if much of the light observed from the ground in fact came from a nearby, thus far unresolved superposed companion. For V1727 Cyg (X2129+470), we find no such companion. We also present an HST FOS spectrum and broadband photometry which is consistent with a single, normal star. The supersoft LMC X-ray source CAL 87 was already known from ground-based work to have a companion separated by O.9 minutes from the optical counterpart; our HST images clearly resolve these objects and yield the discovery of an even closer, somewhat fainter additional companion. Our photometry indicates that contamination is not severe outside eclipse, where the companions only contribute 20% of the light in V, but during eclipse more than half of the V light comes from the companions. The previously determined spectral type of the CAL 87 secondary may need to be reevaluated due to this significant contamination, with consequences on inferences of the mass of the components. We find no companions to NP Ser (= X1813-14, = GX 17+2). However, for this object we point out a small but possibly significant astrometric discrepancy between the position of the optical object and that of the radio source which is the basis for the identification. This discrepancy needs to be clarified.

  7. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple-epoch Observations of NGC 300 with Chandra

    Science.gov (United States)

    Binder, B.; Gross, J.; Williams, B. F.; Eracleous, M.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.

    2017-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling ∼184 ks) of the nearby spiral galaxy NGC 300 to study the logN–logS distributions of its X-ray point-source population down to ∼2 × 10‑15 erg s‑1 cm‑2 in the 0.35–8 keV band (equivalent to ∼1036 erg s‑1). The individual epoch logN–logS distributions are best described as the sum of a background active galactic nucleus (AGN) component, a simple power law, and a broken power law, with the shape of the logN–logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for “persistent” sources (i.e., with fluxes that remain constant within a factor of ∼2). The differential power-law index of ∼1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ∼1.7, a bright-end index of ∼2.8–4.9, and a break flux of ∼ 8× {10}-15 erg s‑1 cm‑2 (∼4 × 1036 erg s‑1), suggesting that they are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN–logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN–logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of outbursting X-ray binaries occur at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ∼1%–3% of the Eddington rate.

  8. The Mass of the Compact Object in the Low-Mass X-ray Binary 2S 0921-630

    CERN Document Server

    Abubekerov, M K; Cherepashchuk, A M; Shimanskii, V V

    2012-01-01

    We interpret the observed radial-velocity curve of the optical star in the low-mass X-ray binary 2S 0921-630 using a Roche model, taking into account the X-ray heating of the optical star and screening of X-rays coming from the relativistic object by the accretion disk. Consequences of possible anisotropy of the X-ray radiation are considered.We obtain relations between the masses of the optical and compact (X-ray) components, mv and mx, for orbital inclinations i=60, 75, 90 degrees. Including X-ray heating enabled us to reduce the compact object's mass by near 0.5-1Msun, compared to the case with no heating. Based on the K0III spectral type of the optical component (with a probable mass of mv=2.9Msun, we concluded that mx=2.45-2.55Msun (for i=75-90 degrees). If the K0III star has lost a substantial part of its mass as a result of mass exchange, as in the V404 Cyg and GRS 1905+105 systems, and its mass is $m_v=0.65-0.75Msun, the compact object's mass is close to the standard mass of a neutron star, mx=1.4Msun...

  9. The TeV binary HESS J0632+057 in the low and high X-ray state

    CERN Document Server

    Rea, Nanda

    2011-01-01

    We report on a 40ks Chandra observation of the TeV emitting high mass X-ray binary HESS J0632+057 performed in February 2011 during a high-state of X-ray and TeV activity. We have used the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. Furthermore, we compare the emission of the source during this high state, with its X-ray properties during a low state of emission, caught by a 47ks XMM-Newton observation on September 2007. We did not find any periodic or quasi-periodic signal in any of the two observations. We derived an average pulsed fraction 3sigma upper limit for the presence of a periodic signal of ~35% and 25% during the low and high emission state, respectively (although this limit is strongly dependent on the frequency and the energy band). Using the best X-ray spectra derived to date for HESS J0632+057, we found evidence for a significant spectral change between the low and high X-ray emission states, with the absorption value and the photon index vary...

  10. A "high-hard" outburst of the black hole X-ray binary GS 1354-64

    CERN Document Server

    Koljonen, K I I; Corral-Santana, J M; Padilla, M Armas; Muñoz-Darias, T; Lewis, F; Coriat, M; Bauer, F E

    2016-01-01

    We study in detail the evolution of the 2015 outburst of GS 1354-64 (BW Cir) at optical, UV and X-ray wavelengths using Faulkes Telescope South, SMARTS and Swift. The outburst was found to stay in the hard X-ray state, albeit being anomalously luminous with a peak luminosity of L$_{X} >$ 0.15 L$_{Edd}$, which could be the most luminous hard state observed in a black hole X-ray binary. We found that the optical/UV emission is tightly correlated with the X-ray emission, consistent with accretion disc irradiation and/or a jet producing the optical emission. The X-ray spectra can be fitted well with a Comptonisation model, and show softening towards the end of the outburst. In addition, we detect a QPO in the X-ray lightcurves with increasing centroid frequency during the peak and decay periods of the outburst. The long-term optical lightcurves during quiescence show a statistically significant, slow rise of the source brightness over the 7 years prior to the 2015 outburst. This behaviour as well as the outburst ...

  11. Optical and near-infrared photometric monitoring of the transient X-ray binary A0538-66 with REM

    CERN Document Server

    Ducci, L; Doroshenko, V; Mereghetti, S; Santangelo, A; Sasaki, M

    2016-01-01

    The transient Be/X-ray binary A0538-66 shows peculiar X-ray and optical variability. Despite numerous studies, the intrinsic properties underlying its anomalous behaviour remain poorly understood. Since 2014 September we are conducting the first quasi-simultaneous optical and near-infrared photometric monitoring of A0538-66 in seven filters with the Rapid Eye Mount (REM) telescope, aiming to understand the properties of this binary system. We found that the REM lightcurves show fast flares lasting one or two days that repeat almost regularly every ~16.6 days, the orbital period of the neutron star. If the optical flares are powered by X-ray outbursts through photon reprocessing, the REM lightcurves indicate that A0538-66 is still active in X-rays: bright X-ray flares (L_x > 1E37 erg/s) could be observable during the periastron passages. The REM lightcurves show a long-term variability that is especially pronounced in the g band and decreases with increasing wavelength, until it no longer appears in the near-i...

  12. Disc-Jet Coupling in the Terzan 5 Neutron Star X-ray Binary EXO 1745$-$248

    CERN Document Server

    Tetarenko, A J; Sivakoff, G R; Tremou, E; Linares, M; Tudor, V; Miller-Jones, J C A; Heinke, C O; Chomiuk, L; Strader, J; Altamirano, D; Degenaar, N; Maccarone, T; Patruno, A; Sanna, A; Wijnands, R

    2016-01-01

    We present the results of VLA, ATCA, and Swift XRT observations of the 2015 outburst of the transient neutron star X-ray binary (NSXB), EXO 1745$-$248, located in the globular cluster Terzan 5. Combining (near-) simultaneous radio and X-ray measurements we measure a correlation between the radio and X-ray luminosities of $L_R\\propto L_X^\\beta$ with $\\beta=1.68^{+0.10}_{-0.09}$, linking the accretion flow (probed by X-ray luminosity) and the compact jet (probed by radio luminosity). While such a relationship has been studied in multiple black hole X-ray binaries (BHXBs), this work marks only the third NSXB with such a measurement. Constraints on this relationship in NSXBs are strongly needed, as comparing this correlation between different classes of XB systems is key in understanding the properties that affect the jet production process in accreting objects. Our best fit disc-jet coupling index for EXO 1745$-$248 is consistent with the measured correlation in NSXB 4U 1728$-$34 ($\\beta=1.5\\pm 0.2$) but inconsi...

  13. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  14. Deep Chandra X-ray Observations of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Chandra X-ray observations routinely resolve tens to hundreds of low-mass X-ray binaries (LMXBs) per galaxy in nearby massive early-type galaxies. These studies have raised important issues regarding the behavior of this population of remnants of the once massive stars in early-type galaxies, namely the connection between LMXBs and globular clusters (GCs) and the nature of the LMXB luminosity function (LF). In this paper, we combine five epochs of Chandra observations and one central field Hubble Space Telescope Advance Camera for Surveys observation of NGC 4697, one of the nearest, optically luminous elliptical (E6) galaxies, to probe the GC-LMXB connection and LMXB-LF down to a detection/completeness limit of (0.6/1.4) x 10^{37} ergs/s. We detect 158 sources, present their luminosities and hardness ratios, and associate 34 LMXBs with GCs. We confirm that GCs with higher encounter rates (\\Gamma_h) and redder colors (higher metallicity Z) are more likely to contain GCs, and find that the expected number of LM...

  15. How Massive are the Heaviest Black Holes in X-ray Binaries? Exploring IC 10 X-1 and its Kind.

    Science.gov (United States)

    Laycock, Silas; Maccarone, Tom; Steiner, James F.; Christodoulou, Dimitris; Yang, Jun; Binder, Breanna A.; Cappallo, Rigel

    2016-01-01

    Black hole X-ray binaries represent a unique probe of stellar evolution and the most extreme physical conditions found in nature. The X-ray binary IC 10 X-1 occupies an important niche as a link between BH-XRBs and Ultra Luminous X-ray Sources (ULX) due to its intermediate luminosity (10^38 erg/s), and role as a central exemplar of the association of between low metallicity galaxies and maximum BH mass.The most secure and direct dynamical evidence for any BH mass comes from the radial velocity (RV) curve coupled with eclipse timing measurements. We phase-connected X-ray timing data accumulated over a decade with Chandra/XMM, with the optical RV curve, revealing a surprizing simultenaity of mid X-ray eclipse and the maximum blueshift velocity of He II emission lines. Our interpretation is that the optical emission lines originate in a shadowed sector of the WR star's stellar wind which escapes X-ray ionization by the compact object. The RV shifts are therefore a projection effect of the stellar wind, and unrelated to the system's mass function which becomes completely unknown. Chandra, XMM and NuStar datasets present a complex picture of radiative transfer through a photo-ionized wind. A search for the orbital period derivative (P-dot) by X-ray timing offers additonal insights, and we present a simulation for the feasibility of constraining P-dot via optical means.This is a substantial change to our understanding of IC 10 X-1, and with similar results reported for its "near twin" NGC 300 X-1, adds new a dimension to the facinating question of the maximum mass for stellar BHs.

  16. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

    Science.gov (United States)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Toonen, S.; Portegies Zwart, S. F.; Yungelson, L. R.; van der Sluys, M. V.

    2013-04-01

    Aims: We model the present-day number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic bulge. The main objective is to compare the results to the known UCXB population as well as to data from the Galactic Bulge Survey, in order to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods: The binary population synthesis code SeBa and detailed stellar evolutionary tracks have been used to model the UCXB population in the Bulge. The luminosity behavior of UCXBs has been predicted using long-term X-ray observations of the known UCXBs as well as the thermal-viscous disk instability model. Results: In our model, the majority of UCXBs initially have a helium burning star donor. Of the white dwarf donors, most have helium composition. In the absence of a mechanism that destroys old UCXBs, we predict (0.2-1.9) × 105 UCXBs in the Galactic bulge, depending on assumptions, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5-50 UCXBs should be brighter than 1035 ergs-1, mostly persistent sources with orbital periods shorter than about 30 min and with degenerate helium and carbon-oxygen donors. This is about one order of magnitude more than the observed number of (probably) three. Conclusions: This overprediction of short-period UCXBs by roughly one order of magnitude implies that fewer systems are formed, or that a super-Eddington mass transfer rate is more difficult to survive than we assumed. The very small number of observed long-period UCXBs with respect to short-period UCXBs, the surprisingly high luminosity of the observed UCXBs with orbital periods around 50 min, and the properties of the PSR J1719-1438 system all point to much faster UCXB evolution than expected from angular momentum loss via gravitational wave radiation alone. Old UCXBs, if they still exist, probably have orbital

  17. Correlated X-ray and Very High Energy emission in the gamma-ray binary LS I +61 303

    CERN Document Server

    Anderhub, H; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; González, J Becerra; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bigas, O Blanch; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E de Cea; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Göbel, F; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Pérez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Stark, L S; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J; Falcone, A; Vetere, L; Gehrels, N; Trushkin, S; Dhawan, V; Reig, P

    2009-01-01

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r=0.97, while a linear fit to all simultaneous pairs provides r=0.81. Since a variable absorption of the VHE emission towards the observer is not expecte...

  18. Chandra Characterization of X-ray Emission in the Young F-Star Binary System HD 113766

    CERN Document Server

    Lisse, C M; Wolk, S J; Günther, H M; Chen, C H; Grady, C A

    2016-01-01

    Using Chandra we have obtained imaging X-ray spectroscopy of the 10 to 16 Myr old F-star binary HD 113766. We individually resolve the binary components for the first time in the X-ray and find a total 0.3 to 2.0 keV luminosity of 2.2e29 erg/sec, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only 10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or sub-stellar member of HD113766 with Lx > 6e25 erg s-1 within 2 arcmin of the binary pair. The ratio of the two stars Xray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. (2012). The emission is soft for both stars, kTApec = 0.30 to 0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks which we rule out. A possible 2.8 +/- 0.15 (2{\\sigma}) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and...

  19. Stability of mass transfer from massive giants: double black hole binary formation and ultraluminous X-ray sources

    Science.gov (United States)

    Pavlovskii, K.; Ivanova, N.; Belczynski, K.; Van, K. X.

    2017-02-01

    Mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, determines the formation rates of merging double stellar-mass black hole (BH) binaries formed outside clusters. This mass transfer was previously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then ends with either the merger of the two stars or formation of a binary that eventually may become a merging double BH. We revisit the stability of this mass transfer and find an unanticipated third outcome: for a large range of binary orbital separations, this mass transfer is stable. This newly found stability allows us to reconcile the empirical rate obtained by LIGO, 9-240 Gpc-3 yr-1, with the theoretical rate for double BH binary mergers predicted by population synthesis studies by excluding a channel that predicts a merger rate above 1000 Gpc-3 yr-1. Furthermore, the stability of the mass transfer leads to the formation of ultraluminous X-ray sources. The theoretically predicted formation rates of bright ultraluminous X-ray sources powered by a stellar-mass BH are high enough to explain the number of observed bright ultraluminous X-ray sources.

  20. RXTE/ASM and Swift / BAT observations of spectral transitions in bright X-ray binaries in 2005-2010

    Institute of Scientific and Technical Information of China (English)

    Jing Tang; Wen-Fei Yu; Zhen Yan

    2011-01-01

    We have studied X-ray spectral state transitions that can be seen in the longterm monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu &Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.

  1. Measuring X-ray Binary Accretion State Distributions in Extragalactic Environments using XMM-Newton

    Science.gov (United States)

    West, Lacey; Lehmer, Bret; Yukita, Mihoko; Hornschemeier, Ann E.; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas

    2017-01-01

    X-ray binary systems (XRBs) in the MW can exist in several different accretion states, and many have been found to vary along specific tracks on intensity-color diagrams. Observationally measuring the distributions of these accretion states in a variety of environments can aid in population synthesis modeling and ultimately help us understand the formation and evolution of XRBs and their compact object components (i.e., black holes and neutron stars). Recent innovative studies with NuSTAR have demonstrated the utility of color-color and intensity-color diagrams in differentiating between XRB accretion states in extragalactic environments (NGC 253, M83, and M31). The key to NuSTAR’s success is its sensitivity above »10keV, where spectral differences between accretion states are most pronounced. However, due to the relatively low spatial resolution and large background of NuSTAR, the constraints from these diagrams is limited to only bright sources in nearby galaxies. In this poster, we present evidence that XMM-Newton observations of M83 in the 4.0-12.0 keV range can be used to create similar color-intensity and color-color diagrams and therefore differentiate between these accretion states. We will further discuss plans to leverage XMM-Newton’s vast archive and 17-year baseline to dramatically expand studies of accretion state distributions and state transitions for XRB populations in extragalactic environments.

  2. A Swift BAT Look at Super-Orbital X-ray Binaries

    CERN Document Server

    Farrell, Sean A; Skinner, Gerald

    2008-01-01

    We present the results of a study with the Swift Burst Alert Telescope in the 14 - 195 keV range of the long-term variability of 5 low mass X-ray binaries with reported or suspected super-orbital periods -- 4U 1636-536, 4U 1820-303, 4U 1916-053, Cyg X-2 and Sco X-1. No significant periodic modulation was detected around the previously reported values in the 4U 1916-053, Cyg X-2 or Sco X-1 light curves. The $\\sim$170 d period of 4U 1820-303 was detected up to 24 keV, consistent with the proposed triple system model. The $\\sim$46 d period in 4U 1636-536 was detected up to 100 keV, clearly inconsistent with variable photoelectric absorption via a warped precessing disc. We speculate that the appearance of this modulation after 4U 1636-536 entered the low/hard state indicates that this variability could be linked to jet precession such as observed in SS 433.

  3. Masses of Neutron Stars in High-Mass X-ray Binaries with Optical Astrometry

    CERN Document Server

    Tomsick, John A

    2010-01-01

    Determining the type of matter that is inside a neutron star (NS) has been a long-standing goal of astrophysics. Despite this, most of the NS equations of state (EOS) that predict maximum masses in the range 1.4-2.8 solar masses are still viable. Most of the precise NS mass measurements that have been made to date show values close to 1.4 solar masses, but a reliable measurement of an over-massive NS would constrain the EOS possibilities. Here, we investigate how optical astrometry at the microarcsecond level can be used to map out the orbits of High-Mass X-ray Binaries (HMXBs), leading to tight constraints on NS masses. While previous studies by Unwin and co-workers and Tomsick and co-workers discuss the fact that the future Space Interferometry Mission should be capable of making such measurements, the current work describes detailed simulations for 6 HMXB systems, including predicted constraints on all orbital parameters. We find that the direct NS masses can be measured to an accuracy of 2.5% (1-sigma) in...

  4. Relativistic 3D jet simulations for the X-ray binary SS433

    CERN Document Server

    Monceau-Baroux, Remi; Meliani, Zakaria; Porth, Oliver

    2013-01-01

    Context. Modern high resolution observations allow to view closer into the objects powering relativistic jets. This is especially the case for SS433, an X-ray binary from which a precessing jet is observed down to the sub-parsec scale. Aims. We want to study full 3D dynamics of relativistic jets associated with AGN or XRB. We study the precessing motion of a jet as a model for the jet associated with the XRB SS433. Our study of the jet dynamics in this system focuses on the sub-parsec scales. We investigate the impact of jet precession and the variation of the Lorentz factor of the injected matter on the general 3D jet dynamics and its energy transfer to the surrounding medium. We realize synthetic radio mapping of the data, to compare our results with observations. Methods. For our study we use the code MPI-AMRVAC with SRHD model of a baryonic jet. We use a AMR scheme and an inner time-dependent boundary prescription to inject the jets. Parameters extracted from observations were used. 3D jet realizations th...

  5. The Binary Black Hole Merger Rate from Ultraluminous X-ray Source Progenitors

    Science.gov (United States)

    Finke, Justin; Razzaque, Soebur

    2017-01-01

    Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for an approximately 10 solar mass black hole. The recent detection of a black hole merger event GW 150914 by the gravitational wave detector ALIGO indicates that black holes with mass greater than 10 do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. Our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, and GW 151226 by LIGO if the median accretion rate of ULXs is a factor 1 to 30 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution.

  6. Sub-mm Jet Properties of the X-Ray Binary Swift J1745$-$26

    CERN Document Server

    Tetarenko, A J; Miller-Jones, J C A; Curran, P A; Russell, T D; Coulson, I M; Heinz, S; Maitra, D; Markoff, S B; Migliari, S; Petitpas, G R; Rupen, M P; Rushton, A P; Russell, D M; Sarazin, C L

    2015-01-01

    We present the results of our observations of the early stages of the 2012--2013 outburst of the transient black hole X-ray binary (BHXRB), Swift J1745$-$26, with the VLA, SMA, and JCMT (SCUBA--2). Our data mark the first multiple-band mm & sub-mm observations of a BHXRB. During our observations the system was in the hard accretion state producing a steady, compact jet. The unique combination of radio and mm/sub-mm data allows us to directly measure the spectral indices in and between the radio and mm/sub-mm regimes, including the first mm/sub-mm spectral index measured for a BHXRB. Spectral fitting revealed that both the mm (230 GHz) and sub-mm (350 GHz) measurements are consistent with extrapolations of an inverted power-law from contemporaneous radio data (1--30 GHz). This indicates that, as standard jet models predict, a power-law extending up to mm/sub-mm frequencies can adequately describe the spectrum, and suggests that the mechanism driving spectral inversion could be responsible for the high mm/s...

  7. High Mass X-ray Binaries and Recent Star Formation History of the Small Magellanic Cloud

    CERN Document Server

    Shtykovskiy, P

    2007-01-01

    We study the relation between high-mass X-ray binary (HMXB) population and recent star formation history (SFH) for the Small Magellanic Cloud (SMC). Using archival optical SMC observations, we have approximated the color-magnitude diagrams of the stellar population by model stellar populations and, in this way, reconstructed the spatially resolved SFH of the galaxy over the past 100 Myr.We analyze the errors and stability of this method for determining the recent SFH and show that uncertainties in the models of massive stars at late evolutionary stages are the main factor that limits its accuracy. By combining the SFH with the spatial distribution of HMXBs obtained from XMM-Newton observations, we have derived the dependence of the HMXB number on the time elapsed since the star formation event. The number of young systems with ages 10 Myr is shown to be smaller than the prediction based on the type-II supernova rate. The HMXB number reaches its maximum ~20-50 Myr after the star formation event. This may be at...

  8. X-ray Emission and Corona of the Young Intermediate Mass Binary $\\theta^1$ Ori E

    CERN Document Server

    Huenemoerder, David P; Testa, Paola; Kesich, Anthony; Canizares, Claude R

    2009-01-01

    Theta 1 Ori E is a young, moderate mass binary system, a rarely observed case of spectral-type G-giants of about 3 Solar masses, which are still collapsing towards the main sequence. We have obtained high resolution X-ray spectra with Chandra and find that the system is very active and similar to coronal sources, having emission typical of magnetically confined plasma: a broad temperature distribution with a hot component and significant high energy continuum; narrow emission lines from H- and He-like ions, as well as a range of Fe ions, and relative luminosity, L_x/L_bol = 0.001. Density, while poorly constrained, is consistent with the low density limits as determined from Mg XI and Ne IX emission lines. Coronal elemental abundances are sub-Solar, with Ne being the highest at about 0.4 times Solar. We find a possible trend in Trapezium hot plasmas towards low relative abundances of Fe, O, and Ne, which is hard to explain in terms of the dust depletion scenarios of low-mass young stars. Variability was unusu...

  9. The role of the disk magnetization on the hysteresis behavior of X-ray binaries

    CERN Document Server

    Petrucci, P O; Henri, G; Pelletier, G

    2007-01-01

    We present a framework for understanding the dynamical and spectral properties of X-ray Binaries, where the presence of an organized large scale magnetic field plays a major role. Such a field is threading the whole accretion disk with an amplitude measured by the disk magnetization $\\mu(r,t) =B_z^2/(\\mu_o P_{tot})$, where $P_{tot}$ is the total, gas and radiation, pressure. Below a transition radius $r_J$, a jet emitting disk (the JED) is settled and drives self-collimated non relativistic jets. Beyond $r_J$, no jet is produced despite the presence of the magnetic field and a standard accretion disc (the SAD) is established. The radial distribution of the disk magnetization $\\mu$ adjusts itself to any change of the disk accretion rate $\\dot m$, thereby modifying the transition radius $r_J$. We propose that a SAD-to-JED transition occurs locally, at a given radius, in a SAD when $\\mu=\\mu_{max} \\simeq 1$ while the reverse transition occurs in a JED only when $\\mu=\\mu_{min}\\simeq 0.1$. This bimodal behavior of ...

  10. Exploration of Spin-down Rate of Neutron Star in High Mass X-ray Binaries

    CERN Document Server

    Dai, Hai-Lang; Li, Xiang-Dong

    2016-01-01

    We use the evolutionary population synthesis method to investigate the statistical properties of the wind-fed neutron star (NS) compact ($P_{\\rm orb}<10$ days) high-mass X-ray binaries (HMXBs) in our Galaxy, based on different spin-down models. We find that the spin-down rate in the supersonic propeller phase given \\textbf{by assuming that the surrounding material is treated as forming a quasi-static atmosphere} or \\textbf{by assuming that the characteristic velocity of matter and the typical Alfv$\\acute{e}$n velocity of material in the magnetospheric boundary layer are comparable to the sound speed in the external medium} is too low to produce the observed number of compact HMXBs. We also find that the models suggested \\textbf{by assuming that the infalling material is ejected with the corotation velocity at the magnetospheric radius when the magnetospheric radius is larger than the corotation radius} and \\textbf{by simple integration of the magnetic torque over the magnetosphere} with a larger spin-down ...

  11. A Global Study of the Behaviour of Black Hole X-ray Binary Discs

    CERN Document Server

    Dunn, Robert; Koerding, Elmar; Belloni, Tomaso; Merloni, Andrea

    2010-01-01

    We investigate the behaviour of the accretion discs in the outbursts of the low-mass black-hole X-ray binaries (BHXRB), an overview of which we have presented previously. Almost all of the systems in which there are sufficient observations in the most disc dominated states show a variation of the disc luminosity with temperature close to L ~\\propto T^4. This in turn implies that in these states, the disc radius, R_in, and the colour correction factor, f_col, are almost constant. Deviations away from the T^4 law are observed at the beginning and end of the most disc dominated states, during the intermediate states. Although these could be explained by an inward motion of the accretion disc, they are more likely to be the result of an increase in the value of f_col as the disc fraction decreases. By comparing the expected and observed disc luminosities, we place approximate limits on the allowed distances and masses of the BHXRB system. In a number of cases, the measured distances and masses of the BHXRB system...

  12. Reversibility of time series: revealing the hidden messages in X-ray binaries and cataclysmic variables

    CERN Document Server

    Scaringi, S; Middleton, M

    2014-01-01

    We explore the non-linear, high-frequency, aperiodic variability properties in the three cataclysmic variables MV Lyr, KIC 8751494 and V1504 Cyg observed with Kepler, as well as the X-ray binary Cyg X-1 observed with RXTE. This is done through the use of a high-order Fourier statistic called the bispectrum and its related biphase and bicoherence, as well as the time-skewness statistic. We show how all objects display qualitatively similar biphase trends. In particular all biphase amplitudes are found to be smaller than $\\pi/2$, suggesting that the flux distributions for all sources are positively skewed on all observed timescales, consistent with the log-normal distributions expected from the fluctuating accretion disk model. We also find that for all objects the biphases are positive at frequencies where the corresponding power spectral densities display their high frequency break. This suggests that the noise-like flaring observed is rising more slowly than it is falling, and thus not time-reversible. This ...

  13. Inclination dependence of QPO phase lags in black hole X-ray binaries

    Science.gov (United States)

    van den Eijnden, J.; Ingram, A.; Uttley, P.; Motta, S. E.; Belloni, T. M.; Gardenier, D. W.

    2017-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from ˜0.05to30 Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both type-B and type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the type-C QPO frequency strongly depends on inclination, both in evolution with the QPO frequency and sign. Although we find that the type-B QPO soft lags are associated with high-inclination sources, the source sample is too small to confirm that this as a significant inclination dependence. These results are consistent with a geometrical origin of type-C QPOs and a different origin for type-B and type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cycle, while the inclination dependence arises from differences in dominant relativistic effects. We also search for energy dependences in the type-C QPO frequency. We confirm this effect in the three known sources (GRS 1915+105, H1743-322 and XTE J1550-564) and newly detect it in XTE J1859+226. Lastly, our results indicate that the unknown inclination sources XTE J1859+226 and MAXI J1543-564 are most consistent with a high inclination.

  14. The nature of the island and banana states in atoll sources and a unified model for low-mass X-ray binaries

    Science.gov (United States)

    Church, M. J.; Gibiec, A.; Bałucińska-Church, M.

    2014-03-01

    We propose an explanation of the island and banana states and the relation between atoll and Z-track sources, constituting a unified model for low-mass X-ray binaries (LMXB). We find a dramatic transition at a luminosity of 1-2 × 1037 erg s-1 above which the high-energy cut-off ECO of the Comptonized emission in all sources is low at a few keV. There is thermal equilibrium between the neutron star at ˜2 keV and the Comptonizing accretion disc corona (ADC) causing the low ECO in the banana state of atolls and all states of the Z-track sources. Below this luminosity, ECO increases towards 100 keV causing the hardness of the island state. Thermal equilibrium is lost, the ADC becoming much hotter than the neutron star via an additional coronal heating mechanism. This suggests a unified model of LMXB: the banana state is a basic state with the mass accretion rate dot{M} increasing, corresponding to the normal branch of Z-track sources. The island state has high ADC temperature, this state not existing in the Z-sources with luminosities much greater than the critical value. The Z-track sources have an additional flaring branch consistent with unstable nuclear burning on the neutron star at high dot{M}. This burning regime does not exist at low dot{M} so this branch is not seen in atolls (except GX atolls). The horizontal branch in Z-track sources has a strong increase in radiation pressure disrupting the inner disc and launching relativistic jets.

  15. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    Science.gov (United States)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  16. THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Argiroffi, C. [Dipartimento di Fisica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Maggio, A.; Damiani, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Montmerle, T. [Institut d' Astrophysique de Paris, 98bis bd Arago, FR-75014 Paris (France); Huenemoerder, D. P. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Alecian, E. [Observatoire de Paris, LESIA, 5, place Jules Janssen, F-92195 Meudon Principal Cedex (France); Audard, M. [ISDC Data Center for Astrophysics, University of Geneva, Ch. d' Ecogia 16, CH-1290 Versoix (Switzerland); Bouvier, J. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041, Grenoble (France); Donati, J.-F. [IRAP-UMR 5277, CNRS and Universite de Toulouse, 14 Av. E. Belin, F-31400 Toulouse (France); Gregory, S. G. [Astronomy Department, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Guedel, M. [Department of Astronomy, University of Vienna, Trkenschanzstrasse 17, A-1180 Vienna (Austria); Hussain, G. A. J. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Kastner, J. H.; Sacco, G. G., E-mail: argi@astropa.unipa.it [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2012-06-20

    We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n{sub e}{approx} 10{sup 11}-10{sup 12} cm{sup -3}) plasma at temperatures of 3-4 MK. Our multi-wavelength campaign aims to simultaneously constrain the properties of this X-ray-emitting plasma, the large-scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray-grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22 {+-} 0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.

  17. Absorption lines from magnetically driven winds in X-ray binaries

    Science.gov (United States)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  18. Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658-298

    Science.gov (United States)

    Jain, Chetana; Paul, Biswajit; Sharma, Rahul; Jaleel, Abdul; Dutta, Anjan

    2017-06-01

    We present an X-ray timing analysis of the transient X-ray binary MXB 1658-298, using data obtained from the RXTE and XMM-Newton observatories. We have made 27 new mid-eclipse time measurements from observations made during the two outbursts of the source. These new measurements have been combined with the previously known values to study long-term changes in orbital period of the binary system. We have found that the mid-eclipse timing record of MXB 1658-298 is quite unusual. The long-term evolution of mid-eclipse times indicates an overall orbital period decay with a time-scale of -6.5(7) × 107 yr. Over and above this orbital period decay, the O-C residual curve also shows a periodic residual on shorter time-scales. This sinusoidal variation has an amplitude of ˜9 lt-s and a period of ˜760 d. This is indicative of the presence of a third body around the compact X-ray binary. The mass and orbital radius of the third body are estimated to lie in the ranges 20.5-26.9 Jupiter mass and 750-860 lt-s, respectively. If true, then it will be the most massive circumbinary planet and also the smallest period binary known to host a planet.

  19. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    Science.gov (United States)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray ($Swift$) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9$-$342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright ($232 \\pm 4 \\mu$Jy at $10$ GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state ($19 \\pm 4 \\mu$Jy). The source then was undetected in radio ( 0.7$ (where $L_R \\propto L_X^{\\beta}$). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at $L_X < 10^{35}$ erg s$^{-1}$ than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  20. Around 200 new X-ray binary IDs from 13 years of Chandra observations of the M31 center

    CERN Document Server

    Barnard, R; Primini, F; Li, Z; Baganoff, F; Murray, S S

    2013-01-01

    We have created 0.3--10 keV, 13 year, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ~1 month intervals thanks to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5--4.5 keV structure functions (SFs) for each source, for comparison with the ensemble structure function of AGN. We find 220 X-ray sources with luminosities > ~1E+35 erg/s that have SFs with significantly more variability than the ensemble AGN SF, and are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ~200 new identifications. This result represents great progress over the ~50 XBs and ~40 XB candidates previously identified out of the ~2000 X-ray sources within the D_25 region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify...

  1. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    CERN Document Server

    Sesana, A; Reynolds, M T; Dotti, M

    2011-01-01

    We demonstrate that very massive (>10^8\\msun), cosmologically nearby (z10^-13 erg s^-1 cm^-2 will be in the reach of upcoming X-ray observatories. Double relativistic K\\alpha lines may be observable in a handful of low redshift (z<0.3) sources by proposed deep X-ray probes, such as Athena. (Abridged)

  2. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    Science.gov (United States)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the

  3. X-ray emission from the double-binary OB-star system QZ Car (HD 93206)

    CERN Document Server

    Parkin, E R; Townsley, L K; Pittard, J M; Moffat, A F J; Naze, Y; Rauw, G; Oskinova, L M

    2011-01-01

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9 v, PB = 6 d) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three temperature thermal plasma model, characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. ...

  4. Variable Doppler shifts of the thermal wind absorption lines in low-mass X-ray binaries

    CERN Document Server

    Madej, O K; Trigo, M Diaz; Miskovicova, I

    2013-01-01

    In this paper we address the general applicability of the method pioneered by \\citet{Zhang2012} in which the motion of the compact object can be tracked using wind X-ray absorption lines. We present the velocity measurements of the thermal wind lines observed in the X-ray spectrum of a few low-mass X-ray binaries: GX 13+1, H 1743$-$322, GRO J1655$-$40 and GRS 1915+105. We find that the variability in the velocity of the wind lines in about all of the sources is larger than conceivable radial velocity variations of the compact object. GX 13+1 provides a potential exception, although it would require the red giant star to be massive with a mass of $\\approx 5-6\\ M_{\\odot}$. We conclude that the variability of the source luminosity occurring on a time scale of days/months can affect the outflow properties making it difficult to track the orbital motion of the compact object using current observations. Given the intrinsic variability of the outflows we suggest that low-mass X-ray binaries showing stable coronae in...

  5. The puzzling orbital period evolution of the low mass X-ray binary AX J1745.6-2901

    CERN Document Server

    Ponti, G; Munoz-Darias, T; Stella, L; Nandra, K

    2015-01-01

    The orbital period evolution of X-ray binaries provides fundamental clues to understanding mechanisms of angular momentum loss from these systems. We present an X-ray eclipse timing analysis of the transient low mass X-ray binary AX J1745.6-2901. This system shows full eclipses and thus is one of the few objects for which accurate orbital evolution studies using this method can be carried out. We report on XMM-Newton and ASCA observations covering 30 complete X-ray eclipses spanning an interval of more than 20 years. We improve the determination of the orbital period to a relative precision of $2\\times10^{-8}$, two orders of magnitudes better than previous estimates. We determine, for the first time, a highly significant rate of decrease of the orbital period $\\dot{P}_{orb}=-4.03\\pm0.32\\times10^{-11}$~s/s. This is at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic breaking, and might result from non-conservat...

  6. The first low-mass black hole X-ray binary identified in quiescence outside of a globular cluster

    CERN Document Server

    Tetarenko, B E; Arnason, R M; Miller-Jones, J C A; Repetto, S; Heinke, C O; Maccarone, T J; Chomiuk, L; Sivakoff, G R; Strader, J; Kirsten, F; Vlemmings, W

    2016-01-01

    The observed relation between the X-ray and radio properties of low-luminosity accreting black holes has enabled the identification of multiple candidate black hole X-ray binaries (BHXBs) in globular clusters. Here we report an identification of the radio source VLA J213002.08+120904 (aka M15 S2), recently reported in Kirsten et al. 2014, as a BHXB candidate. They showed that the parallax of this flat-spectrum variable radio source indicates a 2.2$^{+0.5}_{-0.3}$ kpc distance, which identifies it as lying in the foreground of the globular cluster M15. We determine the radio characteristics of this source, and place a deep limit on the X-ray luminosity of $\\sim4\\times10^{29}$ erg s$^{-1}$. Furthermore, we astrometrically identify a faint red stellar counterpart in archival Hubble images, with colors consistent with a foreground star; at 2.2 kpc its inferred mass is 0.1-0.2 $M_{\\odot}$. We rule out that this object is a pulsar, neutron star X-ray binary, cataclysmic variable, or planetary nebula, concluding tha...

  7. On the power spectra of the wind-fed X-ray binary pulsar GX 301 - 2

    Science.gov (United States)

    Orlandini, Mauro; Morfill, G. E.

    1992-01-01

    A phenomenological model of accretion which is applied to the wind-fed X-ray binary pulsar GX 301 - 2 is developed, assuming that the accretion onto the neutron star does not occur from a continuous flux of plasma, but from blobs of matter which are threaded by the magnetic field lines onto the magnetic polar caps of the neutron star. These 'lumps' are produced at the magnetospheric limit by magnetohydrodynamical instability, introducing a 'noise' in the accretion process, due to the discontinuity in the flux of matter onto the neutron star. This model is able to describe the change of slope observed in the continuum component of the power spectra of the X-ray binary pulsar GX 301 - 2, in the frequency range 0.01 - 0.1 Hz. The physical properties of the infalling blobs derived in the model are in agreement with the constraints imposed by observations.

  8. Constraining the formation of black holes in short-period black hole low-mass X-ray binaries

    Science.gov (United States)

    Repetto, Serena; Nelemans, Gijs

    2015-11-01

    The formation of stellar-mass black holes (BHs) is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova (SN) event (if any) and the magnitude of the natal kick (NK) the BH receives at birth (if any). Repetto et al., studying the position of Galactic X-ray binaries containing BHs, found evidence for BHs receiving high NKs at birth. In this paper, we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period BH X-ray binaries that we use are compact binaries consisting of a low-mass star orbiting a BH in a period less than 1 d. We trace their binary evolution backwards in time, from the current observed state of mass transfer, to the moment the BH was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no NK, just mass ejection, while for two systems (and possibly more) a high kick is required. So unless the latter have an alternative formation, such as within a globular cluster, we conclude that at least some BHs get high kicks. This challenges the standard picture that BH kicks would be scaled down from neutron star kicks. Furthermore, we find that five systems could have formed with a non-zero NK but zero mass ejected (i.e. no SN) at formation, as predicted by neutrino-driven NKs.

  9. X-ray and optical observations of M55 and NGC 6366: evidence for primordial binaries

    CERN Document Server

    Bassa, C G; Verbunt, F; Homer, L; Anderson, S F; Lewin, W H G

    2008-01-01

    We present Chandra X-ray Observatory ACIS-S3 X-ray imaging observations and VLT/FORS2 and Hubble Space Telescope optical observations of two low-density Galactic globular clusters; NGC 6366 and M55. We detect 16 X-ray sources with 0.5-6.0 keV luminosities above Lx=4E30 erg/s within the half-mass radius of M55, of which 8 or 9 are expected to be background sources, and 5 within the half-mass radius of NGC 6366, of which 4 are expected to be background sources. Optical counterparts are identified for several X-ray sources in both clusters and from these we conclude that 3 of the X-ray sources in M55 and 2 or 3 of the X-ray sources in NGC 6366 are probably related to the cluster. Combining these results with those for other clusters, we find the best fit for a predicted number of X-ray sources in a globular cluster Nc=1.2 Gamma+1.1 Mh, where Gamma is the collision number and Mh is (half of) the cluster mass, both normalized to the values for the globular cluster M4. Some sources tentatively classified as magneti...

  10. Chandra Characterization of X-Ray Emission in the Young F-Star Binary System HD 113766

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-02-01

    Using Chandra, we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 1029 erg s‑1, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with Lx > 6 × 1025 erg s‑1 within 2‧ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kTApec = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2σ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to Lx ∼ 2 × 1029 erg s‑1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 106 years. At 1028–1029 erg s‑1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  11. Extreme jet ejections from the black hole X-ray binary V404 Cygni

    Science.gov (United States)

    Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Rosolowsky, E. W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Russell, T. D.; Sarazin, C. L.

    2017-08-01

    We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of a BHXB jet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well. With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.

  12. X-ray emission from the double neutron star binary B1534+12: Powered by the pulsar wind?

    CERN Document Server

    Kargaltsev, O; Garmire, G P

    2006-01-01

    We report the detection of the double neutron star binary (DNSB) B1534+12 (= J1537+1155) with the Chandra X-ray Observatory. This DNSB (orbital period 10.1 hr) consists of the millisecond (recycled) pulsar J1537+1155A (P_A=37.9 ms) and a neutron star not detected in the radio. After the remarkable double pulsar binary J0737-3039, it is the only other DNSB detected in X-rays. We measured the flux of (2.2\\pm 0.6)\\times10^{-15} ergs s^{-1} cm^{-2} in the 0.3-6 keV band. The small number of collected counts allows only crude estimates of spectral parameters. The power-law fit yields the photon index of 3.2\\pm 0.5 and the unabsorbed 0.2-10 keV luminosity L_X=6\\times10^{29} ergs s^{-1} = 3\\times 10^{-4}Edot_A, where Edot_A is the spin-down power of J1537+1155A. Alternatively, the spectrum can be fitted by a blackbody model with T = 2.2 MK and the projected emitting area of ~ 5\\times 10^3 m^2. The distribution of photon arrival times over binary orbital phase shows a deficit of X-ray emission around apastron, which ...

  13. Discovery of Rapid Hard X-ray Variability and New Jet Activity in the Symbiotic Binary R Aqr

    CERN Document Server

    Nichols, J S; Kellogg, E; Anderson, C S; Sokoloski, J; Pedelty, J; 10.1086/512138

    2009-01-01

    Two Chandra observations of the R Aqr symbiotic binary system taken 3.3 years apart show dramatic changes in the X-ray morphology and spectral characteristics in the inner 500 AU of this system. The morphology of the soft X-ray emission has evolved from a nearly circular region centered on the binary system to an hourglass shape that indicates the formation of a new southwest jet. Synchrotron radiation from the new jet in contemporaneous VLA radio spectra implies the physical conditions in the early stages of jet development are different from those in the more extended outer thermal jets known to exist for decades in this system. The central binary source has two X-ray spectral components in each of the two epochs, a soft component and a highly absorbed hard component characterized by T ~ 10^8 K if fit with a thermal plasma model. The spectrum hardened considerably between 2000.7 and 2004.0, primarily due to increased flux above 5 keV, suggesting a change in the accretion activity of the white dwarf on a tim...

  14. FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Power, Chris [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); James, Gillian; Wynn, Graham [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Combet, Celine, E-mail: chris.power@icrar.org [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1/CNRS/IN2P3/INPG, 53 avenue des Martyrs, F-38026 Grenoble (France)

    2013-02-10

    Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.

  15. Optical and near-infrared photometric monitoring of the transient X-ray binary A0538-66 with REM

    Science.gov (United States)

    Ducci, L.; Covino, S.; Doroshenko, V.; Mereghetti, S.; Santangelo, A.; Sasaki, M.

    2016-11-01

    The transient Be/X-ray binary A0538-66 shows peculiar X-ray and optical variability. Despite numerous studies, the intrinsic properties underlying its anomalous behaviour remain poorly understood. Since September 2014 we have conducted the first quasi-simultaneous, optical and near-infrared photometric monitoring of A0538-66 in seven filters with the Rapid Eye Mount (REM) telescope to understand the properties of this binary system. We found that the REM light curves show fast flares lasting one or two days that repeat almost regularly every 16.6 d, which is the orbital period of the neutron star. If the optical flares are powered by X-ray outbursts through photon reprocessing, the REM light curves indicate that A0538-66 is still active in X-rays; bright X-ray flares (Lx ≳ 1037 erg s-1) could be observable during the periastron passages. The REM light curves show a long-term variability that is especially pronounced in the g-band and decreases with increasing wavelength until it no longer appears in the near-infrared light curves. In addition, A0538-66 is fainter with respect to previous optical observations, and this is likely because of the higher absorption of the stellar radiation of a denser circumstellar disc. On the basis of the current models, we interpret these observational results with a circumstellar disc around the Be star observed nearly edge-on during a partial depletion phase. The REM light curves also show short-term variability on timescales of 1 day, which is possibly indicative of perturbations in the density distribution of the circumstellar disc caused by the tidal interaction with the neutron star.

  16. Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries

    CERN Document Server

    Mandel, Ilya

    2015-01-01

    The birth kicks of black holes, arising from asymmetric mass ejection or neutrino emission during core-collapse supernovae, are of great interest for both observationally constraining supernova models and population-synthesis studies of binary evolution. Recently, several efforts were undertaken to estimate black hole birth kicks from observations of black-hole low-mass X-ray binaries. We follow up on this work, specifically focussing on the highest estimated black-hole kick velocities. We find that existing observations do not require black hole birth kicks in excess of approximately 100 km/s, although higher kicks are not ruled out.

  17. A NuSTAR observation of the reflection spectrum of the low-mass X-ray binary 4U 1728-34

    DEFF Research Database (Denmark)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with k...

  18. INTEGRAL detection of the multi-peaked emission from the Be/X-ray binary pulsar GRO J1008-57

    DEFF Research Database (Denmark)

    Fiocchi, M.; Sguera, A.; Chenevez, Jérôme

    2014-01-01

    Recent observations from the on-going INTEGRAL Galactic Plane Scanning programme (PI: A. Bazzano) have detected increasing X-ray flux from the Be/X-ray binary pulsar GRO J1008-57, confirming the re-brightening detected by MAXI/GSC (ATel #6819). The source was in the field of view of the IBIS...

  19. A NuSTAR observation of the reflection spectrum of the low-mass X-ray binary 4U 1728-34

    DEFF Research Database (Denmark)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with...

  20. ATCA radio detection of MAXI J1535-571 indicates it is a strong black hole X-ray binary candidate

    Science.gov (United States)

    Russell, T. D.; Miller-Jones, J. C. A.; Sivakoff, G. R.; Tetarenko, A. J.; Jacpot Xrb Collaboration

    2017-09-01

    MAXI J1535-571 is a newly discovered Galactic hard X-ray transient (GCN #21788, ATels #10699, 10700). Following its identification as a potential hard-state low-mass X-ray binary (ATel #10702) and a potential black hole system (ATel #10708), we conducted target of opportunity observations of this source with the Australia Telescope Compact Array (ATCA).

  1. Discovery of the Near-infrared Counterpart to the Luminous Neutron-star Low-mass X-Ray Binary GX 3+1

    NARCIS (Netherlands)

    van den Berg, M.; Homan, J.; Fridriksson, J.K.; Linares, M.

    2014-01-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart

  2. Studies of the Origin of High-frequency Quasi-periodic Oscillations of Mass-accreting Black Holes in X-Ray Binaries with Next-generation X-Ray Telescopes

    Science.gov (United States)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric

    2016-08-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), PolSTAR (Polarization Spectroscopic Telescope Array), PRAXyS(Polarimetry of Relativistic X-ray Sources), or XIPE (X-ray Imaging Polarimetry Explorer). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT-type mission.

  3. Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301-2

    Energy Technology Data Exchange (ETDEWEB)

    Servillat, M. [Laboratoire Univers et Théories (CNRS/INSU, Observatoire de Paris, Université Paris Diderot), 5 place Jules Janssen, F-92190 Meudon (France); Coleiro, A.; Chaty, S. [Laboratoire AIM (CEA/Irfu/SAp, CNRS/INSU, Universit Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Rahoui, F. [Harvard University, Department of Astronomy, 60 Garden Street, Cambridge, MA 02138 (United States); Zurita Heras, J. A., E-mail: mathieu.servillat@obspm.fr [AstroParticule et Cosmologie (Université Paris Diderot, CNRS/IN2P3, CEA/DSM, Observatoire de Paris, Sorbonne Paris Cité), 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2014-12-20

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 10{sup 4} μm). GX 301-2 is detected for the first time at 70 and 100 μm. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ∼3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ∼8 AU that would enshroud the binary system. The temperature goes down to ∼200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (∼1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  4. A Radio-Selected Black Hole X-ray Binary Candidate in the Milky Way Globular Cluster M62

    CERN Document Server

    Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Heinke, Craig; Noyola, Eva; Seth, Anil C; Ransom, Scott

    2013-01-01

    We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue exce...

  5. X-ray and optical observations of the unique binary system HD49798/RXJ0648.0-4418

    CERN Document Server

    Mereghetti, S; Tiengo, A; Pizzolato, F; Esposito, P; Woudt, P A; Israel, G L; Stella, L

    2011-01-01

    We report the results of XMM-Newton observations of HD49798/RXJ0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P=13.2 s) and has a dynamically measured mass of 1.28+/-0.05 M_sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT~40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~10^{32} erg/s is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass-loss. A search for optical pulsations at the South African Astronomical Observatory 1.9-m telescope gave negative results. X-rays were detected also during the white dwarf eclipse. This emission, with luminosity 2x10^{30} erg/s, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD49798/RXJ0648.0-4418 is...

  6. Athena's Constraints on the Dense Matter Equation of State from Quiescent Low Mass X-ray Binaries

    Science.gov (United States)

    Guillot, Sebastien

    2016-07-01

    The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the science goals of the Athena X-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state and understand the interior structure of neutron stars. I will briefly review this method, its strengths and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with a high signal-to-noise spectrum, will not place useful constraints on the dense matter equation of state. However, a combination of qLMXB spectra has shown great promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs and in particular, I will show that very tight constraints on the equation of state can be obtained from the observations of qLMXBs with the Athena X-ray observatory (even with a 10 % uncertainty on the flux calibration).

  7. Highlighting XMM-Newton's Role in Time Domain Studies of Neutron Star and Black Hole X-ray binaries in Nearby Galaxies

    Science.gov (United States)

    Laycock, S.; Yang, J.; Cappallo, R.; Christodoulou, D.; Steiner, J.

    2016-09-01

    XMM-Newton's combination of large effective area, superior event timing, and wide field imaging have provided a powerful capability for time-domain studies of nearby X-ray binary populations. In its first 15 years XMM has accomplished groundbreaking monitoring surveys for X-ray binaries; complemented by RXTE, Chandra, and Nustar. Over the next decade XMM's capabilities will complement a new generation of missions including Astrosat, Hitomi, and NICER. This paper highlights the role of XMM-Newton in combination with other missions, in exploring the HMXB populations of the Small Magellanic Cloud and IC 10. Both are nearby dwarf starburst galaxies, yet their ages and evolutionary scenarios are very different, the consequences of which have led to contrasting X-ray binary populations. In the SMC the definitive sample of X-ray binary pulsars assembled by RXTE is revealing fundamental accretion physics when probed by XMM. Finding and characterizing IC 10's youthful X-ray binaries required the combination of XMM together with Chandra and Nustar. Key results include the revelatory finding of an X-ray irradiated wind masking the mass-function in the WR+BH binary X-1 and the measurement of the BH's spin. Such studies have wide relevance to stellar/galactic evolution, implications for black hole masses and formation channels for BH+BH binaries.

  8. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    Science.gov (United States)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  9. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

    Directory of Open Access Journals (Sweden)

    Klus H.

    2014-01-01

    Full Text Available We report on the long term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use this data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 seconds, have magnetic fields over the quantum critical level of 4.4×1013 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, on the order of 106-1010 G, comparable to the fields of neutron stars in low mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  10. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  11. Probing the Accretion Scheme of the Dipping X-ray Binary 4U 1915-05 with Suzaku

    CERN Document Server

    Zhang, Zhongli; Sakurai, Soki; Sasano, Makoto; Ono, Kou

    2014-01-01

    The dipping low-mass X-ray binary 4U 1915-05 was observed by Suzaku on 2007 November 8 for a net exposure of 39 ksec. It was detected by the XIS with a 0.8-10 keV signal rate of 9.84+\\-0.01 cts/s per camera, and HXD-PIN with a 12-45 keV signal rate of 0.29+/-0.01 cts/s. After removing the periodic dips and an X-ray burst, the 0.8 - 45 keV continuum was successfully described by an optically thick disk emission with an inner-disk temperature ~ 0.7 keV and a neutron-star blackbody emission with a temperature ~ 1.3 keV, on condition that the blackbody component, or possibly the disk emission too, is significantly Comptonized. This successful modeling is consistent with 4U 1915-05 being in a high-soft state in this observation, and implies that its broadband spectrum can be interpreted in the same scheme as for many non-dipping Low-mass X-ray binaries in the soft state. Its bolometric luminosity (~ 0.02 times the Eddington limit) is relatively low for the soft state, but within a tolerance, if considering the dis...

  12. Timing Analysis of the Light Curve of the Dipping-Bursting X-ray Binary X1916-053

    CERN Document Server

    Chou, Y; Bloser, P F

    2001-01-01

    We present the timing analysis results for our observations of the x-ray dip source X1916-053 conducted with RXTE between February and October of 1996. Our goal was to finally measure the binary period - as either the x-ray dip period or ~1% longer optical modulation period, thereby establishing if the binary has a precessing disk (SU UMa model) or a third star (triple model). Combined with historical data (1979-96), the x-ray dip period is measured to be 3000.6508 $\\pm$ 0.0009 sec with a 2$\\sigma$ upper limit $|\\dot P| \\leq 2.06 \\times 10^{-11}$. From our quasi-simultaneous optical observations (May 14-23, 1996) and historical data (1987-96), we measure the optical modulation period to be 3027.5510 $\\pm$ 0.0052 sec with a 2$\\sigma$ upper limit $|\\dot P| \\leq 2.28 \\times 10^{-10}$. The two periods are therefore each stable (over all recorded data) and require a $3.9087 \\pm 0.0008$d beat period. This beat period, and several of its harmonics is also observed as variations in the dip shape. Phase modulation of ...

  13. Probing the hard and intermediate states of X-ray binaries using short time-scale variability

    CERN Document Server

    Skipper, Chris J

    2016-01-01

    Below an accretion rate of approximately a few per cent of the Eddington accretion rate, X-ray binary systems are not usually found in the soft spectral state. However, at accretion rates a factor of a few lower still, in the hard state, there is another spectral transition which is well observed but not well understood. Below ~0.5-1 per cent of the Eddington accretion rate (m_crit), the spectral index hardens with increasing accretion rate, but above m_crit, although still in the hard state, the spectral index softens with increasing accretion rate. Here we use a combination of X-ray spectral fitting and a study of short time-scale spectral variability to examine the behaviour of three well-known X-ray binaries: Cygnus X-1, GX 339-4 and XTE J1118+480. In Cygnus X-1 we find separate hard and soft continuum components, and show using root-mean-square (rms) spectra that the soft component dominates the variability. The spectral transition at m_crit is clearly present in the hard-state hardness-intensity diagram...

  14. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually `merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  15. Dynamical formation of Black Hole Low-Mass X-Ray Binaries in the field - an alternative to common envelope

    CERN Document Server

    Klencki, Jakub; Gładysz, Wojciech; Belczynski, Krzysztof

    2016-01-01

    Very wide binaries (> 500 AU) are subject to numerous encounters with flying-by stars in the Galactic field and can be perturbated into highly eccentric orbits (e ~ 0.99). For such systems tidal interactions at close pericenter passages can lead to orbit circularization and possibly mass transfer, consequently producing X-Ray binaries without the need for common envelope. We test this scenario for the case of Black Hole Low-Mass X-Ray Binaries (BH LMXBs) by performing a population synthesis from primordial binaries with numerical treatment of random stellar encounters. We test various models for the threshold pericenter distance under which tidal forces cause circularization. We find that fly-by interactions can produce a current population of ~ 60$-$220 BH LMXBs in the Galactic field and the results are sensitive to the assumption on tidal circularization efficiency. We show that the most likely donors are low-mass stars (< 1 Msun, at the onset of mass transfer) as observed in the population of known sour...

  16. Evolution of low-mass X-ray binaries: dependence on the mass of the compact object

    Institute of Scientific and Technical Information of China (English)

    Qian Xu; Tao Li; Xiang-Dong Li

    2012-01-01

    We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ~ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.

  17. Long-term X-ray studies of Scorpius X-1. I - Search for binary periodicity

    Science.gov (United States)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1976-01-01

    No evidence for modulation of the Sco X-1 intensity between 3 and 6 keV at the optical period of 0.787313 day is found during one year of quasi-continuous observation. Any persistent X-ray modulation at this period must be less than one percent.

  18. Studies of the Origin of High-Frequency Quasi-Periodic Oscillations of Mass Accreting Black Holes in X-ray Binaries with Next-Generation X-ray Telescopes

    CERN Document Server

    Beheshtipour, Banafsheh; Krawczynski, Henric

    2016-01-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of High Frequency Quasi-Periodic Oscillations (HFQPOs) of the X-ray flux from several accreting stellar mass Black Holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the strong gravity regime. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general relativistic ray-tracing code to investigate X-ray timing-spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment like the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), P...

  19. Differential non-linearity compensation in ADCs employing charge redistribution in an array of binary weighted capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, V.V. E-mail: vvsouchkov@lbl.gov

    2000-08-01

    Differential non-linearity (DNL) compensation in an analog-to-digital converter (ADC) is discussed. The successive approximation ADC under study employs charge redistribution in an array of binary weighted capacitors. The method of DNL compensation is supposed to be implemented in the ADC destined for the tracker readout of the CMS detector at LHC. The parameters of the DNL compensation technique are treated with the constructed simulator built in the Mathematica programming environment.

  20. Differential non-linearity compensation in ADCs employing charge redistribution in an array of binary weighted capacitors

    CERN Document Server

    Sushkov, V V

    2000-01-01

    Differential non-linearity (DNL) compensation in an analog-to-digital converter (ADC) is discussed. The successive approximation ADC under study employs charge redistribution in an array of binary weighted capacitors. The method of DNL compensation is supposed to be implemented in the ADC destined for the tracker readout of the CMS detector at LHC. The parameters of the DNL compensation technique are treated with the constructed simulator built in the Mathematica programming environment. (4 refs).

  1. Broadband x-ray properties of the gamma-ray binary 1FGL J1018.6-5856

    DEFF Research Database (Denmark)

    An, Hongjun; Bellm, Eric; Bhalerao, Varun

    2015-01-01

    We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X......, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered....

  2. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    Science.gov (United States)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  3. Analytical model of strange star in the low-mass X-ray binary 4U 1820-30

    CERN Document Server

    Kalam, Mehedi; Molla, Sajahan; Jafry, Md Abdul Kayum; Hossein, Sk Monowar

    2014-01-01

    In this article, we have proposed a model for a realistic strange star under Tolman VII metric\\citep{Tolman1939}. Here the field equations are reduced to a system of three algebraic equations for anisotropic pressure. Mass, central density and surface density of strange star in the low-mass X-ray binary 4U 1820-30 has been matched with the observational data according to our model. Strange materials clearly satisfies the stability condition (i.e. sound velocities < 1) and TOV-equation. Here also surface red shift of the star has been found to be within reasonable limit.

  4. BROADBAND X-RAY PROPERTIES OF THE GAMMA-RAY BINARY 1FGL J1018.6–5856

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305-4060 (United States); Bellm, Eric; Fuerst, Felix; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bhalerao, Varun [Inter University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Natalucci, Lorenzo [Istituto Nazionale di Astrofisica, INAFIAPS, via del Fosso del Cavaliere, I-00133 Roma (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-06-20

    We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6–5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray study of An et al. using ∼400 days of Swift data, but is consistent with a new gamma-ray solution reported in 2014. The light curve folded on the new period is qualitatively similar to that reported previously, having a spike at phase 0 and broad sinusoidal modulation. The X-ray flux enhancement at phase 0 occurs more regularly in time than was previously suggested. A spiky structure at this phase seems to be a persistent feature, although there is some variability. Furthermore, we find that the source flux clearly correlates with the spectral hardness throughout all orbital phases, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered.

  5. Timing Observations of PSR J1023+0038 During a Low-Mass X-ray Binary State

    CERN Document Server

    Jaodand, Amruta; Hessels, Jason W T; Bogdanov, Slavko; D'Angelo, Caroline R; Patruno, Alessandro; Bassa, Cees; Deller, Adam T

    2016-01-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star's spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star's magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star's surface. Timing observations can measure the total torque on the neut...

  6. SXP 7.92: A Recently Rediscovered Be/X-ray Binary in the Small Magellanic Cloud, Viewed Edge On

    Science.gov (United States)

    Bartlett, E. S.; Coe, M. J.; Israel, G. L.; Clark, J. S.; Esposito, P.; D'Elia, V.; Udalski, A.

    2017-01-01

    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE, RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000)=00:57:58.4, Dec(J2000)=-72:22:29.5 with a 1σ uncertainty of 1.5″, correcting the previously reported position by Coe et al. (2009) by more than 20 arcminutes. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self obscuration of the circumstellar disc. We derive an optical period for the system of 40.0±0.3 days, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/Optical behaviour in the recent outburst, in particular the "flares" and "dips" seen in the optical light curve, including a transient accretion disc and an elongated precessing disc.

  7. The X-ray light curve of the massive colliding wind Wolf-Rayet + O binary WR21a

    CERN Document Server

    Gosset, Eric

    2016-01-01

    Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR21a at high energies. For most of the orbit, the X-ray emission exhibits few variations. However, an increase in strength of the emission is seen before periastron, following a 1/D relative trend, where D is the separation between both components. This increase is rapidly followed by a decline due to strong absorption as the Wolf-Rayet (WR) comes in front. The fitted local absorption value appears to be coherent with a mass-loss rate of about 1x10^{-5} M_sol/yr for the WR component. However, absorption is not the only parameter affecting the X-ray emission at periastron as even the hard X-ray emission decreases, suggesting a possible collapse of the colliding wind region near to or onto the photosphere of the companion just before or at periastron. An eclipse may appear as another potential scenario, but it would be in apparent contradiction with several lines of evi...

  8. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple Epoch Observations of NGC 300 with Chandra

    CERN Document Server

    Binder, Breanna; Williams, Benjamin F; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D

    2016-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling $\\sim$184 ks) of the nearby spiral galaxy NGC~300 to study the logN-logS distributions of its X-ray point source population down to $\\sim$2$\\times$10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the 0.35-8 keV band (equivalent to $\\sim$10$^{36}$ erg s$^{-1}$). The individual epoch logN-logS distributions are best described as the sum of a background AGN component, a simple power law, and a broken power law, with the shape of the logN-logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for "persistent" sources (i.e., with fluxes that remain constant within a factor of $\\sim$2). The differential power law index of $\\sim$1.2 and high fluxes suggest that the persistent sources intrinsic to NGC~300 are dominated by Roche lobe overflowing low mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power law index of $\\sim$1.7, a bright-end index ...

  9. SXP 7.92: a recently rediscovered Be/X-ray binary in the Small Magellanic Cloud, viewed edge on

    Science.gov (United States)

    Bartlett, E. S.; Coe, M. J.; Israel, G. L.; Clark, J. S.; Esposito, P.; D'Elia, V.; Udalski, A.

    2017-04-01

    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE (Optical Gravitational Lensing Experiment), RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000) = 00:57:58.4, Dec(J2000) = -72:22:29.5 with a 1σ uncertainty of 1.5 arcsec, correcting the previously reported position by Coe et al. by more than 20 arcmin. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self-obscuration of the circumstellar disc. We derive an optical period for the system of 40.0 ± 0.3 d, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/optical behaviour in the recent outburst, in particular the 'flares'and 'dips' seen in the optical light curve, including a transient accretion disc and an elongated precessing disc.

  10. Swift reveals the eclipsing nature of the high mass X-ray binary IGR~J16195-4945

    CERN Document Server

    Cusumano, G; Segreto, A; D'Aì, A

    2016-01-01

    IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the available Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun,...

  11. Discovery of a Second Transient Low-Mass X-ray Binary in the Globular Cluster NGC 6440

    CERN Document Server

    Heinke, C O; Cohn, H N; Lugger, P M; Budac, S A; Servillat, M; Linares, M; Strohmayer, T E; Markwardt, C B; Wijnands, R; Swank, J H; Knigge, C; Bailyn, C; Grindlay, J E

    2009-01-01

    We have identified a new transient luminous low-mass X-ray binary, NGC 6440 X-2, with Chandra/ACIS, RXTE/PCA, and Swift/XRT observations of the globular cluster NGC 6440. The discovery outburst (July 28-31, 2009) peaked at L_X~1.5*10^36 ergs/s, and lasted for 21, B>22 in quiescence from archival HST imaging, g'>22 during the third outburst from Gemini-South GMOS imaging, and J>~18.5$ and K>~17 during the second outburst from CTIO 4-m ISPI imaging. Archival Chandra X-ray images of the core do not detect the quiescent counterpart, and place a bolometric luminosity limit of L_{NS}< 5.6*10^31 ergs/s (one of the lowest measured) for a hydrogen atmosphere neutron star. A followup Chandra observation finds marginal evidence of enhanced quiescent emission at L_X (0.5-10 keV)~6*10^31 ergs/s 10 days into quiescence. NGC 6440 X-2 currently shows the shortest recurrence time (32 days) of any known X-ray transient, although regular outbursts were not visible in the bulge scans before early 2009. Fast, low-luminosity tr...

  12. Are spectral and timing correlations similar in different spectral states in black hole X-ray binaries?

    CERN Document Server

    Kalamkar, M; van der Klis, M; Altamirano, D; Miller, J M

    2015-01-01

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5--0127 and GX 339-4 with the Swift X-ray Telescope. The bandpass of the X-ray Telescope has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a correlated spectral and variability study, with variability from both components of the accretion flow. We present for the first time, a combined study of the evolution of spectral parameters (disk temperature and radius) and timing parameters (frequency and strength) of all power spectral components in different spectral states. Comparison of the correlations in different spectral states shows that the frequency and strength of the power spectral components exhibit dependencies on the disk temperature that are different in the (low-)hard and the hard-intermediate states; most of these correlations that are clearly observed in the hard-intermediate state (in MAXI J1659-152 and GX 339-4) are not seen in the (low-)hard...

  13. Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1

    CERN Document Server

    Waterhouse, A C; Wijnands, R; Brown, E F; Miller, J M; Altamirano, D; Linares, M

    2015-01-01

    Aql X-1 is a prolific transient neutron star low-mass X-ray binary that exhibits an accretion outburst approximately once every year. Whether the thermal X-rays detected in intervening quiescent episodes are the result of cooling of the neutron star or due to continued low-level accretion remains unclear. In this work we use Swift data obtained after the long and bright 2011 and 2013 outbursts, as well as the short and faint 2015 outburst, to investigate the hypothesis that cooling of the accretion-heated neutron star crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that the X-ray light curves and measured neutron star surface temperatures are consistent with the expectations of the crust cooling paradigm. By using a thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat release describes the observational data well, depending on the assumed mass-accretion rate and temperature of the stellar core. We find no evidence for varying strengths of this shallow heating aft...

  14. X-ray Detection of the Proto Supermassive Binary Black Hole at the Centre of Abell 400

    CERN Document Server

    Hudson, D S; Reiprich, T H; Sarazin, C L; Clarke, Tracy E.; Hudson, Daniel S.; Reiprich, Thomas H.; Sarazin, Craig L.

    2006-01-01

    We report the first X-ray detection of a proto-supermassive binary black hole at the centre of Abell 400. Using the Chandra ACIS, we are able to clearly resolve the two active galactic nuclei in 3C 75, the well known double radio source at the centre of Abell 400. Through analysis of the new Chandra observation of Abell 400 along with 4.5 GHz and 330 MHz VLA radio data, we will show new evidence that the Active Galactic Nuclei in 3C 75 are a bound system. Methods. Using the high quality X-ray data, we map the temperature, pressure, density, and entropy of the inner regions as well as the cluster profile properties out to ~18'. We compare features in the X-ray and radio images to determine the interaction between the intra-cluster medium and extended radio emission. The Chandra image shows an elongation of the cluster gas along the northeast-southwest axis; aligned with the initial bending of 3C 75's jets. Additionally, the temperature profile shows no cooling core, consistent with a merging system. There is a...

  15. A Chandra observation of the neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence

    CERN Document Server

    Wijnands, R; Miller, J M; Homan, J; Wachter, S; Lewin, W H G; Wijnands, Rudy; Nowak, Mike; Miller, Jon M.; Homan, Jeroen; Wachter, Stefanie; Lewin, Walter H. G.

    2003-01-01

    After almost 2.5 years of actively accreting, the neutron star X-ray transient and eclipsing binary MXB 1659-29 returned to quiescence in 2001 September. We report on a Chandra observation of this source taken a little over a month after this transition. The source was detected at an unabsorbed 0.5-10 keV flux of only (2.7 - 3.6) x 10^{-13} erg cm^-2 s^-1, which implies a 0.5-10 keV X-ray luminosity of approximately (3.2 - 4.3) x 10^{33} (d/10 kpc)^2 erg s^-1, with d is the distance to the source in kpc. Its spectrum had a thermal shape and could be well fitted by either a blackbody with a temperature kT of ~0.3 keV or with a neutron star atmosphere model with a kT of ~0.1 keV. The luminosity and spectral shape of MXB 1659-29 are very similar to those observed of the other neutron star X-ray transients when they are in their quiescent state. The source was variable during our observation, exhibiting a complete eclipse of the inner part of the system by the companion star. Dipping behavior was observed before ...

  16. Broadband X-ray Properties of the Gamma-ray Binary 1FGL J1018.6-5856

    CERN Document Server

    An, Hongjun; Bhalerao, Varun; Boggs, Steven E; Christensen, Finn E; Craig, William W; Fuerst, Felix; Hailey, Charles J; Harrison, Fiona A; Kaspi, Victoria M; Natalucci, Lorenzo; Stern, Daniel; Tomsick, John A; Zhang, William W

    2015-01-01

    We report on NuSTAR, XMM-Newton and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544+/-0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray study of An et al. (2013) using ~400 days of Swift data, but is consistent with a new gamma-ray solution reported in 2014. The light curve folded on the new period is qualitatively similar to that reported previously, having a spike at phase 0 and broad sinusoidal modulation. The X-ray flux enhancement at phase 0 occurs more regularly in time than was previously suggested. A spiky structure at this phase seems to be a persistent feature, although there is some variability. Furthermore, we find that the source flux clearly correlates with the spectral hardness throughout all orbital phases, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. Thi...

  17. Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    CERN Document Server

    Vasilopoulos, G; Delvaux, C; Sturm, R; Udalski, A

    2016-01-01

    We report on the results of a $\\sim$40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded $10^{36}$ erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\\sigma}), making it the 17$^{th}$ known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law ($\\Gamma =0.63$) plus a high-temperature black-body (kT $\\sim$ 2 keV) component. By analysing $\\sim$12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability wh...

  18. The X-ray light curve of the massive colliding wind Wolf-Rayet + O binary WR 21a

    Science.gov (United States)

    Gosset, Eric; Nazé, Yaël

    2016-05-01

    Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR 21a at high energies. For most of the orbit, the X-ray emission exhibits few variations. However, an increase in strength of the emission is seen before periastron, following a 1 /D relative trend, where D is the separation between both components. This increase is rapidly followed by a decline due to strong absorption as the Wolf-Rayet (WR) comes in front. The fitted local absorption value appears to be coherent with a mass-loss rate of about 1 × 10-5 M⊙ yr-1 for the WR component. However, absorption is not the only parameter affecting the X-ray emission at periastron as even the hard X-ray emission decreases, suggesting a possible collapse of the colliding wind region near to or onto the photosphere of the companion just before or at periastron. An eclipse may appear as another potential scenario, but it would be in apparent contradiction with several lines of evidence, notably the width of the dip in the X-ray light curve and the absence of variations in the UV light curve. Afterwards, the emission slowly recovers, with a strong hysteresis effect. The observed behaviour is compatible with predictions from general wind-wind collision models although the absorption increase is too shallow. Based on observations collected at ESO as well as with Swift, Chandra, and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  19. Recent activity of the black hole X-ray binary IGR J17091-3624 as observed with the SWIFT/XRT : spectral hardening following the sharp drop in X-ray intensity

    Science.gov (United States)

    Pahari, Mayukh; Bhattacharyya, Sudip; Yadav, J. S.

    2012-07-01

    The last X-ray activity of the transient, Galactic, black hole X-ray binary IGR J17091-3624 was reported by Altamirano et al. (Atel #3913), where, using SWIFT/XRT data, they showed the source count rate of 15 +/- 2 cts/s on 31st January, 2012. Using INTEGRAL and IBIS detector, Drave et al. (Atel# 3916) detected the source activity in the 18-40 keV and 40-100 keV energy range respectively. Here, we are briefly summarizing the source activity using all observations from February 2012 onwards by the SWIFT/XRT.

  20. The Milky Way in X-rays for an outside observer Log(N)-Log(S) and Luminosity Function of X-ray binaries from RXTE\\/ASM data

    CERN Document Server

    Grimm, H J; Sunyaev, R A

    2002-01-01

    We study the Log(N)-Log(S) and X-ray luminosity function in the 2-10 keV energy band, and the spatial (3-D) distribution of bright, log(L_X) > 34-35 erg/s, X-ray binaries in the Milky Way. In agreement with theoretical expectations and earlier results we found significant differences between the spatial distributions of low (LMXB) and high (HMXB) mass X-ray binaries. The volume density of LMXB sources peaks strongly at the Galactic Bulge. HMXBs tend to avoid the inner 3-4 kpc of the Galaxy, HMXBs are more concentrated towards the Galactic Plane and show clear signatures of the spiral structure in their spatial distribution. LMXB sources have a flatter Log(N)-Log(S) distribution and luminosity function than HMXBs. The integrated 2-10 keV luminosities of X-ray binaries, averaged over 1996--2000, are 2-3 * 10^39 (LMXB) and 2-3 * 10^38 (HMXB) erg/s. Normalised to the stellar mass and the star formation rate, respectively, these correspond to 5 * 10^28 erg/s/M_sol for LMXBs and 5 * 10^37 erg/s/(M_sol/yr) for HMXBs...

  1. IGRJ17361-4441: a possible new accreting X-ray binary in NGC6388

    CERN Document Server

    Bozzo, E; Stevens, J; Belloni, T M; Rodriguez, J; Hartog, P R den; Papitto, A; Kreykenbohm, I; Fontani, F; Gibaud, L

    2011-01-01

    IGRJ17361-4441 is a newly discovered INTEGRAL hard X-ray transient, located in the globular cluster NGC6388. We report here the results of the X-ray and radio observations performed with Swift, INTEGRAL, RXTE, and the Australia Telescope Compact Array (ATCA) after the discovery of the source on 2011 August 11. In the X-ray domain, IGRJ17361-4441 showed virtually constant flux and spectral parameters up to 18 days from the onset of the outburst. The broad-band (0.5-100 keV) spectrum of the source could be reasonably well described by using an absorbed power-law component with a high energy cut-off (N_H\\simeq0.8x10^(22) cm^(-2), {\\Gamma}\\simeq0.7-1.0, and E_cut\\simeq25 keV) and displayed some evidence of a soft component below \\sim2 keV. No coherent timing features were found in the RXTE data. The ATCA observation did not detect significant radio emission from IGRJ17361-4441, and provided the most stringent upper limit (rms 14.1 {\\mu}Jy at 5.5 GHz) to date on the presence of any radio source close to the NGC638...

  2. The Spin of The Black Hole in the X-ray Binary Nova Muscae 1991

    CERN Document Server

    Chen, Zihan; McClintock, Jeffrey E; Steiner, James F; Wu, Jianfeng; Xu, Weiwei; Orosz, Jerome; Xiang, Yanmei

    2016-01-01

    The bright soft X-ray transient Nova Muscae 1991 was intensively observed during its entire 8-month outburst using the Large Area Counter (LAC) onboard the Ginga satellite. Recently, we obtained accurate estimates of the mass of the black hole primary, the orbital inclination angle of the system, and the distance. Using these crucial input data and Ginga X-ray spectra, we have measured the spin of the black hole using the continuum-fitting method. For four X-ray spectra of extraordinary quality we have determined the dimensionless spin parameter of the black hole to be a/M = 0.63 (-0.19, +0.16) (1 sigma confidence level), a result that we confirm using eleven additional spectra of lower quality. Our spin estimate challenges two published results: It is somewhat higher than the value predicted by a proposed relationship between jet power and spin; and we find that the spin of the black hole is decidedly prograde, not retrograde as has been claimed.

  3. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    Science.gov (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s‑1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  4. Implementation of the frequency-modulated sideband search method for gravitational waves from low mass X-ray binaries

    CERN Document Server

    Sammut, Letizia; Melatos, Andrew; Owen, Benjamin J

    2013-01-01

    We describe the practical implementation of the sideband search, a search for periodic gravitational waves from neutron stars in binary systems. The orbital motion of the source in its binary system causes frequency-modulation in the combination of matched filters known as the $\\mathcal{F}$-statistic. The sideband search is based on the incoherent summation of these frequency-modulated $\\mathcal{F}$-statistic sidebands. It provides a new detection statistic for sources in binary systems, called the $\\mathcal{C}$-statistic. The search is well suited to low-mass X-ray binaries, the brightest of which, called Sco X-1, is an ideal target candidate. For sources like Sco X-1, with well constrained orbital parameters, a slight variation on the search is possible. The extra orbital information can be used to approximately demodulate the data from the binary orbital motion in the coherent stage, before incoherently summing the now reduced number of sidebands. We investigate this approach and show that it improves the ...

  5. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    CERN Document Server

    Metzger, Brian D

    2013-01-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. This has the potential for creating a bright transient that could be useful for determining whether a NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of electron/positron pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV t...

  6. Transient Low-Mass X-Ray Binary Populations in Elliptical Galaxies NGC 3379 and NGC 4278

    CERN Document Server

    Fragos, T; Willems, B; Belczynski, K; Fabbiano, G; Brassington, N J; Kim, D -W; Angelini, L; Davies, R L; Gallagher, J S; King, A R; Pellegrini, S; Trinchieri, G; Zepf, S E; Zezas, A

    2009-01-01

    We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they sti...

  7. On the Optical -- X-ray correlation from outburst to quiescence in Low Mass X-ray Binaries: the representative cases of V404 Cyg and Cen X-4

    CERN Document Server

    Bernardini, F; Koljonen, K I I; Stella, L; Hynes, R I; Corbel, S

    2016-01-01

    Low mass X-ray binaries (LMXBs) show evidence of a global correlation of debated origin between X-ray and optical luminosity. We study for the first time this correlation in two transient LMXBs, the black hole V404 Cyg and the neutron star Cen X-4, over 6 orders of magnitude in X-ray luminosity, from outburst to quiescence. After subtracting the contribution from the companion star, the Cen X-4 data can be described by a single power law correlation of the form $L_{opt}\\propto\\,L_{X}^{0.44}$, consistent with disk reprocessing. We find a similar correlation slope for V404 Cyg in quiescence (0.46) and a steeper one (0.56) in the outburst hard state of 1989. However, V404 Cyg is about $160-280$ times optically brighter, at a given $3-9$ keV X-ray luminosity, compared to Cen X-4. This ratio is a factor of 10 smaller in quiescence, where the normalization of the V404 Cyg correlation also changes. We show that once the bolometric X-ray emission is considered and the known main differences between V404 Cyg and Cen X...

  8. Disc reflection and a possible disc wind during a soft X-ray state in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    Science.gov (United States)

    Degenaar, N.; Altamirano, D.; Parker, M.; Miller-Jones, J. C. A.; Miller, J. M.; Heinke, C. O.; Wijnands, R.; Ludlam, R.; Parikh, A.; Hessels, J. W. T.; Gusinskaia, N.; Deller, A. T.; Fabian, A. C.

    2016-10-01

    1RXS J180408.9-342058 is a transient neutron star low-mass X-ray binary that exhibited a bright accretion outburst in 2015. We present NuSTAR, Swift, and Chandra observations obtained around the peak brightness of this outburst. The source was in a soft X-ray spectral state and displayed an X-ray luminosity of LX ≃ (2-3) × 1037(D/5.8 kpc)2 erg s-1 (0.5-10 keV). The NuSTAR data reveal a broad Fe-K emission line that we model as relativistically broadened reflection to constrain the accretion geometry. We found that the accretion disc is viewed at an inclination of i ≃ 27°-35° and extended close to the neutron star, down to Rin ≃ 5-7.5 gravitational radii (≃11-17 km). This inner disc radius suggests that the neutron star magnetic field strength is B ≲ 2 × 108 G. We find a narrow absorption line in the Chandra/HEG data at an energy of ≃7.64 keV with a significance of ≃4.8σ. This feature could correspond to blueshifted Fe XXVI and arise from an accretion disc wind, which would imply an outflow velocity of vout ≃ 0.086c (≃25 800 km s-1). However, this would be extreme for an X-ray binary and it is unclear if a disc wind should be visible at the low inclination angle that we infer from our reflection analysis. Finally, we discuss how the X-ray and optical properties of 1RXS J180408.9-342058 are consistent with a relatively small (Porb ≲ 3 h) binary orbit.

  9. The Mass of the Black Hole in the X-ray Binary Nova Muscae 1991

    CERN Document Server

    Wu, Jianfeng; McClintock, Jeffrey E; Hasan, Imran; Bailyn, Charles D; Gou, Lijun; Chen, Zihan

    2016-01-01

    The optical counterpart of the black-hole soft X-ray transient Nova Muscae 1991 has brightened by $\\Delta{V}\\approx0.8$ mag since its return to quiescence 23 years ago. We present the first clear evidence that the brightening of soft X-ray transients in quiescence occurs at a nearly linear rate. This discovery, and our precise determination of the disk component of emission obtained using our $simultaneous$ photometric and spectroscopic data, have allowed us to identify and accurately model archival ellipsoidal light curves of the highest quality. The simultaneity, and the strong constraint it provides on the component of disk emission, is a key element of our work. Based on our analysis of the light curves, and our earlier measurements of the mass function and mass ratio, we have obtained for Nova Muscae 1991 the first accurate estimates of its systemic inclination $i=43.2^{+2.1}_{-2.7}$ deg, and black hole mass $M=11.0^{+2.1}_{-1.4}\\ M_\\odot$. Based on our determination of the radius of the secondary, we es...

  10. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in Supergiant Fast X-ray Transient and classical Supergiant X-ray Binaries

    CERN Document Server

    Gimenez-Garcia, A; Torrejon, J M; Oskinova, L; Martinez-Nunez, S; Hamann, W -R; Rodes-Roca, J J; Gonzalez-Galan, A; Alonso-Santiago, J; Gonzalez-Fernandez, C; Bernabeu, G; Sander, A

    2016-01-01

    Classical Supergiant X-ray Binaries (SGXBs) and Supergiant Fast X-ray Transients (SFXTs) are two types of High-mass X-ray Binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyse the spectra of each star in detail and derive their stellar and wind properties. We compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. We find that the stellar para...

  11. Two new bursting neutron star low-mass X-ray binaries: Swift J185003.2-005627 and Swift J1922.7-1716

    CERN Document Server

    Degenaar, N; Altamirano, D; Wijnands, R

    2012-01-01

    We discuss the origin of two triggers of Swift's Burst Alert Telescope (BAT) that occurred in 2011. The triggers were identified with Swift J185003.2-005627, a previously unknown X-ray source, and the known but unclassified X-ray transient Swift J1922.7-1716. We investigate the BAT data and follow-up observations obtained with the X-ray and ultra-violet/optical telescopes to demonstrate that both triggers are consistent with thermonuclear X-ray bursts. This implies that both sources are neutron star low-mass X-ray binaries. The total duration of ~7 min and estimated energy output of ~(3-7)E39 erg, fall in between that of normal and intermediately long X-ray bursts. From the observed peaks of the X-ray bursts we estimate a distance of <3.7 kpc for Swift J185003.2-005627 and <4.8 kpc for Swift J1922.7-1716. We characterize the outburst and quiescent X-ray properties of the two sources. They have comparable average outburst luminosities of ~1E35-1E36 erg/s, and a quiescent luminosity equal to or lower than...

  12. Timing Observations of PSR J1023+0038 During a Low-mass X-Ray Binary State

    Science.gov (United States)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bogdanov, Slavko; D’Angelo, Caroline R.; Patruno, Alessandro; Bassa, Cees; Deller, Adam T.

    2016-10-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (‑2.39 × 10‑15 Hz s‑1) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  13. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    Science.gov (United States)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  14. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    Science.gov (United States)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  15. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-03-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray

  16. An object that defies stereotypes. X-ray observations of SBS 1150+599A -- the binary nucleus of PN G135.9+55.9

    CERN Document Server

    Tovmassian, G; Napiwotzki, R; Yungelson, L; Stasińska, G; Peña, M; Richer, M

    2007-01-01

    We present X-ray observations of the close binary nucleus of the planetary nebula PN G135.9+55.9 obtained with the XMM satellite. The nebula is the most oxygen-poor PN known to date and is located in the Galactic halo. It is known to harbor a close binary nucleus of which only one component can be observed in optical-UV range. New X-ray observations show that the invisible component is a very hot compact star. This finding allows us to reconstruct the immediate past of the object and predict its future. The parameters of the binary components we determine strongly suggest that the precursor was a symbiotic supersoft X-ray source that finished its life by Roche lobe overflow. PN G135.9+55.9 is an excelent candidate for a future type Ia supernova.

  17. Shock breakout driven by the remnant of a neutron star binary merger: An X-ray precursor of mergernova emission

    CERN Document Server

    Li, Shao-Ze

    2015-01-01

    A supra-massive neutron star (NS) spinning extremely rapidly could survive from a merger of NS-NS binary. The spin-down of this remnant NS that is highly magnetized would power the isotropic merger ejecta to produce a bright mergernova emission in ultraviolet/optical bands. Before the mergernova, the early interaction between the NS wind and the ejecta can drive a forward shock to propagate outwards into the ejecta. As a result, a remarkable amount of heat can be accumulated to be deposited behind the shock front, the final escaping of which can produce a shock breakout emission. We describe the dynamics and thermal emission of this shock with a semi-analytical model. It is found that a sharp and luminous breakout emission, which is mainly in soft X-rays with a luminosity of $\\sim10^{45}~\\rm erg~s^{-1}$, appears at a few hours after the merger, by leading the mergernova emission as a precursor. Therefore, detections of such X-ray precursors would provide a smoking-gun evidence for identifying NS-powered merge...

  18. Investigating the X-ray emission from the massive WR+O binary WR 22 using 3D hydrodynamical models

    CERN Document Server

    Parkin, E R

    2011-01-01

    We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WR's wind overwhelms the O star's and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-r...

  19. Spinning-up: the case of the symbiotic X-ray binary 3A 1954+319

    CERN Document Server

    Fürst, F; Pottschmidt, K; Grinberg, V; Wilms, J; Bel, M Cadolle

    2011-01-01

    We present a timing and spectral analysis of the variable X-ray source 3A 1954+319. Our analysis is mainly based on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in 2008 fall and on the Swift/BAT longterm light curve. Previous observations, though sparse, have identified the source to be one of only nine known symbiotic X-ray binaries, i.e., systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-giant companion. The spectrum of 3A 1954+319 above 20 keV can be best described by a broken power law model. The extremely long pulse period of ~5.3 hours is clearly visible in the INTEGRAL/ISGRI light curve and confirmed through an epoch folding period search. Furthermore, the light curve allows us to determine a very strong spin up of -2x10^-4 h/h during the outburst. This spin up is confirmed by the pulse period evolution calculated from Swift/BAT data. The Swift/BAT data also show a long spin-down trend prior to the 2...

  20. Photometric observations of three high mass X-ray binaries and a search for variations induced by orbital motion

    Institute of Scientific and Technical Information of China (English)

    Gordon E.Sarty; László L.Kiss; Kinwah Wu; Bogumil Pilecki; Daniel E.Reichart; Kevin M.Ivarsen; Joshua B.Haislip; Melissa C.Nysewander; Aaron P.LaCluyze; Helen M.Johnston; Robert R.Shobbrook

    2011-01-01

    We searched for long period variation in V-band,IC-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698/RX J 1037.5-5647,HD 110432/1H 1249-637 and HD 161103/RX J1744.7-2713 in an attempt to discover orbitally induced variation.Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24-and 40-inch ANU telescopes and one of the robotic PROMPT telescopes.Fourier periodograms suggested the existence of long period variation in the V-band light curvesof all three HMXBs,however folding the data at those periods did not reveal convincing periodic variation.At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data.Long term V-band observations,on the order of several years,taken at a frequency of at least once per week and with a precision of 0.01 mag,therefore still have a chance of revealing long term variation in these three HMXBs.

  1. Variability of the X-ray Broad Iron Spectral Features in Active Galactic Nuclei and Black-hole Binaries

    CERN Document Server

    Mizumoto, Misaki; Tsujimoto, Masahiro; Inoue, Hajime

    2015-01-01

    The "broad iron spectral features" are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the "relativistic disc reflection" scenario or the "partial covering" scenario: It is hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board Suzaku. This observational mode has a time-resolution of 7.8~ms as well as a CCD energy-resolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN ...

  2. Following the Colour of the Low Mass X-ray Binary 4U 1820-30 with INTEGRAL

    CERN Document Server

    Tarana, A; Ubertini, P; Zdziarski, A A; Federici, M; Tarana, Antonella; Bazzano, Angela; Ubertini, Pietro

    2006-01-01

    The 4-200 keV spectral and temporal behaviour of the low mass X-ray binary 4U 1820-30 has been studied with INTEGRAL during 2003-2005. This source as been observed in both the soft (banana) and hard (island) spectral states. A high energy tail above 50 keV in the hard state has been revealed for the first time. This places the source in the category of X-ray bursters showing high-energy emission. The tail can be modeled as a soft power law component, with the photon index of ~ 2.4, on top of thermal Comptonization emission from a plasma with the electron temperature of kT_e ~ 6 keV and optical depth of $\\tau ~ 4. Alternatively, but at a lower goodness of the fit, the hard-state broad band spectrum can be accounted for by emission from a hybrid, thermal-nonthermal, plasma. During the observations, the source spent most of the time in the soft state, as previously reported and the $\\ge$4 keV spectra can be represented by thermal Comptonization with kT_e ~ 3 keV and $\\tau ~ 6-7.

  3. Hysteresis in the spectral states of the neutron star low-mass X-ray binary EXO 1745-248

    CERN Document Server

    Mukherjee, Arunava

    2011-01-01

    We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that EXO 1745-248 is an atoll source, and report the discovery of a ~ 0.45 Hz low-frequency quasi-periodic oscillation and ~ 10 Hz peaked noises. If it is an atoll, this source is unusual because (1) instead of a `C'-like curve, it traced a clear overall clockwise hysteresis curve in each of the colour-colour diagram and the hardness-intensity diagram; and (2) the source took at least 2.5 months to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. The shape of the hysteresis track was intermediate between the characteristic `q'-like curves of several black hole systems and `C'-like curves of atolls, implying that EXO 1745-248 is an important source for the unification of the black hole and neutron star accretion pr...

  4. Spinning-Up: the Case of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Fuerst, F.; Marcu, D. M.; Pottschmidt, K.; Grinberg, V.; Wilms, J.; CadolleBel, M.

    2011-01-01

    We present a timing and spectral analysis of the variable X-ray source 3A 1954+319. Our analysis is mainly based on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in 2008 fall and on the Swift/BAT longterm light curve. Previous observations, though sparse, have identified the source to be one of only nine known symbiotic X-ray binaries, i.e., systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-giant companion. The spectrum of3A 1954+319 above > 20 keV can be best described by a broken power law model. The extremely long pulse period of approx.5.3 hours is clearly visible in the INTEGRAL/ISGRI light curve and confirmed through an epoch folding period search. Furthermore, the light curve allows us to determine a very strong spin up of -2 x 10(exp -4) h/h during the outburst. This spin up is confirmed by the pulse period evolution calculated from Swift/BAT data. The Swift/BAT data also show a long spin-down trend prior to the 2008 outburst, which is confirmed in archival INTEGRAL/ISGRI data. We discuss possible accretion models and geometries allowing for the transfer of such large amounts of angular momentum and investigate the harder spectrum of this outburst compared to previously published results.

  5. Suzaku Monitoring of Hard X-ray Emission from Eta Carinae over a Single Binary Orbital Cycle

    CERN Document Server

    Hamaguchi, Kenji; Takahashi, Hiromitsu; Yuasa, Takayuki; Ishida, Manabu; Gull, Theodore R; Pittard, Julian M; Russell, Christopher M P; Madura, Thomas I

    2014-01-01

    The Suzaku X-ray observatory monitored the supermassive binary system Eta Carinae 10 times during the whole 5.5 year orbital cycle between 2005-2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15-40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ~4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of 3 around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ~3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. Thi...

  6. Multiwavelength study of the fast rotating supergiant high-mass X-ray binary IGR J16465-4507

    CERN Document Server

    Chaty, Sylvain; Negueruela, Ignacio; Coleiro, Alexis; Castro, Norberto; Simon-Diaz, Sergio; Heras, Juan Antonio Zurita; Goldoni, Paolo; Goldwurm, Andrea

    2016-01-01

    Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465-4507, to confirm its HMXB nature and that it hosts a supergiant star. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 +/- 8 km/s from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric ob...

  7. ARE SPECTRAL AND TIMING CORRELATIONS SIMILAR IN DIFFERENT SPECTRAL STATES IN BLACK HOLE X-RAY BINARIES?

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Klis, M. van der [Astronomical Institute, “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Altamirano, D., E-mail: maithili@oa-roma.inaf.it [School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2015-03-20

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a correlated spectral and variability study, with variability from both components of the accretion flow. We present for the first time a combined study of the evolution of spectral parameters (disk temperature and radius) and timing parameters (frequency and strength) of all power spectral components in different spectral states. Comparison of the correlations in different spectral states shows that the frequency and strength of the power spectral components exhibit dependencies on the disk temperature that are different in the (low-)hard and the hard-intermediate states (HIMSs); most of these correlations that are clearly observed in the HIMS (in MAXI J1659-152 and GX 339-4) are not seen in the (low-)hard state (in GX 339-4 and SWIFT J1753.5-0127). Also, the responses of the individual frequency components to changes in the disk temperature are markedly different from one component to the next. Hence, the spectral-timing evolution cannot be explained by a single correlation that spans both these spectral states. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  8. The BeppoSAX view on the Galactic Massive X-ray Binary 4U 0114+65

    CERN Document Server

    Masetti, N; Dal Fiume, D; Del Sordo, S; Amati, L; Frontera, F; Palazzi, E; Santangelo, A

    2005-01-01

    A pointed observation on the galactic high-mass X-ray binary 4U 0114+65 was carried out with BeppoSAX in order to compare the X-ray spectral and timing characteristics observed by this satellite over the broadest range of energies ever (1.5-100 keV) with the information previously obtained with other spacecraft. The light curve of 4U 0114+65 shows a large flare at the beginning of the BeppoSAX pointing and no significant hardness evolution either during the flare or in the low state occurring after the flare itself. The modulation at about 2.7 hours, attributed to the accreting neutron star (NS) spin periodicity, is not significantly detected in our data, although fluctuations with timescales of about 3 hours can be seen in the 2-10 keV light curve. Shorter modulations down to timescales of minutes, are also found and interpreted as due to accretion of matter onto the NS. The flaring and the low state spectra of 4U 0114+65 can be equally well fitted either with a power law modulated by a high-energy exponenti...

  9. Discovery of a candidate quiescent low-mass X-ray binary in the globular cluster NGC 6553

    CERN Document Server

    Guillot, Sebastien; Brown, Edward F; Pavlov, George G; Zavlin, Vyacheslav E

    2011-01-01

    This paper reports the search for quiescent low-mass X-ray binaries (qLMXBs) in the globular cluster (GC) NGC 6553 using an XMM-Newton observation designed specifically for that purpose. The analysis leading to the spectral identification of one candidate qLMXB in the core of the cluster, based on the consistency of the spectrum with a neutron star H-atmosphere model at the distance of NGC 6553, is described in this paper. Specifically, the best-fit radius found using the three XMM European Photon Imaging Camera (EPIC) spectra is R_NS=6.3(+2.3)(-0.8) km (for M_NS=1.4 Msun) and the best-fit temperature is kTeff=136(+21)(-34) eV. Both physical parameters are in accordance with typical values of previously identified qLMXBs in GC and in the field, i.e. R_NS~5-20 km and kTeff~50-150 eV. A power-law (PL) component with a photon index Gamma=2.1(+0.5)(-0.8) is also required for the spectral fit and contributes to ~33% of the total flux of the X-ray source. A detailed analysis supports the hypothesis that the PL comp...

  10. Shock Breakout Driven by the Remnant of a Neutron Star Binary Merger: An X-Ray Precursor of Mergernova Emission

    Science.gov (United States)

    Li, Shao-Ze; Yu, Yun-Wei

    2016-03-01

    A supra-massive neutron star (NS) spinning extremely rapidly could survive from a merger of an NS-NS binary. The spin-down of this remnant NS that is highly magnetized could power the isotropic merger ejecta to produce a bright mergernova emission in the ultraviolet/optical bands. Before the mergernova, the early interaction between the NS wind and the ejecta could drive a forward shock propagating outward into the ejecta. As a result, a remarkable amount of heat can be accumulated behind the shock front and the final escape of this heat could produce a shock breakout emission. We describe the dynamics and thermal emission of this shock with a semi-analytical model. It is found that a few hours after the merger, by leading the mergernova emission as a precursor, sharp and luminous breakout emission appears mainly in soft X-rays, with a luminosity of ∼ {10}45 {erg} {{{s}}}-1. Therefore, the detection of such an X-ray precursor could provide evidence for identifying NS-powered mergernovae and distinguishing them from radioactivity-powered novae (i.e., kilonovae or macronovae). The discovery of NS-powered mergernovae could finally help to confirm the gravitational wave signals due to the mergers and the existence of supra-massive NSs.

  11. Investigation of iron emission lines in the eclipsing high mass X-ray binary pulsar OAO 1657-415

    CERN Document Server

    Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from timing and spectral studies of high mass X-ray binary pulsar OAO 1657-415 using a Suzaku observations in 2011 September. X-ray pulsations were detected in the light curves up to $\\sim$70 keV. The continuum spectra during the high- and low-flux regions in light curves were well described by high energy cutoff power-law model along with a blackbody component and iron fluorescent lines at 6.4 keV and 7.06 keV. Time resolved spectroscopy was carried out by dividing the entire observations into 18 narrow segments. Presence of additional dense matter at various orbital phases was confirmed as the cause of low-flux regions in the observations. Presence of additional matter at several orbital phases of the pulsar was interpreted as due to the inhomogeneously distributed clumps of matter around the neutron star. Using clumpy wind hypothesis, the physical parameters of the clumps causing the high- and low-flux episodes in the pulsar light curve were estimated. The equivalent width o...

  12. The SMC X-ray transient XTE J0111.2-7317 a Be/X-ray binary in a SNR?

    CERN Document Server

    Coe, M J; Reig, P

    1999-01-01

    We report observations which confirm the identity of the optical/IR counterpart to the Rossi X-ray Timing Explorer transient source XTE J0111.2-7317. The counterpart is suggested to be a B0-B2 star (luminosity class III--V) showing an IR excess and strong Balmer emission lines. The distance derived from reddening and systemic velocity measurements puts the source in the SMC. Unusually, the source exhibits an extended asymetric H alpha structure.

  13. The Bardeen-Petterson Effect as a Possible Mechanism for Quasi-periodic Oscillations in X-Ray Binaries

    CERN Document Server

    Fragile, P C; Wilson, J R; Mathews, Grant J.; Wilson, James R.

    2001-01-01

    The Bardeen-Petterson effect around a rapidly rotating compact object causes a tilted accretion disk to warp into the equatorial plane of the rotating body at a characteristic radius. We show that the orbital frequency at this transition radius naturally falls into a range (2-1600 Hz) required to explain observed quasi-periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs). The Bardeen-Petterson effect also complements some interpretations of observed QPO frequency correlations. We show that it may also provide an explanation for the non-monotonic behavior of count rate vs. QPO frequency plots for the LMXBs 4U 1820-30 and 4U 1735-44.

  14. A disk-corona model for low/hard state of black hole X-ray binaries

    CERN Document Server

    Wang, Jiu-Zhou; Huang, Chang-Yin

    2013-01-01

    A disk-corona model for fitting low/hard (LH) state of associated steady jet of black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration of the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the consistency of the jet launching from accretion disk. The relative importance of the BZ to BP processes in powering jets from black hole accretion disk is discussed, and the LH state of several BHXBs is fitted based on our model.In addition, we suggest that magnetic field configuration could be regarded as the second parameter for governing the state transition of BHXBs.

  15. Observational signatures of neutron stars in low-mass X-ray binaries climbing a stability peak

    CERN Document Server

    Kantor, Elena; Chugunov, Andrey

    2015-01-01

    In the recent papers by Gusakov, Chugunov, and Kantor (2014) a new scenario describing evolution of rapidly rotating neutron stars in low-mass X-ray binaries was proposed. The scenario accounts for a resonant interaction of normal r modes with superfluid inertial modes at some specific internal stellar temperatures ("resonance temperatures"). This interaction results in an enhanced damping of r mode and appearance of the "stability peaks" in the temperature -- spin frequency plane, which split the r-mode instability window in the vicinity of the resonance temperatures. The scenario suggests that the hot and rapidly rotating NSs spend most of their life climbing up these peaks and, in particular, are observed there at the moment. We analyze in detail possible observational signatures of this suggestion. In particular, we show that these objects may exhibit `anti-glitches' -- sudden frequency jumps on a time scale of hours-months.

  16. The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

    Science.gov (United States)

    Repetto, Serena; Igoshev, Andrei P.; Nelemans, Gijs

    2017-01-01

    The aim of this work is to study the imprints that different models for black hole (BH) and neutron star (NS) formation have on the Galactic distribution of X-ray binaries (XRBs) which contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation scenarios, and that binary evolution following the BH/NS formation does not significantly affect the Galactic distributions of the binaries. We find that a population model in which at least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For the NS case, we find that a high NK distribution, consistent with the one derived from the measurement of pulsar proper motion, is the most preferable. We also analyse the simple method we previously used to estimate the minimal peculiar velocity of an individual BH-XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for certain models of the Galactic potential, but that our estimate is excellent for most of the BH-XRBs.

  17. Unraveling the Formation History of the Black Hole X-ray Binary LMC X-3 from ZAMS to Present

    CERN Document Server

    Sørensen, Mads; Steiner, James F; Antoniou, Vallia; Meynet, Georges; Dosopoulou, Fani

    2016-01-01

    We have endeavoured to understand the formation and evolution of the black hole (BH) X-ray binary LMC X-3. We estimate the properties of the system at 4 evolutionary stages: 1) at the Zero Age Main Sequence (ZAMS), 2) just prior to the supernova (SN) explosion of the primary, 3) just after the SN, and 4) at the moment of RLO onset.} {We use a hybrid approach, combining detailed stellar structure and binary evolution calculations with approximate population synthesis models. This allows us to estimate potential natal kicks and the evolution of the BH spin. In the whole analysis we incorporate as model constraints the most up-to-date observational information, encompassing the binary's orbital properties, the companion star mass, effective temperature, surface gravity and radius, as well as the black hole's mass and spin.} {We find that LMC X-3 began as a ZAMS system with the mass of the primary star in the range $M_{\\rm{1,ZAMS}}$ = 22-31 $\\rm{M_{\\odot}}$ and a secondary star of $M_{\\rm{2,ZAMS}} = 5.0-8.3M_{\\od...

  18. Evidence for Variable, Correlated X-ray and Optical/IR Extinction toward the Nearby, Pre-main Sequence Binary TWA 30

    CERN Document Server

    Principe, David A; Kastner, Joel H; Stelzer, Beate; Alcala, Juan

    2016-01-01

    We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR spectroscopic observations of the nearby ($D \\approx 42$ pc), low-mass (mid-M) binary system TWA 30A and 30B. The components of this wide (separation $\\sim$3400 AU) binary are notable for their nearly edge-on disk viewing geometries, high levels of variability, and evidence for collimated stellar outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011 June and July, accompanied (respectively) by IRTF SpeX (near-IR) and VLT XSHOOTER (visible/near-IR) spectroscopy obtained within $\\sim$20 hours of the X-ray observations. TWA 30A was detected in both XMM-Newton observations at relatively faint intrinsic X-ray luminosities ($L_{X}$$\\sim$$8\\times10^{27}$ $erg$ $s^{-1}$) compared to stars of similar mass and age . The intrinsic (0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor 20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected, and we infer an upper limit of ($L_{X}...

  19. Broadband monitoring tracing the evolution of the jet and disk in the black hole candidate X-ray binary MAXI J1659-152

    CERN Document Server

    van der Horst, A J; Miller-Jones, J C A; Linford, J D; Gorosabel, J; Russell, D M; Postigo, A de Ugarte; Lundgren, A A; Taylor, G B; Maitra, D; Guziy, S; Belloni, T M; Kouveliotou, C; Jonker, P G; Kamble, A; Paragi, Z; Homan, J; Kuulkers, E; Granot, J; Altamirano, D; Buxton, M M; Castro-Tirado, A; Fender, R P; Garrett, M A; Gehrels, N; Hartmann, D H; Kennea, J A; Krimm, H A; Mangano, V; Ramirez-Ruiz, E; Romano, P; Wijers, R A M J; Wijnands, R; Yang, Y J

    2013-01-01

    MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, sub-millimeter, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broadband picture of the evolution of this outburst. We have performed broadband spectral modeling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disk and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/...

  20. Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts

    CERN Document Server

    Archer, A; Bird, R; Bourbeau, E; Buchovecky, M; Buckley, J H; Bugaev, V; Byrum, K; Cerruti, M; Connolly, M P; Cui, W; Errando, M; Falcone, A; Feng, Q; Fernandez-Alonso, M; Finley, J P; Fleischhack, H; Flinders, A; Fortson, L; Furniss, A; Griffin, S; Grube, J; Hütten, M; Hanna, D; Hervet, O; Holder, J; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Kieda, D; Krause, M; Kumar, S; Lang, M J; Lin, T T Y; Maier, G; Moriarty, P; Mukherjee, R; Nieto, D; O'Brien, S; Ong, R A; Park, N; Pohl, M; Popkow, A; Pueschel, E; Quinn, J; Ragan, K; Reynolds, P T; Richards, G T; Roache, E; Rousselle, J; Rovero, A C; Sadeh, I; Schlenstedt, S; Sembroski, G H; Shahinyan, K; Staszak, D; Telezhinsky, I; Tyler, J; Wakely, S P; Wilcox, P; Wilhelm, A; Williams, D A

    2016-01-01

    Transient X-ray binaries produce major outbursts in which the X-ray flux can increase over the quiescent level by factors as large as $10^7$. The low-mass X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such major outbursts in June and October 2015, respectively. We present here observations at energies above hundreds of GeV with the VERITAS observatory taken during some of the brightest X-ray activity ever observed from these systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux limits derived from these observations on the gamma-ray flux above 200 GeV of F $< 4.4\\times 10^{-12}$ cm$^{-2}$ s$^{-1}$ correspond to a tiny fraction (about $10^{-6}$) of the Eddington luminosity of the system, in stark contrast to that seen in the X-ray band. No gamma rays have been detected during observations of 4U 0115+634 in the period of major X-ray activity in October 2015. The flux upper limit deriv...

  1. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    CERN Document Server

    Epili, Prahlad; Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at $\\sim$18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to $\\sim$10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to $\\sim$70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission line...

  2. Variability in the orbital profiles of the X-ray emission of the gamma-ray binary LS I +61 303

    CERN Document Server

    Torres, Diego F; Li, Jian; Rea, Nanda; Caliandro, G Andrea; Hadasch, Daniela; Chen, Yupeng; Wang, Jianmin; Ray, Paul S

    2010-01-01

    We report on the analysis of Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) monitoring observations of the $\\gamma$-ray binary system LS I +61 303, covering 35 full cycles of its orbital motion. This constitutes the largest continuous X-ray monitoring dataset analyzed to date for this source. Such an extended analysis allows us to report: a) the discovery of variability in the orbital profiles of the X- ray emission, b) the existence of a few (recent) short flares on top of the overall behavior typical of the source, which, given the PCA field-of-view, may or may not be associated with LS I +61 303, and c) the determination of the orbital periodicity using soft X-ray data alone.

  3. Study of luminosity and spin-up relation in X-ray binary pulsars with long-term monitoring by MAXI/GSC and Fermi/GBM

    CERN Document Server

    Sugizaki, Mutsumi; Nakajima, Motoki; Yamaoka, Kazutaka

    2015-01-01

    We study the relation between luminosity and spin-period change in X-ray binary pulsars using long-term light curve obtained by the MAXI/GSC all-sky survey and pulse period data from the Fermi/GBM pulsar project. X-ray binaries, consisting of a highly magnetized neutron star and a stellar companion, originate X-ray emission according to the energy of the accretion matter onto the neutron star. The accretion matter also transfers the angular momentum at the Alfven radius, and then spin up the neutron star. Therefore, the X-ray luminosity and the spin-up rate are supposed to be well correlated. We analyzed the luminosity and period-change relation using the data taken by continuous monitoring of MAXI/GSC and Fermi/GBM for Be/X-ray binaries, GX 304$-$1, A 0535$+$26, GRO J1008$-$57, KS 1947$+$300, and 2S 1417$-$624, which occurred large outbursts in the last four years. We discuss the results comparing the obtained observed relation with that of the theoretical model by Ghosh \\& Lamb (1979).

  4. A Chandra Perspective On Galaxy-Wide X-ray Binary Emission And Its Correlation With Star Formation Rate And Stellar Mass: New Results From Luminous Infrared Galaxies

    CERN Document Server

    Lehmer, B D; Bauer, F E; Brandt, W N; Goulding, A D; Jenkins, L P; Ptak, A; Roberts, T P

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N_H < 5 X 10^20 cm^-2. The LIRGs in our sample have total infrared (8-1000um) luminosities in the range of L_IR ~ (1-8) X 10^11 L_sol. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei (AGNs) and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star-formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M*) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (LX) traces the combined emission from high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs), and that the power output from these components are linearly correlated with SFR and M*, respectively, we constrain the relation ...

  5. Evidence for variable, correlated X-ray and optical/IR extinction towards the nearby, pre-main-sequence binary TWA 30

    Science.gov (United States)

    Principe, David A.; Sacco, G.; Kastner, J. H.; Stelzer, B.; Alcalá, J. M.

    2016-06-01

    We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR spectroscopic observations of the nearby (D ≈ 42 pc), low-mass (mid-M) binary system TWA 30A and 30B. The components of this wide (separation ˜3400 au) binary are notable for their nearly edge-on disc viewing geometries, high levels of variability, and evidence for collimated stellar outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011 June and July, accompanied (respectively) by Infrared Telescope Facility SpeX (near-IR) and VLT XSHOOTER (visible/near-IR) spectroscopy obtained within ˜20 h of the X-ray observations. TWA 30A was detected in both XMM-Newton observations at relatively faint intrinsic X-ray luminosities (LX ˜ 8 × 1027 erg s-1) compared to stars of similar mass and age. The intrinsic (0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor 20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected, and we infer an upper limit on its X-ray Luminosity of LX ≲ 3.0 × 1027 erg s-1. We measured a decrease in visual extinction towards TWA 30A (from AV ≈ 14.9 to AV ≈ 4.7) between the two 2011 observing epochs, and we find evidence for a corresponding significant decrease in X-ray absorbing column (NH). The apparent correlated change in AV and NH is suggestive of variable obscuration of the stellar photosphere by disc material composed of both gas and dust. However, in both observations, the inferred NH to AV ratio is lower than that typical of the interstellar medium, suggesting that the disc is either depleted of gas or is deficient in metals in the gas phase.

  6. 用于医用X射线图像传感器的14位流水线ADC设计%A 14-bit pipeline ADC design for medical X-ray CMOS image sensor

    Institute of Scientific and Technical Information of China (English)

    朱天成; 叶旭明; 徐伯夏

    2011-01-01

    用CMOS(complementary metal oxide semiconductor)图像传感器取代传统医用X射线透视仪器对于医疗设备的便携化、数字化具有重大意义.由于医疗应用的特殊要求,对于CMOS图像传感器要求具有12位以上分辨率的输出,因此本文设计了一个具有14位分辨率的流水线ADC(analog digital converter)来满足X射线CMOS图像传感器系统的要求.由于X射线CMOS图像传感器的面积很大,因此将像素阵列分割成若干块同时并行读出.每一块将用到一个14位的流水线ADC.这种并行结构将大大降低对于ADC速度的要求.根据系统要求,本文设计的ADC的速度为3 MS/s.通过采用类似并行流水线ADC的结构,将ADC设计的速度要求降低一倍,缓解由于高精度设计带来的设计压力.仿真结果表明本设计可以达到14位的设计精度.%Objective Using CMOS (complementary metal oxide semiconductor) image sensor to replace traditional X-ray apparatus is a great significance for miniaturization and digitalization of medical equipments. For the special requirements of medical application, the CMOS image sensor output resolution should be more than 12 bits, and in this study we use a 14-bit pipeline ADC (analog digital converter) to meet the system requirements. As the area of X-ray CMOS image sensor is very large, we divide the CMOS image sensor into many partitions, and read data in parallel. Each partition adopts a 14-bit pipeline ADC to readout. The parallel structure greatly reduces the requirement for speed. According to the system requirements, a speed of 3 MS/s is adopted in this work. A pseudo-parallel pipeline ADC has been introduced into this work, which allows to reduce the speed requirement by a half, releasing the design pressure from high precision requirement. The simulation results demonstrate that the design can achieve a 14-bit resolution.

  7. X-ray Emission from the Binary Central Stars of the Planetary Nebulae HFG 1, DS 1, and LoTr 5

    CERN Document Server

    Montez, Rodolfo; Kastner, Joel H; Chu, You-Hua

    2010-01-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main sequence companions in binary systems with hot pre-white dwarf primaries. However, models of binary PN progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main sequence companions, and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically-thin thermal plasma compo...

  8. Puzzling thermonuclear burst behaviour from the transient low-mass X-ray binary IGR J17473-2721

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Altamirano, Diego; Galloway, Duncan

    2010-01-01

    We investigate the thermonuclear bursting behaviour of IGR J17473−2721, an X-ray transient that in 2008 underwent a 6-month long outburst, starting (unusually) with an X-ray burst. We detected a total of 57 thermonuclear bursts throughout the outburst with AGILE, Swift, Rossi X-ray Timing Explore...

  9. On the universal late X-ray emission of binary-driven hypernovae and its possible collimation

    CERN Document Server

    Pisani, G B; Aimuratov, Y; Bianco, C L; Kovacevic, M; Moradi, R; Muccino, M; Penacchioni, A V; Rueda, J A; Shakeri, S; Wang, Y

    2016-01-01

    It has been previously discovered a universal power-law behaviour of the late X-ray emission (LXRE) of a "golden sample" (GS) of six long energetic GRBs, when observed in the rest-frame of the source. This remarkable feature, independent on the different isotropic energy (E_iso) of each GRB, has been used to estimate the cosmological redshift of some long GRBs. This analysis is here extended to a new class of 161 long GRBs, all with E_iso > 10^52 erg. These GRBs are indicated as binary-driven hypernovae (BdHNe) in view of their progenitors: a tight binary systems composed of a carbon-oxigen core (CO_core) and a neutron star (NS) undergoing an induced gravitational collapse (IGC) to a black hole (BH) triggered by the CO_core explosion as a supernova (SN). We confirm the universal behaviour of the LXRE for the "enlarged sample" (ES) of 161 BdHNe observed up to the end of 2015, assuming a double-cone emitting region. We obtain a distribution of half-opening angles peaking at 17.62{\\deg}, with mean value 30.05{\\d...

  10. Low-mass X-ray binaries in the outer halo of NGC 4472: a consequence of natal kicks?

    Science.gov (United States)

    Van Haaften, Lennart M.; Maccarone, Thomas J.; Sell, Paul; Mihos, Chris; Sand, David J.; Kundu, Arunav; Zepf, Stephen

    2017-01-01

    We present new Chandra observations of the outer halo of the giant elliptical galaxy NGC 4472 (M49) in the Virgo Cluster. The data extend to 130 kpc (28'), and have a total exposure time of 150 ks. After eliminating background active galactic nuclei and globular cluster (GC) sources, and correcting for completeness, we find that the number of field low-mass X-ray binaries (LMXBs) per unit stellar light increases significantly with galactocentric radius. The excess of field LMXBs at large galactocentric radii may be a consequence of natal kicks on neutron stars and black holes in binary systems in the inner part of the galaxy. These systems, some of which will become LMXBs, will generally move into wider galactic orbits. Since the metallicity in the halo of NGC 4472 strongly decreases towards larger galactocentric radii, the number of field LMXBs is anti-correlated with metallicity, in contrast to GCs. An alternative to natal kicks to explain the spatial distribution of field LMXBs is therefore a reversed metallicity effect.

  11. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J.M.; Lemmich, J.; Richter, F.

    2000-01-01

    hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X-cer = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong...

  12. New Results on the Time lags of the Quasi-Periodic Oscillations in the Low-mass X-ray Binary 4U 1636--53

    NARCIS (Netherlands)

    de Avellar, Marcio G. B.; Méndez, Mariano; Altamirano, Diego; Sanna, Andrea; Zhang, Guobao

    2015-01-01

    We present an analysis of the energy and frequency dependence of the Fourier time lags of the hectoHertz quasi-periodic oscillations (QPOs) and of the QPOs at the frequency at which the power density spectrum shows a break in the neutron-star low-mass X-ray binary 4U 1636-53, using a large data set

  13. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  14. GRB060602B = Swift J1749.4−2807: an unusual transiently accreting neutron-star X-ray binary

    NARCIS (Netherlands)

    Wijnands, R.; Rol, E.; Cackett, E.; Starling, R.L.C.; Remillard, R.A.

    2009-01-01

    We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I X

  15. A global study of type B quasi-periodic oscillation in black hole X-ray binaries

    Science.gov (United States)

    Gao, H. Q.; Zhang, Liang; Chen, Yupeng; Zhang, Zhen; Chen, Li; Zhang, Shuang-Nan; Zhang, Shu; Ma, Xiang; Li, Zi-Jian; Bu, Qing-Cui; Qu, JinLu

    2017-04-01

    We performed a global study on the timing and spectral properties of type-B quasi-periodic oscillations (QPOs) in the outbursts of black hole X-ray binaries. The sample is built based on the observations of Rossi X-ray Timing Explorer (RXTE), via searching in the literature in RXTE era for all the identified type-B QPOs. To enlarge the sample, we also investigated some type-B QPOs that are reported but not yet fully identified. Regarding to the time lag and hard/soft flux ratio, we found that the sources with type-B QPOs behave in two subgroups. In one subgroup, type-B QPO shows a hard time lag that first decreases and then reverse into a soft time lag along with softening of the energy spectrum. In the other subgroup, type-B QPOs distribute only in a small region with hard time lag and relatively soft hardness. These findings may be understood with a diversity of the homogeneity showing up for the hot inner flow of different sources. We confirm the universality of a positive relation between the type-B QPO frequency and the hard component luminosity in different sources. We explain the results by considering that the type-B QPO photons are produced in the inner accretion flow around the central black hole, under a local Eddington limit. Using this relationship, we derived a mass estimation of 9.3-27.1 M⊙ for the black hole in H 1743-322.

  16. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    Science.gov (United States)

    Troyer, Jon; Peille, Philippe; Cackett, Edward; Barret, Didier

    2017-08-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Specifically, we show correlated time-lags as a function of QPO frequency and energy for the various LMXB systems where kHz QPOs are detected.

  17. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  18. Discovery of a Candidate Quiescent Low-mass X-Ray Binary in the Globular Cluster NGC 6553

    Science.gov (United States)

    Guillot, Sebastien; Rutledge, Robert E.; Brown, Edward F.; Pavlov, George G.; Zavlin, Vyacheslav E.

    2011-09-01

    This paper reports the search for quiescent low-mass X-ray binaries (qLMXBs) in the globular cluster (GC) NGC 6553 using an XMM-Newton observation designed specifically for that purpose. We spectrally identify one candidate qLMXB in the core of the cluster, based on the consistency of the spectrum with a neutron star H-atmosphere model at the distance of NGC 6553. Specifically, the best-fit radius found using the three XMM European Photon Imaging Camera spectra is {R_NS}=6.3{^{+ 2.3}_{- 0.8}}{\\,km} (for {M_NS}=1.4{\\,M_\\odot }) and the best-fit temperature is {kT_eff}=136{^{+ 21}_{- 34}}{\\,eV}. Both physical parameters are in accordance with typical values of previously identified qLMXBs in GC and in the field, i.e., {R_NS}\\sim 5-20{\\,km} and {kT_eff}\\sim 50-150 {\\,eV}. A power-law (PL) component with a photon index Γ = 2.1+0.5 - 0.8 is also required for the spectral fit and contributes ~33% of the total flux of the X-ray source. A detailed analysis supports the hypothesis that the PL component originates from nearby sources in the core, unresolved with XMM. The analysis of an archived Chandra observation provides marginal additional support to the stated hypothesis. Finally, a catalog of all the sources detected within the XMM field of view is presented here.

  19. Contour-based models for 3D binary reconstruction in X-ray tomography

    Science.gov (United States)

    Soussen, C.; Mohammad-Djafari, A.

    2001-05-01

    We study the reconstruction of a 3D compact homogeneous object lying inside a homogeneous background for computer aided design (CAD) or nondestructive testing (NDT) applications. Such a binary scene describes either a solid object or an homogeneous material in which a fault is sought. The goal in both cases is to reconstruct the shape of the scene from sparse radiographic data. This problem is under-determined and one needs to use all prior information about the scene to find a satisfactory solution. A natural approach is to model the exterior contour of the fault by a deformable geometric template, which we reconstruct directly from the radiographic data. In this communication, we give a synthetic view of these contour-based methods and compare their relative performances and limitations to recover complex faults. .

  20. The 2015 Decay of the Black Hole X-ray Binary V404 Cygni: Robust Disk-Jet Coupling and a Sharp Transition into Quiescence

    CERN Document Server

    Plotkin, R M; Gallo, E; Jonker, P G; Homan, J; Tomsick, J A; Kaaret, P; Russell, D M; Heinz, S; Hodges-Kluck, E J; Markoff, S; Sivakoff, G R; Altamirano, D; Neilsen, J

    2016-01-01

    We present simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cygni at the end of its 2015 outburst. From 2015 July 11-August 5 we monitored V404 Cygni with Chandra, Swift, and NuSTAR in the X-ray, and with the Karl G. Jansky Very Large Array and the Very Long Baseline Array in the radio, spanning a range of luminosities that were poorly covered during its previous outburst in 1989 (our 2015 campaign covers 2e33X-ray spectrum evolved rapidly from a hard photon index of Gamma~1.6 (at Lx~1e34 erg/s) to a softer Gamma~2 (at Lx~3e33 erg/s). We argue that V404 Cygni reaching Gamma~2 marks the beginning of the quiescent spectral state, which occurs at a factor of ~3-4 higher X-ray luminosity than the average pre-outburst luminosity of ~8e32 erg/s. V404 Cygni falls along the same radio/X-ray luminosity correlation that it followed during its previous outburst in 1989, implying a robust disk-jet coupling. We exclude the possibility that a...